
HAL Id: hal-04727206
https://hal.science/hal-04727206v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

VeriFog: A Generic Model-based Approach for Verifying
Fog Systems at Design Time and Generating

Deployment Configurations
Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Jonathan

Rivalan

To cite this version:
Hiba Awad, Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux, Jonathan Rivalan. VeriFog: A
Generic Model-based Approach for Verifying Fog Systems at Design Time and Generating Deployment
Configurations. ACM SIGAPP applied computing review : a publication of the Special Interest Group
on Applied Computing, 2024, 24 (3), pp.18 - 36. �10.1145/3699839.3699841�. �hal-04727206�

https://hal.science/hal-04727206v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

VeriFog: A Generic Model-based Approach for Verifying Fog
Systems at Design Time and Generating Deployment

Configurations
Hiba Awad

IMT Atlantique, LS2N (UMR CNRS
6004), Inria Rennes, Smile

Asnières-sur-Seine and Nantes
France

hiba.awad@smile.fr

Abdelghani Alidra
IMT Atlantique, LS2N (UMR CNRS

6004), Inria Rennes
Nantes, France

abdelghani.alidra@imt-atlantique.fr

Hugo Bruneliere
IMT Atlantique, LS2N (UMR CNRS

6004)
Nantes, France

hugo.bruneliere@imt-atlantique.fr

Thomas Ledoux
IMT Atlantique, LS2N (UMR CNRS

6004), Inria Rennes
Nantes, France

thomas.ledoux@imt-atlantique.fr

Jonathan Rivalan
Smile

Asnières-sur-Seine, France
jonathan.rivalan@smile.fr

ABSTRACT
Fog Computing is a paradigm decentralizing the Cloud by geograph-
ically distributing computation, storage, network resources and
related services. It provides benefits such as reducing the number
of bottlenecks, limiting unwanted data movements, etc. However,
managing the size, complexity and heterogeneity of the Fog systems
to be engineered is challenging and can quickly become costly. Ac-
cording to best practices in software engineering, verification tasks
could be performed on a system design prior to its implementa-
tion and deployment. We propose a generic model-based approach
for verifying Fog systems at design time, also enabling the auto-
matic generation of corresponding deployment configuration files.
Named VeriFog, this approach is notably based on a customizable
Fog Modeling Language (FML). We experimented in practice by
modeling three use cases, from three different application domains,
and by considering three main types of non-functional properties to
be verified. From this modeling and verification effort, we show that
we are able to automatically generate usable deployment configura-
tion files for different deployment tools. In direct collaboration with
our industrial partner Smile, the approach and underlying language
presented in this paper are necessary steps towards a more global
model-based support for the complete life cycle of Fog systems.

CCS CONCEPTS
• Software and its engineering → Model-driven software en-
gineering; Software verification and validation; • Computer
systems organization → Cloud computing;

KEYWORDS
Model-Based Engineering, Modeling Language, Fog Computing,
Verification, Non-Functional Properties, Design Time, Generation,
Deployment Configuration.

© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM SIGAPP Applied
Computing Review, Volume 24, Issue 3, https://doi.org/10.1145/3699839.3699841.

1 INTRODUCTION
Fog Computing [35, 51] is a recent paradigm aiming to decentralize
the Cloud by geographically distributing away computation, storage
and network resources as well as related services. Instead of a
centralized Cloud system, data centers of various sizes in the core
network, and smaller data-centers or devices at the edge of the
network, can be used collaboratively to form a single large-scale
geo-distributed system. Thus, Fog Computing is at the crossroads of
complementary areas of distributed systems: Cloud Computing [6]
of course, but also Edge Computing [41] and IoT [28].

Over the last years, Fog systems have been extensively studied
in the research community, though their actual dissemination in
industry remains relatively limited [18]. The industrial report, cor-
roborated by our partner Smile, provides several reasons to explain
this situation. A first one is the size, complexity and heterogeneity
of the systems to be designed, developed, tested, deployed and then
maintained in such a Fog Computing context. Indeed, a Fog sys-
tem can combine large-scale Cloud resources with a possibly huge
number of IoT devices at the Edge of the network. All these varied
Fog resources have to be organized into several, sometimes many,
inter-connected areas. As a result, such a Fog system can quickly
become very challenging and costly to manage efficiently [3]. An
important goal is notably to ensure an appropriate Quality of Ser-
vice (QoS) [44]. This may concern security [32], energy [30], or
resource usages [1] aspects (among others).

Best practices in software engineering already showed that a
common way to limit development and management costs is to
verify the system design prior to its actual implementation and
deployment. However, up to our current knowledge, the verifica-
tion approaches that have been applied so far in the context of
Fog systems mostly concern already implemented and/or deployed
systems [24]. Moreover, by looking at a detailed study of the state
of the art [4], we observed that system modeling is currently rather
limited in Fog Computing and mostly concerns the simulation of
only parts of the Fog systems. Thus, to go a step further, we in-
troduce the VeriFog model-based approach for the verification of

https://doi.org/10.1145/3699839.3699841

Fog systems at design time and the automated generation of corre-
sponding deployment configuration files. To this end, we notably
propose a generic and customizable Fog Modeling Language (FML)
to specify Fog system models that can then be navigated, queried
and transformed accordingly. To experiment with our approach and
language in practice, we tested them for three main types of impor-
tant non-functional properties (security, energy and performance)
that we verified in the context of three different Fog systems we
modeled. In addition, we automatically generated initial deploy-
ment configuration files, for different deployment tools, from the
obtained Fog system models. These Fog systems come from three
different use cases illustrating various application domains of Fog
Computing. The objective is to demonstrate the practical relevance
of VeriFog for verifying several non-functional properties of Fog
systems during their design phase and then accelerating their de-
ployment. We also want to show the actual usability of FML for
modeling different kinds of Fog systems. On the longer term, both
VeriFog and FML belong to a wider research initiative intending to
capitalize on Fog system models in order to better support the Fog
system’s overall life cycle.

This paper is organized as follows. Section 2 presents the gen-
eral background and motivation for our work, resulting in the four
research questions we intend to address in this paper. Based on
that, Section 3 introduces the overall VeriFog approach and its tar-
geted verification support. Section 4 describes the FML language
as a core component of VeriFog. Section 5 presents the additional
generation support we provide for deployment configuration files.
Then, Section 6 illustrates the practical experiments with our veri-
fication and generation approach, and associated language, in the
context of three different use cases. Section 7 summarizes the cur-
rent Eclipse/EMF-based implementation of VeriFog, FML, and the
studied use cases. Section 8 discusses the current status, limitation,
and lessons learned from the work. Finally, Section 9 explains the
related work while Section 10 concludes the paper by opening on
future research perspectives.

2 BACKGROUND AND MOTIVATION
As introduced earlier, managing the size, complexity and hetero-
geneity of Fog systems can rapidly become both challenging and ex-
pensive. Providing an answer towards the resolution of this kind of
problem is a main objective of the ongoing SeMaFoR project [3], for
example. In the context of this collaborative research effort involv-
ing both research and industrial partners, we aim at proposing an ap-
proach for supporting the self-management of Fog resources. More
particularly, we are currently designing and developing a generic,
end-to-end, decentralized and collaborative self-management so-
lution to be able to operate different kinds of Fog systems. To this
end, we are notably tackling both Fog modeling concerns and their
potential impact on various aspects of the Fog system’s life cycle.
The work presented in this paper is positioned at the intersection
of these two dimensions.

On the one hand, Fog Computing remains a relatively recent
paradigm. Thus, many aspects related to Fog systems and the gen-
eral support for their engineering and management are open chal-
lenges [18]. In the scientific literature, these aspects have been
studied from a theoretical and/or research perspective over the past

years. Still, for various reasons, it appears that they have yet to
be experimented in practice within the industrial context. Among
the different phases of the Fog system’s life cycle which are worth
exploring, the design phase is particularly important. Notably, any
verification to be made onto a given system before its implementa-
tion and deployment can be highly beneficial in the long run (e.g.
to improve the overall QoS of the system [25, 44]). This has already
been observed in the context of other kinds of distributed sys-
tems [21, 31] and still needs to be adapted for modern Fog systems.
However, existing verification approaches have beenmostly applied
on (Fog) systems already implemented and/or deployed [24, 37].

On the other hand, the approach resulting from a project such as
SeMaFoR is meant to rely on a language allowing to model different
Fog systems, coming from different application domains and for
possibly covering different purposes. A deep study of the state of
the art in terms of existing modeling languages and related capabil-
ities in a Fog Computing context is already available [4]. From this
extensive study, we indicated that the already existing modeling
support dedicated to Fog systems, their building and their man-
agement, is rather limited at this stage. As a consequence, more
efforts are needed in order to complement the available (mostly
simulation-based) solutions with more elaborated model-based so-
lutions intended to Fog systems in particular. Notably, generative
solutions dedicated to Fog systems and targeting different kinds
of related development artifacts (e.g. source code, configuration or
build files) are globally missing.

Based on this analysis, we considered the following four Research
Questions (RQs) in the next sections of the paper:

RQ1. Can we build a (model-based) approach for verifying Fog
systems before their implementation or deployment?

RQ2. In such an approach, which language do we need to support
the modeling of Fog systems?

RQ3. Once verified, can the resulting Fog system models be also
used for automatically generating an initial deployment con-
figuration file?

RQ4. Can such an approach, language, and models be used for
verifying different non-functional properties on different
types of Fog systems within different application domains,
and for generating actual configuration files?

3 AN APPROACH FOR DESIGN-TIME
VERIFICATION OF FOG SYSTEMS (RQ1)

Figure 1 presents an overview of the VeriFog iterative approach.
1 The Fog System Architect (FSA) is the main actor. Ideally,

she/he is an engineer having the required knowledge and expe-
rience in terms of both Fog infrastructures and the targeted ap-
plication domain(s) (e.g. smart cities, industrial IoT, autonomous
vehicles). In practice, it can rather be a collaboration between sev-
eral Fog system’s engineers (e.g. experts on distributed systems)
and domain experts (e.g. persons in charge of the Fog system).

2 Using an appropriate Fog Modeling Language, the FSA starts
by modeling the topology of the Fog system(s) she wanted to design
via one or several models/files. This way, the FSA identifies and
represents the various types of Fog resources that will compose
the target Fog system, as well as the various types of possible
interconnections between these types of resources. In some cases,

Reports

Fog System
Architect

Legend:

RefersTo

ConformsTo

Metamodel

Topology
Model t

Configuration
Model c1

Query 1 Security,
Energy,
Performance,
Etc.

Configuration
Model c2

Fog Modeling Language

Verification Support

Query 2

…

Specifies

1
2

3

4

6

5

Produce

Ve
rif

y

C
he

ck

7

Figure 1: Overview of the VeriFog iterative approach (the circled numbers correspond to numbered paragraphs in the text).

she proposes one single topology that can then be instantiated in
different configurations of the target Fog system. In other cases,
several topologies can be proposed at this step to initially study the
pros and cons of each one of them (before moving to the next step).

3 Based on the previously defined topology, or the selected one
if several have been defined in the previous step, the FSA can spec-
ify different Fog system’s configurations via several models/files.
This way, different possible states of the target Fog systems can be
represented at various given points in time. These configurations
directly refer to the corresponding topology: they contain concrete
instantiations of the various types of Fog resources described in
the topology, as well as their actual interconnections.

4 Once the required topology and configuration models are
properly specified, that all conform to the metamodel of the used
Fog Modeling Language, the FSA can identify and express the
non-functional properties she/he wants to verify on the target Fog
system. As later displayed in Table 2, each property to be verified
can be associated to different queries in order to be able to provide
a global assessment over the target Fog system. In practice, these
queries have to be expressed using a (model) query language (in
our current experiments, we used OCL1) that is compatible with
the Fog Modeling Language we propose (cf. Section 7).

5 Once the required queries are properly specified, they can be
actually verified onto the set of Fog system’s models. Depending on
the kind of verification to be made on the Fog system, a given query
can be executed over a topology model, a configuration model,
or eventually a combination of them. Depending on the type of a
given query, the result returned by the execution of this query can
take different types: a numerical value, a boolean value or a string

1https://projects.eclipse.org/projects/modeling.mdt.ocl

textually describing the result. Various examples of non-functional
properties and associated queries are presented in Section 6.

6 Once all the required queries are executed over the corre-
sponding Fog system’s models, a report can be produced to ag-
gregate the individual query execution results. Such a report can
take different forms: a simple list of query execution results (as in
our current implementation of the approach, cf. Section 7), a more
structured and elaborated document automatically generated from
the Fog system’s models and the results, a tool displaying in a more
dynamic way the content of both these models and results, etc.

7 Finally, the FSA can consult and check this report. It can
be used as a valuable input for taking decisions on whether to 1)
proceed with the current Fog system’s design and eventually start
to work on its implementation, or 2) perform another iteration of
the VeriFog approach to improve the system’s design. In the latter
case, the FSA may decide to rework the initial topology model by
completing the various types of possible Fog resources. She/he may
also decide to first experiment with other configurations before
actually modifying the topology, etc.

4 A GENERIC LANGUAGE FOR MODELING
FOG SYSTEMS (RQ2)

In the context of the SeMaFoR project [3], we provided a study of the
state of the art in terms of existing languages and related support for
modeling Fog systems [4]. However, none of the available solutions
appears to come with a generic reusable language that would allow
engineers to easily specify, share, maintain and evolve Fog system’s
models for different kinds of Fog architectures. As a result, and also
capitalizing on other existing work on Cloud modeling [2, 12], we
designed and developed a generic and customizable Fog Modeling
Language (FML). In what follows, we present both its abstract

syntax (i.e. its core metamodel) and current concrete syntax (i.e. a
textual notation). Its semantics is associated to the language usage
(cf. Section 6).

4.1 Abstract Syntax - Metamodel
The main objective of the FML is to allow specifying the various
resources composing the Fog system as well as the relationships be-
tween them. To this end, the proposed language is able to represent
both the different possible topologies of Fog systems (i.e. the types
of Fog resources) and the corresponding configurations based on
these topologies (i.e. the instances of these types). Figure 2 shows a
partial version of the metamodel of the language.

The main elements of a Fog system are considered as FogRe-
sources. As the language is meant to be generic and extensible, any
FogResource can be customized by adding specific metadata via both
Tag elements (i.e. key/value pairs) and custom Attribute elements.
Each Attribute is characterized by a AttributeType targeting a partic-
ular type of Fog resource and having a corresponding UnitOfMea-
surement. The root of the model is the FogSystem containing various
FogAreas (i.e. Fog sub-systems), themselves containing the other
kinds of elements. This way, as introduced earlier, both topologies
and corresponding configurations can be jointly modeled.

On the topology side, at the FogSystem-level, different NodeTypes
can be specified. These are either PhysicalNodeSpecifications (i.e.
for hardware devices) or VirtualNodeSpecifications (i.e. for software
components). Naturally, a givenNodeType can host otherNodeTypes.
For example, a virtual node can be hosted on a physical node or
eventually on another virtual node. The different NodeTypes can
be interconnected via various NetworkLinkTypes that materialize
either download or upload links depending on the case. In addition,
each NetworkLinkType is related to a given NetworkType that can
have different characteristics associated to it (e.g. these characteris-
tics can be expressed via particular Tags or custom Attributes).

On the configuration side, at the FogArea-level, the overall struc-
ture is similar. However, several Nodes can be interconnected via
variousNetworkLinks (download or upload) directly related to corre-
sponding Networks. Each Node is representing a particular instance
of a previously specified NodeType. In addition, such a Node carries
different general runtime properties concerning its operating sys-
tem, CPU, memory, disk space, health status, etc. Similarly, each
NetworkLink and Network are particular instances of a previously
specified NetworkLinkType and NetworkType (respectively).

Finally, it is important to notice that some aspects of the lan-
guage are not described in the paper for the sake of readability
and understandability. Indeed, some simple multiplicities (e.g. 0..1
/ 1..1) and associated labels are hidden in Figure 2. For the same
reason, the provided support for different kinds of constraints over
NodeType and NetworkType elements is not detailed neither in the
paper. Note that this part of the language is directly adapted from
the constraint support proposed in previous work on Cloud mod-
eling [2, 12]. More importantly, the language also supports the
modeling of both the services and related applications that can be
hosted in the Fog system nodes. These are also important elements
in the context of highly distributed Fog systems. However, such
elements are not described here as not used in the current work
where we mostly focus on modeling Fog infrastructures.

4.2 Concrete Syntax - YAML Textual Notation
The technical background of the typical FSA usually makes her
quite familiar with solutions for distributed system’s infrastruc-
tures. In such solutions, textual notations like YAML2 are frequently
encountered. As a consequence, we have opted for a YAML textual
syntax to accompany the current version of the proposed Fog Mod-
eling Language. Figure 3 shows an excerpt of this textual notation
in the context of one of the practical use cases from Section 6.

The different FogResources composing the FogSystem can be mod-
eled thanks to separate YAML files (.yml). These files can be or-
ganized, stored and shared as needed by the concerned Fog engi-
neers. For example, the left file in Figure 3 shows a VirtualNode-
Specification named "Fognode2", as part of a given topology. Three
Tags are associated with this particular NodeType to add specific
performance-related metadata in this particular case. Then, a "spec"
section allows to specify the general value of the different proper-
ties (both the base and custom ones). This section also allows to
declare the correspondingNetworkLinkTypes (download and upload
ones) and related metadata, etc. Based on this topology specifica-
tion, the right file in Figure 3 shows a given configuration providing
an instantiation of the previously defined "Fognode2" NodeType, as
a Node named "fn2". In a configuration definition, the "spec" section
(from the topology specification) is replaced by a "status" section
that allows to indicate the runtime value of the different properties,
to declare the corresponding NetworkLinks, etc.

Note that, to simplify the learning and usage of the proposed
notation, we voluntarily decided to have a similar syntax for de-
scribing both topology and configuration elements. Only some
dedicated sections of the files are different at the two levels, e.g.
"spec" vs. "status" as mentioned earlier on the provided example.

5 AN AUTOMATED GENERATION OF
DEPLOYMENT CONFIGURATIONS (RQ3)

In this section, we present how the Fog system models resulting
from previous verification can also be used for automatically gen-
erating initial deployment configuration files. These usable deploy-
ment configuration files can possibly target different deployment
tools according to the needs.

5.1 A Generative Approach
Figure 4 presents an overview of the Pre-Deployment Generation
component extending VeriFog.

1 After verifying one or several Fog system models and vali-
dating their design, the FSA can select the Fog System model (that
conforms to the Fog System metamodel) which she/he wants to con-
figure. This Fog System model contains the complete information
about both the topology and finally selected configuration. There-
fore, at this stage, it is a consolidated model that is considered as
ready for pre-deployment generation.

2 The key element of the Pre-Deployment Generation compo-
nent is the Deployment Abstractor. Its goal is to extract the relevant
deployment information from the Fog System model in order to
create a corresponding Abstract deployment model. This Abstract
deployment model is a deployment specification (of the concerned

2https://yaml.org/

Figure 2: Partial metamodel (i.e. abstract syntax) of the proposed Fog Modeling Language.

Figure 3: Excerpt of the YAML-like textual notation (i.e. con-
crete syntax) of the proposed Fog Modeling Language.

Fog System) that is independent from any particular Deployment
Tool. To this end, it conforms to an Abstract Deployment metamodel
that provides the required pivot deployment modelling language.

3 Once the Abstract deployment model obtained, the FSA has
to select the Deployment Tool which she/he wants to use in order
to actually deploy the specified Fog System (e.g., Terraform, An-
sible, Chef). The selection can be notably influenced by technical
constraints, e.g., the features provided by a given tool. It can also
be guided by the QoS properties to be verified and the availability
of a corresponding Deployment Tool in the target technological
environment.

4 Finally, the Abstract Deployment Framework will automat-
ically generate an initial Deployment Configuration file, for the
selected Deployment Tool, from the previously obtained Abstract
deployment model. This Deployment Configuration file can then be
used for actually deploying the Fog System onto the selected De-
ployment Tool, once the FSA is fully satisfied with the Fog System
specifications.

5.2 Support for Automation
We now focus more specifically on the additional support we pro-
vide to automate the generation of deployment configuration files
within the context of the previously introduced Pre-Deployment
Generation component.

Illustrative Example. We consider here a very simple Fog system
𝑠 composed of one physical machine 𝑝𝑚1 of type 𝑃𝑀 and one
virtual machine 𝑣𝑚1 of type 𝑉𝑀 . Both machines are interrelated
as 𝑣𝑚1 is hosted on 𝑝𝑚1.

5.2.1 Deployment Abstractor
The main goal is to produce an abstract deployment specification

from the original specification of the Fog system. To this end, a main
element of the Pre-Deployment Generation component is the Deploy-
ment Abstractor. It takes as input a Fog System model and produces
as output a corresponding Abstract Deployment model. Therefore,
the Deployment Abstractor is a model-to-model transformation [34]
that realizes a mapping between the concepts manipulated by the
two concerned modeling languages.

As described in Section 3, we decided to rely on the FogModeling
Language (FML) and corresponding metamodel (cf. Section 4) for
specifying the Fog System models. For the abstract deployment
language, we decided to use the Essential Deployment MetaModel
(EDMM) [49] in order to specify the Abstract Deployment models.
We believe EDMM is relevant because it directly results from a well-
documented and relatively recent systematic review of existing
deployment automation technologies. In EDMM, a deployment
is modelled as a set of components of different types and having
various properties. The deployment is composed of both physical
and functional components. A component can also be a logical unit
of an application. All these components can be interconnected by
relations of different types (physical, functional or logical ones).
The components and their associated operations (i.e., executable
procedures) can be implemented by one or several artifacts (e.g.,
script files).

Table 1: Main rules of the proposed FML-to-EDMMmapping.

FML
(Fog System metamodel)

EDMM
(Abstract Deployment meta-
model)

Fog system Deployment model

Physical Node Specification
(Node Type)

Component Type

Virtual Node Specification
(Node Type)

Component Type

Virtual Node Component

Physical Node Component

Attribute Property

Attribute Type Property Type

Tag Property Type

Network Link Relation

Table 1 gives an overview of the FML-to-EDMMmapping we pro-
posed in order to realize the Deployment Abstractor. The resulting
Abstract Deployment model describes the deployment configura-
tion independently from any specific Deployment Tool. The root
of the FML model is a Fog system element that is transformed into
the root of the EDMM model, i.e., a Deployment model element.
This Deployment model root element will contain, directly or in-
directly, all the other model elements. In FML, the main types of
nodes are Physical Node Specification (i.e., for hardware devices)
and Virtual Node Specification (i.e., for software components). They
are both transformed into Component Type elements in EDMM. All
the related Attribute Type and Tag elements in FML are converted
to corresponding Property Type elements in EDMM. Similarly, the
main types of nodes in FML are Physical Node and Virtual Node.
They are transformed into Component elements in EDMM. All the
related attributes are converted to corresponding Property elements
in EDMM. The lower level details of this mapping can be seen in
the implemented model-to-model transformation (cf. Section 7).

Fog System
model

(Pivot) Abstract
Deployment

model

Pre-Deployment Generation

Fog System
Architect

Fog System
metamodel

(Pivot) Abstract
Deployment
metamodel

Abstract
Deployment
Framework

Deployment
Configuration

fileLegend:

Inputs /
Outputs

ConformsTo

Specifies

21 4Deployment
Abstractor

Deployment
Tool

Terraform,
Ansible, Chef,

etc.

Deployment
Configuration

file

Deployment
Configuration

file

3

Figure 4: Overview of the Pre-Deployment Generation component extending VeriFog (the circled numbers correspond to
numbered paragraphs in the text).

Illustrative Example. The Fog System model of 𝑠 in FML is com-
posed of a Physical Node 𝑝𝑚1 having a Physical Node Specification
𝑃𝑀 and a Virtual Node 𝑣𝑚1 having a Virtual Node Specification
𝑉𝑀 . The hosting relation is materialized by a Network Link 𝑛𝑙1
between the Physical Node 𝑣𝑚1 and the Virtual Node 𝑝𝑚1. After
transformation by the Deployment Abstractor, the resulting Abstract
Deployment model of 𝑠 in EDMM will be composed of a Component
𝑝𝑚1 of Component Type 𝑃𝑀 and a Component 𝑣𝑚1 of Component
Type 𝑉𝑀 . The hosting relation is now materialized by a Relation 𝑟1
between the Component 𝑣𝑚1 and the Component 𝑝𝑚1.

5.2.2 Abstract Deployment Framework
Another key element of the Pre-Deployment Generation compo-

nent is the Abstract Deployment framework. It takes as input an
Abstract Deployment model, along with the selection of a specific
Deployment Tool, and produces as output a corresponding Deploy-
ment Configuration file. If needed (e.g., for technical reasons), the
input Abstract Deployment model can be first transformed into
a corresponding textual file thanks to a dedicated model-to-text
transformation or code generator [39].

In VeriFog, we decided to use the Deployment Model Abstrac-
tion Framework (DeMAF) [45] as our Abstract Deployment frame-
work. We opted for DeMAF because it enables the generation of
Deployment Configuration files from technology-agnostic deploy-
ment models that conforms to EDMM. Moreover, DEMAF comes
with a command-line interface (CLI) that can be used directly by the
FSA or integrated into an automation workflow. Importantly, the
generated Deployment Configuration files are actually executable
and suitable for different Deployment Tools. For example, if the FSA
selects Terraform as the target Deployment Tool, the generated De-
ployment Configuration file will be in the ‘.tf’ format containing the
information required for a deployment in Terraform.

Illustrative Example. The Abstract Deployment model of 𝑠 in
EDMM, resulting from the previous step, can be taken as input
of the Abstract Deployment framework DeMAF to automatically
generate a corresponding Deployment Configuration file for the De-
ployment Tool Terraform. This file 𝑠 .𝑡 𝑓 contains all the information

needed to actually deploy 𝑠 , on Amazon Web Services (AWS) [5]
for instance.

6 PRACTICAL APPLICATIONS ON DIFFERENT
USE CASES (RQ4)

To evaluate the genericity, and more generally the usability, of
our VeriFog approach and underlying Fog Modeling Language, we
considered various Fog system’s examples coming from different
application domains. From the literature, we selected three distinct
use cases we found relevant and representative of the heterogeneity
of Fog systems. They are summarized in Table 2.

In what follows, we provide for each use case 1) a textual de-
scription of the overall context and concrete application, 2) a model
of the corresponding Fog system in our Fog Modeling Language, 3)
examples of queries used to verify non-functional properties which
are particularly relevant in highly-distributed Fog systems and that
can be verified at design-time, and 4) examples of generated abstract
deployment models as well as corresponding configuration files
targeting different deployment tools. For all use cases, the complete
implementation resources can be accessed via the provided open
source repository (cf. Section 7).

Note that, in the following sections, the presented models are
voluntarily partial. Indeed, for the sake of readability, only the
NodeType (in red) and Node (in blue) elements are displayed. Thus,
the root elements (FogSystem, FogArea) and the network elements
(NetworkType, NetworkLinkType, Network, NetworkLink) are not
shown. Moreover, to keep the diagrams light, the latter are simply
materialized by generic dependency relationships. Finally, the cus-
tom Attributes are displayed the same way than regular attributes
within the corresponding elements.

6.1 Smart Campus: Energy Property
6.1.1 Scenario

The first use case is taken from a published work presenting a
recent survey on existing Fog Modeling Languages [4]. In an uni-
versity campus context, the survey proposes a motivating example
of a Fog system that consists in two distributed applications for

Table 2: Several applications of the VeriFog approach.

Use Case Name Verified Property Query Level Return Type Objective

Smart Campus Energy
IsGreen Topology Boolean Check if the system is green or not, i.e. if the

majority of the nodes of this system have a re-
newable energy resource or not.

Remaining Energy Configuration Double Study the system energy status by calculating
the difference between a consumption threshold
and the energy consumption at time T.

Green Energy Consumption Configuration Double Calculate the percentage of green energy con-
sumption by knowing the green level and con-
sumed energy of each node.

Smart Parking Performance
Efficiency Topology Double Check if the system is efficient by calculating

the parking lot ratio, i.e. the balance between
the number of cameras and the covered slots.

Latency Configuration Float Calculate the system latency, i.e. the delay of
analyzing each area of the parking lot and the
delay of noise filtering in defected images.

IsReliable Configuration Boolean Study the system reliability by calculating the
number of instances of each camera type with
a given detection quality level.

Smart Hospital Security
IsSecured Topology Boolean Check if the system is "Secured" or not so we

can know if most of the nodes in our system are
located in a secure environment.

RiskScore Topology Integer Study the vulnerability of each node, based on
the node location and the importance of its pro-
tected/stored data.

Authorized Token Level Configuration Sequence Group the different nodes by their respective
authorization level.

smart surveillance and smart bell notification, respectively. They
are made available as a set of loosely coupled micro-services that
can be mutually shared in order to provide the expected capabilities.

6.1.2 Model
The Fog system of the monitored university campus is composed

of several FogAreas corresponding to the different sections of the
campus. We show in Figure 5 the content of two main FogAreas for
the two sections of our example campus: the Main Department and
the Dormitory.

The central elements are "center1" and "center2" data center Vir-
tualNodes. They can be connected to other FogAreas of the system
indirectly via the "gate" gateway VirtualNode, itself connected to
the "publicCloudProvider" cloud VirtualNode. The different nodes
composing the system are also connected to these two central data
center nodes. In the dormitory, this is the case for the "watch" and
"comp" PhysicalNodes (of type smart watch and computer, respec-
tively). In the main department, this is the case for the "alarm",
"mobile" and "cam" PhysicalNodes (of type alarm device, mobile
phone and wifi camera, respectively). In this main department, the
"cluster" Rapsberry Pi cluster PhysicalNode is indirectly connected
via the "gate" gateway VirtualNode.

At the topology level, we added a "SourceEnergy" custom At-
tribute to model the energy source type associated to each NodeType
instantiated in the system. Depending on the origin of the energy, it
can be renewable (i.e. green), or fossile (e.g. from oil or petroleum).
We also added another "greenEnergy" custom Attribute to be able
to represent the green energy level associated to each NodeType. In
case of multiple energy sources, this corresponds to the percentage

of green energy over the total energy. For example, the level can be
considered as high if the obtained percentage is higher than 50.

At the configuration level, we added a "energy_consumption"
custom Attribute to be able to describe the amount of the total
energy already consumed by each node at a given point in time.
We also added another "green_consumption" custom Attribute to
be able to specify the percentage of the total green energy already
consumed by each node at a given point in time.

6.1.3 Queries
In the university campus, energy consumption is an important

issue for both ecological and financial reasons. Thus, we need to
assess the energy origin and consumption for the different kinds of
Fog resources composing the system, as well as for the system as a
whole. In what follows, we consider a college campus consisting of
a main department and a dormitory.

Query "IsGreen" - To start with, we defined a global query at
the topology level in order to assess the "greenness" of the Fog
system based on the different types of instantiated nodes. Listing 6
shows the OCL code of this query that returns a boolean value.
To summarize, we get the green energy level for each node in the
system and we check whether the majority of the nodes have a
high green energy level or not.

Query "Remaining Energy" - Then, we defined a query at the
configuration level to compute the remaining available energy to
be consumed (i.e. a double value) associated to each node type in the
system. The objective is to calculate the amount of available energy
with respect to the threshold imposed by the campus administrators.
The calculation is based on 1) the total energy consumption of each

Figure 5: Partial model of the Fog system in the Smart Campus use case.

if NodeType.allInstances()->select(f | f.tags->exists(t | t.key =
'greenEnergy' and (t.value = 'low' or t.value = 'null' or
t.value='moderate')))->size() > NodeType.allInstances()->size()/2
then

↩→
↩→
↩→

'The system is not green'
else

'The system is Green'
endif

Figure 6: OCL code of the IsGreen query in the Smart Campus
use case (boolean return value printed in plain readable text).

node and 2) the threshold of 2000 J. The total energy consumption
is the sum of the "energy_consumption" of each node in the system.
For example, if this sum is 3000 J, a specific message indicate an
over-consumption of 1000 J.

Query "Green Energy Consumption" - Finally, we defined another
query at the configuration level to compute the amount of con-
sumed green energy compared to the total consumed energy. The
objective is to obtain the percentage of green energy consumed by
the system. The calculation is based on 1) the "green_consumption"
and 2) the "energy_consumption" of each node.

6.1.4 Generation
From the Fog system model of Smart Campus expressed in FML,

the Deployment Abstractor allows to automatically obtain a corre-
sponding abstract deployment model in EDMM. Figure 7 shows an
excerpt of such a model in its YAML syntax. In this model, the Vir-
tualNodeSpecification "datacenter1" and corresponding VirtualNode
"center1" from the Fog system model became the ComponentType
"datacenter1" and corresponding Component "center1", respectively.

For this specific use case, we selected Terraform as our Deploy-
ment Tool. Then, thanks to the Abstract Deployment Framework, a

Figure 7: Excerpt of a pivot abstract deployment model in
the Smart Campus use case.

corresponding deployment configuration file and associated envi-
ronment file are generated from the previous abstract deployment
model. The environment file contains all the configuration prop-
erties mentioned in the EDMM smart campus model components,
while the deployment configuration file describe the configuration

of each node in the system. Figure 8 shows an excerpt of such files in
their respective syntax, i.e. JSON for the Terraform file and bash for
the environment file. In the first file, the deployment-specific infor-
mation related to the Component "center1" is notably described. The
second file makes available configuration properties mentioned in
the Smart Campus model in EDMM (and previously in the original
FML model), namely "energy consumption" and "green consump-
tion". Note that this file can be edited by the engineer, if necessary,
to better fit with her actual environment constraints.

Figure 8: Excerpt of a deployment configuration file (and
corresponding environment file) generated for Terraform in
the Smart Campus use case.

6.2 Smart Parking: Performance Property
6.2.1 Scenario

The second use case is taken from a published work presenting
a solution for drivers to be more efficient when searching for a slot
for their cars in a parking lot [7]. Thus, in a parking lot context, the
solution describes an example of a Fog system that detect the parked
cars in each zone, and indicates available spaces to the drivers via
a smart led screen at the entrance.

6.2.2 Model
The Fog system of the monitored parking lot is composed of

several FogAreas, corresponding to its different sections, that deal
with various kinds of nodes (e.g. micro-controllers, cameras). We
show in Figure 9 the content of two FogAreas but the parking system
can be composed of much more FogAreas.

The central elements of the shownmodel are "fogn1" and "fogn2"
Fog VirtualNodes. These central nodes can be possibly connected to
other FogAreas of the system, via the "proxyserver" proxy VirtualN-
ode and the external "cloudserver" cloud VirtualNode. The different
devices composing the system (i.e. different types of cameras) are
also indireclty connected to these central Fog nodes via "micro1"
and "micro2" micro-controller VirtualNodes.

At the topology level, we added a "detection_quality" custom
Attribute to model the detection quality level associated to each
camera NodeType instantiated in the system. This corresponds to
the capability of each camera to always detect any vehicle in the
covered zone. For example, if the camera can identify only cars and
cannot systematically detect motorcycles, the detection quality will
be indicated as low.

At the configuration level, we added a "coveredPlaces" customAt-
tribute to describe the number of slots covered by each Fog Node in
the system. This corresponds to the number of slots where cameras
can possibly detect the cars. We also added another "image_quality"
custom Attribute to specify the percentage of clarity for the images
detected by a given camera.

6.2.3 Queries
In a city’s parking lot context, the overall performance of the

system is an important issue in order to be able to provide an
efficient service to the drivers. Thus, we need the data to be treated
by each camera and Fog node to have a sufficiently high level of
quality. For the following queries, we considered a smart parking
having a reasonable size and thus using 16 cameras nodes and 2
corresponding Fog nodes.

Query "Is Efficient" - To start with, we defined a global query at
the topology level to assess the overall efficiency of the parking lot.
To this end, we computed the ratio between the number of covered
slots and the total number of available cameras. If the ratio is closer
to 1, there are possibly too many cameras. If the ratio is closer to 0,
there are probably not enough cameras to cover all the slots.

Query "Latency" - Then, we defined a query at the configuration
level to compute the time needed for the system to display the
available slots on the smart led screen at the entrance of the parking
lot. The objective is to evaluate the latency of the overall system.
Listing 10 shows the OCL code implementation of this query which
returns a real value. To summarize, the calculation is based on 1) the
time consumed by the Fog nodes to analyze the images collected
from the corresponding 16 cameras (cf. the value from Table 3 in
the source paper [7], then encoded in the query) and 2) the time of
image enhancement. The time of image enhancement is computed
from the "image_quality" of each camera node. If the clarity of the
image took by a given camera node is low, an image enhancement
is required prior to its analysis.

Query "Reliability" - Finally, we defined another query at the
configuration level in order to assess the reliability of the Fog system
based on the different types of instantiated nodes. To summarize,
we analyze the image quality of each camera in the system by
ensuring that the majority of these cameras have an image quality
higher than 50%.

6.2.4 Generation
From the Fog system model of Smart Parking expressed in FML,

the Deployment Abstractor allows to automatically obtain a corre-
sponding abstract deployment model in EDMM. Figure 11 shows
an excerpt of such a model in its YAML syntax. In this model, the
PhysicalNodeSpecification "cameraHighResolution" and correspond-
ing PhysicalNode "camera1" from the Fog system model became
the ComponentType "cameraHighResolution" and corresponding
Component "camera1", respectively.

For this specific use case, we selected Docker Compose3 as our
Deployment Tool. Then, thanks to the Abstract Deployment Frame-
work, a corresponding deployment configuration file and associated
descriptor file (in this particular case) are generated from the previ-
ous abstract deployment model. Figure 12 shows an excerpt of such
files in their respective syntax. In the deployment configuration

3https://docs.docker.com/compose/

Figure 9: Partial model of the Fog system in the Smart Parking use case.

let totalEnhancement: Real =
NodeType.allInstances()

->select(f | f.tags->exists(t | t.key = 'detection_quality' and

(t.value = 'low' or t.value = 'verylow')))↩→
->collect(f | if f.tags->exists(t | t.key = 'detection_quality' and

t.value = 'low') or f.tags->exists(t | t.key = 'detection_quality'
and t.value = 'verylow') then 0.702 else 0 endif)

↩→
↩→
->sum() + 0.00787

in
'the latency of the system is ' + totalEnhancement.toString() + 's'

Figure 10: OCL code of the Latency query in the Smart Park-
ing use case (real return value printed in plain readable text).

file, the deployment-specific information related to the Component
"camera1" is notably described. In the associated Docker file, the
configuration property "image quality" from the Smart Parking
model in EDMM (and previously from the original FML model) is
directly visible.

6.3 Smart Hospital: Security Property
6.3.1 Scenario

The third use case is taken from a published work presenting a
Model Driven Bandwidth Allocation framework based on a prior-
ity algorithm [36]. In an hospital context, the solution proposes a
bandwidth allocator device that analyzes incoming events arising
from blood pressure, body temperature, and glucose sensors, to
finally provide the required bandwidth. The underlying algorithm
is based on a priority algorithm: when two critical events occurs
simultaneously, the bandwidth allocator proceeds with the event

Figure 11: Excerpt of a pivot abstract deployment model in
the Smart Parking use case.

having the shortest execution time and then provide a maximum
bandwidth allocation to this particular event.

Figure 12: Excerpt of a deployment configuration file (and
corresponding Dockerfile) generated for Docker Compose in
the Smart Parking use case.

6.3.2 Model
The Fog system of the monitored hospital is composed of several

FogAreas corresponding to the different sections of the hospital that
deal with the various kinds of patients (e.g. adults, babies). We show
in Figure 13 only the content of one FogArea, the other FogAreas
have a similar structure and content.

The central element of the shown FogArea is a VirtualNode iden-
tified as "fognode1". This central node can be connected to other
FogAreas of the system (for other sections of the hospital) via an
external cloud VirtualNode identified as "cln1". The different nodes
composing the shown FogArea are also connected to this central
"fognode1" Fog node, either directly (for the "iotdevice1" and "iotde-
vice2" IoT PhysicalNodes) or indirectly via the "bandn1" bandwith
allocator VirtualNode (for the "bloodPressureAlertEvent", "tempera-
tureAlertEvent" and "glucoseAlertEvent" VirtualNodes).

At the topology level, we added a "securityLocation" custom
Attribute to be able to model the security level associated to each
NodeType instantiated in the system. This security level is based on
the location of the nodes of a given type. If the node is in a zone
completely protected by a firewall, the security level will be high. If
it can be accessed by a third party which is not protected, it will be
moderated. In the case where the node is located in a non-protected
area, the security level will be low. We also added another "impact"
custom Attribute to be able to represent the security impact associ-
ated to each NodeType. We grouped the impact level by categories:
A means that the data and information stored in this node are very
important, B moderately important, and C not so important.

At the configuration level, we added a "authorityLevelCheck-
ing" custom Attribute to be able to specify the level of the author-
ity associated to each node. We estimate the access protection by
considering numerical values ranging from 1 to 5. If there is no
particular protection (no passwords, token, fingerprint, VPN, etc.),
the level will be 1. If the access needs multiple verification steps,
the authority level will be 5.

6.3.3 Queries
In an hospital context, preserving the privacy of the patients data

is fundamental. Thus, we need the different information of each
patient to be resilient and well secured. To be realistic, and to have
a sufficiently rich Fog system model for the queries, we considered
a large hospital with multiple sections and many different patients
and devices.

Query "IsSecured" - To start with, we defined a global query at the
topology level in order to assess the security of the Fog system based
on the different types of instantiated nodes. Listing 14 shows the
OCL code of this query that returns a boolean value. To summarize,
we analyse the security level of each type of node in the system

by ensuring that the majority of them are actually located in a
high-security location.

Query "RiskScore" - Then, we defined another query at the topol-
ogy level to compute the risk score (i.e. an integer value) associated
to each node type in the system. The objective is to estimate the
potential impact of a cyber-attack on each type of node. The calcula-
tion is based on 1) the impact of the data possibly leaking from this
node type and 2) the probability of being attacked by a hacker [20].
The probability of the attack is computed from the "securityLo-
cation" of the zone where the nodes of a given type are located:
the probability of having an attack on a node is higher when the
security level of the zone in which this node is located is low.

Query "AuthorityLevelChecking" - Finally, we defined a query at
the configuration level to obtain sequences of nodes grouping them
according to their respective level of authorization. This way, we
can provide lists of nodes having easy, medium and difficult access.
This can have a direct impact on where some data can actually be
stored or not.

6.3.4 Generation
From the Fog system model of Smart Hospital expressed in FML,

the Deployment Abstractor allows to automatically obtain a corre-
sponding abstract deployment model in EDMM. Figure 15 shows
an excerpt of such a model in its YAML syntax. In this model, the
VirtualNodeSpecification "bandwidthAllocator1" and corresponding
VirtualNode "bandn1" from the Fog system model became the Com-
ponentType "bandwidthAllocator1" and corresponding Component
"bandn1", respectively.

For this specific use case, we selected Azure4 as our Deploy-
ment Tool. Then, thanks to the Abstract Deployment Framework, a
corresponding deployment configuration file and associated envi-
ronment file (in this particular case) are generated from the previous
abstract deployment model. Figure 16 shows an excerpt of such files
in their respective syntax. In the configuration file, the deployment-
specific information related to the Component "bandn1" is notably
described. The environment file contains the configuration prop-
erty "authorityLevelChecking" from the Smart Hospital model in
EDMM (and previously in the original FML model).

7 IMPLEMENTATION
Based on our own experience and technical expertise, we decided
to implement in the Eclipse ecosystem an initial version of the
tooling support associated with the proposed Fog Modeling Lan-
guage, verification and generation Support, as well as current use
cases. However, both the VeriFog conceptual approach and the FML
language specification are technology-independent. As a conse-
quence, they may be redeveloped in other technical environments
if required in the future (e.g. by our partner company Smile for
industrial purposes).

FML has been implemented by using the EclipseModeling Frame-
work (EMF)5 and related tools. For the abstract syntax, we specified
a dedicated metamodel in Ecore. For the concrete syntax, we devel-
oped a grammar in Xtext6 that we connected to this metamodel.
This allowed us to produce a corresponding textual editor with

4https://azure.microsoft.com/
5https://www.eclipse.org/modeling/emf/
6https://www.eclipse.org/Xtext/

Figure 13: Partial model of the Fog system in the Smart Hospital use case.

if VirtualNodeSpecification.allInstances()->isEmpty() then
-- Handle the case where there are no node types in the system
'Cannot determine if the system is secured because there are no node

types.'↩→
else

if VirtualNodeSpecification.allInstances()->size() = 0 then
-- Handle the case where there are no node types in the system
'Cannot determine if the system is secured because there are no

node types.'↩→
else

if VirtualNodeSpecification.allInstances()->select(f |
f.tags->exists(t | t.key = 'securityLocation' and (t.value =
'High' or t.value = 'veryHigh' or t.value='moderate')))->size()
> VirtualNodeSpecification.allInstances()->size()/2 then

↩→
↩→
↩→
'The system is secured.'

else
'The system is not secured.'

endif
endif

endif

Figure 14: OCL code of the IsSecured query in the Smart
Hospital use case (real return value printed in readable text).

basic features (syntax highlighting, code completion, syntax checks,
etc.). Thus, we provide an editing environment for Fog System Ar-
chitects to write their Fog system models using several YAML files.
As in the VeriFog approach, they can also get their models as full

EMF-compatible models, and eventually serialize them as XMI files
for further sharing or usage with other tools.

For the Verification Support, we implemented all the presented
queries in two different languages: 1) Java to show the possible
use of FML in combination with a general-purpose programming
language, and 2) the Object Constraint Language (OCL)7 to show
the compatibility of our language with a standard navigation model
and query language. The final reporting on the query execution
results is currently implemented as strings to be displayed onto the
Eclipse workbench’s console, or to be printed into textual files to
be then shared with the Fog System Architects.

The generation component is also partially implemented by rely-
ing on EMF, the EMF-compatible implementation of FML described
before, and other related tools. As the Abstract Deployment meta-
model, we decided to use the Essential Deployment MetaModel
(EDMM) [48] and our own Ecore implementation of this meta-
model. Then, we implemented the Deployment Abstractor and its
FML-to-EDMMmapping by specifying a dedicated model-to-model
transformation in the ATL Transformation Language (ATL) [26].
We also implemented a complementary model-to-text transforma-
tion, in Acceleo [38], for transforming EDMM Abstract Deployment
models into corresponding YAML textual files.

7https://projects.eclipse.org/projects/modeling.mdt.ocl

Figure 15: Excerpt of a pivot abstract deployment model in
the Smart Hospital use case.

Figure 16: Excerpt of a deployment configuration file (and
corresponding environment file) generated for Azure in the
Smart Hospital use case.

Moreover, we decided to use the Deployment Model Abstrac-
tion Framework (DeMAF) [43] as the Abstract Deployment frame-
work. DEMAF mostly relies on JetBrains MPS [13] and supports
Terraform among several other Deployment Tools. Thanks to the
DEMAF Abstract Deployment framework, we can generate The Ter-
raform Deployment Configuration files in the context of our three
use cases.

All the resources described in the paper, including the complete
source code of the proposed Fog Modeling Language, the models
of the different use cases, the implementation of the related queries
and the generation component are available in an open repository8.

8 DISCUSSION
8.1 Current Scope and Limitation
The presented work capitalizes on previously existing work in the
context of Cloud systems. However, as seen in the literature, there
are significant differences between Cloud and Fog systems. In fact,

8https://zenodo.org/records/13132862

the Edge and IoT layers of Fog systems have particular types of
elements and properties which are not present in traditional Cloud
systems (IoT devices or material at the edge with their hardware
and software properties, heterogeneous communication means,
etc.). Notably, the concept of Fog Area is key to model several
subsystems supporting the decentralized characteristic of Fog sys-
tems. Moreover, explicitly characterizing network types and links
is fundamental for Fog systems in order to accurately model the
communications between the different Fog areas and their elements.
Finally, the modeling of applications and offered services is also im-
portant in the context of highly distributed Fog systems. Up to our
current knowledge, the already existing approaches and languages
do not allow to properly model the large variety of Fog systems,
specify their characteristics, and express related non-functional
properties to be verified. Our generic and customizable approach is
a direct answer to this challenge.

VeriFog and FML are generic because they allow to model dif-
ferent, and potentially any, kinds of heterogeneous Fog systems
within different applications domains while also considering differ-
ent types of non-functional properties to be verified. This notably
includes properties that are usually more critical in Fog systems
than in Cloud systems (e.g. security or performance/latency issues).
Still, it is important to note that our intent is not to support by
default in our approach all the possible Fog-specific issues. For
example, the resilience to faults is deliberately not a ’first-class’
concept in FML. This is the reason why we designed our approach
as customizable so that 1) FML can be refined to add the needed
attributes/metadata thus enriching the Fog system models as re-
quired and 2) additional queries can be defined accordingly to verify
any issues (e.g. fault tolerance) thanks to these complementary at-
tributes/metadata. More generally, genericity and extensibility are
key relevant characteristics we can directly rely onwhen addressing
other phases of the Fog system’s life cycle.

Automation is also a particularly important complementary as-
pect of VeriFog. Indeed, we recently added to our approach the
capability to support the automated generation of actual deploy-
ment configuration files. The work presented in this paper showed
that providing such an automation support, from high-level specifi-
cations of Fog systems (i.e. FML models) to low-level configuration
files, is actually feasible. This is notably a pre-requisite for the
following phases of the Fog system’s life cycle. For example, we
could then verify deployment-related QoS properties by relying on
these configuration files and combining a compatible deployment
tool (e.g., Terraform) with associated QoS solutions (e.g., Infracost9,
tfsec10). To go one step further in terms of automation, we could
also capitalize on the different artifacts we can already generate (i.e.
models, files) in other contexts. For instance, we could automate the
chaining of the various tools, frameworks and solutions involved
within several different phases of the Fog system’s life cycle. We
could also provide a specific automation support in the context of
other phases, for instance at deployment time (for resource manage-
ment) and execution time (for self-adaptation). This way, we will
further explore the support for other different Fog-specific issues
that cannot be easily addressed at design time.

9https://www.infracost.io/
10https://aquasecurity.github.io/tfsec

8.2 Lessons Learned
We sustained a regular interactions pace with our partner company
Smile to cope with the industrial relevance and applicability of
our work. This notably allowed us to collect practical experience
and feedback when elaborating on and evaluating the approach
presented in this paper.

The ability to model different kinds of Fog systems in differ-
ent application domains while considering different types of non-
functional properties to be verified (e.g. security, performance, en-
ergy) was demonstrated and discussed. In addition, it also appeared
that Fog system models are relevant to generate actual configura-
tion files and then deploy initial versions of working Fog systems.
An adaptation can then be carried out on these deployment config-
urations, for example by a developer or a system administrator. In
doing so, a reconciliation can occur between the original architect
(i.e. FSA) and the system’s operator. The objectives of this reconcil-
iation can vary: increasing volumes and adapting costs, updating
components and configurations, complying with APIs or require-
ments that may have changed over time, etc. Dealing with such
aspects naturally enriches the previous work on Fog system models
and their verification.

Currently, it could be challenging to identify in the industry suffi-
cient FSA workforce having both a solid system architectural/mod-
eling expertise (design part) and sufficient technical/programming
skills (verification part) for Fog systems. Considering the rarity of
architects, means to extend the lifetime of their proposed models
prevail over other considerations, such as direct compatibility with
the common administration tools. To reduce this possible gap, we
prototyped FML with a YAML textual concrete syntax that is quite
close to the kind of configuration files the DevOps engineer usu-
ally handles. FML models and their reuse could also be realized
via dedicated graphical interfaces, possibly integrated into existing
DevOps solutions, for example to replace OCL (as mostly known
in the MDE community) and Java (sometimes too general-purpose
and verbose) in VeriFog.

Moreover, as DevOps tools and methodologies are gaining at-
traction in both scientific and industrial communities, the involved
actors have to support a larger and larger operational perimeter. As
a consequence, architects in general (FSA included) will be expected
not only to design but also to verify, deploy and manage production-
ready Fog systems. This consideration gives momentum to the work
presented in this paper. Indeed, while high-level descriptions are
used for generating large scale deployment configurations, read-
ability and control are possible all along the model-based solution.
This enables both automated and human evaluation at the different
steps of the Fog system’s life cycle. To support such an evaluation in
practice, FML is a good facilitator as a commonly shared language
for modeling Fog systems.

9 RELATEDWORK
9.1 Simulation and Emulation
Designing, deploying, and evaluating Fog-based applications is a
complex and costly endeavor. To this end, several works proposed to
rely on simulation and emulation tools associated to dedicated lan-
guages. For example, Fogify [42] provides a modeling language for

defining Fog topologies (encapsulating QoS constraints) which ex-
tends the Docker-compose specification. However, contrary to our
approach, it does not directly cover the modeling of configurations
and mostly focuses on Docker-based infrastructures. iFogSim [23],
based on CloudSim [14], provides a modeling language for IoT de-
vices and associated Fog resources, in order to enable the simulation
of scheduling policies based on multiple QoS criteria. In this case,
contrary to us, they have very specific runtime objectives. Another
example is EmuFog [33] that enables the from-scratch specification
of Fog Computing infrastructures and the emulation of real appli-
cations and workloads. Once again, they are mostly operating at
runtime and with a specific target in mind (i.e. workload manage-
ment). Even if all these work intend to somehow verify Fog systems
before their deployments, they are closely related to particular in-
dustrial tools (e.g. Docker) or simulators (e.g. CloudSim). Moreover,
they are not promoting a more generic modeling language to be
exploited at each phase of the system’s life cycle (cf. Section 10).

9.2 Quality of Service (QoS)
There are also a few model-based solutions targeting the QoS of
Fog systems. For example, FogTorch [10] proposes a semi-formal
language that considers various relevant Fog aspects in order to
determine QoS-aware deployments of IoT application. Its successor
FogTorchΠ [11] exploits Monte Carlo simulation models to take
into account possible variations of the QoS and eligible deploy-
ments of Fog applications. SMADA-Fog [40] provides a semantic
model-driven approach to support the deployment and adapta-
tion of container-based applications in Fog Computing. The used
language relies on two metamodels implemented within the Node-
RED11 deployment tool. However, in all cases, these solutions are
strongly deployment phase-oriented, and do not target an end-to-
end holistic approach as we do (cf. Section 10).

9.3 Life Cycle Management and Orchestration
As introduced before, the design and implementation of a complex
Fog system can quickly become really challenging. Some works par-
tially address the life cycle of Fog systems in order to overcome this
complexity [22, 50]. However, they mainly deal with the execution
phase and are not necessarily meant to be generalized to the sup-
port for the whole life cycle, notably since they do not come with
reusable modeling languages. Indeed, a recent survey [17] found
out that orchestration is an over-used word that sometimes refers to
life cycle management. This semantic shortcut unfortunately leads
the community to a too strong focus on runtime concerns. In fact,
this survey shows that Fog orchestrated entities, when properly
modeled as services, tasks, pipe-lines, workflows, etc. could be used
more intensively in the context of Fog life cycle management.

From an industrial perspective, there are also relatively recent
initiatives. For example, Fogernetes [46], based on Kubernetes12,
compares and maps the requirements of application components to
available Fog nodes in order to ensure an optimal deployment ac-
cording to some non-functional properties. However, this solution
specifically relies on the Kubernetes, and focuses on non-functional

11https://nodered.org/
12https://kubernetes.io

properties while we could also possibly support functional proper-
ties as well (even if this is not the focus of the work presented in
this paper). Going further, GitOps [8] is one of the main trends in
the DevOps [27] ecosystem for Continuous Deployment that pro-
motes infrastructure automation in highly distributed applications.
A recent work [29] describes an initial implementation of GitOps at
the Edge/IoT-level based on KubeEdge13. Such an approach could
be interesting to generalize in the context of other similar technical
frameworks, by relying on FML as a basis for instance.

9.4 Model-based Approaches for the
Deployment of Distributed Systems

As introduced earlier in the paper, a systematic review of the exist-
ing declarative deployment tools has already been performed [49].
It notably resulted in the Essential Deployment Metamodel (EDMM)
that generalizes the main elements supported by these deployment
tools. Also, it allowed to combine multiple deployment tools in
a more automated way [47]. Based on EDMM, DeMAF [45] is an
abstract deployment framework that allows abstract deployment
models in EDMM to be transformed into technology-specific de-
ployment files. In the extended VeriFog, we integrate both EDMM
and DeMAF into our our Pre-Deployment Generation component.
We go a step further by now offering a comprehensive workflow
from design time verification to pre-deployment time generation.

DOML [15, 16] is another model-based solution that provides
a DevOps Modelling Language. It aims at describing Cloud appli-
cations in this language, and then generating the corresponding
executable Infrastructure-as-code (IaC) code for deployment tools
such as Ansible, Terraform, and Cloudify[19]. The underlying idea
is to consider a single modelling paradigm addressing infrastructure
provisioning, application deployment, and configuration all at once.
However, DOML does not allow to model a complete system and is
currently limited in terms of support for the verification of different
non-functional properties. In addition, it does not specifically target
the support for Fog systems such as in VeriFog.

CloudCAMP [9] proposes a model-driven engineering and gen-
erative programming approach integrated into an automated de-
ployment and management platform for Cloud applications. As
a result, CloudCAMP transforms partial specifications (i.e. mod-
els) into deployable IaC code possibly targeting different Cloud
providers. Although this solution supports the modeling of ap-
plication attributes and constraints, it does not intend to support
verification activities. Moreover, contrary to VeriFog, it focuses on
the modeling of the associated workflow and does not support the
complete modeling of Fog systems.

To summarize, most of the currently existing approaches rely on
a Domain-Specific Language (DSL) they propose to then generate
actual deployment configuration files. Overall, these approaches
are not intended to support the modeling of Fog systems (at least
not natively). In addition, they do not allow neither the verification
of different kinds of non-functional properties at design time before
the generation of deployment configuration files for various deploy-
ment tools. The main objective of VeriFog is to make a concrete
step in this direction.

13https://kubeedge.io

10 CONCLUSION AND FUTUREWORK
In this paper, we proposed a generic approach for Fog system ar-
chitects and engineers to model their Fog systems, verify different
kinds of relevant non-functional properties over them, and finally
generate actual deployment configuration files potentially targeting
different deployment tools. To this end, we notably introduced a
customizable Fog Modeling Language (FML) that allows specify-
ing Fog system models that can then be navigated, queried and
transformed as needed. We experimented with our verification
and generation approach, and underlying modeling language, by
using them in the context of different use cases covering various
application domains of Fog Computing.

The work described in this paper belongs to a more global re-
search effort intending to support the complete life cycle of Fog
systems. In fact, the presented modeling support for the design-time
verification of Fog systems and the pre-deployment generation of
configuration files is only a first step towards a wider usage of the
proposed FML. The longer term objective is to generalize the (re)use
of FML models in order to improve the support for other major
activities within the system’s life cycle. For example, at develop-
ment time, we would like to consider the FML models as inputs for
semi-automatically generating different wrappers or configuration
files for various technical platforms (e.g. frameworks, schedulers)
and kinds of Fog resources (e.g. Cloud servers, IoT devices). At
deployment time, we also plan to rely on FML models in order to
partially automate the allocation and/or provisioning of different
Fog resources, the chaining of hosted services, the loading/unload-
ing of related tasks, etc. At execution time, we already envision the
use of FML models as a way to allow the self-adaptation, in some
relevant cases, of the modeled systems (or at least parts of them).
For example, one important goal is to make the systems more re-
silient to various types of faults or errors, or more respectful of
high level properties defined in the models.

Another important objective, in direct collaboration with our
industrial partner Smile, is to work on the integration of the pro-
posed VeriFog approach, Fog Modeling Language, and other related
contributions into real DevOps CI/CD pipelines. Such pipelines can
be used in practice to support the production, maintenance and
evolution of real Fog systems in industrial contexts, in a managed,
offline, way. From an industrial perspective, VeriFog, FML and the
corresponding global research effort appear to be a promising way
to improve the overall QoS of the target Fog systems while possibly
reducing the associated development and management costs.

ACKNOWLEDGMENT
This work was funded by the French Agence Nationale de la Recher-
che Technologique (ANRT Cifre PhD grant) and by the French
Agence Nationale de la Recherche (ANR-20-CE25-0017 grant – Se-
MaFoR project).

REFERENCES
[1] M. Aazam, M. St-Hilaire, C.-H. Lung, and I. Lambadaris. Mefore: Qoe based

resource estimation at fog to enhance qos in iot. In 23rd International Conference
on Telecommunications (ICT 2016), pages 1–5, New York, U.S.A., 2016. IEEE.

[2] Z. Al-Shara, F. Alvares, H. Bruneliere, J. Lejeune, C. Prud’Homme, and T. Ledoux.
CoMe4ACloud: An end-to-end framework for autonomic Cloud systems. Future
Generation Computer Systems, 86:339–354, 2018.

[3] A. Alidra, H. Bruneliere, H. Coullon, T. Ledoux, C. Prud’Homme, J. Lejeune,
P. Sens, J. Sopena, and J. Rivalan. SeMaFoR - Self-Management of Fog Resources
with Collaborative Decentralized Controllers. In 18th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2023), Melbourne,
Australia, May 2023. IEEE.

[4] A. Alidra, H. Bruneliere, and T. Ledoux. A Feature-based Survey of Fog Modeling
Languages. Future Generation Computer Systems, 138:104–119, 2023.

[5] Amazon. AmazonWeb Services (AWS). https://aws.amazon.com/, 2024. Accessed:
2024-07-11.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica, et al. A View of Cloud Computing. Communications
of the ACM, 53(4):50–58, 2010.

[7] K. S. Awaisi, A. Abbas, M. Zareei, H. A. Khattak, M. U. S. Khan, M. Ali, I. U. Din,
and S. Shah. Towards a fog enabled efficient car parking architecture. IEEE Access,
7:159100–159111, 2019.

[8] F. Beetz and S. Harrer. Gitops: The evolution of devops? IEEE Software, 39(4):70–
75, 2021.

[9] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda. Cloudcamp: A model-
driven generative approach for automating cloud application deployment and
management. Technical Report ISIS-17-105, Vanderbilt University, Nashville, TN,
USA, 2017.

[10] A. Brogi and S. Forti. Qos-aware deployment of iot applications through the fog.
IEEE internet of Things Journal, 4(5):1185–1192, 2017.

[11] A. Brogi, S. Forti, and A. Ibrahim. How to best deploy your fog applications,
probably. In IEEE 1st International Conference on Fog and Edge Computing (ICFEC
2017), pages 105–114, New York, U.S.A., 2017. IEEE.

[12] H. Bruneliere, Z. Al-Shara, F. Alvares, J. Lejeune, and T. Ledoux. A Model-
based Architecture for Autonomic and Heterogeneous Cloud Systems. In 8th
International Conference on Cloud Computing and Services Science (CLOSER 2018),
pages 201–212, Setubal, Portugal, 2018. SciTePress.

[13] A. Bucchiarone, A. Cicchetti, F. Ciccozzi, and A. Pierantonio. Domain-Specific
Languages in Practice: with JetBrains MPS. Springer Nature, Berlin, Germany,
2021.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya. Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software: Practice and Experience,
41(1):23–50, 2011.

[15] M. Chiari, E. D. Nitto, A. N. Mucientes, and B. Xiang. Developing a new devops
modelling language to support the creation of infrastructure as code. In European
Conference on Service-Oriented and Cloud Computing (ESOCC 2022), pages 88–93,
Berlin, Germany, 2022. Springer.

[16] M. Chiari, B. Xiang, S. Canzoneri, G. N. Nedeltcheva, E. Di Nitto, L. Blasi,
D. Benedetto, L. Niculut, and I. Škof. Doml: a new modelling approach to
infrastructure-as-code. Information Systems, online:102422, 2024.

[17] B. Costa, J. Bachiega, L. R. de Carvalho, and A. P. F. Araujo. Orchestration in fog
computing: A comprehensive survey. ACM Computing Surveys, 55(2), jan 2022.

[18] R. Das and M. M. Inuwa. A Review on Fog Computing: Issues, Characteris-
tics, Challenges, and Potential Applications. Telematics and Informatics Reports,
10:100049, 2023.

[19] DELL. Cloudify – an open-source cloud orchestration framework.
https://docs.cloudify.co/, 2024. Accessed: 2024-04-19.

[20] V. Dumbravă and S. V. Iacob. Using probability – impact matrix in analysis and
risk assessment projects. Journal of Knowledge Management, Economics, and
Information Technology, 3:1–7, 2013.

[21] A. El-Hokayem, M. Bozga, and J. Sifakis. A framework for the specification and
validation of dynamic reconfigurable systems. SIGAPP Applied Computing Review,
21(2):18–32, jul 2021.

[22] F. Guim, T. Metsch, H. Moustafa, T. Verrall, D. Carrera, N. Cadenelli, J. Chen,
D. Doria, C. Ghadie, and R. G. Prats. Autonomous lifecycle management for
resource-efficient workload orchestration for green edge computing. IEEE Trans-
actions on Green Communications and Networking, 6(1):571–582, 2022.

[23] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya. ifogsim: A toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Software: Practice and Experience,
47(9):1275–1296, 2017.

[24] M. Haghi Kashani, A. M. Rahmani, and N. Jafari Navimipour. Quality of service-
aware approaches in fog computing. International Journal of Communication
Systems, 33(8):e4340, 2020.

[25] J. Huang, Q. Duan, Q. Chen, Y. Sun, Y. Tanaka, and W. Wang. Guaranteeing
end-to-end quality-of-service with a generic routing approach. SIGAPP Applied
Computing Review, 14(2):8–22, jun 2014.

[26] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation
Tool. Science of Computer Programming, 72:31–39, 2008.

[27] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles. A survey of devops
concepts and challenges. ACM Computing Surveys (CSUR), 52(6):1–35, 2019.

[28] S. Li, L. D. Xu, and S. Zhao. The Internet of Things: a Survey. Information systems
frontiers, 17:243–259, 2015.

[29] R. López-Viana, J. Díaz, and J. E. Pérez. Continuous deployment in iot edge
computing: A gitops implementation. In 17th Iberian Conference on Information
Systems and Technologies (CISTI 2022), pages 1–6, New York, U.S.A., 2022. IEEE.

[30] M. M. Mahmoud, J. J. Rodrigues, K. Saleem, J. Al-Muhtadi, N. Kumar, and V. Ko-
rotaev. Towards energy-aware fog-enabled cloud of things for healthcare. Com-
puters & Electrical Engineering, 67:58–69, 2018.

[31] F. Marconi, M. M. Bersani, and M. Rossi. A model-driven approach for the formal
verification of storm-based streaming applications. SIGAPP Applied Computing
Review, 17(3):6–15, nov 2017.

[32] K. Massey, N. Moazen, and T. Halabi. Optimizing the allocation of secure fog
resources based on qos requirements. In 2021 8th IEEE International Conference
on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom), pages 143–148,
New York, U.S.A., 2021. IEEE.

[33] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran. Emufog: Extensi-
ble and scalable emulation of large-scale fog computing infrastructures. In IEEE
Fog World Congress (FWC 2017), pages 1–6, New York, U.S.A., 2017. IEEE.

[34] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, 152:125–142, 2006.

[35] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.
Polakos. A comprehensive survey on fog computing: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials, 20(1):416–464, 2018.

[36] M. Naz, M. Rashid, F. Azam, M. Abbas, Y. Rasheed, M. H. Sinky, and M. W. Anwar.
A model driven framework for efficient bandwidth allocation in fog computing
using priority algorithm. In 2022 2nd International Conference on Computing and
Information Technology (ICCIT), pages 39–44, New York, U.S.A., 2022. IEEE.

[37] F. Neves, R. Vilaça, and J. Pereira. Detailed black-box monitoring of distributed
systems. SIGAPP Applied Computing Review, 21(1):24–36, jul 2021.

[38] Obeo. Acceleo – Generate anything from any EMF model.
https://eclipse.dev/acceleo/, 2024. Accessed: 2024-07-11.

[39] J. Oldevik, T. Neple, R. Grønmo, J. Aagedal, and A.-J. Berre. Toward Standard-
ised Model to Text Transformations. In European Conference on Model Driven
Architecture-Foundations and Applications (ECMFA 2005), pages 239–253, Berlin,
Germany, 2005. Springer.

[40] N. Petrovic and M. Tosic. Smada-fog: Semantic model driven approach to deploy-
ment and adaptivity in fog computing. Simulation Modelling Practice and Theory,
101:102033, 2020.

[41] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge Computing: Vision and challenges.
IEEE internet of things journal, 3(5):637–646, 2016.

[42] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D. Dikaiakos. Fogify:
A fog computing emulation framework. In 5th ACM/IEEE Symposium on Edge
Computing (SEC 2020), pages 42–54, New York, U.S.A., 2020. IEEE.

[43] University-Stuttgart. Deployment Model Abstraction Framework (DeMAF).
https://github.com/UST-DeMAF, 2024. Accessed: 2024-07-11.

[44] W. T. Vambe, C. Chang, and K. Sibanda. A review of quality of service in fog
computing for the internet of things. International Journal of Fog Computing
(IJFC), 3(1):22–40, 2020.

[45] M. Weller, U. Breitenbücher, S. Speth, and S. Becker. The deployment model
abstraction framework. In 26th International Conference on Enterprise Design,
Operations, and Computing (EDOC 2022), pages 319–325, Berlin, Germany, 2022.
Springer.

[46] C. Wöbker, A. Seitz, H. Mueller, and B. Bruegge. Fogernetes: Deployment and
management of fog computing applications. In IEEE/IFIP Network Operations and
Management Symposium (NOMS 2018), pages 1–7, New York, U.S.A., 2018. IEEE.

[47] M. Wurster, U. Breitenbücher, A. Brogi, F. Diez, F. Leymann, J. Soldani, and
K. Wild. Automating the deployment of distributed applications by combining
multiple deployment technologies. In 11th International Conference on Cloud
Computing and Services Science (CLOSER 2021, pages 178–189, Lisbon, Portugal,
2021. INSTICC.

[48] M. Wurster, U. Breitenbücher, A. Brogi, G. Falazi, L. Harzenetter, F. Leymann,
J. Soldani, and V. Yussupov. The edmm modeling and transformation system. In
Service-Oriented Computing–ICSOC 2019 Workshops: WESOACS, ASOCA, ISYCC,
TBCE, and STRAPS, Toulouse, France, October 28–31, 2019, Revised Selected Papers
17, pages 294–298, Berlin, Germany, 2020. Springer.

[49] M.Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann, K. Saatkamp,
and J. Soldani. The essential deployment metamodel: a systematic review of
deployment automation technologies. SICS Software-Intensive Cyber-Physical
Systems, 35:63–75, 2020.

[50] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R. Yu, and T. Huang. When serverless
computing meets edge computing: Architecture, challenges, and open issues.
IEEE Wireless Communications, 28(5):126–133, 2021.

[51] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong,
and J. P. Jue. All one needs to know about fog computing and related edge
computing paradigms: A complete survey. Journal of Systems Architecture, 98:289
– 330, 2019.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 An approach for Design-time Verification of Fog Systems (RQ1)
	4 A Generic Language for Modeling Fog Systems (RQ2)
	4.1 Abstract Syntax - Metamodel
	4.2 Concrete Syntax - YAML Textual Notation

	5 An Automated Generation of Deployment Configurations (RQ3)
	5.1 A Generative Approach
	5.2 Support for Automation

	6 Practical Applications on Different Use Cases (RQ4)
	6.1 Smart Campus: Energy Property
	6.2 Smart Parking: Performance Property
	6.3 Smart Hospital: Security Property

	7 Implementation
	8 Discussion
	8.1 Current Scope and Limitation
	8.2 Lessons Learned

	9 Related Work
	9.1 Simulation and Emulation
	9.2 Quality of Service (QoS)
	9.3 Life Cycle Management and Orchestration
	9.4 Model-based Approaches for the Deployment of Distributed Systems

	10 Conclusion and Future Work
	References

