
HAL Id: hal-04727209
https://hal.science/hal-04727209v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding meaningful paths in heterogeneous graphs with
PathWays

Nelly Barret, Antoine Gauquier, Jia-Jean Law, Ioana Manolescu

To cite this version:
Nelly Barret, Antoine Gauquier, Jia-Jean Law, Ioana Manolescu. Finding meaningful
paths in heterogeneous graphs with PathWays. Information Systems, 2025, 127, pp.102463.
�10.1016/j.is.2024.102463�. �hal-04727209�

https://hal.science/hal-04727209v1
https://hal.archives-ouvertes.fr

Finding meaningful paths in heterogeneous graphs with
PathWays

Nelly Barreta,∗, Antoine Gauquierb,1, Jia-Jean Lawc,2, Ioana Manolescua

aInria & Institut Polytechnique de Paris, 1 rue Estienne Honoré
d’Orves, Palaiseau, 91120, France

bDI ENS, ENS, CNRS, PSL University & Inria, 45 rue d’Ulm, Paris, 75005, France
cColumbia University, 116 and Broadway, New York, 10027, USA

Abstract

Graphs, and notably RDF graphs, are a prominent way of sharing data. As data
usage democratizes, users need help figuring out the useful content of a graph
dataset. In particular, journalists with whom we collaborate are interested in iden-
tifying, in a graph, the connections between entities, e.g., people, organizations,
emails, etc.

We present a novel method for exploring data graphs through their data paths
connecting Named Entities (NEs, in short); each data path leads to a tabular-
looking set of results. NEs are extracted from the data through dedicated Infor-
mation Extraction modules. Our method builds upon the pre-existing Connection-
Lens platform and follow-up work in the Abstra project, which builds simple, vi-
sual ER-style summaries of semi-structured data. The contribution of the present
work, and its novelty, is twofold. First, we propose a novel analysis of entity-to-
entity paths contained in datasets of any nature, and propose a new method for
ranking paths, leveraging a novel Information Extraction (IE) module we built on
top of ChatGPT. Second, we present an efficient approach to enumerate and com-
pute NE paths, based on an algorithm which automatically recommends sub-paths
to materialize, and rewrites the path queries using these subpaths. Our experi-
ments demonstrate the interest of NE paths and the efficiency of our method for

∗Corresponding author
Email addresses: nelly.barret@inria.fr (Nelly Barret), antoine.gauquier@ens.fr

(Antoine Gauquier), law.jia.jean@gmail.com (Jia-Jean Law),
ioana.manolescu@inria.fr (Ioana Manolescu)

1Contributed to the work while affiliated to Institut Mines Télécom and Inria
2Contributed to the work while affiliated to Ecole Polytechnique and Inria

Preprint submitted to Elsevier October 9, 2024

computing and ranking them.

Keywords: Data graphs, Graph exploration, Information Extraction

1. Motivation and problem statement

The increased digitization of modern life has led to many datasets being pro-
duced by automated systems, individual users, and organizations, private or pub-
lic, companies or governance organizations, NGOs, etc. The W3C recommends
using the Resource Description Format (RDF, in short) for sharing data. However,
in practice, datasets are shared in many formats: relational or tabular (CSV files,
spreadsheets, relational database dumps, etc.); semi-structured documents (HTML,
XML, JSON); graphs, either RDF, or Property Graphs (PGs), etc. The diversity of
formats is particularly challenging to non-IT users, which need help understand-
ing the dataset structure and what kind of information it could bring them. In
recent years, we have carried research together with investigative journalists, with
the goal of helping them understand and analyze datasets that they may get access
to, and which are often of varied data models.

The ConnectionLens system Anadiotis et al. (2021, 2022) has been devel-
oped towards this goal. ConnectionLens turns any (set of) datasets into a sin-
gle graph, having: (i) an internal node for each structural element of the origi-
nal dataset, e.g., relational tuple, XML element or attribute, JSON map or array,
URI in an RDF graph; (ii) a leaf node for each value in a dataset, e.g., attribute
value in a relational tuple, text node or attribute value in XML, atomic (leaf) value
in a JSON document, literal in RDF, or value of a PG node or edge property.
There is an edge in the graph for each connection between the data items in the
original dataset, e.g., parent-child relationships between XML or JSON nodes,
edges connecting each relational tuple node with their attributes, etc. In a re-
lational database, primary/foreign keys may lead to more edges, e.g., the node
representing an Employee tuple “points to” the Company tuple representing their
employer. This graph view of a relational dataset has been introduced to support
keyword-based search in relational databases Agrawal et al. (2002), then extended
to (semi)structured documents Hristidis et al. (2003) and used in many follow-up
works, see, e.g., Yang et al. (2021); Manolescu and Mohanty (2023).

For instance, the graph in Fig. 1 illustrates a data journalism scenario on
which we applied ConnectionLens, working with a journalist that sought to iden-
tify conflicts of interest in the biomedical domain Anadiotis et al. (2021). Authors

2

Figure 1: Sample data graph with extracted entities (inspired from Anadiotis et al. (2021)).

of scientific publications, listed in a server such as PubMed, may report their rela-
tionships with organizations that fund their research, using the Conflict of Interest
(CoI) field of papers they author, e.g., Dr. Alice consults for ABCPharma. Sep-
arately, within the paper itself, “Acknowledgments”, “Funding statements” and
a few other keywords indicate paragraphs where authors may prefix stated rela-
tionships between authors and organizations; in the figure, the article in PDF is
converted into a JSON document where Dr. Alice thanks HealthStar. Connec-
tionLens also includes Information Extraction (IE) modules, which extract, from
any leaf node in the data graph, Named Entities (People, Locations and Organi-
zations) Anadiotis et al. (2022), as well as other types of entities that journalists
find interesting: temporal moments (date, time), Website URIs, email addresses,
and hashtags. We designate any of these pieces of information as entities, and
we model them as extra nodes. For instance, in Fig. 1, organizations are shown
as pink nodes, people as yellow nodes, and places as green nodes. Each entity
is extracted from a leaf text node, to which it is connected by a dashed edge.
When an entity is extracted from more than one text node, the edges connecting
it to those nodes increase the graph connectivity, e.g., “Alice” is extracted from
two nodes in the bibliographic notice, and once from the JSON resulting from the
PDF. Knowing all the relationships between medical experts, companies, and
lobbies acting for them interests a journalist that studies the authorization (or not)
of new medical or chemical products by national or international authorities, since
such decisions are often based on experts’ opinions.
Goal: efficient, interactive exploration of entity connections Having in mind
such an investigation, journalists are interested in data paths ending in entity pairs
of certain kinds in the data graph, e.g., in Fig. 1, “how are people connected to
organizations?”. In Fig. 1, there are three such paths: between Alice and her

3

employer (connection highlighted in blue), Alice and ABCPharma (yellow high-
light), and finally Alice and HealthStar (gray highlight). Each of these paths tra-
verses internal nodes and edges with certain labels, and depicts a specific kind
of relationship in the application domain. This small example features a single
individual and a few organizations; actual investigative journalism datasets, in
this study, or in the Paradise Papers project, are much larger and more complex.
One way to explore them is via keyword search, looking for connections between
specific company or person names, as in Anadiotis et al. (2021), Anadiotis et al.
(2022). As an alternative, or as a first step towards discovering a dataset content,
in this work we seek to automatically enumerate and compute paths between
pairs of entities, and show them to the user, ranked according to their potential
interestingness. When shown a set of paths, users may pick one to further ex-
plore: how many pairs of entities are connected by each path?, which entities are
most frequent?, etc. Note that it is important to consider paths irrespective of the
edges directions in the data graph. This is because, depending on how the data is

modeled, we may encounter x
boughtProperty
−−−−−−−−−−→ y

locatedIn
−−−−−−→ c, or x

hasOwner
←−−−−−− y

locatedIn
−−−−−−→ c;

both paths could be interesting. Finally, we note that our approach is best suited to
data graphs built for a specific application domain, e.g., “tax havens in Panama”,
or “subventions granted to projects around the city of Lyon”, etc. In an universal-
knowledge graph such as DBPedia, Wikidata, etc., the number of entity paths
would be much higher, and other mechanisms (typically users specifying some
terms of interest, etc.) would be needed to select a reasonable amount of paths to
show them.
Challenges and contributions The analysis outlined above raises several chal-
lenges. First, while current IE tools achieve pretty good quality, experiments on
several datasets recall that a few errors (false negatives, i.e., entities missed, and
false positives, i.e., entities wrongly identified) subsist, leading to entities of a cer-
tain kind being (wrongly) considered as appearing in certain fields of the data. In
turn, these entities may participate in many paths in the data; we say such paths
are not reliable. Further, reliable paths may reflect more or less frequent (typical)
relationships within a dataset. We call strong a path between named entities that
has good support within the dataset. This can be seen as an indicator of a frequent
relationship between the real-world entities which the dataset is about. Our main
goal is to show users reliable and strong paths. Second, materializing the entity
pairs connected by such paths may be very costly, if (i) the graph is large, and/or
(ii) there are many paths, which happens if the data is complex/heterogeneous,
and/or if we allow paths to traverse edges in both directions). Third, the large

4

https://www.icij.org/investigations/paradise-papers/

number of paths may overwhelm users. Non-expert users, or users which are not
familiar with the dataset structure, should not be required to state the paths that
they would like to see; instead, the system should propose these paths.

Our method, named PathWays, addresses these challenges with the following
contributions. (i) Towards identifying reliable paths, we added to ConnectionLens
a novel IE module, based on OpenAI’s ChatGPT API (Sec. 3). As we show, this
significantly improves the extraction quality, avoiding numerous false positives
that arise when using our previous IE module. (ii) We leverage this (state of the
art) extraction quality, to assign to each path a reliability measure, which provides
a first tool for ranking paths, when showing them to the user (Sec. 4). (iii) To
break ties between paths whose reliabilities are very close, we introduce a novel
structural metric called path force, based on graph node and edge cardinalities.
This improves over our prior work Barret et al. (2023b) by eliminating user effort
while keeping the quality of the proposed paths (Sec. 4). (iv) To speed up the
entity paths materialization, we recommend a set of views (subpaths) to materi-
alize, and rewrite each path query using these materialized views (Sec. 5). This
allows to identify subpaths that appear in more than one path, and compute the
corresponding data paths only once, greatly improving performance (Sec. 6). We
then discuss related works (Sec. 7) and present some perspectives (Sec. 8).

2. From datasets to data graphs

In order to propose a general approach that works on any data format (e.g.,
RDF, JSON, XML, etc.), we leverage prior work Anadiotis et al. (2022), which
builds a data graph out of each input dataset (Sec. 2.1). These graphs may be
large, thus enumerating paths on them would be inefficient. Therefore, we rely
on a more compact structure derived from this original graph as described in Bar-
ret et al. (2024), namely a collection graph (Sec. 2.2). Finally, we explain how
we produce a single collection graph out of several datasets (Sec. 2.3), which
journalists may need to exploit together in a particular investigation.

2.1. From a dataset to a data graph
We first show how ConnectionLens transforms datasets of various models into

data graphs. Next, we show how Named Entities are identified in such data graphs;
NEs are crucial to inter-connect data and better understand the dataset. Finally,
we describe how we build a collection graph, a core structure for efficiently enu-
merating paths, and how we can compute it for several datasets at a time.

5

2.1.1. Dataset conversion in a graph
Given a set of datasets, ConnectionLens transforms them into a directed graph

G0 = (N0, E0, λ0) where N0 is a set of nodes, E0 is a set of edges connecting N0

nodes and λ0 is a function assigning a label l to each node and edge. We map each
data model on G0 as follows.
RDF graphs are naturally mapped on G0: each subject, respectively object, is
turned into a node and an edge labelled with the property is connecting them. An
XML document corresponds to a tree, with element nodes having element and at-
tribute children. XML elements may carry #ID attributes whose values uniquely
identify them; other XML elements may carry #IDREF attributes, whose values
act as “foreign keys” referring to other elements by their #ID value. ID-IDREF
information can be supplied in an optional Document Type Description (DTD)
or XML Schema (XSD); when these are not available, ID-IDREF links can be
found by profiling Jiang and Naumann (2020); Abedjan et al. (2018) techniques,
which we also implemented. In the graph representation of an XML document,
ID-IDREF links lead to more edges between elements (thus, the graph is no longer
a tree). HTML documents are similarly treated. JSON documents are also mod-
eled as trees, where each map, array, and leaf value is a node and parent-child
edges are connecting them. For relational datasets, a directed graph representa-
tion has been established in prior research focused on keyword search in relational
databases Agrawal et al. (2002), and ConnectionLens also adopts it. Specifically,
a node is created for each tuple in a relation; the node has an outgoing edge labeled
with each attribute name from the relation, leading to a leaf node labeled with the
respective attribute value. Attributes encapsulating foreign keys are treated dif-
ferently: each foreign key relating a tuple r ∈ R to a tuple s ∈ S , where R, S are
two relations such that a foreign key goes from R to S , are modeled as arrows
going from the node corresponding to a tuple r ∈ R, to the node corresponding
to the respective tuple s ∈ S . A CSV dataset is ingested like a single relation.
Property graphs are converted to ConnectionLens ones by creating one node for
each PG node and edge, one node for each of their attributes, connecting together
each node (edge) with its attributes via edges labeled after the attribute names,
and representing each PG relation as a succession of two edges, from the PG re-
lation source to the relation node, and from there to the PG relation destination.
Document formats, e.g., PDF, Office formats, etc., are converted to JSON using
existing libraries, then their content is ingested as JSON.

We stress that regardless of the original format, content is ingested in a fine-
granularity graph, where each node has an (internal) ID given by ConnectionLens,

6

and a label that may also be empty; each edge also carries a label, possibly empty.
We also store, for each node, the dataset from which it comes, and its type, e.g.,
whether it was an RDF literal, an XML element, etc.

2.1.2. Named Entity extraction
In Information Extraction (IE), a Named Entity (NE) is a real-world object,

such as a Person, Place, Organization, Product, Event, etc., that can be denoted
with a proper name. Named Entities can be extracted from text using Named
Entity Recognition (NER) tools. A NER tool takes as input a string and yields a
set of triples of the form 〈NE, τ, c〉 where NE is a sequence of tokens from the
input string, considered to be the label of an NE, τ is the type associated to that
entity, and c is the confidence the extractor has in NE and τ.

Figure 2: Sample data graph (top), and corresponding collection graph (bottom) on which paths
linking entities are explored (highlighted areas).

Fig. 2 shows a running example on which we will rely below, which concerns
NASA flights. The upper half of the figure shows the ConnectionLens data graph
built out of two datasets: at left, an XML document describing presidents who at-
tended spacecraft launches (tree with labeled nodes and unlabeled edges); at right,
a (drastically simplified) sample of the NASA RDF dataset. We show next to each
node its ID and label, and the label of each edge in italic, when not empty; for

7

https://old.datahub.io/dataset/data-incubator-nasa

readability, we replace each RDF URI with a short, readable label, e.g., Space-
craft1, descr, etc. Labels of text nodes (literals) are enclosed in double quotes.
The nodes on colored background are extracted NEs: yellow for Person, green for
Location, and pink for Organization entities. Each NE is connected to its parent(s)
(string(s) from where it has been extracted) by a dashed line, e.g., the Organiza-
tion node NASA (16) is a child of both strings “NASA” (15) and “THAICOM 2
is a NASA... (French Guiana)” (17).

Some entities can be detected with simple pattern-based extractors, when a
regular expression describes the set of legal NE labels; this is the case for emails,
hashtags, Twitter user mentions, URIs, and ConnectionLens recognizes them via
pattern matching. Recognizing entities of other types, i.e., Person, Location, Or-
ganization entities, or dates, require a pre-trained language model. Connection-
Lens Anadiotis et al. (2022) extracts such entities using two extractors, each of
them is based on a pre-trained language model. The first one is based on the
Stanford NER Manning et al. (2014), while the second one is based on the Deep
Learning Flair NLP framework Akbik et al. (2019), pre-trained on the CoNLL-
2003 news articles dataset.

While the Flair extractor is much more accurate than the Stanford NER one,
it still leads to false positives (entities recognized where one does not really ap-
pear), as well as false negatives (actual entity occurrences missed by the extractor).
False positives negatively impact PathWays, since they lead to erroneous extrac-
tion edges, which, in turn, lead to spurious paths between extracted entities. This
increases the path evaluation effort, without bringing interesting results.

To solve this problem, one could retrain the Flair model for different corpora,
but this is labor-intensive. Instead, to improve the path quality w.r.t. the paths
found in Barret et al. (2023b), we have developed a new NE extractor, leveraging
OpenAI’s ChatGPT 4. Relying on this very large model has led to better-quality
results, once properly prompted. We describe the new extractor in Section 3.

2.2. From a data graph to a collection graph
The collection graph is a compact representation of the data graph. It is based

on an equivalence relation between the data graph nodes: the collection graph has
exactly one node for each equivalence class of data graph nodes; further, whenever
n1 → n2 is an edge in the data graph, the collection graph comprises an edge
C1 → C2, where C1,C2 are the equivalence classes (also called collections) to
which n1, n2 belong, respectively.

The most natural node equivalence relation differs across data models. Specif-
ically, XML nodes we consider equivalent are elements with the same name; text

8

https://github.com/flairNLP/flair
https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/

nodes that are children of equivalent elements; and values of same-name attributes
of equivalent elements. For instance, in Fig. 2, the pilot nodes 7 and 8 are equiv-
alent. In JSON, we consider equivalent nodes found on the same labeled path,
from the JSON document root, to the node. A path is a concatenation of node and
edge labels, separated by . (dots), where we assign special labels: µ to each map
node, α to each array node, and ε to each empty node or edge label. For instance,
in the JSON snippet [{“name”: “Alice”, “address”: {“street”: “Main”, “city”: “NY”}}] the
path to “NY” is: α.ε.address.µ.city. In RDF, there are numerous ways to define
node equivalence Cebiric et al. (2019). RDF collection graphs are built through
the TypedStrong summarization method Goasdoué et al. (2020), working as fol-
lows. Whenever an RDF node has one or more types, all nodes with the same
set of types are said equivalent (in RDF, a node can have several types, related
or not, e.g., Student and Employee). For nodes without types, TypedStrong sum-
marization relies on the properties (labels of incoming and outgoing edges) that
the nodes have, by introducing a notion of outgoing/incoming property cliques:
(i) two properties that a node has, are in the same outgoing clique, e.g., agency
and pilot are in the same outgoing clique because they are both property of node
10 in Fig. 2, and also with descr because node 14 has agency and descr; incoming
property cliques are symmetrically defined based on incoming properties; (ii) two
nodes without types are equivalent if they have identical outgoing and incoming
property cliques. For instance, nodes 10 and 14 (the two spacecrafts) are equiva-
lent, since they have the same outgoing and incoming property cliques.

Fig. 2 (bottom) shows the collection graph corresponding to the data graph.
We named the collections C1,C2, etc. Note that some data models have labeled
edges, e.g., RDF, while others have (mostly) unlabeled edges, e.g., XML. For uni-
formity, we transform any labeled edge into a node and extend our summarization
also to such nodes. In Fig. 2, collection C6 contains the nodes introduced instead
of the pilot edges in the RDF dataset. Collection names in our figure are only for
ease of explanation (they are not required in our method). For collections such
as C1, with RDF nodes each with a different URI, we use an intuitive name, e.g.,
“Spacecraft”.
Entity collection profiles Each leaf collection in the collection graph corresponds
to a set of literals (strings), out of which various NEs may have been extracted.
These collections’ names end with a # to help distinguish them (e.g., C5 agency#).
For each such collection C, we compute an entity profile storing how many entities
of each type were extracted from its string nodes. In Fig. 2, there are four such
profiles, each shown as a box filled with the color of an entity type, e.g., the child
of C5 is pink reflecting the Organization entities extracted from agency values. In

9

practice, long text nodes often lead to multiple NEs extracted, of several types.
Knowledge of which leaf collections contain which kind of entities will be crucial
to help users explore the graph (Sec. 4).

2.3. From multiple datasets to a collection graph
Journalists often need to work with several datasets, e.g., a JSON collection of

political tweets, the list of French mayors in XML, and an RDF graph of public
investment in companies across France. When ingesting several datasets, we need
to decide whether and how to interconnect them. (i) As per the RDF specification,
when two or more RDF graphs feature a common URI (or literal), only one node
should be created for that URI (or literal). In other words, RDF graphs are auto-
matically merged. (ii) Because of the particular semantics of URIs, at any point,
in any ConnectionLens graph, there is at most one labeled with any URI, even if
the URI appears in a dataset of a model other than RDF. For instance, in Fig. 2,
the node with ID 7, labeled pilot, has as child the URI narmstrong; this intercon-
nects the XML and the RDF parts of the graph. All the other nodes are created
independently from each other, each considered as part of exactly one dataset.

To obtain a single collection graph from a set of datasets, we proceed as
follows. First, we build a separated collection graph from each dataset (as in
Sec. 2.2). Then, whenever two collections C1,C2 from distinct datasets share at
least a URI, we replace them by a new collection C3, which contains the values
of C1 and C2, and inherits all the incoming and outgoing edges of C1 and C2 in
the collection graph they came from. Their original collection graphs are thus
connected. This is how the collection C7 in Fig. 2 has two incoming edges, one
reflecting the XML hierarchy at the top left of the figure, and the other the RDF
edges at the top right. Further, when datasets are ingested together in Connec-
tionLens for analysis, they typically feature common NEs. For instance, in Fig. 2,
at the extreme left of the lower half, the pink-filled square denotes the collection
comprising Organization entities extracted from the values of the descr and agency
RDF properties; there is a single such collection, because they share the NASA
Organization entity. Interesting data paths can thus be found across data sources.

3. ChatGPT-based Named Entity extractor

To improve the quality of NE extraction, we have extended ConnectionLens
with a new extractor, leveraging OpenAI’s ChatGPT v4. Its very large training
corpus allowed us to expect good performance in detecting NEs in texts of various
forms even without corpus-specific fine-tuning.

10

https://platform.openai.com

Please get each named entity you identify in the following string: ’XXX’. Return a
table containing four columns, one for the named entity name, one for the named
entity type you assigned to it, one for a category among (person, organization,
location) that fits your type, and one with the confidence you have in the category
assigned to the extracted entity where the confidence is a float value between 0
and 1. If no category fits your type or a sub-type of your type, set the category as
OTHER. If no named entities of the expected types, answer NONE.

Figure 3: ChatGPT prompt for NE extraction (directive plus a string, denoted ‘XXX’).

We used ChatGPT in a question-answer mode. Each question we send, also
called prompt, consists of a fixed directive, together with a string (text leaf in
the dataset) in which we ask ChatGPT to identify named entities. For each en-
tity found, ChatGPT also returns a type it considers the most suited for the entity
in the context of the input string, as well as its confidence. Since Connection-
Lens uses the NE types People, Organizations, or Locations (recall Sec. 2.1.2),
our prompt instructs ChatGPT to identify entities of these types, or to an extra
category OTHER. The best prompt we found appears in Fig. 3. It constrains the
answer format to facilitate its integration in ConnectionLens. Just like the previ-
ous extractors (Sec. 2.1.2), this prompt is independent of the application domain.
Our first prompts did not mention the OTHER category; we observed that this
lead to some false negatives, i.e., some Person, Organization or Location entities
(entity types we had explicitly asked for) were not returned. We believe intro-
ducing the OTHER category clarified the prompt semantics; it certainly lead to
better-quality results.

For instance, Tab. 1 shows the NEs (with their attached information) found by
ChatGPT in the string: “Declaration of competing interest Y. Hu and A. Coates
are the coinventors of the antibiotic resistance breaker technology, in particular
the combination of the quinoline and tobramycin (patent granted). They were
the first to test this combination against highly resistant Pseudomonas spp. They
originated the concept and performed the background work upon which this work
is based. A. Coates, Y. Hu and CP declare they have equity in Helperby Ther-
apeutics who are developing HT61. CP is in receipt of a grant from Helperby
Therapeutics to support Dr Richard Amison for the conduct of the in vivo aspect
of this study. There are no other conflicts of interest to declare”. This string ap-
pears in a Conflict of Interest statement of a PubMed article (recall our motivating
scenario Anadiotis et al. (2021) illustrated in Fig. 1). As Tab. 1 shows, our prompt
is effective in getting ChatGPT to perform high-quality extraction. We analyze its

11

Named Entity Type Category Confidence
Y. Hu Person Person 0.95
A. Coates Person Person 0.90
antibiotic resistance breaker technology Product OTHER 0.70
quinoline and tobramycin Product OTHER 0.70
Pseudomonas spp. Species OTHER 0.8
Helperby Therapeutics Company Organization 0.85
HT61 Product OTHER 0.60
Dr Richard Amison Person Person 0.80

Table 1: Sample ChatGPT NE extraction results.

performance in more depth in Sec. 6.2.

4. Paths between entities

In this section, we discuss categories of paths that users might be interested in,
and how to ask for their input.

An important first observation is: by the way we built the collection graph,
to each dataset path corresponds a path in the collection graph. For instance,

consider the data path 13 ← 12
name
←−−− 11

pilot
←−−− 10

agency
−−−−→ 15 → 16 in Fig. 2. The

collection graph features the corresponding path �← C9← C8← C7← C6← C1

→ C4 → C5 → �.
Further, some paths in the collection graph correspond to no paths in the data

graph. For instance, the path C6 ← C1 → C2 does not correspond to any path in
the data, because no spacecraft (part of the collection C1) has both the agency and
descr properties. Such paths are introduced by summarization, which compresses
the graph structure with some information loss. In our example, the fact that a
spacecraft has agency and pilot, another has pilot and descr is “simplified” into a
collection C1 that may have any combination of the three properties (represented
by collections C2,C4,C6). We accept this loss of information in exchange for the
ability to work on the collection graph, much smaller than the data graph.

Based on the above, our approach is: (i) enumerate paths on the collection
graph, (ii) identify the interesting paths as those that are both reliable and strong
(see below), then (iii) turn each path into a query, and (iv) evaluate this query on
the data graph, and show users the resulting actual data connections (if any).

12

4.1. Notations for entity paths in the collection graph
Each path between two entities is first, characterized by a pair of entity types

of the form (τ1, τ2), where τ1, τ2 ∈ E, with E being the set of supported entity
types. E contains entity types such as Person, Location, Organization, Email,
URI, Hashtag, Date, etc.

An entity path is also characterized by its length, i.e., the number of edges it
contains. Depending on the application, interesting connections can be made by
paths of different lengths; however, it appears likely that beyond a certain length,
connections may become meaningless. Therefore, and also to control how many
collection paths they want to inspect, users may specify a maximum path length
Lmax, whose default value we set to 10. Moreover, longer paths tend to be of a
lower quality because it is very likely that they will contain non-reliable or weak
collection edges (see Sec. 4.3 and 4.4), thus are often ranked low, thus not shown
to users.

Each entity-to-entity collection path cp is of the form: � ← C1 ! C2 → �,
where �,� are two entity profiles, such that the first, respectively, the second,
contains some entities of types τ1, respectively, τ2, and C1,C2 are value collections
such as C5 and C9 in the example at the beginning of Sec. 4. The directions of
the leftmost and rightmost edges are by convention always towards �,�, which
represent entities. Let cp0 denote the path C1 ! C2.

4.2. Path analysis by directionality
We can classify entity paths according to the directions of the edges in !.

Specifically, paths may be:

• Unidirectional, i.e., all cp0 edges go from C1 towards C2, or the opposite;

• Shared-sink, i.e., cp0 may contain a (collection) node C such that all edges
between C1 and C (if any) go from C1 towards C, and all edges between C2

and C (if any) go from C2 towards C. A shared-sink path is C1 → C6 →

C7 ← C10 ← C11.

• Shared-root, i.e., cp0 may contain a (collection) node C such that all edges
between C and C1 (if any) go from C towards C1, and all edges between C
and C2 (if any) go from C towards C2. A shared-root path is C9← C8← C7

← C6 ← C1 → C4 → C5.

• General, i.e., the edges may be in any direction.

13

Unidirectional paths are quite rare. This is because entity-connecting paths
must have at each end a node from which an entity is extracted. Most of the time,
these are two literal (string) nodes (as opposed to internal nodes structuring the
dataset). Literals have incoming edges, but not outgoing ones (other than those
towards extracted entities); thus, there is no unidirectional path from a literal to
another. However, in some RDF datasets, NEs are extracted from URIs, e.g.,

the triple https://dbpedia.org/Facebook
locatedIn
−−−−−−→ http://dbpedia.org/California is a

unidirectional data path from an Organization to a Location. Similarly, shared-
sink paths only occur when nodes in C1 and C2 have outgoing edges, and NEs
appear in their labels; this only happens in RDF URIs.

4.3. Path reliability
As previously stated, each entity path in the collection graph reflects zero or

more paths in the data graph. Data graph edges can be divided into: (i) struc-
tural, which originate in the way the data is organized in the input graph; in our
approach, we consider such edges as certain, or fully reliable; and (ii) extrac-
tion edges, which connect a NE to the string from which it had been extracted.
In turn, an extraction edge can reflect a true positive (the entity is correctly ex-
tracted, i.e., most human users would agree that the entity of the respective type
is present in the string), or a false positive (a human user would not consider the
entity is present there). In the collection graph, we call extraction edge an edge
corresponding to one or more data graph extraction edges.

Each entity path has at least two extraction edges, � ← C1 and C2 → �; if
the path is either shared-sink or general, it may contain other extraction edges. In
Fig. 2, the path � ← C3 → � ← C5 ← C4 ← C1 → C6 → C7 → C8 → C9 → �
in the collection graph exhibits four extraction edges, including the two adjacent
to the entity collection �.

Examining several datasets, we noted situations when all the data extraction
edges behind a given collection graph extraction edge e correspond to false pos-
itives, due to IE errors. For instance, in PubMed bibliographic data, chemical
acronyms in article titles were mistakenly extracted as being Organizations. In
more subtle cases, people names were extracted from (i) titles; two among a
few thousands articles were scientists’ obituaries thus had their name in the ti-
tle; (ii) affiliations, when a research lab, institution, or a street is named after a
person. In such cases, a person name is technically present, but since most titles,
and most affiliations, do not feature people, we consider that the collection-level
extraction edge is not reliable.

14

Formally, for each collection graph extraction edge e of the form C → �,
where � corresponds to NEs of a specific entity type τ, we compute the reliabil-
ity of e, denoted erel, as: the fraction of data graph nodes in C having at least one
extracted entity child of type τ. Further, we compute the reliability of an entity
path as the minimum value of erel over all the extraction edges e present in the
path. Using the minimum to aggregate extraction edge reliabilities is a conser-
vative choice, which penalizes a path according to its least reliable edge. In our
experiments, this choice gave good results; indeed, even a single unreliable edge
in a collection graph path may make it meaningless.

4.4. Path force
Beyond directionality and reliability, entity paths can also be analyzed based

on the numbers of edges adjacent to graph nodes. ConnectionLens Anadiotis et al.
(2022) attaches to each edge e of the original data graph, having a non-empty label
a, a measure called specificity. Let e be the edge n1

a
−→ n2 for some nodes n1, a, n2.

The specificity of e, denoted es, is computed as 2/(N1,a + N2,a), where N1,a, N2,a are
the numbers of edges labeled a outgoing, resp. incoming, n1, resp. n2. The highest
N1,a and/or N2,a, the lowest es. For instance, the specificity of each agency edge
in Fig. 2 is 2/(1 + 2) = 2/3. For our purposes, we extend specificity to unlabeled
edges as follows: the specificity of an edge n1

ε
−→ n2 is 2/(1 + n1,2) where n1,2

is the number of ε (empty-label) edges outgoing n1, towards nodes having the
same label as n2. For instance, the specificity of the edge between nodes 6 and
7 is also 2/3. In Anadiotis et al. (2022), edge specificity has been used as an
ingredient for scoring connections (paths or trees) in the original graph, returned
when users search the graph using keywords. Indeed, low-specificity edges can
be seen as “weakening” connections, e.g., when a person has 1 spouse and 200
friends, intuitively, an edge (thus, path) going from the person to a friend is weaker
than one going from the person to the spouse.

In Barret et al. (2023b), we leveraged data edge specificity as follows. (i) In
the collection graph, the edges with a non-empty label, connecting nodes from
two equivalence classes lead to a collection, e.g., agency triples lead to C4. To this
collection is attached the average specificity of all the data edges it comes from,
e.g., to C4 corresponds 2/3. Empty-label edges connecting graph nodes from
two equivalence classes lead to an edge in the collection graph, e.g., C11 → C10.
To an edge between collections is attached the average specificity of the original
edges. (ii) Paths with low-specificity collections or edges were pruned. Specifi-
cally, users were first asked to state how many low-specificity collections and col-
lection edges they are willing to review, then shown the lowest-specificity ones,

15

each of which they can validate or invalidate. Then, we only enumerated paths
that did not traverse invalidated collections. This approach allowed to control the
effort required from users; it is also more accurate than just invalidating collec-
tions whose specificity is below a given threshold, which could lead to decisions
suitable for some collections but unsuitable for others. However, this approach
of Barret et al. (2023b) has its drawbacks. On one hand, it requires user effort; on
the other hand, low-specificity collections and collection edges, that do not make
it to the users’ inspection, may be preserved, leading to weak paths.

Towards avoiding these limitations, we change our approach, as follows. First,
we no longer require users to inspect structural metrics. Second, we use struc-
tural metrics to rank paths, instead of pruning them. Third, we compute different
structural metrics, as discussed below.
Path force Let ni, n j be nodes in the normalized data graph, belonging to the col-
lections Ci,C j, respectively. We define the (data) edge cardinality ecard of a data
edge e = ni → n j such that ni ∈ Ci, n j ∈ C j as the number of data edges outgoing
ni and ending up in a node nz such that nz ∈ C j. This differs from specificity in sev-
eral respects. (i) Cardinality is asymmetric, i.e., it only considers how many edges
exit a node in Ci, not how many enter a particular node in C j. This seems simpler
and more intuitive. (ii) Cardinality interprets the neighborhood of ni through the
prism of the collections Ci,C j to which ni, n j belong. Specificity had no aware-
ness of collections, and only focused on edges exiting ni and entering n j. Next, we
define the collection edge force f (Ci → C j) of a collection edge as the inverse of
the maximum cardinality among all data edges represented by the collection edge;
this number is in (0, 1]. Taking the inverse of the maximum cardinality penalizes
the existence of even one node ni ∈ Ci having a large number of edges to nodes
from C j. Averaging specificities as in Barret et al. (2023b) allowed to smooth the
impact of such nodes. We prefer the inverse of the maximum cardinality since we
consider a Ci node with many edges to C j signals that connections Ci → C j may
be not too selective for a Ci node, i.e., one could have hundreds of friends, or writ-
ten hundreds of papers, even if most people do not. In contrast, one always has
a single birth country, at most one or a few spouses over a lifetime, etc. Finally,
we define the path force F(p) of a path p as F(p) =

∏
Ci→C j∈p f (Ci → C j). This

combines all forces along the path, penalizing multiple and/or low values. It also
penalizes paths containing many edges whose force is below 1.

4.5. Putting it all together: collection path enumeration
Our approach for collection path enumeration is as follows. First, we ask users

which two entity types they want to connect, i.e., select τ1, τ2. Next, users can set

16

the maximum path length Lmax they are interested in. Next, based on the collection
graph, we enumerate all the paths connecting entities of types τ1 and τ2. We use
a simple in-memory dynamic programming algorithm, as the collection graph is
much smaller than the data. Then, we compute the reliability (Sec. 4.3) and force
(Sec. 4.4) of each path thus enumerated: we first compute the reliability of each
extraction edge and the force of each non-extraction one, then combine them into
reliability and force values for the paths. We then inform the user: “There are
Nuni unidirectional paths, Nsink shared-sink paths, Nroot shared-root paths, and Ngen

general paths between entities of type τ1 and τ2.” We show the paths sorted, first,
by reliability (truncated to just two decimals), then by force. The user can then
chose a set of collection paths to materialize, e.g., “only the shared-root ones”,
or “the ones ranked in the top-20”, or “just those involving specific internal node
labels”, etc. How paths are materialized will be discussed in Sec 5.

5. Materializing data paths

At this point, we have a set of collection paths, which must be transformed
into queries and evaluated on the data graph. The results of each such query
are shown to users as a table: the first and last attribute of such a table comprise
entities of type τ1, τ2, while the intermediary attributes are the nodes and edges
connecting these entities in the data graph. For instance, let τ1 be Person, τ2 be
Organization: the light-blue, respectively, light-gray background shapes in Fig. 2
materialize the two paths which, in this graph, connect the pink child of C5 (�)
with the yellow children (�) of C9, respectively, C15.

5.1. From a collection path to a query over the data graph
Each collection path translates into a chain-shaped conjunctive query. For in-

stance, the path on gray background in Fig. 2, going through C5 and C9, becomes:
q1(x̄) :- n(x1, τOrg,�), e(x2, x1, _), n(x2, _,C5), e(x3, x2, agency), n(x3, _,C1),

e(x3, x4, pilot), n(x4, _,C7), e(x4, x5, name), n(x5, _,C9), e(x5, x6, _),
n(x6, τPerson,�)

This query refers to two relations: n(ID, type, equiv), describing nodes, with
the last attribute denoting their equivalence class, and e(s, d, label), describing
edges between nodes s and d and carrying a certain label. Each xi is a variable;
x̄ in the query head denotes all the xi variables, 1 ≤ i ≤ 6. We use _ to denote
a variable which only appears once, in a single query body atom. Finally, τOrg

and τPerson denote the node types of extracted Organization, respectively, extracted
Person entity. Similarly, the blue-background collection path translates into:

17

q2(x̄) :- n(x1, τOrg,�), e(x2, x1, _), n(x2, _,C3), e(x3, x2, descr), n(x3, _,C1),
e(x3, x4, pilot), n(x4, _,C7), e(x5, x4, _), n(x5, _,C11), e(x6, x5, _),
n(x6, _,C12), e(x6, x7, _), n(x7, _,C14), e(x7, x8, _), n(x8, _,C15),
e(x8, x9, _), n(x9, τPerson,�)

Each of these queries can be evaluated through any standard graph database.
However, evaluating dozens or hundreds of path queries on large graphs can get
very costly. Further, since we do not know which paths may result from the user
choices, we cannot establish path indexes beforehand.
View-based optimization To address this problem, we propose an optimization,
based on the observation that queries resulting from collection paths may share
some subpaths. For instance, the subquery s(x3, x4) :- n(x3, _,C1), e(x3, x4, pilot),
n(x4, _,C7) is shared by q1(x̄) and q2(x̄). Therefore, we decide to (i) evaluate s
and store its results; (ii) rewrite q1(x̄) and q2(x̄) by replacing these atoms in each
query, by a single occurrence of the atom s(x3, x4). The next sections formalize
this for larger query sets, also showing how to handle different alternatives that
may arise as to which shared subpaths to materialize.

5.2. Enumerating candidate views
A first question we need to solve is enumerating, based on a set Q of path

queries, the possible subqueries that we could materialize, and based on which we
could rewrite some workload queries.

Let q ∈ Q be a path query: it is an alternating sequence of node (n) and edge
(e) atoms. We denote by nq the number of edge atoms, then the number of node
atoms is nq + 1. We denote by nQ the highest nq over all q ∈ Q.

Without loss of generality, our first heuristic (H1) is: we only consider con-
nected subpaths of q as candidate subqueries. If q is of the form q(x̄) :- n1, e1, . . . ,
enq , nnq+1, each connected subpath of q, denoted sq, is determined by two integers
1 ≤ i ≤ nq, i < j ≤ nq + 1, such that sq(xi, x j) :- ni, ei, . . . , n j, e j, and xi, x j are
the IDs of the nodes in the atoms ni, n j, respectively. We denote by q|i, j the sub-
query of q determined by the positions i, j. For instance, when q1 is the sample
query in Sec. 5.1, q1|

3,4 is the subquery s(x3, x4) introduced there. Considering
connected (cartesian-product free) candidate views is common in the literature,
too (see Sec. 7).

Each query q ∈ Q has O(n2
q) connected subpaths, that can be easily enumerated

from q’s syntax. A second heuristic (H2) we adopt is: we only consider shared
subpaths, that is, those subpaths s for which there exist q′, q′′ ∈ Q, q′ , q′′, and
integers i′, j′, i′′, j′′ such that s = q′|i

′, j′ = q′′|i
′′, j′′ , possibly after some variable

renaming. For the queries q1, q2 in Sec. 5.1, the subquery s3,4 is q1|
3,4 and also

18

q2|
3,4. (H2) restricts the number of candidate views from |Q| × n2

Q
to a number that

depends on the actual workload Q, and which decreases when Q paths look more
like each other. Another interest of (H2) is: the benefit of using a view v to rewrite
one query q is likely offset by the cost of materializing v; actual performance
improvements start when v is used twice (or more), which is exactly the case for
subqueries shared by several Q queries.

Our third heuristic (H3) is: among the possible subqueries shared by two
queries q′, q′′, consider only the longest ones. That is, if s1, s2 are two shared
subqueries of q′ and q′′ such that ns1 > ns2 , do not consider the subquery s2.

Our heuristics (H1), (H2), (H3) lead to building the candidate view set V
as follows. For each pair of distinct queries (q′, q′′) where q′, q′′ ∈ Q, add to V
the longest, shared, connected subqueries of q′ and q′′. The complexity of this
algorithm is O(|Q|2 × n2

Q
), while |V| is in O(|Q|2).

5.3. Selecting materialized views and rewriting path queries
Knowing the path queries Q and the candidate view set V, we need to deter-

mine: a set M ⊆ V of views which we actually materialize, in order to rewrite
some Q queries. We collect the rewriting of each such queries in R. The decision
to materialize a view incurs a cost, since the view data must be computed and
stored. We denote cost(·) the cost of evaluating a view (or query), and assume
it can be estimated without actually evaluating the view (query). Materializing a
view is more attractive if (i) rewritings using it reduce significantly query evalua-
tion costs, and (ii) its own materialization cost is small.

In the most general case, a query could be rewritten based on any number of
views, and also involving the base graph. For instance, query q1 from Sec. 5.1
could be rewritten as: q1|

1,3 ./ q1|
3,4 ./ q1|

4,6, where each ./ denotes a natural join,
on the variables x3, respectively, x4. However, enumerating all such alternatives
makes the query rewriting problem NP-hard Halevy (2001). Instead, we adopt
another pragmatic heuristic (H4): rewrite each query using not more than one
view. This simple choice keeps the view selection complexity under control, all
the while providing good performance.

Algorithm 1 depicts our greedy method for findingM andV. It computes the
benefit of each view v for each query that may be rewritten using v, as well as the
cost of v. In a greedy fashion, it decides to materialize the view vmax maximizing
the overall benefit (for all Q queries), and uses it to rewrite all queries whose eval-
uation cost can be reduced thanks to vmax, via the rewriting rq,vmax . These queries
are then removed from Q, the benefits of the remaining views are recomputed over

19

Algorithm 1: Selecting views to materialize and the respective view-
based rewritings

Input : Queries Q, candidate materialized viewsV, cost estimation
cost(·), per-tuple CPU cost

Output: Materialized viewsM and rewritings R for some Q queries
1 M← ∅; R ← ∅
2 whileV , ∅ do
3 for v ∈ V do
4 ben(v)← 0; cost(v)← cost to compute and store the view v
5 for q ∈ Q, q can be rewritten using v via the rewriting rq,v do
6 ben(v, q)← the cost of evaluating q directly on the graph,

minus the cost of evaluating q based on v, through the
rewriting rq,v

7 ben(v)← ben(v) + ben(v, q)

8 (vmax, bmax)← a view vmax maximizing ben(v)− cost(v), and its benefit
9 if bmax − cost(vmax) < 0 then

10 exit

11 Add vmax toM
12 for q ∈ Q, q can be rewritten using vmax do
13 if ben(vmax, q) > 0 then
14 Add rq,vmax to R
15 Remove q from Q

16 Remove vmax fromV

the diminished Q, and the process repeats until no profitable view to materialize
can be found.

Estimating costs Algorithm 1 needs to compute: (i) cost(·), the cost to evaluate
a query q or materialize a view v; (ii) rq,v, the rewriting of q using a view v; and
(iii) cost(rq,v), the cost of such a rewriting. All these costs must be estimated
before any query or view results are computed. We do this as follows. For (i), we
use the cost estimation of the graph data management system (GDBM, in short)
storing the graph. Our implementation relies on PostgreSQL, whose explain
command returns both the estimated number of results of certain query (or view),
denoted size(q), and the cost of computing those results. For (ii), recall (Sec. 5.2)

20

that when v is used to rewrite q, v is a subpath of q, thus there exist i, j such
that v = q|i, j. The rewriting rq,v is easily obtained by replacing, in the body of
q, the atoms from the ith to the jth, with the head of v. Handling (iii) is more
complex than (i). This is because the cost of a query (or view) is estimated based
on statistics the GDBM has about the stored graph. In contrast, the GDBM cannot
estimate cost of rq,v, because v has not been materialized yet, thus the GDBM
cannot reason about v like it does about the graph. To compensate, we proceed
as follows: we compute the cost of reading the hypothetical view vmax from the
database, by multiplying size(vmax), the estimation of the view size, with the per-
tuple CPU cost (PostgreSQL’s own CPU_TUPLE_COST); then, we estimate the
cost of rq,vmax as this reading cost plus the cost of estimating the parts of q not in
vmax plus the cost of joining vmax with these (one or two) remaining query parts.
We estimate the cost of each such join by adding their input sizes. This reflects
the fact that modern databases feature efficient join algorithms, such as memory-
based hash joins, whose complexity is linear in the size of their inputs.
Complexity Algorithm 1 makes at most O(|V| × |Q|) iterations, which can be
simplified into O(|Q|3). Forming a rewriting takes O(nQ), bringing the total to
O(|Q|3 × nQ).
Impact of heuristics As previously discussed, (H1) is universally adopted in the
literature: no candidate view features cartesian products. (H2), imposing that
views benefit at least two queries, preserves result quality, i.e., cost savings, under
every monotone cost model, ensuring that the cost of evaluating a query q is at
least that of evaluating s, when s is a subquery of q. In contrast, (H3) and (H4)
may each divert from the globally optimal solution. However, as our experiments
show, our chosen rewritings perform well in practice, and the algorithm itself is
very efficient.

6. Experimental evaluation

Our approach is fully implemented in Java 11, on top of ConnectionLens Ana-
diotis et al. (2021, 2022) which builds the data graph (Sec. 2.1) and Abstra Barret
et al. (2022, 2024) which builds the collection graph (Sec. 2.2); these are stored
in PostgreSQL. We experimented on a Linux server with an Intel Xeon Gold
5218 CPU @ 2.30 GHz and 196GB of RAM. We used PostgreSQL v9.6. Our
system is available at: https://team.inria.fr/cedar/projects/abstra/
pathways/. Our evaluation seeks to answer the two following questions: (i) how
does the ChatGPT-based entity extractor compare with the previous best one
available in ConnectionLens? (Sec. 6.2); (ii) how are NEs connected in each

21

https://team.inria.fr/cedar/projects/abstra/pathways/
https://team.inria.fr/cedar/projects/abstra/pathways/

dataset? (Sec. 6.3); (iii) how efficient is our multi-query optimization algorithm
in reducing the time to evaluate paths queries over the data graph? (Sec. 6.4);
(iv) how do reliability and force vary in our datasets? (Sec. 6.5); and (v) how
efficient is our path evaluation on top-ranked paths? (Sec. 6.6).

6.1. Datasets and settings
We present experiments on an XML, an RDF, two JSON, and a relational

dataset. They all come from real-life applications (as opposed to synthetic) to stay
close to application needs, and to ensure realistic Named Entities (NEs). Indeed,
synthetic datasets are often generated with an interest on structure, while the leaf
(text) values lack interesting information.

We used an XML PubMed subset describing scientific articles from PubMed,
a database of biomedical publications. Each article is described by its title, jour-
nal, link, year, DOI, keywords list and authors list. Authors are identified by
their name and their affiliation; they may declare their conflicts of interest in
the <COIStatement> tag. We used the RDF Nasa dataset, describing NASA
flights, spacecrafts involved in launches, related space missions and the partici-
pating agencies. Next, we used the JSON YelpBusiness dataset where each busi-
ness has an id, a name, an address, a city, a state, a postal code and coordinates
(latitude and longitude). It also has a set of categories, e.g., bakery, shoe store,
etc., and a set of attributes, e.g., acceptCreditCards (the latter may be deeply
nested). They also received reviews from customers modeled as a number of stars
(from 0 to 5) and the number of reviews. YelpBusiness4, 4 times larger than
YelpBusiness, allows studying the scalability of our algorithm. Finally, we used a
subset of the relational IMDB dataset describing movies, actors, and their roles
in the cast. This dataset is part of a benchmark Coffman and Weaver (2014) for
keyword search on relational databases, a context where the database is seen as a
graph, just like we do in this work. Tab. 2 shows for each dataset: the number of
nodes |N| and edges |E| in the graph resulting from ingesting the data; the num-
bers of extracted NEs |τP|, |τL|, |τO| with the Flair extractor and the minimum edge
specificity min(es). Without loss of generality, we experiment with the NE types
Person, Location, Organization, whose types are denoted τP, τL, τO, respectively.
Note that the minimum edge specificity is attained by the IMDB dataset, on a Pri-
mary Key-Foreign Key data edge cast_info

role_id
−−−−−−→ role_type (recall Sec. 2).

Table cast_info contains the people involved in a movie, each under one among
11 role types, including: actor, actress, cinematographer, composer, costumer de-
signer, etc. Thus, cast_info, has a foreign key toward role_type that describes
the roles. The role “actor” is used by 386,123 tuples in the cast_info table, thus

22

https://pubmed.ncbi.nlm.nih.gov/download/
https://old.datahub.io/dataset/data-incubator-nasa
https://www.yelp.com/dataset
https://joel-coffman.github.io/resources.html

Dataset name |N | |E| |τP| |τL| |τO| min(es)
PubMed 63,052 89,710 5,993 2,151 5,096 0.001
Nasa 59,408 128,068 634 690 4,530 0.0002
YelpBusiness 57,963 61,627 322 427 1,437 0.001
YelpBusiness4 229,949 247,074 1,099 1,230 4,199 0.0002
IMDB 8,858,267 11,288,336 300,981 25,080 66,389 0.000005

Table 2: Dataset overview.

the node corresponding to the actor tuple in role_type has as many incoming
edges, leading to a very low specificity for each of them.

6.2. Performance of ChatGPT entity extraction
We have analyzed the novel ChatGPT-based NE extractor introduced in this

work (Sec. 3), from the angle of: speed (it is a remotely provided service, whose
invocation requires remote calls), financial costs incurred, and results quality.

Tab. 3 shows, for 6 strings taken from the experimental datasets (Sec. 6.1): |s|,
the number of characters in the string; T Flair

extr , resp. TGPT
extr , the Flair, resp. Chat-

GPT, time (in seconds) to send the extraction query, wait for the service answer,
and retrieve it through a java.net.HttpURLConnection; |Flair|, resp. |GPT |, the
number of NEs found by each extractor in the string; |tcont|, the number of context
tokens in the ChatGPT prompt; and |tgen|, the number of tokens in the ChatGPT
output.

With respect to speed, we note that Flair extraction time increases with re-
gards to the input string size. On the other side, ChatGPT brings a comparatively
huge overhead per connection (or per string sent to the extractor). Thus, TGPT

extr
times are much higher than T Flair

extr , even if extraction itself is not longer than with
Flair (which can be tested by sending the same query to the ChatGPT free online
assistant). While TGPT

extr will vary depending on the caller’s internet connection and
many other factors hard or impossible to control (where is the actual ChatGPT
server located, its load, etc.), the slowdown incurred by the remote connection is
likely to occur in all settings.

For what concerns financial costs (non-existent for our Flair extractor), GPT-
4 use incurs around $0.03/1K context (or prompt) tokens and $0.06/1K generated
tokens according to OpenAI prices. In total, extractions in Tab. 3 used 1,618
context tokens and 680 generated tokens, leading to a cost of $0.08.

To compare extraction quality, we first present an analysis per value collec-
tions, on the PubMed and Yelp datasets; in each such collection, as humans, we

23

https://openai.com/pricing#language-models

String |s| T Flair
extr |Flair| TGPT

extr |GPT | |tcont| |tgen|

s1 13 0.022 1 2.465 1 126 37
s2 16 0.020 1 2.208 1 128 40
s3 80 0.067 3 5.171 5 140 119
s4 125 0.106 5 6.503 6 148 114
s5 673 0.371 8 10.741 9 267 194
s6 3,191 1.931 10 6.789 8 809 176

Table 3: Flair and ChatGPT-based extractors time (in seconds) and cost analysis on sample strings.

have a very solid intuition of what kind of entities to expect, against which we can
measure the extractors (Sec. 6.2.1). Next, we compute their agreement and dis-
agreement globally, using the PubMed dataset, since it is rich in entities and has
also quite a complex structure (Sec. 6.2.2). Finally, we inspect a set of concrete
examples, to better understand the reasons for disagreement (Sec. 6.2.3).

6.2.1. Entities extracted from various collections
In Tab. 4, we compute for each dataset the number of Person, Location and

Organization NEs found in leaf collections by each extractor. In the YelpBusiness
dataset, in address, city and state values, ChatGPT finds only Locations, and
finds a good number of them. In contrast, Flair (i) finds much fewer locations, e.g.,
65 instead of 3,999 in state values, and (ii) finds up to hundreds of wrong Person
and Organization in these attributes. In the PubMed dataset, in journal titles,
ChatGPT (i) finds more Organization NEs than Flair and (ii) does not confuse text
mentions of people, e.g., “healthcare professionals” and “family doctors”, with
Person NEs. In author names (name), ChatGPT recognizes 40 more authors than
Flair. Finally, in article titles, ChatGPT finds much less NEs than Flair, because
it is not misled by mentions of Locations, or substances that Flair might consider
Organizations.

6.2.2. Extractor agreement and disagreement
Tab. 5 quantifies agreement and disagreement between the Flair and ChatGPT

extractors, for the PubMed dataset.
Let us call “extraction outcome” the three entity types Person, Location, Or-

ganization, together with “no entity”, denoting that no NE has been found in the
string. The table has a line for each extraction outcome using Flair, and a col-
umn for each extraction outcome using GPT. Thus, each cell counts the number
of strings on which a certain combination of extraction outcomes occurred. For

24

Flair ChatGPT
Collection name τP τL τO τP τL τO

YelpBusiness
name# 231 96 195 - 1 3,998
address# 426 101 21 - 3,850 -
city# 237 662 14 - 3,999 -
state# - 65 - - 3,999 -

PubMed
Name# 5,963 - - 6,004 - -
Affiliation# 193 17,715 14,665 450 14,074 15,385
ArticleTitle# 15 123 339 58 - 60
JournalTitle# 9 88 300 - 91 463
CoiStatement# 152 16 330 143 5 192

Table 4: NE counts per type for Flair and ChatGPT extractors on YelpBusiness and PubMed
datasets.

GPT Person GPT Location GPT Organization GPT no entity
Flair Person 5,913 6 11 98
Flair Location 25 1,088 507 905
Flair Organization 36 141 2,988 1,797
Flair no entity 101 1,335 1,233 −

Table 5: Comparison of Flair and ChatGPT sets of extracted entities.

instance, in 5,913 strings, Flair and GPT found the exact same Person entity; how-
ever, in 6 cases where Flair found a Person, GPT found a location instead; in 11
cases, GPT found an Organization; and in 98 cases, GPT did not find any entity.

Tab. 5 shows that agreement is significant (entity numbers in bold on the
diagonal), and very frequent for Person entities. Also, entities recognized as
Person by one extractor and of another type by the other are very rare. ChatGPT
disagrees more strongly with Flair over Flair’s Organizations, frequently con-
sidering that no entity at all exists with the same label. The same holds about
ChatGPT’s Locations: Flair finds no entity with the same label, almost as often
as it agrees with ChatGPT. Such cases, when Flair finds an entity and ChatGPT
does not, reflect: on one hand, exactly Flair’s false positives that we seek to avoid,
in order to increase edge and path reliability; on the other hand, extractor dis-
agreements on the tokens to include in an entity label, as we exemplify below.

6.2.3. Fine-grain analysis of some examples
Flair Person entities not found by ChatGPT include “Claudin-7b”, “Cytochrome”
and “Claudin-h”, which are all proteins. Flair was likely confused by the capital-
ization, and wrongly extracts them as Person from paper titles and abstracts. Other

25

mistakenly extracted Person entities include people names in street names such as
Peter Henry Rolfs︸ ︷︷ ︸

PERS

in “Av. Peter Henry Rolfs, 36570-900 Viçosa”. These mis-

taken Flair extractions are made on paper titles and author affiliations, leading to
unreliable extraction edges in the collection graph, and thus, to unreliable paths.
ChatGPT’s better training gives it an advantage here.
Flair Location entities not found by ChatGPT are mostly due to different allo-
cations of tokens in entity labels. For instance, in the string “Institute for Cancer
Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham,
Alabama, USA”, Flair identifies: Institute for Cancer Outcomes and Survivorship︸ ︷︷ ︸

ORG

,

University of Alabama︸ ︷︷ ︸
ORG

, Birmingham︸ ︷︷ ︸
LOC

, Alabama︸ ︷︷ ︸
LOC

and USA︸︷︷︸
LOC

(five entities), while

ChatGPT extracts four: Institute for Cancer Outcomes and Survivorship︸ ︷︷ ︸
ORG

,

University of Alabama at Birmingham︸ ︷︷ ︸
ORG

, Birmingham, Alabama︸ ︷︷ ︸
LOC

, and USA︸︷︷︸
LOC

. In our

table, this leads to “Alabama” and “Birmingham” counting as two Flair Locations
not found by ChatGPT (and symmetrically, “Alabama, Birmingham” counts as a
ChatGPT Location not found by Flair). Due to the presence of many affiliation
strings in our dataset, such disagreements are frequent in the table cells involving
Locations and/or Organizations. In these cases, we found that ChatGPT’s choice
of entity labels is better. For instance, “Birmingham, Alabama” is more specific
than “Birmingham” (the latter exists in many places, among them also UK, etc.).
Other Flair-extracted Locations are clearly incorrect, e.g., from “Av. Professor
Egaz Moniz, Lisboa 1649-028, Portugal”, it extracts Av.︸︷︷︸

LOC

.

Flair Organization entities not found by ChatGPT are mostly due to similar er-
rors (Locations and Organizations competing for tokens). They also include other
obvious errors, e.g., Ag︸︷︷︸

ORG

(silver), Critique of the Literature︸ ︷︷ ︸
ORG

, Lolium perenne L.︸ ︷︷ ︸
ORG

(a plant), Drs.︸︷︷︸
ORG

(doctors), etc.

ChatGPT Person entities not found by Flair include, e.g., “Antonio González”,
(Spanish name, probably under-represented in Flair’s training set), “John A. Reif,
Jr” (full name plus the “Jr” suffix, probably also rare in the training set), etc.
ChatGPT Location entities not found by Flair include: “Varese, Italy” (Flair
found “Varese” and separately “Italy”, see discussion of “Birmingham, Alabama”

26

above), “3-5-7 Tarumi” (address without the city, Japanese format), and numer-
ous addresses including zipcodes. ChatGPT has better knowledge of international
addresses, e.g., correctly identifying a Location in: the Korean address “San 65,
Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Ko-
rea”; the Japanese address "Yoshida, Sakyo-ku, Kyoto 606-8501, Japan"; and the
Polish address “ul. Niezapominajek 8, 30-239 Krakow, Poland”, where Flair only
accepted the city and/or the country.
ChatGPT Organization entities not found by Flair are again mostly due to
different allocations of tokens in entities. For instance, in “Oxford Radcliffe
Hospitals NHS Trust, Department of Otolaryngology - Head and Neck Surgery,
Level LG1, West Wing, John Radcliffe Hospital, Oxford, UK, OX3 9DU.”, Chat-
GPT finds Department of Otolaryngology - Head and Neck Surgery︸ ︷︷ ︸

ORG

(among oth-

ers), whereas Flair finds: Department of Otolaryngology︸ ︷︷ ︸
ORG

and Head and Neck Surgery︸ ︷︷ ︸
ORG

,

two entities instead of the correct single one.
NE type disagreements between extractors The most frequent class of such
disagreements (Tab. 5) are Flair Locations considered Organizations by ChatGPT.
In these cases, ChatGPT is right: the entity is really an Organization. Some of
them include a Location element, e.g., “Middle East Technical University”, “The
University of Tokyo”, “Taipei Medical University”, “McGill University”, which
may have confused Flair, but others do not, e.g., “INRA”, “LIFE Center”, “Joint
Orthopaedic Centre”. Conversely, Flair Organizations which ChatGPT consid-
ers Locations include: “Lille”, “Viet Nam”, “Rua de Universidade” (ChatGPT
is right; this is a majority of cases), and a handful of cases where Flair is right,
e.g., “Ospedale di Busto Arsizio”, “Intensive Care Unit”. 90% of the Flair Loca-
tions and Flair Organizations which GPT finds to be Person entities are initials,
such as “A.R.A”, “R.H.S”, or acronyms such as “M.D” and “PhD”. The latter are
author academic titles; both extractors are wrong here. The former correspond
to authors’ initials, found in the paper metadata (conflict of interest statements).
ChatGPT is right on “Chiharu Uno” and “L. Giampiero Mazzaglia” (these are
people indeed); it also made a mistake on “Korean Firefighters”, which should
rather be an Organization.

Overall, we find ChatGPT leads to better-quality results, and should be pre-
ferred whenever one can afford the budget.

27

6.3. Path enumeration
For each dataset and pair of entity types, Tab. 6 and 7 report the number of

paths of each directionality (Sec. 4.1), the minimum and maximum length Lp of
each path, and the minimum and maximum data path support (number of results
when evaluated on the data), this is denoted S p. For the PubMed (XML) and
YelpBusiness (JSON) datasets, we obtained only shared-root paths: this is because
of the tree structure of these datasets, where text values (leaves) are only connected
by going through a common ancestor node. The JSON datasets are more irregular,
leading to more paths. Both the RDF Nasa and relational IMDB datasets also
contain general-directionality paths.

In almost every case, a few collection paths had 0 support, due to approxima-
tions introduced by dataset summarization (Sec. 4). For the IMDB dataset only,
we show results only for the 20 top-ranked paths instead of all the enumerated
ones (there were 3,620). Among these, all (τL, τL) paths turned out to have no
support at all in the data, despite being present in the collection graph.

These results show that numerous interesting entity paths exist in our datasets,
of significant length (up to 9), and some with high support, bringing the need for
an efficient evaluation method.

6.4. Efficiency of path evaluation
We now study the efficiency of materializing data paths over the graph (Tab. 8

and Tab. 9). We did not include the IMDB dataset for the same reason as described
in Sec. 6.3. However, we provide efficiency results for the top-ranked paths found
in the IMDB dataset in Sec. 6.6.

In Tab. 8 and Tab. 9, for each dataset and entity type pair, T0 is the time to
evaluate the corresponding path queries without the view-based optimization of
Sec. 5.2 and 5.3, referred to as VBO from now on. |QTO| is the number of queries
whose execution we stopped (time-out of 30s) without VBO. |QNV | is the number
of queries for which Algo. 1 did not recommend a view. TR is the time to evaluate
the rewritten queries on the data graph, while TQNV is the time to evaluate the non-
rewritten queries QNV ; T = TR + TQNV is the (total) execution time to evaluate
queries using VBO. Finally, s = T0/T is the speed-up due to VBO. We do not
report times to materialize views because they were all very short (less than 0.01s).
All times are in seconds.

The evaluation time T0 without VBO ranges from 30s to 1,300s; these path
queries require 2 to 9 joins, on graphs of up to more than 200,000 edges (Tab. 2).
|QNV |, the number of queries that could not make use of any views, is rather small,
which is good. The number of candidate views, respectively, materialized views

28

(τ1, τ2) Nroot min(Lp) max(Lp) min(S p) max(S p)
(τP, τO) 21 5 8 0 13,988
(τP, τL) 21 5 8 0 15,181
(τL, τO) 21 5 8 0 5,054
(τP, τP) 21 5 8 0 389
(τL, τL) 21 5 8 0 1,214
(τO, τO) 21 5 8 3 3,090

(τ1, τ2) Nroot Ngen min(Lp) max(Lp) min(S p) max(S p)
(τP, τO) 99 1 5 9 0 629
(τP, τL) 95 5 5 9 0 137
(τL, τO) 97 3 5 9 0 603
(τP, τP) 97 3 5 9 0 89
(τL, τL) 97 3 5 9 0 3,050
(τO, τO) 97 3 5 9 0 8,960
(τ1, τ2) Nroot Ngen min(Lp) max(Lp) min(S p) max(S p)
(τP, τO) 18 5,182 5 9 0 35,963
(τP, τL) 18 5,182 5 9 0 59,283
(τL, τO) 25 5,234 5 9 0 9,192
(τP, τP) 4 3,567 5 9 0 4,729
(τL, τL) 9 3,620 5 9 0 0
(τO, τO) 9 3,620 5 9 0 4,263

Table 6: Entity paths in PubMed (top), Nasa (middle) and IMDB (bottom).

(τ1, τ2) Nroot min(Lp) max(Lp) min(S p) max(S p)
(τP, τO) 41 5 7 0 651
(τP, τL) 33 5 7 0 193
(τL, τO) 21 5 5 0 1,412
(τP, τP) 28 5 7 0 35
(τL, τL) 15 5 5 2 158
(τO, τO) 21 5 5 0 1,232
(τ1, τ2) Nroot min(Lp) max(Lp) min(S p) max(S p)
(τP, τO) 48 5 7 0 2,593
(τP, τL) 39 5 7 0 760
(τL, τO) 39 5 5 0 258
(τP, τP) 36 5 7 0 207
(τL, τL) 15 5 5 0 674
(τO, τO) 21 5 5 0 4,889

Table 7: Entity paths in the YelpBusiness (top) and YelpBusiness4 (bottom) datasets.

29

(τ1, τ2) T0 |QTO| |QNV | |V| |M| TR TQNV T=TR+TQNV s=T0/T
PubMed

(τP, τO) 250.36 5 1 16 5 3.78 0.32 4.10 61×
(τP, τL) 37.29 0 1 16 5 19.06 0.32 19.38 2×
(τL, τO) 151.29 2 2 16 5 11.88 8.59 20.47 7×
(τP, τP) 152.59 3 1 16 5 44.19 0.08 44.27 3×
(τL, τL) 169.64 2 1 16 5 71.32 0.31 71.63 2×
(τO, τO) 317.92 5 1 16 5 22.99 0.25 23.24 13×

Nasa
(τP, τO) 195.47 1 0 80 10 54.14 N/A 54.14 3×
(τP, τL) 254.26 3 0 68 10 44.57 N/A 44.57 5×
(τL, τO) 1073.55 32 0 77 9 131.58 N/A 131.58 8×
(τP, τP) 278.95 4 0 76 10 92.01 N/A 92.01 3×
(τL, τL) 1103.48 30 0 77 9 101.35 N/A 101.35 10×
(τO, τO) 1318.78 37 0 77 9 247.43 N/A 247.43 5×

Table 8: Data paths evaluation on the PubMed and Nasa datasets.

(τ1, τ2) T0 |QTO| |QNV | |V| |M| TR TQNV T=TR+TQNV s=T0/T
YelpBusiness

(τP, τO) 205.95 2 0 22 6 4.20 N/A 4.20 49×
(τP, τL) 410.87 7 1 19 5 40.87 1.27 42.12 9×
(τL, τO) 239.90 0 1 20 10 1.15 0.6 1.75 137×
(τP, τP) 466.58 9 2 23 5 15.33 12.02 27.35 17×
(τL, τL) 450.00 15 1 8 4 9.89 < 0.01 9.89 45×
(τO, τO) 334.22 4 1 10 5 2.83 < 0.01 2.83 118×

YelpBusiness4
(τP, τO) 804.70 26 0 23 6 62.52 N/A 62.52 12×
(τP, τL) 454.19 10 1 20 5 92.50 < 0.01 92.50 5×
(τL, τO) 242.57 5 1 10 5 62.74 6.61 69.35 3×
(τP, τP) 317.00 7 1 27 7 14.35 1.08 15.43 20×
(τL, τL) 395.49 10 1 8 4 2.62 18.15 20.77 19×
(τO, τO) 347.23 8 1 10 5 42.93 2.34 45.27 7×

Table 9: Data path evaluation on the YelpBusiness datasets.

depend on the complexity of the dataset, and thus on the complexity of the paths.
The total path evaluation time T is reasonable. Finally, the VBO speed-up is
at least 2× and at most 137×, showing that our view-based algorithm allows to
evaluate path queries much more efficiently.

30

6.5. Path reliability and ranking
We now study how reliability (Sec. 4.3) and force (Sec. 4.4) vary across paths.

Tab. 10 illustrates reliability of enumerated paths on our datasets, loaded with the
ChatGPT-based NE extractor (Sec. 3). We excluded YelpBusiness4 and IMDB
in order to limit ChatGPT expenses. For each dataset and a pair of NE types
connected by at least a path in a collection graph, we show: min prel, the minimal
path reliability among all the paths connecting NEs of these types; max prel, the
maximal path reliability for the same paths; p20

rel, the reliability of the 20th ranked
path (20 is the default number of paths shown to the user for each pair of entity
types); |P|, the number of enumerated paths; |P′|, which is either 20 if there are at
least 20 paths, or |P| otherwise. We also show the ratio R between |P′| and |P|. Path
reliability values span over the whole (0, 1] interval, e.g., 1.000 or 0.9997 in the
YelpBusiness dataset, or 0.9774 in PubMed, to 0.0002 for some in YelpBusiness.
Thus, reliability gives a strong signal for ranking paths. Finally, we show |P0|, the
number of enumerated paths leading to no data path, thus having a support of 0.
In our experiments, both complex collection graphs (not trees, and possibly with
cycles) and low max prel tend to augment the number of zero-support paths.

Tab. 11 illustrates some paths between τP and τO, ordered by reliability, then
force, then length, in the PubMed dataset; we picked this path group since it is
the largest (52 initially, recall Tab. 10). It features the first six and the last two
paths among the top-ranked paths, as well as p21 and p22. For each of them,
Tab. 11 shows the path reliability, its force, length and support. We show the
reliability of each extraction edge as an index, and similarly, the force of each
non-extraction edge, when it is smaller than 1, e.g., the edge connecting the XML
element 〈AuthorList〉 to all its 〈Author〉 children has a force of 0.02.
p1 connects authors with the organizations to which they are affiliated. This path
is ranked first because it is both reliable (prel=0.914) and strong (F(p)=1). Indeed,
only people have been found in author names and most of the affiliations are iden-
tified as Organization entities (recall Tab. 4). Moreover, all collection edges are
strong because each author has only one affiliation in the PubMed dataset. The
path also has high support (13, 988 data paths). It expresses employment rela-
tionships between people and organizations; such connections are clearly very
significant, and our ranking captures well this importance.
p2 connects authors to the organizations found in titles of the journals where their
articles appear. The path reliability is around 0.4 (much lower than for p1). This is
because organizations do not appear in all journal titles. However, important jour-
nals do carry organization names in their titles, and publishing in such a journal
does establish a connection between the author and the organization (the author

31

(τ1, τ2) min prel max prel p20
rel |P| |P′| R= |P

′ |

|P|
|P0|

PubMed
(τP, τO) 0.0150 0.9142 0.0409 52 20 38.45% 6
(τP, τL) 0.0150 0.9107 0.0150 30 20 66.66% 8
(τL, τO) 0.0150 0.9107 0.0232 34 20 58.82% 6
(τP, τP) 0.0150 0.9774 0.0150 24 20 83.33% 11
(τO, τO) 0.0150 0.4158 0.0232 31 20 64.51% 6
(τL, τL) 0.0150 0.0954 0.0150 20 20 100.00% 9

Nasa
(τP, τO) 0.0014 0.0645 0.0178 191 20 10.47% 15
(τP, τL) 0.0014 0.0645 0.0077 142 20 14.08% 16
(τL, τO) 0.0014 0.1016 0.0077 115 20 17.39% 10
(τP, τP) 0.0014 0.0232 0.0077 110 20 18.18% 15
(τO, τO) 0.0014 0.0581 0.0077 92 20 21.73% 15
(τL, τL) 0.0014 0.3790 0.0077 67 20 29.85% 12

YelpBusiness
(τL, τO) 0.0002 0.9997 0.0002 8 8 100.00% 8
(τL, τL) 0.0002 1.0000 0.0002 11 11 100.00% 2

Table 10: Numbers of paths, reliability information and zero-support paths in our datasets.

pid prel F(p) L(p) S (p) Path p connecting a Person (τP) entity with an Organization (τO) entity
p1 0.914 1.00 6 13,988 τP ←1.0 Name#val ← Name ← Author → Affiliation → Affiliation#val

→0.914 τO

p2 0.416 0.02 8 3,044 τP ←1.0 Name#val← Name← Author←0.02 AuthorList← PubmedAr-
ticle→ JournalTitle→ JournalTitle#val→0.416 τO

p3 0.098 1.00 6 65 τP ←0.098 CoiStatement#val ← CoiStatement ← PubmedArticle →
JournalTitle→ JournalTitle#val→0.416 τO

p4 0.098 0.02 8 1,748 τP ←0.098 CoiStatement#val ← CoiStatement ← PubmedArticle → Au-
thorList→0.02 Author→ Affiliation→ Affiliation#val→0.914 τO

p5 0.090 1.00 2 1,173 τP ←0.098 CoiStatement#val→0.090 τO

p6 0.090 0.02 8 2,327 τP ←1.0 Name#val← Name← Author←0.02 AuthorList← PubMedAr-
ticle→ CoiStatement→ CoiStatement#val→0.090 τO

...
p19 0.042 0.02 8 488 τP ←0.042 ArticleTitle#val ← ArticleTitle ← PubmedArticle → Au-

thorList→0.02 Author→ Affiliation→ Affiliation#val→0.914 τO

p20 0.041 1.00 2 15 τP ←0.042 ArticleTitle#val→0.041 τO

p21 0.041 1.00 6 5 τP ←0.098 CoiStatement#val← CoiStatement← PubmedArticle→ Arti-
cleTitle→ ArticleTitle#val→0.041 τO

p22 0.041 0.02 8 349 τP ←1.0 Name#val← Name← Author←0.02 AuthorList← PubmedAr-
ticle→ ArticleTitle→ ArticleTitle#val→0.041 τO

Table 11: Some of the top-reliability (τP, τO) paths in the PubMed dataset, at ranks: 1 to 6 and 19
and 20 (above the double line), respectively, 21 and 22 (below the double line), out of 52 paths.

32

knows the organization exists, agrees or is even proud to be associated to it by
publishing, and probably would regret if the organization were to close or lose
reputation). This path has a respectable support (3, 044 data paths); intuitively, it
is also clearly interesting.
The next two paths, p3 and p4, connect people found in conflict of interest (COI)
statements, to Organizations found in the titles of the journals in which those
papers appear, respectively in the authors affiliations. p3 ranks higher because
there is only one way to connect a COI statement to a journal title: the article itself,
thus the force is 1. On the contrary, in p4, a COI statement can be associated to any
of the authors of a paper; a paper has up to 50 authors in the PubMed dataset. This
considerably lowers the force of p4, to only 0.02. p3 has a much lower support,
because few journal titles contain organizations.
p5 connects Person and Organization NEs found in the same COI statement value
node, thus is a strong path. p6 connects any paper author (Person NE) to Orga-
nizations mentioned in the COI statements of those papers, so this path is much
weaker (force of 0.02). Both paths have a prel of 0.090, so the force is used to
rank them. They also both have high support, and may be highly interesting when
investigating conflicts of interests between research labs and companies.
p19 connects Person NEs found in article titles to Organization NEs found in Af-
filiations of the paper authors. It has a reasonable support (488 data paths) even if
its reliability has decreased by 2 since p6, and it is weak due to the possibly high
number of authors for a given paper.
p20, p21 and p22 connect respectively: (i) Person and Organization NEs found in
article titles; (ii) people extracted from COI statements to the Organization NEs
found in titles of papers having that COI statement; (iii) author names (Person
NEs) to the Organization NEs found in their articles’ titles. The three paths all
have a path reliability of 0.041 due to the extraction edge for Organization NEs in
article titles. p20 and p21 are both strong; p20 is ranked first since it is shorter. p22

is weaker, because it may connect any of the 50 authors of an article to the article
title. These three paths show how to connect Organizations found in articles titles,
such as “Evaluation of the [...] Opioid Prescribing Risk Evaluation and Mitigation
Strategy Program by the US Food and Drug Administration︸ ︷︷ ︸

ORG

: A Review”, to paper

authors. They lead to dozens, up to hundreds, of very interesting connections
between people and companies, which may be further investigated, e.g., within a
journalism project.

The least reliable collection extraction edges found in PubMed include: 6 Lo-
cations extracted from 399 CoiStatement values (leading to a reliability of 0.015)

33

and 86 people names in 5, 712 Affiliations (reliability also equal to 0.015). They
were found in strings such as “James J. Peters︸ ︷︷ ︸

PERS

VA Medical Center, 130 West

Kingsbridge Road, Bronx, NY 10468, USA.”. All paths traversing this edge are
at the very bottom of the ranked list of paths. Analysis of path reliability in the
other datasets lead to similar findings. Overall, Tab. 11 shows that ranking paths
based on their reliability, force, and length if a second tie break is needed, favors
paths that (i) are less likely to contain NE extraction errors, and (ii) do not dilute
information along the path.

6.6. Evaluation of the top-ranked paths
Tab. 12 studies the benefit of the MQO approach (Algorithm 1) on the top-

ranked paths. For each dataset, we show the same information as presented in
Tab. 8 and 9 (Sec. 6.4). PubMed, Nasa and YelpBusiness have been ingested with
the ChatGPT-based NE extractor, while we used Flair for IMDB due to costs.
All the evaluation times, notably T0 when directly evaluating paths, and T when
applying our MQO, are given in seconds. The speed-up (rightmost column) shows
that for 12 out of 20 path groups, MQO achieves its goal, reducing evaluation
times by up to 10× or 20×. We also notice two path groups whose evaluation is
slowed by MQO, by a factor of 2×, respectively, 5×. This is due to its heuristic
choices and relatively simple cost model. The gains are slightly less than those in
Tab. 9; this may be because there were in general more paths in that table, leading
to more sharing opportunities. Still, we find the MQO gains are generally robust
and significant, confirming its interest.

6.7. Experiment conclusion
Our experiments lead to the following observations. First, the ChatGPT en-

tity extractor we developed improved over our prior work Barret et al. (2023b)
by (i) better recognition of Locations, with all geographical levels (street up to
country); (ii) significantly better recognition of Organizations, avoiding false pos-
itives and finding good entity labels; (iii) modest improvements in the quality
of extracting people names; and (iv) overall, better support of many languages
(Sec. 6.2). All these advantages can be attributed to its large training corpus, and
recommend it whenever extraction time is not crucial, and financial costs can be
afforded. Second, many named entity paths exists, in the datasets we considered
(Sec. 6.3). Third, our path evaluation algorithm is very effective in reducing the
time to evaluate path sets (Sec. 6.4). Fourth, our novel ranking based on reliability
and force, a novelty we introduced since Barret et al. (2023b), downgrades many

34

(τ1, τ2) T0 |QTO| |QNV | |V| |M| TR TQNV T=TR+TQNV s=T0/T
PubMed

(τP, τO) 6.29 0 1 32 4 1.80 0.04 1.84 3.4×
(τP, τL) 38.73 1 1 26 4 1.57 0.02 1.59 24.3×
(τL, τO) 68.80 2 1 24 4 4.04 0.02 4.06 16.9×
(τP, τP) 2.21 0 4 26 5 9.08 0.04 9.12 0.2×
(τO, τO) 20.20 0 1 33 4 18.65 0.01 18.66 1.1×
(τL, τL) 23.57 0 7 16 2 1.38 0.01 1.39 16.9×

Nasa
(τP, τO) 11.30 0 1 46 2 10.04 8.82 18.86 0.5×
(τP, τL) 29.77 0 1 41 4 2.37 0.03 2.40 12.4×
(τL, τO) 36.57 1 1 29 4 4.71 0.03 4.74 7.7×
(τP, τP) 3.13 0 1 35 2 2.46 0.01 2.47 1.2×
(τO, τO) 32.66 1 3 35 4 2.89 0.04 2.93 11.1×
(τL, τL) 36.13 0 6 19 2 1.62 0.09 1.71 21.1×

YelpBusiness
(τL, τO) 38.86 1 0 7 1 3.62 0 3.62 10.7×
(τL, τL) 131.98 4 2 6 3 45.74 0.15 45.89 2.8×

IMDB
(τP, τO) 550.96 15 0 32 7 59.86 N/A 59.86 9.2×
(τP, τL) 453.72 8 0 38 6 140.61 N/A 140.61 3.2×
(τL, τO) 486.24 12 0 34 4 54.73 N/A 54.73 8.9×
(τP, τP) 314.28 8 10 10 4 26.04 37.35 63.39 4.9×
(τL, τL) 232.38 6 11 14 2 20.17 30.13 50.30 4.6×
(τO, τO) 242.09 4 11 12 3 21.44 29.18 50.62 4.8×

Table 12: Data path evaluation on the top-20 enumerated paths, sorted by reliability, then force, in
the PubMed, Nasa, YelpBusiness and IMDB datasets.

meaningless paths, while preserving significant ones (Sec. 6.5). Our joint path
materialization technique is effective also on the top-ranked paths (Sec. 6.6).

7. Related work

We discuss below how our work is placed in the areas of graph exploration
(Sec. 7.1), respectively, materialized view recommendation (Sec. 7.2).

7.1. Graph database exploration
To extract information from graph databases, users can rely, first, on query

languages, such as SPARQL 1.1 for RDF graphs, or GPML Deutsch et al. (2022)

35

for property graphs. However, non-technical users find this too hard. The notion
of nodes connected by paths is instead quite intuitive, thus it could be tempting
to ask a graph query processor to return paths between certain types of entities.
However, GPML and SPARQL allow finding pairs of nodes reachable from one
another, but not the paths connecting them. In contrast, in an application domain,
the labels of edges along the paths encapsulate useful information which helps
understand what the connection is about.

Other graph exploration works extend SPARQL to constrain the labels on the
paths connecting nodes Aebeloe et al. (2018), or help users specify their infor-
mation needs by example, while the system formulates and evaluates the corre-
sponding SPARQL queries, e.g., conjunctive in Lissandrini et al. (2022), and also
with aggregation in Lissandrini et al. (2023). Such efforts are complementary; un-
like our system, they assume an underlying SPARQL query processor, and are not
meant to help users discover data paths. Another related line of work is keyword-
based search in graphs Agrawal et al. (2002); Anadiotis et al. (2022); Yang et al.
(2021), where users asks for connections between two or more nodes matching
specific keywords. This is an alternative graph discovery mode; our recent KBS
algorithm Anadiotis et al. (2023) is integrated in the ConnectionStudio tool Barret
et al. (2023a), along with Abstra and PathWays.

Abstra introduces a particular graph summarization method Barret et al. (2024),
which is a quotient method (based on grouping all nodes in equivalence classes),
adapted to several data models. Other graph summarization methods, either quo-
tients, or based on other structural, statistic, or semantic criteria have been sur-
veyed in Cebiric et al. (2019) and Liu et al. (2018).

Starting from Abstra, in Barret et al. (2023c), we introduced the novel problem
of efficiently materializing NE paths. The present work improves over these by
a better NE extractor based on ChatGPT, and by ranking (as opposed to pruning)
paths, reducing user effort.

7.2. Materialized view recommendation
Materialized view recommendation (MVR, in short) is a well-studied prob-

lem Mami and Bellahsene (2012). Given a query q, a view v that stores partial
results of a costly subquery of q may dramatically decrease the cost of evaluat-
ing q. Because production workloads often contain similar queries, there is an
obvious interest in identifying views that may serve several queries q1, q2,
Such views are typically common subexpressions of the qi’s, leading to a natural
connection with multi-query optimization Roy et al. (2000); Roy and Sudarshan

36

(2009), seeking to simultaneously improve the evaluation performance for a set of
queries.

MVR algorithms have been proposed for relational databases, e.g., Ligoudis-
tianos et al. (1999), for RDF databases Le et al. (2012), including methods taking
into account implicit data due to ontologies Goasdoué et al. (2011), for XML Kat-
sifodimos et al. (2012), etc. Each view recommendation method explores a certain
space of candidate views, typically subexpressions of one or more input queries.
The larger this space, the more complex features each view has, the longer will be
spent enumerating them, and estimating their performance benefits; in exchange,
highly-tuned views may bring very important performance savings, especially if
the model used to estimate the cost of view-based evaluation is very accurate. On
the contrary, if the space of candidate views is small, it is easily explored, but the
best cost savings may be missed. Thus, in a traditional query processing setting,
a good approach is to first, collect a workload, then, spend time selecting the best
views, and deploy them; users will benefit directly from an efficient execution.

Our setting brings some extra hypotheses to the MVR problem. By design,
all our queries are paths, which can be seen as a particular case of those stud-
ied in Ligoudistianos et al. (1999); Le et al. (2012); Goasdoué et al. (2011): any
sub-expression of a path query (that does not contain a cartesian product) is also
a path. Thus, we can afford to only explore a space of path views, unlike these
prior works, whose MVR methods are more complex. Second, PathWays builds
on top of Abstra Barret et al. (2024) and ConnectionLens Anadiotis et al. (2022),
which store the graph within Postgres. As a consequence, path queries, the views,
and view-based rewritings are evaluated as SQL queries by Postgres, which opti-
mizes them internally. An advantage of this is that we can leverage Postgres’ cost
and cardinality estimation, which are quite mature and of good quality. A diffi-
culty raised is that we have to also “guess” the cost of Postgres’ view-based query
evaluation. Fortunately, Postgres’ cost model is quite “textbook”, and its choices
can be reasonably well predicted, as in, e.g., Bursztyn et al. (2015, 2016). Third,
PathWays enumerates paths on request, following users’ choice of entity types,
maximum path lengths, etc. Thus, we wanted a fast MVR method, therefore we
constrained the candidate views to the maximal shared path segments among two
or more paths. This is a pragmatic choice that worked well in practice, but it may
not preserve optimality, i.e., some subpaths of these maximal shared segments
may bring even better performance. We opted against exploring such shorter
views, also because the prediction of view-based query evaluation performance
over many joins becomes more hazardous.

37

8. Conclusion and perspectives

In this work, we have studied a new graph data exploration method, aimed at
non technical users who are not yet familiar with the data content and structure.
Our method consists of showing them paths which connect pairs of named enti-
ties, of types that the users select. We enumerate such paths based on a structural
summary built by the prior Abstra system Barret et al. (2024). In order to speed
up the evaluation of a set of paths, we use a materialized view recommendation
method, that uses maximum shared sub-paths as materialized views. Our plat-
form expresses views and rewritings as SQL queries, and evaluates them through
Postgres. Improving upon our prior work Barret et al. (2023b), we have devised a
more accurate Named Entity extractor using ChatGPT, and devised novel metrics
for ranking paths, reliability and force, so that our evaluation effort and the users’
attention can be focused on our highest-rank paths.

Numerous continuations of this work can be envisioned. For what concerns
the NER task, we can leverage ChatGPT to extract more specific entities, e.g.,
separate Universities from Research Funding Agencies and Companies, instead
of considering them all to be Organizations. We are planning to explore the usage
of other large, free models, trying to get close to ChatGPT’s accuracy, without its
monetary costs. Another area of future work is to combine the path enumeration
and evaluation with user-specified natural language search, in order to prioritize
the ranking and evaluation of the paths most interesting to them. One may also
study entity paths from the perspective of their overlap with multiple Abstra en-
tities, and/or multiple heterogeneous datasets. Finally, we may investigate graph
metrics, others than reliability and force, since they may lead to other notions of
interestingness among the enumerated paths.

Acknowledgements
We thank the journalists Stéphane Horel (Le Monde) and Camille Pettineo

(INA, France), as well as the DataJournos association and the CFI 2023 atten-
dants, for their remarks and useful feedback. This work is partially funded by
DIM RFSI PHD 2020-01 and ANR-20-CHIA-0015-01 grants.

References

Abedjan, Z., Golab, L., Naumann, F., Papenbrock, T., 2018. Data Profiling. Syn-
thesis Lectures on Data Management, Morgan & Claypool Publishers.

38

Aebeloe, C., Setty, V., Montoya, G., Hose, K., 2018. Top-K Diversification for
Path Queries in Knowledge Graphs, in: ISWC Workshops.

Agrawal, S., Chaudhuri, S., Das, G., 2002. DBXplorer: A system for keyword-
based search over relational databases, in: ICDE.

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R., 2019.
Flair: An easy-to-use framework for state-of-the-art NLP, in: ACL.

Anadiotis, A.C., Balalau, O., Bouganim, T., Chimienti, F., Galhardas, H., Haddad,
M.Y., Horel, S., Manolescu, I., Youssef, Y., 2021. Empowering Investigative
Journalism with Graph-based Heterogeneous Data Management. Bulletin of
the Technical Committee on Data Engineering URL: https://hal.science/
hal-03337650.

Anadiotis, A.C., Manolescu, I., Mohanty, M., 2023. Integrating Connection
Search in Graph Queries, in: ICDE.

Anadiotis, A.G., Balalau, O., Conceição, C., Galhardas, H., Haddad, M.Y.,
Manolescu, I., Merabti, T., You, J., 2022. Graph integration of structured,
semistructured and unstructured data for data journalism. Inf. Syst. 104,
101846. URL: https://doi.org/10.1016/j.is.2021.101846, doi:10.
1016/J.IS.2021.101846.

Barret, N., Ebel, S., Galizzi, T., Manolescu, I., Mohanty, M., 2023a. User-friendly
exploration of highly heterogeneous data lakes, in: CoopIS, Springer. pp. 488–
496. URL: https://doi.org/10.1007/978-3-031-46846-9_30, doi:10.
1007/978-3-031-46846-9_30.

Barret, N., Gauquier, A., Law, J.J., Manolescu, I., 2023b. Exploring heteroge-
neous data graphs through their entity paths, in: Advances in Databases and
Information Systems, Springer. pp. 163–179. URL: https://doi.org/10.
1007/978-3-031-42914-9_12, doi:10.1007/978-3-031-42914-9_12.

Barret, N., Gauquier, A., Law, J.J., Manolescu, I., 2023c. Pathways: Entity-
focused exploration of heterogeneous data graphs, in: The Semantic Web:
ESWC 2023 Satellite Events, Springer. pp. 91–95. URL: https://doi.org/
10.1007/978-3-031-43458-7_17, doi:10.1007/978-3-031-43458-7\
_17.

39

https://hal.science/hal-03337650
https://hal.science/hal-03337650
https://doi.org/10.1016/j.is.2021.101846
http://dx.doi.org/10.1016/J.IS.2021.101846
http://dx.doi.org/10.1016/J.IS.2021.101846
https://doi.org/10.1007/978-3-031-46846-9_30
http://dx.doi.org/10.1007/978-3-031-46846-9_30
http://dx.doi.org/10.1007/978-3-031-46846-9_30
https://doi.org/10.1007/978-3-031-42914-9_12
https://doi.org/10.1007/978-3-031-42914-9_12
http://dx.doi.org/10.1007/978-3-031-42914-9_12
https://doi.org/10.1007/978-3-031-43458-7_17
https://doi.org/10.1007/978-3-031-43458-7_17
http://dx.doi.org/10.1007/978-3-031-43458-7_17
http://dx.doi.org/10.1007/978-3-031-43458-7_17

Barret, N., Manolescu, I., Upadhyay, P., 2022. Abstra: toward generic abstractions
for data of any model (demonstration), in: CIKM.

Barret, N., Manolescu, I., Upadhyay, P., 2024. Computing generic abstrac-
tions from application datasets, in: 27th International Conference on Extend-
ing Database Technology, OpenProceedings.org. pp. 94–107. URL: https:
//doi.org/10.48786/edbt.2024.09, doi:10.48786/EDBT.2024.09.

Bursztyn, D., Goasdoué, F., Manolescu, I., 2015. Optimizing reformulation-based
query answering in RDF, in: Alonso, G., Geerts, F., Popa, L., Barceló, P., Teub-
ner, J., Ugarte, M., den Bussche, J.V., Paredaens, J. (Eds.), EDBT, OpenPro-
ceedings.org. pp. 265–276. URL: https://doi.org/10.5441/002/edbt.
2015.24, doi:10.5441/002/EDBT.2015.24.

Bursztyn, D., Goasdoué, F., Manolescu, I., 2016. Teaching an RDBMS about on-
tological constraints. Proc. VLDB Endow. 9, 1161–1172. URL: http://www.
vldb.org/pvldb/vol9/p1161-bursztyn.pdf, doi:10.14778/2994509.
2994532.

Cebiric, S., Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu, I., Troulli-
nou, G., Zneika, M., 2019. Summarizing semantic graphs: a survey. VLDB
J. 28, 295–327. URL: https://doi.org/10.1007/s00778-018-0528-3,
doi:10.1007/S00778-018-0528-3.

Coffman, J., Weaver, A.C., 2014. An empirical performance evaluation of
relational keyword search techniques. IEEE Trans. Knowl. Data Eng. 26,
30–42. URL: https://doi.org/10.1109/TKDE.2012.228, doi:10.1109/
TKDE.2012.228.

Deutsch, A., Francis, N., Green, A., Hare, K., Li, B., Libkin, L., et al., 2022.
Graph pattern matching in GQL and SQL/PGQ, in: SIGMOD.

Goasdoué, F., Guzewicz, P., Manolescu, I., 2020. RDF graph summa-
rization for first-sight structure discovery. VLDB J. 29, 1191–1218.
URL: https://doi.org/10.1007/s00778-020-00611-y, doi:10.1007/
S00778-020-00611-Y.

Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I., 2011. View selection in
semantic web databases. PVLDB 5.

Halevy, A.Y., 2001. Answering queries using views: A survey. VLDB J. 10.

40

https://doi.org/10.48786/edbt.2024.09
https://doi.org/10.48786/edbt.2024.09
http://dx.doi.org/10.48786/EDBT.2024.09
https://doi.org/10.5441/002/edbt.2015.24
https://doi.org/10.5441/002/edbt.2015.24
http://dx.doi.org/10.5441/002/EDBT.2015.24
http://www.vldb.org/pvldb/vol9/p1161-bursztyn.pdf
http://www.vldb.org/pvldb/vol9/p1161-bursztyn.pdf
http://dx.doi.org/10.14778/2994509.2994532
http://dx.doi.org/10.14778/2994509.2994532
https://doi.org/10.1007/s00778-018-0528-3
http://dx.doi.org/10.1007/S00778-018-0528-3
https://doi.org/10.1109/TKDE.2012.228
http://dx.doi.org/10.1109/TKDE.2012.228
http://dx.doi.org/10.1109/TKDE.2012.228
https://doi.org/10.1007/s00778-020-00611-y
http://dx.doi.org/10.1007/S00778-020-00611-Y
http://dx.doi.org/10.1007/S00778-020-00611-Y

Hristidis, V., Papakonstantinou, Y., Balmin, A., 2003. Keyword proximity search
on XML graphs, in: ICDE.

Jiang, L., Naumann, F., 2020. Holistic primary key and foreign key detection. J.
Intell. Inf. Syst. 54.

Katsifodimos, A., Manolescu, I., Vassalos, V., 2012. Materialized view selection
for XQuery workloads, in: Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano,
L., Fuxman, A. (Eds.), ACM SIGMOS, ACM. pp. 565–576. URL: https://
doi.org/10.1145/2213836.2213900, doi:10.1145/2213836.2213900.

Le, W., Kementsietsidis, A., Duan, S., et al., 2012. Scalable multi-query opti-
mization for SPARQL, in: ICDE.

Ligoudistianos, S., Sellis, T.K., Theodoratos, D., Vassiliou, Y., 1999. Heuristic
algorithms for designing a data warehouse with SPJ views, in: Mohania, M.K.,
Tjoa, A.M. (Eds.), DaWaK, Springer. pp. 96–105. URL: https://doi.org/
10.1007/3-540-48298-9_10, doi:10.1007/3-540-48298-9_10.

Lissandrini, M., Hose, K., Pedersen, T.B., 2023. Example-driven exploratory
analytics over knowledge graphs, in: EDBT.

Lissandrini, M., Mottin, D., Hose, K., Pedersen, T.B., 2022. Knowledge graph
exploration systems: are we lost?, in: CIDR, www.cidrdb.org.

Liu, Y., Safavi, T., Dighe, A., Koutra, D., 2018. Graph summarization methods
and applications: A survey. ACM Comput. Surv. 51, 62:1–62:34. URL: https:
//doi.org/10.1145/3186727, doi:10.1145/3186727.

Mami, I., Bellahsene, Z., 2012. A survey of view selection methods. SIGMOD
Rec. 41, 20–29. URL: https://doi.org/10.1145/2206869.2206874,
doi:10.1145/2206869.2206874.

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.,
2014. The Stanford CoreNLP natural language processing toolkit, in: ACL
(demonstrations).

Manolescu, I., Mohanty, M., 2023. Full-power graph querying: State of the art
and challenges. Proc. VLDB Endow. 16, 3886–3889. URL: https://www.
vldb.org/pvldb/vol16/p3886-mohanty.pdf, doi:10.14778/3611540.
3611577.

41

https://doi.org/10.1145/2213836.2213900
https://doi.org/10.1145/2213836.2213900
http://dx.doi.org/10.1145/2213836.2213900
https://doi.org/10.1007/3-540-48298-9_10
https://doi.org/10.1007/3-540-48298-9_10
http://dx.doi.org/10.1007/3-540-48298-9_10
https://doi.org/10.1145/3186727
https://doi.org/10.1145/3186727
http://dx.doi.org/10.1145/3186727
https://doi.org/10.1145/2206869.2206874
http://dx.doi.org/10.1145/2206869.2206874
https://www.vldb.org/pvldb/vol16/p3886-mohanty.pdf
https://www.vldb.org/pvldb/vol16/p3886-mohanty.pdf
http://dx.doi.org/10.14778/3611540.3611577
http://dx.doi.org/10.14778/3611540.3611577

Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S., 2000. Efficient and extensible
algorithms for multi query optimization, in: Chen, W., Naughton, J.F., Bern-
stein, P.A. (Eds.), SIGMOD, ACM. pp. 249–260. URL: https://doi.org/
10.1145/342009.335419, doi:10.1145/342009.335419.

Roy, P., Sudarshan, S., 2009. Multi-query optimization , 1849–
1852URL: https://doi.org/10.1007/978-0-387-39940-9_239,
doi:10.1007/978-0-387-39940-9_239.

Yang, J., Yao, W., Zhang, W., 2021. Keyword search on large graphs: A survey.
Data Sci. Eng. 6.

42

https://doi.org/10.1145/342009.335419
https://doi.org/10.1145/342009.335419
http://dx.doi.org/10.1145/342009.335419
https://doi.org/10.1007/978-0-387-39940-9_239
http://dx.doi.org/10.1007/978-0-387-39940-9_239

	Motivation and problem statement
	From datasets to data graphs
	From a dataset to a data graph
	Dataset conversion in a graph
	Named Entity extraction

	From a data graph to a collection graph
	From multiple datasets to a collection graph

	ChatGPT-based Named Entity extractor
	Paths between entities
	Notations for entity paths in the collection graph
	Path analysis by directionality
	Path reliability
	Path force
	Putting it all together: collection path enumeration

	Materializing data paths
	From a collection path to a query over the data graph
	Enumerating candidate views
	Selecting materialized views and rewriting path queries

	Experimental evaluation
	Datasets and settings
	Performance of ChatGPT entity extraction
	Entities extracted from various collections
	Extractor agreement and disagreement
	Fine-grain analysis of some examples

	Path enumeration
	Efficiency of path evaluation
	Path reliability and ranking
	Evaluation of the top-ranked paths
	Experiment conclusion

	Related work
	Graph database exploration
	Materialized view recommendation

	Conclusion and perspectives

