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Abstract. The laws of Physics are time-reversible, making no qualita-
tive distinction between the past and the future—yet we can only go
towards the future. This apparent contradiction is known as the ‘arrow
of time problem’. Its current resolution states that the future is the di-
rection of increasing entropy. But entropy can only increase towards the
future if it was low in the past, and past low entropy is a very strong
assumption to make, because low entropy states are rather improbable,
non-generic. Recent works from the Physics literature suggest, however,
we may do away with this so-called ‘past hypothesis’, in the presence of
reversible dynamical laws featuring expansion. We prove that this is the
case, for a reversible causal graph dynamics-based toy model. It consists
in graphs upon which particles circulate and interact according to local
reversible rules. Some rules locally shrink or expand the graph. Generic
states always expand; entropy always increases—thereby providing a lo-
cal explanation for the arrow of time. This discrete setting allows us to
deploy the full rigour of theoretical Computer Science proof techniques.
These objects are also interesting from a Dynamical Systems point of
view, as a simple generalisations of cellular automatons exhibiting non-
trivial behaviours.

Keywords: Models of computation· Cellular automata· Synchronous
graph rewriting· Information theory· Invariants and termination

1 Introduction

In short. The main contribution of this paper is a first rigorous proof that
an arrow of time typically emerges in some time-reversible dynamics, without
the need for a past hypothesis. This problem pertains to a long foundations of
Physics tradition. But the novelty of our approach is precisely the deployment of
theoretical Computer Science models and techniques, in order to formalise it and
solve it. I.e. the problem is first transposed to the world of models of computation
(cellular automata, graph dynamics, term algebras) and information theory, and
then addressed through the study of invariants and termination proofs. In the
longer version of this paper, some natural variants of the model are also explored
numerically.



The problem. Physics laws are time-reversible, i.e. time evolution can be in-
verted, making no qualitative distinction between the past and the future. Yet,
we clearly experience the fact that we cannot go back to the past. This discrep-
ancy is referred to as the ‘arrow of time problem’. It sets the requirement for an
explanation of “how does the future versus past phenomenon that we witness
in everyday life, arise from time-reversible dynamical laws alone”. I.e. the aim
of the game is to resolve this apparent paradox by pinpointing specific physical
quantities that can be used as ‘clocks’, and then identifying the future direction
to be direction of increase of that quantity, thereby providing a time arrow.

Usually, these quantities are variants of the concept of entropy, and one
shows that starting from a low entropy initial state, entropy typically increases
even under a time-reversible law. Thus, in the conventional argument due to
Boltzmann [14], “Time-reversible dynamical law + Past low entropy ⇒ Arrow
of time”. This argument works even for systems of bounded size (e.g. a few of
particles in a box). But it suffers three important criticisms: (i) By the Poincaré
recurrence theorem, as we iterate the dynamics forward, the entropy typically
increases. . . but then drops back, and increases, etc., as the dynamical system is
necessarily (almost-)periodic. The criticism is usually dismissed by Physicists on
the base that the recurrence period is beyond cosmological times. (ii) Starting
from an initial low entropy state and iterating the dynamics forward, entropy
typically increases (the ‘entropic clock’s arrow’ matches that of the external
time-coordinate aka“dynamical clock”). However, had we applied the reversed
dynamics instead, i.e. iterating the dynamics backward, entropy typically would
have increased, too (the entropic clock’s arrow does not match the dynamical
clock’s arrow) [20], as is quite often overlooked. (iii) The assumption that the
initial state be of low entropy, also referred to as ‘the past hypothesis’ [1] is
a very strong one. This is because generic state have maximal entropy. Hence,
the presence of such an improbable state at dynamical clock time 0, remains a
mystery, that again demands an explanation. We will review these points in Sec.
2.

Comparison with related models. In [16,17], Carroll and Chen try to fix the third
criticism and provide the first plausible intuition why “Time-reversible dynam-
ical law ⇒ Arrow of time”. Their key new ingredient is big bounce (big crunch
then bang) then eternal expansion—as featured also in several early attempts
to restore the particle-level charge/parity/time-reversal symmetry (CPT) at the
scale of the universe [25,15,22]. Their discussion is left informal however, leav-
ing plenty of room to discuss whether it really manages to do away with the
past hypothesis [28,27,29]. In particular, they themselves raise the issue whether
expansion mechanisms are actually compatible with reversibility.

Informally, in a big bouncing universe, matter gets compressed by the big
crunch, and released by the big bang. Expansion happens so fast that matter
then finds itself out of equilibrium, in a low entropy state. Matter then diffuses
and entropy increases without ever reaching a maximum, as expansion is eternal.
The entropic clock’s arrow thus matches that of the “size-of-the-universe clock”,
which in turn matches that of the dynamical clock after the big bounce. This



explanation is compelling. Yet the following direct logical consequence is some-
what mind-bending: before the big bounce occur, the size-of-the-universe clock,
and thus the entropic clock, have their arrow opposite to that of the dynamical
clock. These twin entropic times facing each other have in fact been popularized
as ‘Janus time’ by Barbour [10]. Still, as counter-intuitive as it may be, this is
already happening in the conventional argument by Boltzmann: as pointed out
by Golstein et al. [20], this is just the mentioned criticism (ii).

Barbour et al. [10,11] use the n−body problem, with (non-local) Newto-
nian classical gravity turned on, as an enlightening analogy of big-bounce-then-
eternal-expansion. The question whether their model really does away with the
past hypothesis has been argued in [30]. Indeed as the considered bodies travel
on a pre-existing infinite space, the analogy blurs out the requirement of finite
but unbounded configurations, which is needed to make the argument rigorous.
Moreover, the entropic clock (quantity measuring the microscopic disorder) is
replaced by a “shape complexity clock” (quantity measuring the macroscopic
clumping) in these works. This is non-standard and arguable on the basis that
in many situations there is no need for gravitational clumping in order to ob-
serve an arrow of time. The question whether expansion can be implemented as
a local reversible mechanism also remains open in this strand of works [24].

The aim of this paper is to exhibit rigorously-defined local reversible dynam-
ical laws (the local rule of reversible causal graph dynamics) for which we can
prove that, for a rigorously-defined notion of entropy (alike that of perfect gas):

– Generic states always end up growing in size as we iterate the dynamics.
– Entropy always increases as size grows.

Thus we prove that an entropic clock direction emerges without the need to
assume past low entropy. In other words the arrow of time is established from
local reversible expansion mechanisms alone, doing away with the past hypoth-
esis. Again, this works because size as a function of dynamical clock time is
typically U -shaped. As generic states are are somewhere on this U -curve, their
size will end up growing, and their entropy will end up increasing. They will do
so forever, as configurations are of finite but unbounded size. Of course generic
states have, somewhere along the dynamical clock timeline, some states of small-
est size and lowest entropy, which may be dubbed as “initial”. These particular
states are non-generic, just like the minimum of any U -curve is non-generic. Be-
cause the U -curve is due to the dynamics alone, their existence is the result of
dynamics alone.

Our toy model is set in 1 + 1 spacetime. It consists in circular graphs upon
which particles move and interact when they are closeby. Moreover, local some
patterns are interchanged, triggering shrinking or expansion of the circle. It is
cast in the framework of reversible causal graph dynamics [8,6] and is inspired by
the Hasslacher-Meyer model [23], for which there is numerical evidence of a U -
shaped size curve, but no proof—this seems inherently hard to prove in fact [12].
There is no mention of the arrow of time nor entropy in their paper; moreover the
sense in which it is reversible and causal is left informal and seems incompatible
with quantum mechanics [3]. Instead, our toy model enjoys rigorous proofs of



U -shaped size and entropy curves, as well as rigorous notions of reversibility [5]
and causality (i.e. making sure that information propagates at a bounded speed
with respect to graph distance), readily allowing for a quantum extension [4].
These results are provided in Sec. 3.

As far as we know, there are no other closely related models besides the
above-mentioned ones. This may be because 1/ The fact that a time-reversible
model always grows is somewhat counter-intuitive, 2/ let alone proving it—as
shown by the efforts of [12]. 3/ Interdisciplinary work is not so common on this
topic. In particular, the theoretical Computer Science analysis that we deploy is
a new player. We believe it brings simplicity, clarity and rigour to a long-standing
issue.

2 The conventional argument

Entropy. Entropy was defined by Boltzmann in the 1870s:

Definition 1. [13] The entropy S of a macroscopic state is defined by :

S = k. lnΩ (1)

with k the Boltzmann constant and Ω is the number of microscopic configurations
corresponding to the macroscopic state.

In this definition the word ‘macroscopic state’ refers to a set of values for the
macroscopic properties of the system, such as its temperature, pressure, volume
or density. Given a certain macroscopic state, a ‘statistical ensemble’ is a way to
assign a probability distribution to the set of microscopic states that correspond
to the macroscopic state. It is often reasonable to assume that the probability
distribution be uniform (aka a ‘microcanonical ensemble’). The probability pi
of a microscopic state xi is then pi =

1
Ω . The connection between the Shannon

entropy [26] of this probability distribution, and the Boltzmann entropy of the
macrostate, is then obvious:

S = −k
Ω−1∑
i=0

pi ln (pi) = −k
Ω−1∑
i=0

1

Ω
ln (

1

Ω
) = k. lnΩ (2)

For a dynamical system over the state space X, the microscopic states are
simply the configurations xi ∈ X of the system. We formalize the macroscopic
states as equivalence classes on X. The entropy function associates, to each
microscopic state, the entropy of its macrostate.

Definition 2. Consider X a set and ≡ an equivalence relation on X. We define
the entropy function S : X → R associated with ≡ as:

S(x) = ln (|[x]|) (3)

with [x] the ≡-equivalence class of x and |[x]| is its size.



The case of bounded size dynamical systems. The second principle of ther-
modynamics states that “entropy increases in time”. However, even for closed,
bounded size dynamical systems, the situation is not so obvious:

Remark 1 Let X be a finite state space and f : X → X a bijection. For any en-
tropy function S, and for any configuration x ∈ X, the sequence (S(fn(x)))n∈N

is periodic because the sequence fn(x)n∈N is periodic. This implies that the se-
quence of entropy variations (S(fn+1(x)) − S(fn(x)))n∈N is itself periodic. If
(S(fn(x)))n∈N is not constant, then these entropy variations can be negative.

How can we justify, then, that when we dilute a drop of dye in a sealed
glass of water, entropy seems to just rise, unambiguously indicating an arrow of
time? Besides the fact that in practice the glass is not quite a closed system, and
hence undergoes a not quite time-reversible system, several other assumptions
are implicit in this emblematic experiment.

First, the duration of such an experiment likely to be far too short to observe
periodicity. To give an order of magnitude, for a molar volume of 22.4L of perfect
gas, the number of microstates Ω is ∼ 105×1024 . Intuitively, the period ought
to be of that same order of magnitude, as expressed in units of Planck time
(minimal observable time). However, it is estimated that only 1060 Planck times
have elapsed since the Big Bang.

Second, the drop of dye would likely have diluted just as well if it had un-
dergone the time-symmetrized versions of Physics laws instead. In other words,
entropy typically does increase when we start from a low entropy initial config-
uration. . . but it does so in both directions of the dynamical clock [20].

Third, we must realise that the experiment starts off at a rather improbable
time: the first 1060 ticks of dynamical clock time represent a negligible fraction
of the ∼ 105×1024 entropy recurrence period. Had current time been picked up at
random within the period, there would be no reason to expect it to be a time of
increase of entropy, rather than of decrease. Another way to say this is that the
experiments starts off from an improbable configuration. Indeed in any generic
configuration the dye is diluted already; entropy is almost maximal already; and
the entropy variation is zero on average, independently of t the number of steps
between the two observations:∑

x∈Σ

(
S(f t(x))− S(x)

)
=

∑
x∈Σ

S(x)−
∑
x∈Σ

S(x) = 0.

In order to witness an arrow of time, we must start from a low entropy configura-
tion, but in practice the equivalence relation and therefore the entropy function
are chosen so that low-entropy configurations are non-generic.

Past hypothesis. So, to this day, phenomena such as the dilution of the drop
of dye in a glass of water, and the increasing entropy therein, are paradigmatic
of current understanding of the arrow of time problem. . . and yet, a careful in-
spection of the assumptions underlying the conventional argument shows that
it only displaces the problem. The question “Why do we observe an arrow of
time” has become “Why was the Universe originally of low entropy?”. In fact



the conventional argument requires that the entropy at the Big Bang be so low
that an arrow of time is still observable ∼ 13.7 billion years later—making it a
very strongly non-generic configuration. This strong assumption of a low entropy
initial configuration is referred to as the ‘past hypothesis’ [1], and was criticised
right from its birth, on account of this unlikelihood [14]. Luckily, more recent
accounts of the arrow of time suggest we could do without it [16,17,10,9]. The
key ingredient is expansion.

3 Arrow of time without past hypothesis

In this section we prove via a toy model that an entropic arrow of time can
originate from expansion, and that this expansion can be implemented locally
and reversibly. In this model Remark 1 does not apply because, although each
configuration is finite, the state space itself is infinite, as configurations can grow.
That Remark 1 can be circumvented in an infinite state space is not surprising
by itself: think of N the set of integers for instance. Each number can be written
with a finite number of digits, but the set itself is of course infinite, and it is
easy to define a non-periodic bijection on the set:

f(n) =


0 if n = 1

n+ 2 if n is even

n− 2 else

(4)

What is much less obvious and harder to prove is the existence of a time-
reversible, causal, homogeneous, ultimately expanding dynamics on generic con-
figurations. We do not know of another such model.

3.1 State space

a

b

a

b
a

b

a

b

a

b

a

b

a
b

a

b

a

b

Fig. 1: A configuration. Each full half-
disks represents the presence of an
(undistinguishable) particle that is
about to hop along the corresponding
port.

The states of the model are circu-
lar graphs of 1 dimension. These cir-
cles are of unbounded but finite size,
i.e. the line is not allowed. The ver-
tices are equipped with ports a and b,
and edges go from port to port, each
being used exactly once, as in Fig.
1.
Each vertex carries an internal state,
amongst four possible states: ‘contain-
ing no particle’, ‘containing a parti-
cle moving along port a’, ‘contain-
ing a particle moving along port
b’, ‘containing two particles’. Notice
that this set of internal states is the



same as that used to model elec-
trons in gas-on-grid methods [21],
or in quantum walks to represent
the spin of a fermionic particle such
as the electron [2]. Later we will
generalize this by associating, to
each port of each node, not just
one information bit, but two or
three.

There is one subtlety: vertices are named, and these names form a little
algebra. This is so that a vertex u may be able to split into u.l and u.r, and
later merge back into u.l∨u.r, and that this be in fact the same as just u. There
is no escaping this formalism in order to achieve both reversibility and local
vertex creation/destruction [6], particularly if one wants to preserve causality in
the quantum regime [3]. In order to remain self-contained, the full definition of
these named graphs is provided in Appendix A.
We denote by Cn the set of circular graphs with 2n information bits per vertex
(n per port). For any vertex x, we denote by pi(x) the value of the i-th bit of
the port p of vertex x.

3.2 The toy model

Our main model (
√
τI) is inspired by the Hasslacher-Meyer dynamics [23]. It

acts on the set C1 and consists in composing two steps: I, then
√
τ . Each of

them is a reversible causal graph dynamics, thus so is their composition—the
reader is left to referred to [8,6] for further theoretical aspects about reversible
causal graph dynamics, including general definitions. Thus the whole dynamics is
a time-reversible. It consists in a composition of steps which, taken individually,
are time-symmetric [19]:

Definition 3. A causal graph dynamics f , it is said to be time-symmetric if and
only if there exists a causal graph dynamics T such that T 2 = Id and TfT = f−1.

Step
√
τ . Let τ be the operation that moves all particles along their corre-

sponding port. The operation
√
τ is such

√
τ ◦ √

τ = τ : it moves particles by
half an edge instead, see Fig. 2a. One way of thinking about this operation is
as inverting the roles of edges and nodes in the sense of taking the dual graph.
Notice that alternatively, we could have used a (renaming-equivalent but less
symmetrical) operation that moves only those particles associated to port b, but
by a whole edge.

Definition 4 (
√
τ). Step

√
τ is defined for any graph X ∈ Cn as follows:

– V (
√
τ(X)) = {u.r ∨ v.l | {u : b, v : a} ∈ E(X)}

– E(
√
τ(X)) = {{x′ : b, y′ : a} | u, x, y ∈ V (X) et x′ = u.r ∨ x.l et y′ =

y.r ∨ u.l}



x4 x3

u.r ∨ v.l

x2 x1
a b a

t.r ∨ u.l

x6 x5
bb a

v.r ∨ w.l

x2 x3

u

x0 x1
a

t

x4 x5

v

x6 x7
b

w

b ab a b a

(a) Step
√
τ . Each particle hops by

half an edge. In other words, edges
become vertices and vertices become
edges. Particles keep their orientation.

u

a b

a

u.l

b

u.r

b a

(b) Step I. All occurrence of the two
patterns are flipped for the other syn-
chronously. This can be done without
ambiguity, as the patterns do not over-
lap.

Fig. 2: Rules of the toy model.

– ∀x′ ∈ V (
√
τ(X)), and for all i ∈ [1, n], ai(x) = ai(u) and bi(x) = bi(v),

where u and v are the vertices of X such that x′.l = u.r and x′.r = v.l
respectively.

This step is both time-reversible and time-symmetrical, since

√
τ
−1

= T
√
τT (5)

with T the function exchanging the left and right information bits of each vertex.
Step I. Step I consists in splitting a vertex into two when it holds two parti-

cles, or conversely merging two vertices holding a pair of back-to-back particles,
as in Fig. 2b. Thus, a vertex u such as a1(u) = b1(u) = 1 will produce two
vertices u.l and u.r with a1(u.l) = b1(u.r) = 1 and b1(u.l) = a1(u.r) = 0. Con-
versely, two vertices u and v, with a1(u) = b1(v) = 1 and b1(u) = a1(v) = 0 will
merge into a vertex u ∨ v such as a1(u ∨ v) = b1(u ∨ v) = 1.

This step is obviously time-reversible and time-symmetric, since it is involu-
tive: I2 = Id.

Spacetime diagram. The evolution of a configuration under toy model
√
τI

can can be represented in the form of a spacetime diagrams, e.g. Fig. 3 repre-
sents

√
τI. In these diagrams, the spatial dimension is represented horizontally,

and dynamical clock time is represented vertically downwards. Each vertex is
represented by a cell, separated from its neighbours with a vertical black line.
Its internal state of a cell is captured by its colour. The cells are depicted in
variable-sizes, allowing each split/merge to be done “on the spot”.

3.3 Size increases

The first observation that can be made from Fig. 3 is that the dynamics
√
τI,

although time-reversible, grows the size of the graph. It does not grow from the
borders, there are no borders, it just expands locally. The numerics in Fig. 4a
suggest this is typical. We will now prove that this happens for generic initial



Fig. 3: Spacetime diagram of dynamics
√
τI. Dynamical clock time flows towards

the bottom. Particles corresponding moving along port a (resp. b) are represented
green (resp. blue). Observe how space keeps on expanding, making this spacetime
diagram look like a curtain.
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Fig. 4: Typical size and entropy curves for dynamics
√
τI. The horizontal axis

represents the number of steps of the dynamics, aka dynamical clock time. The
initial configuration is drawn uniformly at random amongst all graphs of size
100.

states. In fact, we will prove the stronger result that graphs always end up
growing, and that the growth is strict as soon as they contain at least one
particle of each type.

Intuitively this is due to the fact that vertex merger only occurs in the pres-
ence of a pattern which is unstable:

Lemma 1 (Merger Instability). . Let be a circular graph X ∈ C1. Given a
pair u and v of adjacent vertices of X, these are said to belong to a merger
pattern if and only if a1(u) = b1(v) = 1 and b1(u) = a1(v) = 0. For any u v
forming a merger pattern in X, there are two vertices u.r, v.l ∈ V ((

√
τI)−1(X))

such that u.r and v.l form a merger pattern.

Proof. By inspection of Fig. 5, which represents the pre-image of a merger pat-
tern.

Let us fix notations before we state the expansion theorem. first; in what
follows we will write (un) to designate the sequence (un)n∈N in the absence of
ambiguity and use:

Definition 5. Let there be two sequences (un) and (vn). We say that (un) is
of the order of (vn), and write (un) = Θ((vn)) if there exist positive numbers
a, b ∈ R and n0 ∈ N such that for all n ≥ n0, a.vn ≤ un ≤ b.vn.

We have:

Theorem 1 (Expansion). For any X ∈ C1 containing at least one particle of
each type, let un = |V ((

√
τI)n(X)) |. We have (un) = Θ((

√
n)).

Proof. (Outline). As proved in Lem. 1 dynamics
√
τI cannot create a merger

pattern as they are stable by (
√
τI)−1. This entails that any interference dis-

rupting a merger pattern will permanently destroy it. We prove, by means of



a strictly decreasing measure, that such interference will occur if and only if
the graph contains at least two particles going in opposite direction. Lastly we
quantify the growth rate once all merger patterns have been removed from the
graph, placing bounds corresponding to the best and worst case scenarios. The
proof technique is thus akin to a program termination and complexity analysis
proof. It is technical, we shift it to Appendix B for readability.

As can be seen in Fig. 4a, for a randomly chosen configuration, the asymp-
totic regime is reached quickly and is quite stable.

3.4 Entropy increases with size

u.r ∨ v.l

a b

a

u

b

v

b a

a

u.r

b

v.l

b a

√
τ

−1

I−1

Fig. 5: Instability of merger
patterns under

√
τI.

It turns out that growth in the size of the graph
implies growth of entropy, for a natural notion of
entropy.
Indeed from this point on, we will focus on the
entropy function associated with the following
equivalence class: two configurations are consid-
ered equivalent if and only if they have the same
size and the same number of particles. This en-
tropy function can be seen as analogous to the
one used in the study of perfect gases.
This is because the entropy of a perfect gas con-
figuration is generally associated with the macro-
scopic properties of pressure, volume, temperature
and number of particles. As these four variables
are related by the perfect gas law, three are in-
dependent. Moreover, in our toy model the speed
of the particles is constant, which makes it unnec-
essary to consider the temperature. We therefore
have to consider just two variables amongst: the
number of particles; the size of the graph (analo-
gous to the volume); and the density of particles
(analogous to the pressure).

We ignore the names of the vertices when counting the microstates corre-
sponding to the macrostates, i.e. when counting the number of graphs of a given
size and having a given number of particles. We denote

(
n
p

)
the binomial coeffi-

cient p among n, i.e.
(
n
p

)
= n!

p!(n−p)! .

Definition 6. The entropy function S′ is defined by S′(X) = log(
(
2|V (X)|

p

)
where p is the number of particles in X.

In the case of
√
τI we have proven in Th. 1 that V (X) grows as a square root.

Because this rule preserves the number of particles we automatically obtains the
growth of entropy. But we can be more precise:



Corollary 1 For any X ∈ C1 containing at least one particle of each type, let
en = S′(

√
τI)n(X). We have (en) = Θ((log(n))).

Proof. Thanks to Th. 1, we have that (S′(
√
τI)n(X))n∈N = Θ(log(

(
Θ(

√
n)

p

)
))

Using the bounds (ab )
b ≤

(
a
b

)
≤ eb(ab )

b [18], and noting that p is constant, we
obtain :

(S′(
√
τI)n(X))n∈N = Θ(p log(

Θ(
√
n)

p
)) = Θ(log(n1/2)) = Θ(log(n))

Note that this corollary would apply equally well to any dynamics where the
number of particles remains constant and the size of the graph grows polynomi-
ally (not necessarily as a square root).

The asymptotic regime of the size function was reached as soon as all the
merger patterns were destroyed, cf. Fig. 4a. The same happens with global en-
tropy, cf. Fig. 4b.

If we are only interested in whether entropy grows, without seeking to char-
acterise its asymptotic behaviour, we can state a more general theorem, relating
it to size growth. Indeed, under the assumption that the particles do not fill the
whole space, nor disappear completely, then any dynamics that increase the size
of the graph will also increase the entropy:

Theorem 2 (Entropy increases with size). For all X ∈ Cu and f : Cu → Cu
such that :

– lim
n→+∞

|V (fn(X))| = +∞
– ∃m ∈ N such that ∀n ≥ m, 1 ≤ pn ≤ 2u × |V (fn(X))| − 1 where pn is the

number of particles in the step in fn(X).

We have that lim
n→+∞

S′(fn(X)) = +∞.

Proof. Thanks to the second condition, we have for all n ≥ m :

S′(fn(X)) = log(

(
n

p

)
2|V (fn(X))|

) ≥ log(

(
2|V (fn(X))|

1

)
) = log(2|V (fn(X))|)

As log(2|V (fn(X))|) tends to +∞ when n tends to +∞, this is also the case for
S′(fn(X)).

3.5 Recovering an arrow of time

With Th. 1 and Cor. 1, we have proven that an entropic arrow of time emerges
in some time-reversible, causal, homogeneous laws (namely the

√
τI toy model),

without relying on the past hypothesis. More precisely, we have proven that
starting from generic configurations, entropy ultimately grows as we iterate the
dynamics. Intuitively, after a finite period of dynamical clock time, the entropic



clock’s arrow aligns with that of the dynamical clock. This solves criticism (iii)
of the conventional argument. Notice how, ultimately, this resolution boils down
to the fact that configurations are of finite but unbounded size. In this context,
assuming that the universe “starts small” is reasonable, because for any con-
figuration, there are many more larger configurations than smaller ones. The
same happens with entropy: any starting value is small within the set of positive
real numbers. In that sense past low entropy is no longer unreasonable, it is
unavoidable.

An immediate consequence is that the toy model is not periodic, i.e. there is
no recurrence time: this solves criticism (i) in a way more satisfactory manner
than arguing that “there is a recurrence time but it is typically too big to be
observed”. Let us look at criticism (ii).

Since the system
√
τI is time-reversible, one can naturally ask what happens

if one tries to ”go back in time”, i.e. how a generic graph evolves when one
applies the dynamics (

√
τI)−1 = I−1

√
τ
−1

. Numerics suggest it also increases
the size of the graph, but at a different rate, see Fig. 6a. We can prove it:

Theorem 3. For any X ∈ C1 containing at least one particle of each type, the
sequence (|V ((

√
τI)−n(X))|)n∈N is of the order of n.

Proof. In the absence of patterns , the size of the graph decreases
strictly each time two particles meet. By conservation of momentum, the parti-
cles will continue to cross each other. Since the graph cannot decrease contin-
uously a pattern will inevitably form. As can be seen in the proof
of Lem. 1, the pattern is stable by I−1

√
τ
−1

, and cannot be crossed
by other particles. This implies that once such a pattern is present, any pair of
particles not belonging to such a pattern can only collide once. When all these
collisions have occurred, each application of I−1

√
τ
−1

increases the size of the
graph by the number of patterns present. We can bound by min(na, nb) the

number of such patterns in X and its successors by I−1
√
τ
−1

. Thus there exists
m ∈ N such that for all n ≥ m we have :

|V ((
√
τI)−m(X))|+n ≤ |V ((

√
τI)−n(X))| ≤ |V ((

√
τI)−m(X))|+n×min(na, nb)

By the same proof scheme as for corollary 1, we obtain the entropy growth
for I−1

√
τ
−1

:

Corollary 2 For any X ∈ C1 containing at least one particle of each type, let
en = S′(

√
τI)−n(X) the sequence (en) is of the order of log(n).

Thus, a variation of criticism (ii) still holds, as entropy increases in both direc-
tions from a ‘source’. But here, since the model is not periodic, there is a single
such source: a possibility discussed under the name of ‘Janus point’ [16,17,10,9].
To move away from this region of minimal entropy, whether by iterating the
forward dynamics or its reverse, means augmenting entropy and hence ‘going
towards the future’. The important point is the way in which this variation re-
lates to the resolution of criticism (iii): it is no longer necessary to assume that
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the universe “started” in an improbable low-entropy state; as the existence of
an arrow of time just follows from the existence of a minimal region, which itself
is a direct consequence of the dynamical law.

4 Conclusion

This paper provides a first rigorous proof that an arrow of time typically emerges
in some time-reversible dynamics, without the need for a past hypothesis. The
reversible dynamics in question is cast in the setting of reversible causal graph
dynamics ; the methods used pertain to the field of theoretical Computer Sci-
ence. The proof works by showing that graph size increases, and that entropy
increases with size, where entropy is defined as for perfect gases. It provides
a local explanation for the origin of the arrow of time, by tracing it back to
local, reversible expansion mechanisms acting over configurations of finite but
unbounded size.
This explanation resolves two of the three main criticism to the standard of the
standard Boltzmann argument: there is no recurrence time, and no need to as-
sume atypical initial conditions. One criticism still holds as there are successive
configurations of minimal entropy from which two arrows of time flow in oppo-
site directions. This idea is present in some cosmological models and popularized
under the name or ‘Janus point’.
We also show, numerically, in the longer version of this paper, that the expla-
nation is compatible with fully time-symmetric dynamics, as well as periods of
exponential growth.
In Thermodynamics, entropy increases globally, but locally in may well decrease
and stabilize close to zero, reaching the so-called ‘thermal death’. At which stage
it becomes impossible to witness an arrow of time locally. The longer version of



this paper includes a theorem about the fatality of thermal death, and discusses
delaying it.
We wonder whether the same argument can be made base on other notions of
entropy, such as: metric entropy, topological entropy, or Von Neumann entropy
(in the quantum regime).
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A Named graphs

Say as in Fig. 2b that some quantum evolution splits a vertex u into two. We need
to name the two infants in a way that avoids name conflicts with the vertices
of the rest of the graph. But if the evolution is locally-causal, we are unable to
just ‘pick a fresh name out of the blue’, because we do not know which names
are available. Thus, we have to construct new names locally. A natural choice
is to use the names u.l and u.r (for left and right respectively). Similarly, say



that some other evolution merges two vertices u, v into one. A natural choice is
to call the resultant vertex u∨ v, where the symbol ∨ is intended to represent a
merger of names.

This is, in fact, what the inverse evolution will do to vertices u.l and u.r
that were just split: merge them back into a single vertex u.l∨u.r. But, then, in
order to get back where we came from, we need that the equality u.l ∨ u.r = u
holds. Moreover, if the evolution is time-reversible, then this inverse evolution
does exists, therefore we are compelled to accept that vertex names obey this
algebraic rule.

Reciprocally, say that some evolution merges two vertices u, v into one and
calls them u ∨ v. Now say that some other evolution splits them back, calling
them (u∨v).l and (u∨v).r. This is, in fact, what the inverse evolution will do to
the vertex u∨v, split it back into (u∨v).l and (u∨v).r. But then, in order to get
back where we came from, we need the equalities (u∨v).l = u and (u∨v).r = v.

Definition 7 (Names). Let K be a countable set. The name algebra N [K] has
terms given by the grammar

u, v ::= c | u.t | u ∨ v with c ∈ K, t ∈ {l, r}∗

and is endowed with the following equality theory over terms (with ε the empty
word):

(u ∨ v).l = u (u ∨ v).r = v u.ε = u u.l ∨ u.r = u

We define V := N [K].

The fact that this algebra is well-defined was proven in [6]. Now that we have a
set of possible names for our vertices, we can readily define ‘port graphs’ (aka
‘generalized Cayley graphs’ [7]. Condition (1) will just ensure that names do not
intersect, e.g. forbidding that there be a name u∨ v and another v ∨w, so as to
avoid name collisions should they split.

Definition 8 (Named graphs). Let Σ be the set of internal states and π be
the set of ports. A graph G is given by a finite set of vertices VG ⊆ V such that
for all v, v′ ∈ VG and for all t, t′ ∈ {l, r}∗,

v.t = v′.t′ implies v = v′ and t = t′ (6)

together with

– σG : VG → Σ its internal states

– EG a set of non-intersecting two element subsets of VG : π, its edges.

In other words an edge e is of the form {x : a, y : b} and ∀e, e′ ∈ EG., e ∩ e′ ̸=
∅ ⇒ e = e′.



B Proof of Th. 1

Proof. First, it is argued that there is a time step m after which no more vertex
mergers will occur. We denote nf (X) the number of merger patterns in X, and
df (X) the minimum distance between a merger pattern and a particle moving
towards it (this includes a particle present in a merger pattern, and itself if there
are no other particles). We will show that the pair (nf (

√
τI)n(X), df (

√
τI)n(X))

decreases strictly in lexicographic order.

As we have seen in Lem. 1, a merger pattern cannot be created, and is
destroyed on collision. We only need to prove that dfu((

√
τI)nX) decreases

strictly when p (
√
τI)nX) remains constant. Let u, v be two vertices of a merger

pattern and p a particle such that u, v and p realise the distance df (X). Two
cases can occur, either p is itself part of a merger pattern, in which case there
are no particles between the two merger patterns, or p is free moving, in which
case there are only particles going in the opposite direction between p and u, v.
In the first case, the two perform a fusion and there are no particles between
the two merger patterns (so there is no division); the distance between the two
patterns therefore decreases by 1. In the second case, the particle p will move
towards the merger pattern, decreasing dfu((

√
τI)nX).

In order to preserve the readability of the notations, we will denote (un)
the sequence (|V ((

√
τI)n(X))|). Thanks to the previous point, we know that

there is a time step m ∈ N from which each collision of particles will cause the
creation of an additional vertex, so the sequence un is necessarily increasing for
all n > m. Since X contains at least one particle of each type, we have that for
all n ≥ m, the evolution of (

√
τI)nX during un time steps causes at least one

collision. Similarly, we know that at most c = 2nanb collisions occur in the same
time frame where na (resp. nb) is the number of particles on the port a (resp.
b). This allows us to obtain the following inequalities:

un + 1 ≤ un+un
≤ un + c (7)

Let (vk)k∈N be the sub-sequence such that v0 = um and for all k ∈ N,
vk+1 = uind(k)+vk , where ind(k) is the function such that ind(0) = m and for all

k ∈ N, ind(k) =
∑k−1

i=0 vi. By recurrence, we prove that uind(k) = vk :

uind(k+1) = u∑k
i=0 vi

= uvk+
∑k−1

i=0 vi
= uind(k)+vk = vk+1 (8)

This allows us to apply the inequality (2) on vk+1 = uind(k)+vk . Combining (2)
and (3), we obtain the linear growth of (vk)k∈N:

vk + 1 ≤ vk+1 = uind(k)+vk ≤ vk + c (9)

Let us now focus on the growth of the index of (vk)k∈N. By applying the
inequalities of (4) to the definition of ind(k) we obtain :



k∑
i=0

(v0 + i) ≤
k∑

i=0

(vi) ≤
k∑

i=0

(v0 + ci) (10)

kum +
k(k − 1)

2
=

k∑
i=0

(v0 + i) ≤ ind(k) ≤
k∑

i=0

(v0 + ci) = kum + c
k(k − 1)

2

(11)

To conclude, let us return to the main sequence (un)n∈N. For a sufficiently
large n, there exists k ≥ 4um + c such that :

ind(k) ≤ n ≤ ind(k + 1)

This gives us, considering that (un)n∈N is increasing, the previous equation (6)
and that k ≥ 4um + c the following inequalities:

ind(k) ≤ n ≤ ind(k + 1) (12)

=⇒ kum +
k(k − 1)

2
≤ n ≤ (k + 1)um + c

k(k + 1)

2
(13)

=⇒ k(2um + k − 1) ≤ 2n ≤ k(4um + c+ ck) (14)

=⇒ 2k2 ≤ 2n ≤ (c+ 1)k2 (15)

=⇒ k ≤ √
n ≤

√
(c+ 1)

2
k (16)

=⇒
√

2

c+ 1

√
n ≤ k ≤ √

n (17)

Since the sequence un is increasing, and using the inequalities (12) and (4),
we can conclude with the following inequalities:

um +

√
2

c+ 1

√
n ≤ um + k ≤ vk ≤ un ≤ vk+1 ≤ um + c(k + 1) ≤ um + c+ c

√
n

Thus, un is of the order of (
√
n).
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