
HAL Id: hal-04727330
https://hal.science/hal-04727330v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-hoc Explanation of Extension Semantics
Leila Amgoud

To cite this version:
Leila Amgoud. Post-hoc Explanation of Extension Semantics. 27TH EUROPEAN CONFERENCE
ON ARTIFICIAL INTELLIGENCE, Oct 2024, Santiago de Compostela, Spain. �hal-04727330�

https://hal.science/hal-04727330v1
https://hal.archives-ouvertes.fr


Post-hoc Explanation of Extension Semantics
Leila Amgoud

CNRS – IRIT, France
ORCID (Leila Amgoud): https://orcid.org/0000-0002-1838-4271

Abstract. Extension semantics are formal methods that evaluate
acceptability status of arguments in argumentation graphs where ar-
guments may attack each other. Understanding and explaining their
outcomes is of utmost importance in applications like decision mak-
ing. Consequently, a plethora of works has been devoted to answer
questions of the form “why an argument A is (not) accepted under
semantics δ”. Existing approaches explain the inner working and de-
cision logic of δ. Their explanations refer thus to the semantics’s
building blocks like attack, defence and admissibility.

This paper complements the existing landscape with a post-hoc
approach that discloses relationships between argumentation graphs
and outputs of a semantics, regardless of its internals. The new ap-
proach offers several advantages, namely it explains more acceptabil-
ity statuses than just the two (accepted, not accepted) considered in
the literature, treats all statuses in a similar way, applies to any ex-
tension semantics that satisfies two key properties (monotonicity and
maximality), and provides subsets of attackers, thus the size of its
explanations is bounded by the number of attackers of an argument.
We characterize the types of attacks that may target an argument. We
show that some have no impact on their target’s status while others
are influential. Then, we introduce three explanation functions that
harness influential attacks. One of them provides sufficient reasons
that guarantee an argument’s status while the others identify changes
in the graph that guarantee a change of status to any value (counter-
factuals) or to a specified one (contrastive). We show that sufficient
reasons are minimal hitting sets of the counterfactuals and vice-versa.

1 Introduction
An argumentation framework consists of a graph and a semantics.
The nodes and edges of the graph are arguments (i.e., justifications
of claims) and attack relations (i.e., conflicts) between arguments
respectively. A semantics is a formal method that evaluates the
acceptability status of every argument in the graph. A sizeable
amount of semantics has been proposed in the literature (see [8, 36]
for surveys). The very first ones are extension-based [22] as they
generate sets of arguments, called extensions, that can jointly
be acceptable. Some works, like [7, 26], aggregate extensions
to assign to every argument an acceptability status taken from
the two-valued qualitative scale T = {accepted, non-accepted}.
An argument is accepted under a semantics if it belongs to at
least one extension, it is non-accepted otherwise. Other papers,
including [3, 27, 13], use the richer four-valued scale S =
{sceptically accepted, credulously accepted, undecided, rejected},
which refines T. These works distinguish two types of accepted
arguments: those that belong to all extensions (sceptical acceptance)
from those that belong to some but not all extensions (credulous

acceptance). They also distinguish two types of non-accepted argu-
ments: those that are attacked by at least one extension (rejected)
from those not (undecided). The most recent semantics are the
so-called gradual in [13] as they aim to finer-grained evaluations of
arguments and thus use even richer scales than S.

Argumentation has been used for solving various theoretical prob-
lems [37] including inconsistency handling (eg., [9]), decision mak-
ing (eg., [4]), persuasion (eg., [10]) and negotiation (eg., [19]). It has
also been at the heart of practical problems [6] including argument
search engines [39]. Consequently, like any AI model, its explain-
ability received a lot of attention from the argumentation community.
Existing works on the topic can roughly be partitioned into three cat-
egories. The first category looks for explaining outcomes of AI mod-
els that are not argumentation-based. Examples are works that use
argumentation techniques to explain machine learning models (eg.
[1, 33]). The second category explains outcomes of argumentation-
based models like decision systems (eg. [17]) or defeasible logics
(eg. [11, 24, 25]). The third category of works investigates explain-
ability of acceptability semantics, namely explaining their evalua-
tions of arguments. Most works of this category focused on extension
semantics (eg., [11, 20, 23, 40]) while only a few considered gradual
ones [18, 28]. Our work fits within this third category of works with
a focus on extension semantics, namely the classical ones from [22].

Using the binary scale T, existing works addressed the follow-
ing questions: why an argument is (not) accepted (eg. [23, 24, 25,
29, 34, 35]) or why a set of arguments is accepted (eg. [38]) under
a given semantics. To answer these questions, they followed the so-
called model-based approach in the XAI literature [31]. Indeed, they
explain the inner working and decision logic of the semantics. Conse-
quently, their explanations refer to the semantics building blocks like
admissibility and defence. Indeed, an explanation may be an admis-
sible set of arguments [35], a set of arguments defending the targeted
argument [11, 29, 40], sub-graphs (or dispute trees) that are sufficient
to justify the acceptance status (eg. [23, 24, 35, 38, 20, 21]. These
endeavours are similar in spirit to proof procedures (eg., [15, 32])
as they look for simplified ways to check (non-) acceptance of argu-
ments without computing all extensions.

These works are definitely interesting for understanding the be-
haviour of semantics. On the negative side, they provide the same
explanations to arguments that belong to at least one extension. The
same holds for arguments that do not belong to any extension. How-
ever, we have seen that the scale S distinguishes two categories of
arguments (sceptical, credulous) and (undecided, rejected) in both
cases. A precise explanation should be tailored to every acceptability
status. Furthermore, while the provided explanations are informative
to experts in argumentation, they may not be useful for non-expert
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users who are not necessarily interested in learning how semantics
behave, but rather look for what led to decisions affecting them. Con-
sider the following multiple criteria decision problem.

Example 1. Assume a committee in charge of hiring a post-doc re-
searcher to work on an NLP project. Its members exchanged the fol-
lowing arguments concerning Paul’s application.

a: Paul deserves the position
since he has a good record.

b1: He has no publication in
highly selective conferences.

b2: He doesn’t work on gener-
ative AI.

c: He published in ACL, one of
the major NLP conferences.

c

b1 b2

aG0

The above graph G0 depicts the attacks between the four arguments.
Its grounded extension is {b2, c}, thus a is rejected. Assume that Paul
didn’t get the position. Paul will more likely be interested in knowing
the criteria that worked against his application than discovering the
grounded extension of the exchanged arguments by the members of
the committee. So, a reasonable explanation for him would be the
fact that he doesn’t work on generative AI (thus the attacker b2).

This paper complements the existing landscape of models explain-
ing extension semantics by proposing a novel approach which offers
several advantages. First, it uses the rich acceptability status scale S
rather than the binary one (accepted, not accepted) considered in the
literature. Second, it tailors explanations based on acceptability sta-
tus. Hence, explanations of a sceptically accepted argument may dif-
fer from those of a credulously accepted one, and explanations of an
undecided argument may differ from those of a rejected one. Third,
it explains in a unified way any acceptability status while existing
works treat separately the cases of acceptance and non-acceptance.
Fourth, it treats any extension semantics that satisfies the monotonic-
ity and maximality properties, including those from [22], providing
thus a general approach for explaining a whole family of semantics.

Another fundamental difference with existing works lies in the
fact that the new approach is post-hoc in nature and not model-based
[31]. Indeed, it discloses relationships between argumentation graphs
and outputs of a semantics, regardless of its internals. Its explanations
do not refer to building blocks of semantics, they are rather subsets
of argument’s direct attackers chosen with great care (eg., b2 in the
above example). It has been shown in [3] that direct attackers are the
main culprit of their targets weakening.

The paper starts by presenting a full characterization of all types of
attacks that may target an argument. It shows that some are dummy in
the sense that they have no impact on their target’s status while others
are influential. Among influential attacks, it distinguishes sufficient
attacks, which guarantee the status of their target under a semantics,
and necessary attacks whose removal from the graph ensures a sta-
tus change. Finally, the paper introduces three explanation functions
which answer the questions "why argument A gets status x under
semantics δ?", "why not a status other than x for argument A under
semantics δ?" and "why not the status s instead of x for argument A
under semantics δ?" respectively. The first function returns sufficient
reasons using sufficient attacks while the second generates counter-
factuals based on necessary attacks. The two functions seem very
different as they answer different questions, however we show that
they are closely related. Indeed, sufficient reasons are minimal hit-
ting sets of the counterfactuals and vice-versa. Based on influential

attacks, the third function provides contrastive explanations, which
are changes in the graph that guarantee sceptical acceptance of an
argument.

The paper is organized as follows: Section 2 recalls extension se-
mantics and key properties, Section 3 investigates the types of attacks
that target an argument, Section 4 introduces three explanation func-
tions, and the last section concludes. The proofs are available in [2].

2 Extension Semantics
The backbone of argumentation is the notion of argument, which is
a reason behind a standpoint. Arguments may be linked by an at-
tack relation, which represents conflicts between pairs of arguments.
In the paper, we call argumentation graph any pair made of a non-
empty finite set of arguments and an attack relation between them.
We use the term graph since arguments and their conflicts are repre-
sented graphically. Let Args denote the set of all possible arguments.

Definition 1. An argumentation graph (AG) is a pair G = 〈A,R〉,
whereA ⊆f Args1,A 6= ∅, andR ⊆ A×A (called attack relation).
Let AG be the set of all possible argumentation graphs.

A pair (b, a) ∈ R reads as follows: “b attacks a" or b is an attacker
of a. We say also that a set E ⊆ A attacks a ∈ A if ∃b ∈ E such that
(b, a) ∈ R.

Notation: Let G = 〈A,R〉 ∈ AG, a ∈ A. The function Att(a,G)
returns all attacks targeting a in G (i.e., Att(a,G) = {(b, a) |
(b, a) ∈ R}). For instance, Att(a,G0) = {(b1, a), (b2, a)}.

An extension semantics is a formal method that evaluates the ac-
ceptability status of arguments in argumentation graphs. It looks for
sets of arguments, called extensions, that are jointly acceptable.

Definition 2. An extension semantics is a function δ mapping ev-
ery G = 〈A,R〉 ∈ AG into Extδ(G) ⊆ P(A)2. Every member of
Extδ(G) is called extension.

Examples of extension semantics are those defined in [22], namely
complete (co), grounded (gr), preferred (pr), and stable (st). They are
based on the notions of conflict-freeness and defence, where for an
argumentation graph G = 〈A,R〉, E ⊆ A, and an argument a ∈ A,

• E is conflict-free iff @a, b ∈ E such that (a, b) ∈ R.
• E defends a iff ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ E such that

(c, b) ∈ R.

Let us now recall the definition of an extension under the above-
mentioned four semantics.

• E is a complete extension iff E is conflict-free, defends its ele-
ments and contains all the arguments it defends.

• E is a grounded extension iff it is the subset-minimal complete
extension.

• E is a preferred extension iff it is a subset-maximal complete ex-
tension.

• E is a stable extension iff E is conflict-free and for any argument
a ∈ A \ E , E attacks a.

Example 2. Let us analyse the six graphs from Figure 1 under the
preferred semantics.

1 The notationA ⊆f Args meansA is a finite subset of Args.
2 P(A) is the powerset - the set of all partitions - ofA.
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Figure 1. Examples of argumentation graphs Gi = 〈Ai,Ri〉, i ∈ {1, . . . , 6}.
• Extpr(G1) = {{b1}, {b2}}.
• Extpr(G2) = {{c1}, {a, c2}}.
• Extpr(G3) = {{a, c}}.
• Extpr(G4) = {{b1}, {b2}}.
• Extpr(G5) = {{b1, c}}.
• Extpr(G6) = {{b}}.

Extension semantics may return 0, 1, or more extensions. The lat-
ter are aggregated in order to assign an acceptability status to every
individual argument in the analysed graph. In this paper, we will use
the four-valued scale S = {s, c, u, r} for the purpose. An argument
is sceptically accepted (s) if it belongs to all extensions, it is credu-
lously accepted (c) if it belongs to some but not all extensions. When
an argument does not belong to any extension, it is said to be un-
decided (u) if it is not attacked by any extension and it is rejected
(r) if it is attacked by at least one extension. A question that raises
naturally is: what is the status of an argument when a semantics (like
stable) fails to return extensions? Consider the graph G2, which has
no stable extension and let us focus on the status of a. Some works
like [23, 35] consider as non-accepted any argument that does not
belong to any extension. Hence, a is non-accepted in a vacuous way.
However, this is not a fair evaluation since it is not based on evidence,
i.e., concrete extensions. In fact, when a semantics fails to return ex-
tensions, no evaluation is performed and thus arguments keep intact
their strength. In this paper, we consider that every argument is pre-
sumed strong (s) until proven otherwise.

Throughout the paper, the scale S is equipped with a total order�
such that s � c � u � r, where x � y and x � y mean “x is as
acceptable as y" and “x is more acceptable than y" respectively.

Definition 3. An aggregator based on extension semantics δ is a
mapping Accδ from Args×AG to S such that for any G = 〈A,R〉 ∈
AG, for any a ∈ A, if Extδ(G) = ∅, then Accδ(a,G) = s. Else:

• Accδ(a,G) = s iff a ∈
⋂

E∈Extδ(G)

E .

• Accδ(a,G) = c iff ∃E , E ′ ∈ Extδ(G) such that a ∈ E , a /∈ E ′.
• Accδ(a,G) = r iff a /∈

⋃
E∈Extδ(G)

E and ∃E ∈ Extδ(G) such that

E attacks a.
• Accδ(a,G) = u iff a /∈

⋃
E∈Extδ(G)

E and @E ∈ Extδ(G) such that

E attacks a.

Accδ(a,G) denotes the acceptability status of the argument a in the
graph G under the semantics δ.

Example 2 (Cont). Let us analyse the status of every argument of
the six graphs from Figure 1 under preferred semantics.

• Accpr(b1,G1) = Accpr(b2,G1) = c, and Accpr(a,G1) = r.
• Accpr(a,G2) = Accpr(c1,G2) = Accpr(c2,G2) = c,

Accpr(c3,G2) = u, Accpr(b1,G2) = Accpr(b2,G2) = r.
• Accpr(a,G3) = Accpr(c,G3) = s and for any i ∈ {1, 2, 3},

Accpr(bi,G3) = r.

• Accpr(b1,G4) = Accpr(b2,G4) = c, Accpr(b3,G4) = u, and
Accpr(a,G4) = r.

• Accpr(b1,G5) = Accpr(c,G5) = s, Accpr(b2,G5) = u,
Accpr(a,G5) = Accpr(b3,G5) = r.

• Accpr(a,G6) = r, Accpr(b,G6) = s.

Let us now introduce two functions of sub-graphs, which are use-
ful for the rest of our study. They consist both of removing some
attacks from the graph while keeping the whole set of arguments.

Definition 4. Let G = 〈A,R〉 ∈ AG, a ∈ A, and X ⊆ Att(a,G).
We define G�X and G ↓ X as two argumentation graphs such that:

• G�X = 〈A,R \X〉,
• G ↓ X = 〈A,R′〉 where Att(a,G ↓ X) = X and ∀b ∈ A\{a},

Att(b,G ↓ X) = Att(b,G).

Hence, the graph G�X is G where all attacks in X are removed
and the graph G ↓ X is G but where the set of attacks on the argu-
ment a is limited to those in X .

Example 2 (Cont). Consider the graph G1 in Figure 1 and the ar-
gument a. Note that Att(a,G1) = {(b1, a), (b2, a)}. For X =
{(b1, a)}, G1 � X = G11 and G1 ↓ X = G12, where G11 and
G12 are as depicted below.

b1 b2

a

G11

b1 b2

a

G12

Let us now recall two formal properties from the literature that a
semantics should satisfy. Introduced in [3], the Maximality property
states that any non-attacked argument does not loose strength. This
means that it is presumed sceptically accepted.

Definition 5 (Maximality). An extension semantics δ satisfies maxi-
mality iff for any G = 〈A,R〉 ∈ AG, for any a ∈ A, if Att(a,G) =
∅, then Accδ(a,G) = s.

Example 1 (Cont). Any extension semantics that satisfies Maximal-
ity assigns s to b2 and c in the graph G0.

The second property, called Monotonicity, has been defined in [5]
and states that removing attacks to an argument cannot lower the
acceptability status of the argument. Indeed, the status can either re-
main unchanged or increase in the modified graph.

Definition 6 (Monotonicity). A semantics δ is monotonic iff for any
G = 〈A,R〉 ∈ AG, for any a ∈ A, for any X ⊆ Att(a,G),

Accδ(a,G�X) � Accδ(a,G).



Example 2 (Cont). Consider the graph G1 in Figure 1 and the argu-
ment a. For any X ∈ {∅, {(b1, a)}, {(b2, a)}, {(b1, a), (b2, a)}},
for any extension semantics δ which is monotonic, it holds that
Accδ(a,G1 �X) � Accδ(a,G1).

It has been shown that all the reviewed semantics (complete,
grounded, stable, preferred) are monotonic [5] and satisfy Maximal-
ity [3] (following Def. 3 for status assignment).

Theorem 1. [3, 5] For any δ ∈ {co, gr, st, pr}, δ satisfies Maxi-
mality and Monotonicity.

From the monotonicity property of extension semantics follows
a monotonic behaviour of the acceptability status of arguments. In-
deed, we show that if the status of an argument in a graph is the same
in a subgraph where only a subset of its attacks is considered, then
the same status is guaranteed in any subgraph considering a superset
of attacks. This shows that a subset of attacks is sufficient to guar-
antee the current status. In a similar way, we show that if removing
some attacks will lead to a change in the status of the argument, then
removing any superset of attacks would also lead to a change.

Theorem 2. Let δ be a monotonic semantics, G = 〈A,R〉 ∈ AG,
a ∈ A and X ⊆ Att(a,G).

1. If Accδ(a,G) = Accδ(a,G ↓ X), then Accδ(a,G) =
Accδ(a,G ↓ X ′) for any X ⊂ X ′ ⊆ Att(a,G).

2. If Accδ(a,G) 6= Accδ(a,G � X), then Accδ(a,G) 6=
Accδ(a,G�X ′) for any X ⊂ X ′ ⊆ Att(a,G).

To sum up, Monotonicity and Maximality show that direct attacks
on an argument are responsible for its loss of strength. Hence, to
explain the status of any argument, one should focus on its attackers.

3 Characterization of Types of Attacks
Let us characterize the different types of attacks that can target an
argument, investigate their links, and clarify their roles under any
extension semantics that satisfies Monotonicity and Maximality. We
show that an attack is either dummy or influential. In the first case, it
has no impact on its target’s acceptability status while in the second
it does. Influential attacks are of three categories: necessary, suffi-
cient, and inhibited. The later are harmful only when they are not
accompanied with necessary/sufficient attacks.

3.1 Dummy Attacks

A dummy attack has no impact on its target’s acceptability status as
its removal from the graph does not result in a status change. How-
ever, this is not sufficient to guarantee that the attack is dummy.
Consider the argumentation graph G5 and let us focus on the at-
tack r = (b2, a). Recall that a is rejected under preferred seman-
tics (i.e., Accpr(a,G5) = r). Note that if r is removed from the
graph, a remains rejected, i.e., Accpr(a,G5�{(b2, a)}) = r. Hence,
one may think that r is dummy. This is not the case since it may
have impact on a in the subgraph G5 � {(b1, a), (b3, a)}) since
Accpr(a,G5 � {(b1, a), (b3, a)}) = u. Hence, to check whether an
attack is dummy, one should verify its marginal contribution alone
and in presence of any other subset of attacks.

Definition 7 (Dummy). Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A, and r ∈ Att(a,G). The attack r is dummy
for Accδ(a,G) iff ∀X ⊆ Att(a,G) \ {r},

Accδ(a,G�X) = Accδ(a,G� (X ∪ {r})).

Let Dumδ(a,G) be the set of dummy attacks on a in G under δ.

Example 2 (Cont). Let us check the dummy attacks of the argument
a in each graph Gi in Figure 1 under preferred semantics.

• Dumpr(a,G1) = ∅
• Dumpr(a,G2) = {(b1, a)}
• Dumpr(a,G3) = Att(a,G3)
• Dumpr(a,G4) = ∅
• Dumpr(a,G5) = {(b3, a)}
• Dumpr(a,G6) = ∅

Note that the three attacks ri = (bi, a) in the graph G3 are all
dummy. Consider for instance the attack r3 and let X1 = ∅, X2 =
{r1}, X3 = {r2} and X4 = {r1, r2}. Note that:

• Accpr(a,G3 �X1) = Accpr(a,G3 � (X1 ∪ {r3})) = s,
• Accpr(a,G3 �X2) = Accpr(a,G3 � (X2 ∪ {r3})) = s,
• Accpr(a,G3 �X3) = Accpr(a,G3 � (X3 ∪ {r3})) = s,
• Accpr(a,G3 �X4) = Accpr(a,G3 � (X4 ∪ {r3})) = s.

Remark. Note that an attack whose source is rejected is not necessar-
ily dummy. For instance, the argument a of the graph G6 is rejected
while the self-attack (a, a) is not dummy.

We show next that since dummy attacks have no impact on the
status of their targets, they can safely be removed from the graph.
Note that the result holds for any semantics, be it monotonic or not.

Proposition 3. Let δ be an extension semantics, G = 〈A,R〉 ∈
AG. For any a ∈ A, for any X ⊆ Dumδ(a,G), Accδ(a,G) =
Accδ(a,G�X).

3.2 Influential Attacks

Influential attacks are those that, if removed, may result in a change
in the status of their targets. They have impact on acceptability status,
be them alone or in presence of some other subset of attacks. These
are therefore attacks which are not dummy.

Definition 8 (Influential). Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A, and r ∈ Att(a,G). The attack r is influential
for Accδ(a,G) iff ∃X ⊆ Att(a,G) \ {r} such that:

Accδ(a,G�X) 6= Accδ(a,G� (X ∪ {r})).

Let Infδ(a,G) be the set of influential attacks of a in G under δ.

Example 2 (Cont). Let us check the influential attacks of the argu-
ment a in each graph in the Figure 1 under preferred semantics.

• Infpr(a,G1) = Att(a,G1)
• Infpr(a,G2) = {(b2, a)}
• Infpr(a,G3) = ∅
• Infpr(a,G4) = Att(a,G4)
• Infpr(a,G5) = {(b1, a), (b2, a)}
• Infpr(a,G6) = Att(a,G6)

Note that the argument a in the graph G6 is rejected (under pre-
ferred semantics). This rejection is due to the attack coming from b.
Thus, one may think that the self-attack of a does not have any role
as its removal would not change the status of a. In fact, the self-attack
has influence on a since if the attack from b is removed, then awould
be undecided while removing both makes a sceptically accepted.



From the above definitions, it follows that the attacks of an argu-
ment are either dummy or influential.

Proposition 4. Let δ be a semantics and G = 〈A,R〉 ∈ AG. For any
a ∈ A, Infδ(a,G) = Att(a,G) \ Dumδ(a,G).

We show that influential attacks prevent their targets from being
sceptically accepted under any semantics which satisfies Maximality
and Monotonicity, including thus the four reviewed semantics.

Theorem 5. Let δ be an extension semantics which satisfies Maxi-
mality and Monotonicity, G = 〈A,R〉 ∈ AG and a ∈ A such that
Infδ(a,G) 6= ∅.

• Accδ(a,G) 6= s,
• Accδ(a,G� Infδ(a,G)) = s.

In the next sub-sections, we discuss the three categories of influ-
ential attacks and their respective roles.

3.2.1 Necessary Attacks

Among influential attacks of an argument, we distinguish necessary
attacks whose removal from the argumentation graph results auto-
matically in a change in the argument’s status. Put differently, their
absence would lead to another status for the argument. In what fol-
lows, we define subset-minimal necessary attacks.

Definition 9 (Necessity). Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A and X ⊆ Att(a,G). The set X is necessary
for Accδ(a,G) iff:

• Accδ(a,G) 6= Accδ(a,G�X),
• @X ′ ⊂ X such that X ′ satisfies the above condition.

Necδ(a,G) is the set of all necessary sets for Accδ(a,G) under δ.

Example 2 (Cont). Let us check the necessary attacks for the status
of the argument a in each graph under preferred semantics.

• Necpr(a,G1) = {{(b1, a)}, {(b2, a)}}
• Necpr(a,G2) = {{(b2, a)}}
• Necpr(a,G3) = ∅
• Necpr(a,G4) = {{(b1, a), (b2, a)}, {(b1, a), (b3, a)}, {(b2, a),

(b3, a)}}
• Necpr(a,G5) = {{(b1, a)}}
• Necpr(a,G6) = {{(b, a)}}

For instance, the argument a in G1 has two necessary sets of attacks,
each of which contains one of the two attacks on a. Note also that
necessary attacks may not exist. Indeed, Necpr(a,G3) = ∅ mean-
ing that the three attacks can safely be removed without altering the
status of a. Finally, note that in the graph G2, the attack (b2, a) is
necessary for the argument a while it emanates from a rejected ar-
gument (Accpr(b2,G2) = r). Hence, a necessary attack does not
necessarily come from a strong argument.

We show that if the removal of a subset of an argument’s attacks
results in a change in the argument’s status, then the removed set con-
tains a necessary set. This result holds for any extension semantics.

Proposition 6. Let δ be an extension semantics, G = 〈A,R〉 ∈
AG, a ∈ A such that Att(a,G) 6= ∅. For any X ⊆ Att(a,G), if
Accδ(a,G) 6= Accδ(a,G � X), then ∃X ′ ⊆ X such that X ′ ∈
Necδ(a,G).

The running example, namely through the graph G3, shows that
necessary sets may not exist (Necpr(a,G3) = ∅). The following
result states that when they do exist, they cannot be empty.

Proposition 7. Let δ be an extension semantics and G = 〈A,R〉 ∈
AG. For any a ∈ A, ∅ /∈ Necδ(a,G).

3.2.2 Sufficient Attacks

The second category of influential attacks is that of sufficient attacks.
A set of attacks on an argument is sufficient for the argument’s status
if considered alone (removing all the remaining attacks towards the
argument) leads to the same status.

Definition 10 (Sufficiency). Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A, and X ⊆ Att(a,G). The set X is sufficient
for Accδ(a,G) iff:

• Accδ(a,G) = Accδ(a,G ↓ X).
• @X ′ ⊂ X such that X ′ satisfies the above condition.

Suffδ(a,G) is the set of all sufficient sets for Accδ(a,G) under δ.

Example 2 (Cont). Let us check the sufficient attacks for the status
of the argument a in each graph under preferred semantics.

• Suffpr(a,G1) = {{(b1, a), (b2, a)}}
• Suffpr(a,G2) = {{(b2, a)}}
• Suffpr(a,G3) = {∅}
• Suffpr(a,G4) = {{(b1, a), (b2, a)}, {(b1, a), (b3, a)}, {(b2, a),

(b3, a)}}
• Suffpr(a,G5) = {{(b1, a)}}
• Suffpr(a,G6) = {{(b, a)}}

Note that the argument a has a single sufficient set in G1 while it has
two necessary sets. The idea is that to be rejected, both attacks on a
should be present in the graph. The removal of each of them leads to
another status for a.

A first property states that if the set of attacks on an argument is re-
duced while keeping the argument’s status, then the retained attacks
contain necessarily a sufficient set.

Proposition 8. Let δ be an extension semantics, G = 〈A,R〉 ∈ AG,
and a ∈ A. For any X ⊆ Att(a,G), if Accδ(a,G) = Accδ(a,G ↓
X), then ∃X ′ ⊆ X such that X ′ ∈ Suffδ(a,G).

We show next that unlike necessary attacks, sufficient sets do exist.

Proposition 9. Let δ be an extension semantics and G = 〈A,R〉 ∈
AG. For any a ∈ A, Suffδ(a,G) 6= ∅.

Again unlike necessary sets which cannot be empty, the empty set
can be sufficient for the status of an argument. This occurs when the
latter is sceptically accepted and all its attacks are dummy under any
extension semantics that satisfies Maximality and Monotonicity.

Theorem 10. Let δ be an extension semantics which satisfies Max-
imality and Monotonicity, G = 〈A,R〉 ∈ AG, and a ∈ A. The
statements below are pairwise equivalent.

1. Accδ(a,G) = s,
2. Suffδ(a,G) = {∅},
3. Dumδ(a,G) = Att(a,G).



Example 2 (Cont). Consider the graph G3 from Figure 1. Recall
that Accpr(a,G3) = s. It can be checked that ∀X ⊂ Att(a,G3) =
{(bi, a) | i = 1, 2, 3}, Accpr(a,G3 �X) = s. So, Suffδ(a,G3) =
{∅} and Dumδ(a,G3) = Att(a,G3).

The following result establishes a first link between sufficient sets
and necessary ones for the status of an argument under an extension
semantics that satisfies Maximality and Monotonicity. It shows that
non-existence of necessary sets occurs only when the empty set is
the only sufficient set.

Theorem 11. Let δ be an extension semantics that satisfies Maxi-
mality and Monotonicity, G = 〈A,R〉 ∈ AG and a ∈ A.

Suffδ(a,G) = {∅} iff Necδ(a,G) = ∅.

From the above result, it follows that the empty set is the only
sufficient set for any non-attacked argument.

Corollary 12. Let δ be an extension semantics that satisfies Max-
imality and Monotonicity, G = 〈A,R〉 ∈ AG and a ∈ A. If
Att(a,G) = ∅, then Suffδ(a,G) = {∅} and Necδ(a,G) = ∅.

Despite their different roles, we show next that the notions of ne-
cessity and sufficiency are dual. Indeed, a sufficient set for the status
of an argument is a minimal hitting set of the necessary sets for the
status of the argument and vice-versa. Put differently, a necessary set
for the status of an argument is a minimal subset of its attacks that
contains at least one element from every sufficient set. A sufficient
set is a minimal subset of attacks which contains at least one element
from every necessary set. Hence, each notion can be generated from
the other. This result holds for any extension semantics that satisfies
the two properties of Maximality and Monotonicity.

Theorem 13. Let δ be an extension semantics that satisfies Maxi-
mality and Monotonicity, G = 〈A,R〉 ∈ AG and a ∈ A such that
Att(a,G) 6= ∅.

• X ∈ Suffδ(a,G) iff X is a subset-minimal of Att(a,G) such
that ∀Y ∈ Necδ(a,G), X ∩ Y 6= ∅.

• X ∈ Necδ(a,G) iff X is a subset-minimal of Att(a,G) such that
∀Y ∈ Suffδ(a,G), X ∩ Y 6= ∅.

3.2.3 Inhibited Attacks

An inhibited attack is influential but it is neither necessary nor suffi-
cient for its target’s status. It is said to be inhibited since it has impact
only when it is not accompanied with necessary/sufficient attacks.

Definition 11 (Inhibited). Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A, r ∈ Att(a,G). The attack r is inhibited for
Accδ(a,G) iff r ∈ Infδ(a,G) and @X ∈ Suff(a,G) such that r ∈
X . Let Inhδ(a,G) be the set of all inhibited attacks for Accδ(a,G).

Example 2 (Cont). In G5, the attack (b2, a) is influential for
Accpr(a,G5) but it is neither sufficient nor necessary. However, a
would be undecided (and not rejected) in G5 � {(b1, a)}. Thus,
(b2, a) ∈ Inhpr(a,G5). Note also that (a, a) ∈ Inhpr(a,G6).

The following result summarises the links between the different
types of attacks. It shows in particular that the set of attacks that
belong to sufficient sets coincides with the set containing attacks ap-
pearing in necessary sets. Influential set contains two disjoints sub-
sets: inhibited attacks and those that are in sufficient/necessary sets.

Theorem 14. Let δ be an extension semantics that satisfies Maxi-
mality and Monotonicity, G = 〈A,R〉 ∈ AG, and a ∈ A.

1. Att(a,G) = Infδ(a,G) ∪ Dumδ(a,G),
with Infδ(a,G) ∩ Dumδ(a,G) = ∅ (Proposition 4)

2.
( ⋃
X∈Suffδ(a,G)

X
)
=
( ⋃
Y ∈Necδ(a,G)

Y
)
⊆ Infδ(a,G),

3. Inhδ(a,G) = Infδ(a,G) \
( ⋃
X∈Suffδ(a,G)

X
)

.

4 Post-hoc Explanation Functions
Let us now introduce the novel approach for explaining outcomes
of extension semantics. Unlike exiting works that describe the inter-
nal reasoning of semantics, it looks rather for correlations between
inputs (argumentation graphs) and outcomes of a semantics (accept-
ability status of arguments). We introduce three explanation func-
tions, which answer different questions. Before that, let us first define
the notion of query, which is a tuple made of an extension semantics,
an argumentation graph and an argument. The idea is to explain the
status of the argument in the graph and under the given semantics.

Definition 12 (Query). A query is a tuple Q = 〈δ,G, a〉 where δ is
an extension semantics which satisfies Maximality and Monotonicity,
G = 〈A,R〉 ∈ AG and a ∈ A.

An explanation function takes as input a query and returns a set of
explanations. In the approach, an explanation is a set of arguments.

Definition 13 (Explainer). An explainer is a function g mapping ev-
ery query Q = 〈δ,G, a〉 into P(Args).

Our first explanation function answers questions of the form:

[Q1:] Why argument a from graph G gets status x under se-
mantics δ? Put differently, why Accδ(a,G) = x?

The answer consists in highlighting key factors that caused the status
x. Our explainer identifies the direct attackers of a that are sufficient
for ensuring the current status x. An explanation E is therefore a
subset of attackers of a whose attacks constitute a sufficient set. It
reads as: Accδ(a,G) = x because of the arguments in E.

Definition 14 (gf ). A factual explainer is a function gf such that for
every query Q = 〈δ,G, a〉 with G = 〈A,R〉,

gf (Q) = {E ⊆ Args | {(bi, a)| bi ∈ E} ∈ Suffδ(a,G)}.

Example 1 (Cont). The graph G0 has one preferred exten-
sion: {b2, c}. Thus, Accpr(a,G0) = r, Suffpr(a,G0) =
Necpr(a,G0) = {{(b2, a)}}. It follows that for Q0 = 〈pr,G0, a〉 ,
gf (Q0) = {{b2}}, i.e., the reason for rejecting Paul’s application is
the fact that Paul doesn’t work on generative AI.

Example 2 (Cont). Let Qi = 〈pr,Gi, a〉 with i ∈ {1, . . . , 6}.

• gf (Q1) = {{b1, b2}}
• gf (Q2) = {{b2}}
• gf (Q3) = {∅}
• gf (Q4) = {{b1, b2}, {b1, b3}, {b2, b3}}
• gf (Q5) = {{b1}}
• gf (Q6) = {{b}}

The second explanation function answers the following question:



[Q2:] Why not a status other than x for argument a from
graph G under semantics δ? i.e., why Accδ(a,G) /∈ S\{x}?

Note that this question does not specify a desirable value from
S \ {x} for the argument a. To answer such questions, our sec-
ond function generates counterfactual explanations that state how
the graph G would have to be different to get a status other than x.
In other words, they identify the changes that should minimally oc-
cur for altering the status of a to any other value in the scale S. Our
function focuses on necessary attacks as we have seen previously that
their removal from the graph results in a status change. Every expla-
nation E reads as follows: If the attacks in E had not been present in
G, the status of a would have been different from x.

Definition 15 (gc). A counterfactual explainer is a function gc such
that for every query Q = 〈δ,G, a〉, with G = 〈A,R〉,

gc(Q) = {E ⊆ Args | {(bi, a)| bi ∈ E} ∈ Necδ(a,G)}.

Example 1 (Cont). gc(Q0) = {{b2}} since Necpr(a,G0) =
{{(b2, a)}}.

Example 2 (Cont). Recall that Qi = 〈pr,Gi, a〉 with i = 1, ..., 6.

• gc(Q1) = {{b1}, {b2}}
• gc(Q2) = {{b2}}
• gc(Q3) = ∅
• gc(Q4) = {{b1, b2}, {b1, b3}, {b2, b3}}
• gc(Q5) = {{b1}}
• gc(Q6) = {{b}}

Remarks: Explanations provided by the functions gf and gc inherit
all properties of sufficient sets and necessary sets respectively. In-
deed, gf guarantees at least one explanation for every query while
gc does not. The empty set can be returned by gf but not by gc.
Furthermore, despite the fact that the two functions answer differ-
ent questions, their explanations are closely related. We show (con-
sequence of Theorem 13) that their explanations are dual. Indeed,
every explanation provided by gf is a minimal hitting set of all ex-
planations provided by gc for the same argument, and vice versa.

Theorem 15. Let Q = 〈δ,G, a〉 be a query where Att(a,G) 6= ∅.

• E ∈ gf (Q) iff E is a subset-minimal of attackers of a such that
∀E′ ∈ gc(Q), E ∩ E′ 6= ∅.

• E ∈ gc(Q) iff E is a subset-minimal of attackers of a such that
∀E′ ∈ gf (Q), E ∩ E′ 6= ∅.

The query Q1 = 〈pr,G1, a〉 has two counterfactual explanations:
{b1} and {b2}. Note that the removal of the attack coming from bi
results in credulous acceptance (i.e., Accpr(a,G1 � {(bi, a)}) = c).
One may rather be interested in knowing how to alter the status of a
to sceptical acceptance. Our last function answers such questions.

[Q3:] Why not the status s instead of x for argument a from
graph G under semantics δ?

The so-called contrastive explanations in the XAI literature an-
swer such questions [31]. They show how to get another desirable
outcome (status s in our case) than the current one. The example
of Q1 shows that removing one necessary set is not sufficient. The
query Q5 shows that removing all necessary sets does not answer the
question either since, due to the inhibited attack from b2, a would
be undecided. Theorem 5 shows that to be sceptically accepted, all
influential attacks, including the inhibited ones, should be removed.
Hence, the next function returns the sources of all influential attacks.

Definition 16 (gt). A contrastive explainer is a function gt such that
for every query Q = 〈δ,G, a〉, with G = 〈A,R〉,

gt(Q) = {{b ∈ Args | (b, a) ∈ Infδ(a,G)}}.

This function returns a single explanation since an argument has
only one set of influential attacks.

Property 1. For any query Q, |gt(Q)| = 1.

Example 1 (Cont). gt(Q0) = gc(Q0) = {{b2}}.

Example 2 (Cont). Recall that Qi = 〈pr,Gi, a〉 with i = 1, . . . , 6.

• gt(Q1) = {{b1, b2}}
• gt(Q2) = {{b2}}
• gt(Q3) = {∅}
• gt(Q4) = {{b1, b2, b3}}
• gt(Q5) = {{b1, b2}}
• gt(Q6) = {{a, b}}

From Theorem 14, it follows that any factual explanation of gf and
any counterfactual of gc is included in the contrastive explanation
provided by gt.

Property 2. Let x ∈ {f, c} and Q a query. If E ∈ gx(Q), then
E ⊆ E′ where E′ ∈ gt(Q).

In the XAI literature, a key criterion of goodness of an explana-
tion is its size. The shorter an explanation, the better it is [31] as it
would easily be grasped. The size of explanations provided by the
three novel functions is bounded by the number of attackers of the
discussed argument. They are thus shorter and simpler than explana-
tions based on sub-graphs, defenders, or admissibility.

Proposition 16. Let Q = 〈δ,G, a〉 be a query and x ∈ {f, c, t}.
For any E ∈ gx(Q), 0 ≤ |E| ≤ Att(a,G).

5 Conclusion
The paper investigates explainability of acceptability status of argu-
ments under extension semantics. Contrary to most of the existing
works, which adopt a model-based approach for providing tailored
explanations to each acceptability status based on the basic notions
of admissibility and defense, this paper adopts a post-hoc approach to
provide a general method for selecting insights to explain the accept-
ability status of arguments. It considers a semantics as a black-box
and looks for correlations between argumentation graphs and accept-
ability status assigned to their arguments by the semantics. The local
direct attackers of an argument provide sufficient, counterfactual, and
contrastive explanations of its acceptability status. The approach is
general as it explains in a unified way any acceptability status and
under any extension semantics which satisfies the two properties of
monotonicity and maximality, including thus the four classical se-
mantics from [22]. It is worth mentioning that the notions of suffi-
ciency and necessity have been used in [11] for explaining extension
semantics, but they are based on defenders.

This work lends itself to a number of developments including the
study of explanation of semantics in richer argumentation settings
(eg., bipolar [14], constrained [16], incomplete[30]).



6 Appendix

6.1 Background on Labellings

In [12] another approach for defining extension semantics has been
proposed. It consists of assigning labels (In, Out, Und) to arguments.

Definition 17 (Complete Labelling). Let G = 〈A,R〉 ∈ AG. A com-
plete labelling is a total function L : A → {In, Out, Und} such that
for any a ∈ A,

1. L(a) = In iff ∀(b, a) ∈ Att(a,G),L(b) = Out.
2. L(a) = Out iff ∃(b, a) ∈ Att(a,G) such that L(b) = In.

Notations: Let G = 〈A,R〉 ∈ AG. We denote by Labco(G) the
set of all complete labellings of G. For X ⊆ A, we denote L =
Ext2Lab(X) ∈ Lab(G) such that:

• ∀x ∈ X , L(x) = In,
• ∀y ∈ A \X such that ∃x ∈ X and xRy, L(y) = Out,
• ∀y ∈ A \X such that @x ∈ X and xRy, L(y) = Und.

For a labelling L of G, we denote by Lab2Ext(L) a function
which returns the arguments labelled In, i.e. Lab2Ext(L) = {x ∈
A | L(x) = In}.

Proof. of Property 1. Follows from Proposition 4 and Definition 16.

Proof. of Property 2. Follows from definitions 14 and 15 and Theo-
rem 14.

Property 3 ([12]). Let G = 〈A,R〉 ∈ AG.

• For any L ∈ Labco(G), Lab2Ext(L) ∈ Extco(G).
• For any E ∈ Extco(G), Ext2Lab(E) ∈ Labco(G).

6.2 Proofs of Lemmas

We provide below some results that are useful for our proofs.

Lemma 17. Let δ be an extension semantics, G = 〈A,R〉 ∈ AG,
and a ∈ A. For any X ∈ Suffδ(a,G) such that X 6= ∅, it holds
that

Necδ(a,G ↓ X) = {{b1}, . . . , {bk}},

where X = {b1, . . . , bk}.

Proof. Let δ be an extension semantics, G = 〈A,R〉 ∈ AG, a ∈ A
and X ∈ Suffδ(a,G) such that X 6= ∅. Let X = {b1, . . . , bk}. By
definition of Suff, it holds that:

i) Accδ(a,G) = Accδ(a,G ↓ X) and
ii) ∀Y ⊂ X , Accδ(a,G) 6= Accδ(a,G ↓ Y ).

Let b ∈ X . From ii), Accδ(a,G) 6= Accδ(a, (G ↓ X)� {b}). From
i), Accδ(a,G ↓ X) 6= Accδ(a, (G ↓ X)�{b}). From Proposition 7,
∅ cannot be a necessary set, then {b} ∈ Necδ(a,G ↓ X).

Lemma 18. Let δ be a monotonic extension semantics, G =
〈A,R〉 ∈ AG, and a ∈ A such that Att(a,G) 6= ∅. For any
X ⊆ Att(a,G) such that Accδ(a,G) = Accδ(a,G ↓ X), it holds
that ∀Y ∈ Necδ(a,G ↓ X), ∃Z ∈ Necδ(a,G) with Y ∩ Z 6= ∅.

Proof. Let δ be a monotonic extension semantics, G = 〈A,R〉 ∈
AG, and a ∈ A such that Att(a,G) 6= ∅. Let X ⊆ Att(a,G) such
that Accδ(a,G) = Accδ(a,G ↓ X) (1). From the first property
of Theorem 2, ∀T ⊆ Att(a,G),
Accδ(a,G) = Accδ(a,G ↓ (X ∪ T )) (2).
Assume now that Y ∈ Nec(a,G ↓ X). So, Accδ(a,G ↓ X) 6=

Accδ(a,G ↓ X \Y ). From (1), Accδ(a,G) 6= Accδ(a,G ↓ X \Y ).
LetZ = Att(a,G)\X . Then, Accδ(a,G) 6= Accδ(a,G�(Z∪Y )).
From Proposition 6, ∃T ⊆ Z ∪ Y such that T ∈ Nec(a,G). Then,
Accδ(a,G) 6= Accδ(a,G � T ). Assume that T ⊆ Z. Note that
G�T = G ↓ (X ∪T ′) where T ′ = Z \T . From (2), Accδ(a,G) =
Accδ(a,G ↓ (X ∪ T ′)). contradiction.

Lemma 19. Let δ ∈ {gr, co, pr, st}, G = 〈A,R〉 ∈ AG and a, b ∈
A. If Att(a,G) = Att(b,G), then ∀L ∈ L(G), L(a) = L(b).

Proof. Let δ ∈ {gr, co, pr, st}, G = 〈A,R〉 ∈ AG. Let also a, b ∈ A
such that Att(a,G) = Att(b,G) and L ∈ L(G). If Att(a,G) =
Att(b,G) = ∅, then L(a) = L(b) = In (see Def. 17). Assume now
that Att(a,G) 6= ∅. There are three cases:

• ∃c ∈ Att(a,G) such that L(c) = In. From Def. 17, L(a) =
L(b) = Out (as c ∈ Att(b,G)).

• ∀c ∈ Att(a,G), L(c) = Out. From Def. 17, L(a) = L(b) = In

(since c ∈ Att(b,G)).
• Else, L(a) = L(b) = Und.

6.3 Proofs of Propositions

Proof. of Proposition 3. Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A and X ⊆ Dumδ(a,G).

I If Att(a,G) = ∅, then X = Dumδ(a,G) = ∅ and so G =
G�X . Consequently, Accδ(a,G) = Accδ(a,G�X).

I Assume that Att(a,G) 6= ∅. If Dumδ(a,G) = ∅, then X = ∅,
G = G�X and Accδ(a,G) = Accδ(a,G�X).

Assume now that Dumδ(a,G) 6= ∅. Let X = {b1, . . . , bk}, X0 =
∅ and Xi = {b1, . . . , bi}, hence

∀ 1 ≤ i ≤ k, Xi = Xi−1 ∪ {bi}.

For any bi ∈ X , since bi is dummy, then Accδ(a,G � Xi−1) =
Accδ(a,G�Xi−1 ∪ {bi}). So,

∀i ≤ k, Accδ(a,G�Xi−1) = Accδ(a,G�Xi).

Hence, Accδ(a,G � X0) = Accδ(a,G � Xk) while Accδ(a,G �
X0) = Accδ(a,G) and Accδ(a,G�Xk) = Accδ(a,G�X).

Proof. of Proposition 4. Straightforward from the definitions of
dummy and influential.

Proof. of Proposition 6. Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A such that Att(a,G) 6= ∅, and X ⊆ Att(a,G).
Assume that Accδ(a,G) 6= Accδ(a,G�X). EitherX ∈ Necδ(a,G)
orX /∈ Necδ(a,G) meaning thatX is not minimal for set-inclusion.
Thus, ∃X ′ ⊂ X such that Accδ(a,G) 6= Accδ(a,G�X ′).

Proof. of Proposition 7. Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, and a ∈ A. Note that G�∅ = G, hence Accδ(a,G) =
Accδ(a,G� ∅). This means that ∅ is not necessary for a.



Proof. of Proposition 8. Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, a ∈ A, and X ⊆ Att(a,G). If Att(a,G) = ∅,
then Accδ(a,G) = Accδ(a,G ↓ ∅), hence ∅ ∈ Suffδ(a,G). As-
sume now that Att(a,G) 6= ∅ and X ⊆ Att(a,G). Assume also
that Accδ(a,G) = Accδ(a,G ↓ X). Either X ∈ Suffδ(a,G) or
X /∈ Suffδ(a,G) meaning that X is not minimal for set-inclusion.
Thus, ∃X ′ ⊂ X such that Accδ(a,G) = Accδ(a,G ↓ X ′). We
repeat the same reasoning with X ′.

Proof. of Proposition 9. Let δ be an extension semantics, G =
〈A,R〉 ∈ AG, and a ∈ A. Assume that Suffδ(a,G) = ∅. Thus,
∀X ⊆ Att(a,G), X is not sufficient for a. Thus, Att(a,G) is not
sufficient for a, i.e., Accδ(a,G) 6= Accδ(a,G� ∅). This is impossi-
ble since G = G� ∅.

Proof. of Proposition 16. Straightforward from the definitions.

6.4 Proofs of Theorems

Proof. of Theorem 1. Maximality has been shown in [3] and Mono-
tonicity in [5].

Proof. of Theorem 2. Let δ be a monotonic semantics, G =
〈A,R〉 ∈ AG and a ∈ A.

Assume that Att(a,G) = ∅. Hence, for any X ⊆ Att(a,G),
X = ∅. Thus, G ↓ X = G and the first property holds. The condition
of the second property is not satisfied.

Assume now that Att(a,G) 6= ∅ and let X ⊆ Att(a,G).
Let AttG(a) = X ∪ Y ∪ Z and X ′ = X ∪ Y . Note that G ↓

X ′ = G � Z, G ↓ X = (G ↓ X ′) � Y . Since δ is monotonic,
then Accδ(a,G ↓ X) � Accδ(a,G � Z) � Accδ(a,G), hence
Accδ(a,G ↓ X) � Accδ(a,G ↓ X ′) � Accδ(a,G). Assume that
Accδ(a,G) = Accδ(a,G ↓ X). Then, Accδ(a,G) = Accδ(a,G ↓
X ′).

Assume that Accδ(a,G) 6= Accδ(a,G � X) (A1). Let
Att(a,G) = X ∪ Y ∪ Z with X ∩ Y = ∅. From monotony of
δ, Accδ(a,G) � Accδ(a,G � X) � Accδ(a,G � (X ∪ Y )).
If Accδ(a,G) = Accδ(a,G � (X ∪ Y )), then Accδ(a,G) =
Accδ(a,G�X), which contradicts the assumption (A1)

Proof. of Theorem 5. Let δ be an extension semantics which satisfies
satisfies Maximality and Monotonicity, G = 〈A,R〉 ∈ AG and a ∈
A such that Infδ(a,G) 6= ∅.

I The inequality Accδ(a,G) 6= s follows from Theorem 10. In-
deed, since Infδ(a,G) 6= ∅ and from Proposition 4, Att(a,G) =
Dumδ(a,G) ∪ Infδ(a,G), then Dumδ(a,G) 6= Att(a,G) and so
Accδ(a,G) 6= s.

I Let us show that Accδ(a,G� Infδ(a,G)) = s.
By definition, an argument is either dummy of influential. As-

sume Dumδ(a,G) = ∅. Hence, Infδ(a,G) = Att(a,G). So
Att(a,G � Infδ(a,G)) = ∅ and Accδ(a,G � Infδ(a,G)) = s

(from Maximality).
Let now Dumδ(a,G) = {b1, . . . , bk}, X0 = Infδ(a,G) and

Xi = Infδ(a,G) ∪ {b1, . . . , bi}. Since elements of Dumδ(a,G) are
dummy, then:

Accδ(a,G�X0) = Accδ(a,G�X1)
Accδ(a,G�X1) = Accδ(a,G�X2)

...
Accδ(a,G�Xk−1) = Accδ(a,G�Xk)

Hence, Accδ(a,G�X0) = Accδ(a,G�Xk). From Proposition 4,
Xk = Att(a,G). So, Accδ(a,G � Infδ(a,G)) = Accδ(a,G �
Att(a,G)). Since Accδ(a,G � Att(a,G)) = s, then Accδ(a,G �
Infδ(a,G)) = s.

Proof. of Theorem 10. Let δ be a monotonic extension semantics,
G = 〈A,R〉 ∈ AG and a ∈ A. Note that if Att(a,G) = ∅,
then Dumδ(a,G) = Att(a,G) = ∅. Moreover, the unique subset
of Att(a,G) is X = ∅ and G = G�X . Thus, Suffδ(a,G) = {∅}.
Finally, from Maximality, Accδ(a,G) = s.

Let now Att(a,G) 6= ∅.
I Assume that Extδ(G) = ∅. From Def.3, Accδ(a,G) = s.

From monotonicity of δ, ∀X ⊆ Att(a,G), Accδ(a,G � X) �
Accδ(a,G). Hence, ∀X ⊆ Att(a,G), Accδ(a,G � X) = s. This
means that Dumδ(a,G) = Att(a,G). Note also that Accδ(a,G �
Att(a,G)) = s, hence ∅ ∈ Suffδ(a,G). Assume that X ∈
Suffδ(a,G). X being minimal by definition, it follows that X = ∅.
So, Suffδ(a,G) = {∅}.

I Assume that Extδ(G) 6= ∅.
Assume that Accδ(a,G) = s. From monotonicity of δ, ∀X ⊆

Att(a,G), Accδ(a,G � X) � Accδ(a,G). Hence, ∀X ⊆
Att(a,G), Accδ(a,G � X) = s. Thus, Dumδ(a,G) = Att(a,G).
Furthermore, Accδ(a,G � Att(a,G)) = s. This means that ∅ ∈
Suffδ(a,G). Assume that X ∈ Suffδ(a,G). X being minimal by
definition, it follows that X = ∅. Then, Suffδ(a,G) = {∅}.

Assume now that Suffδ(a,G) = {∅}. Then, Accδ(a,G �
Att(a,G)) = Accδ(a,G). In the graph G � Att(a,G), the argu-
ment a is not attacked. Maximality of δ ensures that Accδ(a,G) = s.
From monotonicity of δ, ∀X ⊆ Att(a,G), Accδ(a,G � X) �
Accδ(a,G). Hence, ∀X ⊆ Att(a,G), Accδ(a,G �X) = s. Thus,
Dumδ(a,G) = Att(a,G).

Assume that Dumδ(a,G) = Att(a,G). Hence, Accδ(a,G) =
Accδ(a,G� Att(a,G)). Maximality of δ ensures that Accδ(a,G�
Att(a,G)) = Accδ(a,G) = s. Following the reasoning above,
Suffδ(a,G) = {∅}.

Proof. of Theorem 11. Let δ be an extension semantics that satisfies
Maximality and Monotonicity, G = 〈A,R〉 ∈ AG, a ∈ A.

Assume that Suffδ(a,G) = {∅}. It follows that Accδ(a,G) =
Accδ(a,G � Att(a,G)). Let G′ = G � Att(a,G). Since a has no
attackers in G′, then from Maximality Accδ(a,G) = Accδ(a,G′) =
s. Assume now that some X ∈ Necδ(a,G), so

Accδ(a,G) 6= Accδ(a,G�X) (C1).

From monotonicity of δ, Accδ(a,G � X) � Accδ(a,G). So,
Accδ(a,G�X) = s, which contradicts (C1).

Assume that Necδ(a,G) = ∅. Then, ∀X ⊆ Att(a,G),
Accδ(a,G) = Accδ(a,G � X). Thus, ∅ ∈ Suffδ(a,G). By def-
inition, sufficient sets are subset-minimal, then if X ∈ Suffδ(a,G),
then X = ∅.

Proof. of Theorem 13. Let δ be an extension semantics that satisfies
Maximality and Monotonicity, G = 〈A,R〉 ∈ AG and a ∈ A such
that Att(a,G) 6= ∅.

I Let us now show the first property.
Let X ∈ Suffδ(a,G), hence Accδ(a,G) = Accδ(a,G ↓ X)
(A1). If X = ∅, then the property is satisfied in a vacuous way
since from Theorem 11, Necδ(a,G) = ∅. Assume that X 6= ∅,
then from Theorem 11, Necδ(a,G) 6= ∅. Let Y ∈ Necδ(a,G), so
Accδ(a,G) 6= Accδ(a,G�Y ) (A2). Assume thatX∩Y = ∅. Let
Att(a,G) = X ∪ Y ∪ Z. Note that G � Y = G ↓ (X ∪ Z). From



(A1) and Theorem 2, it follows that Accδ(a,G) = Accδ(a,G ↓
(X ∪ Z)) = Accδ(a,G� Y ), which contradicts (A2).

LetX ⊆ Att(a,G) be such thatX is a minimal (for set inclusion)
set which satisfies the condition: ∀Y ∈ Necδ(a,G), X ∩ Y 6= ∅
(A1). Let us show that X ∈ Suffδ(a,G). We first show that
Accδ(a,G) = Accδ(a,G ↓ X). Let Necδ(a,G) = {Y1, . . . , Yk}
such that ∀i = 1, . . . , k, X ∩ Yi 6= ∅. Let Att(a,G) = X ∪ Z such
that X ∩ Z = ∅. Thus, ∀i = 1, . . . , k, Yi 6⊆ Z (A2). Assume that
Accδ(a,G) 6= Accδ(a,G ↓ X), i.e., Accδ(a,G) 6= Accδ(a,G�Z).
From Proposition 6, ∃T ⊆ Z such that T ∈ Necδ(a,G), which con-
tradicts (A2). So, Accδ(a,G) = Accδ(a,G ↓ X).

Let us now show the minimality of X . Assume ∃X ′ ⊂ X such
that Accδ(a,G) = Accδ(a,G ↓ X ′) (A1). Since X is the mini-
mal set verifying the condition (A1), then X ′ violates the condition
meaning that ∃Y ∈ Necδ(a,G) such that X ′ ∩ Y = ∅. Note that
Accδ(a,G) 6= Accδ(a,G�Y ) (A2). Let Att(a,G) = X ′∪Y ∪Z.
Note that G�Y = G ↓ (X ′ ∪Z). From Theorem 2 and (A1), it fol-
lows that Accδ(a,G) = Accδ(a,G ↓ (X ′ ∪ Z)), which contradicts
(A2).

I Let us now show the second property.
Let X ∈ Necδ(a,G), then Accδ(a,G) 6= Accδ(a,G �X) (A1).
From Theorem 11, ∅ /∈ Suffδ(a,G). Let Y ∈ Suffδ(a,G), so
Accδ(a,G) = Accδ(a,G ↓ Y ) (A2). Assume that X ∩ Y = ∅.
Let Att(a,G) = X∪Y ∪Z. Note that G�X = G ↓ (Y ∪Z). From
(A2) and first property in Theorem 2, it follows that Accδ(a,G) =
Accδ(a,G ↓ (X ∪ Z)) = Accδ(a,G ↓ X), which contradicts (A1).

Let now X be a minimal (for set inclusion) subset of Att(a,G)
such that ∀Y ∈ Suffδ(a,G), X ∩ Y 6= ∅ (A1). Let us show
that X ∈ Necδ(a,G). By definition of X , it follows that X 6= ∅
and ∅ /∈ Suffδ(a,G). From Theorem 11, Necδ(a,G) 6= ∅. Let
Att(a,G) = X ∪ Z and Suffδ(a,G) = {Y1, . . . , Yk}. Note
that due to (A1), ∀i = 1, . . . , k, Yi 6⊆ Z (A2). Assume that
Accδ(a,G) = Accδ(a,G � X). Note that G � X = G ↓ Z.
From Proposition 8, ∃T ⊆ Z such that T ∈ Suffδ(a,G), which
contradicts (A2). Assume now that X violates minimality, i.e.,
∃X ′ ⊂ X such that Accδ(a,G) 6= Accδ(a,G � X ′). Since X is
the minimal set satisfying (A1), then ∃Y ∈ Suffδ(a,G) such that
X ′ ∩ Y = ∅. Furthermore, Accδ(a,G) = Accδ(a,G ↓ Y ). Let
Att(a,G) = X ′ ∪ Y ∪ Z. Note that G � X ′ = G ↓ (Y ∪ Z).
From Theorem 2, Accδ(a,G) = Accδ(a,G ↓ (Y ∪ Z)). So,
Accδ(a,G) = Accδ(a,G � X ′), which is a contradiction. Hence,
X ∈ Necδ(a,G).

Proof. of Theorem 14. Let δ be a monotonic extension semantics,
G = 〈A,R〉 ∈ AG, a ∈ A and b ∈ Att(a,G).
I Let us show the property 2.
Let us show the inclusion

⋃
X∈Suffδ(a,G)

X ⊆
⋃

Y ∈Necδ(a,G)

Y .

If Suff(a,G) = {∅}, then from Theorem 11, Nec(a,G) = ∅. So,⋃
X∈Suffδ(a,G)

X =
⋃

Y ∈Necδ(a,G)

Y = ∅.

Assume now Suff(a,G) 6= {∅} and let X ∈ Suff(a,G) and
b ∈ X . It follows that: Accδ(a,G) = Accδ(a,G ↓ X) and
∀Y ⊂ X , Accδ(a,G) 6= Accδ(a,G ↓ Y ). From Lemma 17,
Necδ(a,G ↓ X) = {{bi} | bi ∈ X}, so {b} ∈ Necδ(a,G ↓ X).
From Lemma 18, ∃Z ∈ Necδ(a,G) such that Z ∩ {b} 6= ∅, so
b ∈

⋃
Y ∈Necδ(a,G)

Y .

Let us show the inclusion
⋃

X∈Necδ(a,G)

X ⊆
⋃

Y ∈Suffδ(a,G)

Y .

Let b ∈ X where X ∈ Necδ(a,G). Then, Accδ(a,G) 6=
Accδ(a,G �X) (1) and ∀Y ⊂ X , Accδ(a,G) = Accδ(a,G � Y )

(2). Let Z = Att(a,G) \ X . Then, from (2) Accδ(a,G) =
Accδ(a,G ↓ (Z ∪ {b})). From Proposition 8, ∃Z′ ⊆ Z ∪ {b}
such that Z′ ∈ Suffδ(a,G), i.e., Accδ(a,G) = Accδ(a,G ↓ Z′).
Assume Z′ ⊆ Z. From Theorem 2, Accδ(a,G) = Accδ(a,G ↓
Z) = Accδ(a,G�X), which contradicts (1). Hence, b ∈ Z′ and so
b ∈

⋃
Y ∈Suffδ(a,G)

Y .

I Assume that b is dummy and ∃X ∈ Nec(a,G) such that b ∈ X .
Then,

Accδ(a,G) 6= Accδ(a,G�X) (1)

Let X = Z ∪ {b}. Since b is dummy, then

Accδ(a,G� Z) = Accδ(a,G�X) (2)

From (1), Accδ(a,G�Z) 6= Accδ(a,G), which contradicts the min-
imality of X . Hence, b ∈ Inf(a,G).

Proof. of Theorem 15. Straightforward from Theorem 13.
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