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Discrete-time Quantum Walks (QWs) are transportation models of single quantum particles over a lattice.
Their evolution is driven through causal and local unitary operators. QWs are a powerful tool for quantum
simulation of fundamental physics as some of them have a continuum limit converging to well-known physics
partial differential equations, such as the Dirac or the Schrödinger equation. In this work, we show how to
recover the Dirac equation in (3 + 1)–dimensions with a QW evolving in a tetrahedral space. This paves the
way to simulate the Dirac equation on a curved spacetime. This also suggests an ordered scheme for propagating
matter over a spin network, of interest in Loop Quantum Gravity where matter propagation has remained an open
problem.

I. INTRODUCTION

Discrete-time Quantum Walks (QWs) describe situations
where a quantum particle is taking steps on a lattice
conditioned on its internal state, typically a (pseudo) one half
spin system. The particle dynamically explores a large Hilbert
space associated with the positions of the lattice. With QWs,
the transport is driven by discrete operations (shift and coin),
which sets it apart from other lattice quantum simulation
frameworks where transport typically rests on hopping
between adjacent sites: all dynamic processes are discrete
in space and time. QWs have been originally introduced by
Godoy and Fujita [23, 24] as a model of coherent transport
over periodic lattices. Similarly to classical random walk
and Markov processes, they have applications in algorithmics,
to express quantum algorithms exhibiting, in some cases,
significant speedup over classical computing [1, 22, 31, 32,
37]. Most importantly for the present purpose, QWs have an
immense track record for modeling and quantum simulating
fundamental physics [3, 9, 13, 16, 19, 41]. It has been
proved that their continuous limit, when it exists, coincides
with one of the two most important equations in physics,
namely the Dirac equation [10, 20, 39] and the Schrödinger
equation [26]. These results have made it possible to use
the QW as a framework to study the phenomenology of
physical systems, such as Bloch oscillations [5, 30] or the
propagation of matter in strong fields [8, 18, 34]. Moreover,
they have recently proved useful as a fundamental building
block for quantum simulating quantum field theories [21, 35]
or studying phenomena such as weak ergodicity breaking
and Hilbert space fragmentation [17, 36]. QWs have been
studied in Bravais lattices in any dimensions, such as the
triangular [6, 25] or cubic grid [15, 27], and for some family
of regular planar graphs, such as the Apollonian networks [2].
Most of them have been proved to converge to the Dirac
equation in the space-time continuous limit. For this reason,
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their use is interesting in the study and simulation of Dirac
materials and topological states [11, 40].

In this manuscript, we are interested in defining QWs over
a tessellation of Euclidean space by means of tetrahedra.
One of the main reasons why we have taken an interest in
this issue is that a tetrahedron (3-simplex) is the minimal
building block of 3D space, similarly to the role played by a
triangular tessellation in a 2D space. The tessellation that we
consider is also the simplest way to fill Euclidean space with
tetrahedra [38]. As it was shown in [6, 25], the Dirac equation
can be simulated as the continuum limit of a QW defined on
a triangular or honeycomb lattice. This result was further
generalized to a curved spacetime [7], where the continuum
limit also describes the corresponding Dirac equation, by
exploiting the duality between changes in geometry, and
changes in local unitaries that incorporate the deformation
of the metric due to the lack of flatness in spacetime. A
crucial result from this work was that the square lattice fails in
reproducing this duality for arbitrary deformations, in contrast
to the triangular and honeycomb tessellations. From a more
practical perspective, the latter implementations of a QW on
a curved geometry need fewer steps than QWs defined on a
rectangular grid [4]. All these qualities make the QW based on
tetrahedra a very promising candidate to investigate the above
results for the 3D space.

Finally, another reason for the tetrahedra covering of space
is that it is dual to the 4-valent node, the elementary block
of a spin network [12]. In Loop Quantum Gravity, a spin
network is a basis state of the Hilbert space of the quantized
gravitational field on a 3-dimensional hypersurface [33].
Modelling matter propagation over a spin network is still an
open problem [14]. In this paper we address this problem by
introducing a toy model where a quantum walker propagates
on a regular spin network. We prove that we recover, in
the continuous space-time limit, the Dirac equation in (3+1)-
dimensions.

The organization of the manuscript is the following: in
Sec. II we introduce the formal mathematical model of the
QW over tetrahedra. In Sec. III we briefly recall the basics
of the Dirac equation and its relation to the Weyl equation.
In Sec. IV we show how to simulate the Dirac equation in
3 + 1 dimensions on a tetrahedral space. We also discuss
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how this provides a scheme whereby matter propagates over
a spin network. We summarize our main results in Sec. V.
Appendix B provides a robust generalisation to surfaces with
boundaries, but only at the cost of doubling the number of
degrees of freedom. We work in units for which ℏ = c = 1.

II. TETRAHEDRAL QUANTUM WALK

Among all known ways of filling Euclidean space with
tetrahedra [38], the simplest (albeit non-trivial) way is to
dissect a cube into six 3-orthoschemes, i.e. tetrahedra where
all four faces are right triangles. All of them have identical
size. However, three of them are left-handed (LH) and the
three others are right-handed (RH) (i.e. mirror to each other,
since we need one LH and one RH to form a cube face) as
shown in Fig. 1. At time step t, each tetrahedron k hosts a C4

vector:

ϕ(t, k) = (ϕ(t, k, i))Ti=0...3 , (1)

with each complex amplitude (ϕ(t, k, i))Ti=0...3 located on a
different facet of the tetrahedron, as represented in Fig. 1 by
coloured dots: blue, red, cyan and magenta corresponding
to facets i = 0, 1, 2, 3 respectively. Assuming there are no
boundaries, each facet is shared by two tetrahedra, a C2 vector
on each shared facet can be defined. In the following we
focus on the regular lattice filling up 3D space with such
cubes, unrotated1, as shown in Fig. 4a. This allows us
to adopt the convenient convention that a LH (resp. RH)
tetrahedron be identified in space by means of the coordinates
k = (kx, ky, kz)

T of its blue i = 0 (resp. red i = 1)
component with k ∈ εZ3, with ε the characteristic lattice
spacing which will be defined below. Notice that, as shown
in Fig. 2, a cube composed of 6 tetrahedra can be further
dissected into 8 smaller and identical cubes. The complex
amplitudes are then all located in the middle of the small cubes
and at the center of their faces. Let ε be the size of such small
cubes. Thus, in a given tetrahedron the distance between the
blue and red components is ε, and the one separating a blue
(resp. red) from a cyan (resp. magenta) is ε/2.

Dirac QWs over the cubic lattice are of course well-known,
and our strategy here will be to fall back on our feet and
recover such a known scheme, in spite of the fact that the basic
constituents of the lattice are the tetrahedra that make up the
cubes and not the cubes themselves. This further subdivision
does introduce a number of difficulties in terms of laying
out the spinors and orchestrating their propagation, but more
fundamentally also in terms of locality: each local unitary
gate that makes up the QW needs be local to an individual
tetrahedron, or to the joint facet of two glued tetrahedra. The
Tetrahedral QW proposed aims to achieve a massless Dirac
QW first. Later in the paper we add the mass term to obtain

1 Thus, cube-cube glueings are RH-RH and LH-LH glueings. Our attempts
to systematically enforce RH-LH alternation do not allow us to implement
an x → y → z sequence of displacements.

FIG. 1: (Top) Left-handed and right-handed tetrahedra.
(Bottom) Dissection of a cube into six tetrahedra. Coloured

dots blue, red, cyan and magenta correspond to the
amplitudes lying on the facets i = 0, 1, 2, 3 respectively.

a Dirac QW, again in a way that respects the refined locality
constraints of the tetrahedral tesselation.

Across the paper, we say that a quantum operation is causal
when it is allowed to push information from one tetrahedra
to its neighbour, and so on, forming a chain. We say that
it is localized if it decomposes into local operations. We
distinguish, however, three types of local operations. Those
acting solely on a tetrahedron will be referred to as strictly
local. Those acting solely on a facet will be referred to
as facet-local. Those allowed to access both the internal
amplitudes of a tetrahedron and some amplitudes across its
facets will be referred to as weakly local.

A. Shift operator

The shift operator S decomposes in two steps defined by
SB and SG. SB is causal: for the LH (resp. RH) (i) the blue
and cyan (resp. red and magenta) components go into the red
and magenta (resp. blue and cyan) facets. At the same time,
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𝜀

𝜀

FIG. 2: Dissection of a cube with 8 smaller cubes.

the red (resp. blue) moves to the cyan (resp. magenta) that
lies across the magenta (resp. cyan) facet. Synchronously,
the magenta (resp. cyan) moves to the blue (resp. red)
of its neighboring tetrahedron. SG is localized, i.e. it is
implemented by strictly local operations on each tetrahedron:
(ii) the blue and cyan (resp. red and magenta) components are
swapped. The first and second steps correspond, respectively,
to the black and grey arrows shown in Fig. 3. Let n(k, i) be the
neighbor of tetrahedron k on facet i. The shifting dynamics
therefore reads:

ϕ(t+ ε, k) = (SGSBϕ)(t, k), (2)

with

(SBϕ)(t, k) =




ϕ(t, n(k, 2), 3)

ϕ(t, k, 0)

ϕ(t, n(k, 2), 1)

ϕ(t, k, 2)

 if k is LH


ϕ(t, k, 1)

ϕ(t, n(k, 3), 2)

ϕ(t, k, 3)

ϕ(t, n(k, 3), 0)

 otherwise

,

(SGϕ)(t, k) =




ϕ(t, k, 2)

ϕ(t, k, 1)

ϕ(t, k, 0)

ϕ(t, k, 3)

 if k is LH


ϕ(t, k, 0)

ϕ(t, k, 3)

ϕ(t, k, 2)

ϕ(t, k, 1)

 otherwise

.

(3)

As we show on Fig. 4b, the global effect of this dynamics
corresponds to the action of a single operator S:

ϕ(t+ ε, k) = (Sϕ)(t, k), (4)

FIG. 3: Shifting dynamics of the tetrahedral QW working in
two steps. First the black arrows act causally on the

tetrahedra, with the gradient effect illustrating the need to
chain them up. Second the grey arrows (thin ones) that act in

a strictly localized manner. Notice that only the coin step
shuffles the amplitudes between LH and RH tetrahedra.

with

(Sϕ)(t, k) =




ϕ(t, n(k, 2), 1)

ϕ(t, k, 0)

ϕ(t, n(k, 2), 3)

ϕ(t, k, 2)

 if k is LH


ϕ(t, k, 1)

ϕ(t, n(k, 3), 0)

ϕ(t, k, 3)

ϕ(t, n(k, 3), 2)

 otherwise

. (5)

Notice that the blue and red components are moving along
the cubic grid of Fig. 2 avoiding the forbidden positions.
By inspecting at Fig. 4b, we see that the cyan and magenta
components are following them closely behind, as if the cyan
(resp. magenta) component were linked to the blue (resp. red).
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(a) The upper left (resp. right) figure show the global dynamics of the first (resp. second) walker. On the lower
figures, we show the same dynamics but replacing the tetrahedra by small cubes. The origin coordinate k

corresponds to the black dot located at the bottom right of the small cubes.

𝜓(𝑡, 𝑥 − 𝜀, 𝑦 + 𝜀, 𝑧 )

𝜓(𝑡, 𝑥, 𝑦 + 𝜀, 𝑧 − 𝜀 )

𝜓(𝑡, 𝑥, 𝑦, 𝑧 )

𝑥

𝑧

𝑦

𝜓(𝑡, 𝑥 − 𝜀, 𝑦, 𝑧 )

𝜓(𝑡, 𝑥 − 𝜀, 𝑦 + 𝜀, 𝑧 − 𝜀 )

𝜓(𝑡, 𝑥, 𝑦, 𝑧 − 𝜀 )

𝜓(𝑡, 𝑥, 𝑦, 𝑧 + 𝜀 )

𝜓(𝑡, 𝑥, 𝑦 − 𝜀, 𝑧 − 𝜀 )

𝜓(𝑡, 𝑥 − 2𝜀, 𝑦, 𝑧 )

𝜓(𝑡, 𝑥 − 𝜀, 𝑦 + 2𝜀, 𝑧 )

𝜓(𝑡, 𝑥 + 𝜀, 𝑦 + 𝜖, 𝑧 − 𝜀 )

𝜓(𝑡, 𝑥 − 𝜀, 𝑦 + 𝜀, 𝑧 − 2𝜀 )

(b) Trajectories of the first walker that moves on a cubic grid.

FIG. 4: Global dynamics of the tetrahedral QW and trajectories of the first walker.

These two walkers are independent of each other. They cross
each other but do not interact. In other words, as proved in
Appendix A, we have here two independent walkers evolving
according to the same dynamics, the first one on the blue and
red components, and the second one on the cyan and magenta
components.

Let us focus on the first walker. The two-dimensional wave
function living on the shared facet of neighboring tetrahedra
are defined as follows:

ψ(t, k) =

(
ψ↑(t, k)
ψ↓(t, k)

)
, (6)

where the up (resp. down) component lies in the RH (resp.

LH) tetrahedra. Let us focus on what happens at coordinate k
for instance:

ψ(t+ ε, k) =

(
ψ↑(t, k + εuz)
ψ↓(t, k − εuz)

)
, (7)

where uz is the Bloch vector of σz i.e. the unit vector along
the z-axis. It is clear from Eq. (7) that the up (resp. down)
component is going down (resp. up) in the 3-coordinate which
for Fig. 4a is vertical. Along one axis, say z, we see that the
above finite difference equations converge in the continuous
limit ε→ 0 to the transport equation:

(∂tψ)(t, k) = (σz∂zψ)(t, k). (8)
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Furthermore, as the axis shown in the center of Fig. 4a are the
one we use and by looking at the direction of the black arrows
in Fig. 4b, we see that only black arrows that goes up (resp.
down) belongs to an LH (resp. RH) tetrahedron. Thus, the
upper (resp. lower) component of ψ(t, k) is located in the RH
(resp. LH) tetrahedra.

The direction in which the components moves depends on
the coordinates, (again by looking at Fig. 4a):

u(k) =


ux if k = ε(even, odd, odd)T or ε(odd, even, even)T

uy if k = ε(even, odd, even)T or ε(odd, even, odd)T

uz if k = ε(even, even, odd)T or ε(odd, odd, even)T

∅ if k = ε(even, even, even)T or ε(odd, odd, odd)T

,

(9)
where uµ is the Bloch vector of σµ e.g. ux = (1, 0, 0)T .

Inspecting Fig. 4b we see that the z-axis movers become x-
axis movers. In general, µ-axis movers become (µ + 1)-axis
movers, as made formal by uµ+1 = Puµ with:

P =

0 0 1
1 0 0
0 1 0

 . (10)

The shift evolution of the walker then reads:

ψ(t+ ε, k) = Ŝ

(
ψ↑(t, k)
ψ↓(t, k)

)
=

(
ψ↑(t, k + εu(k))
ψ↓(t, k − εu(k))

)
=

(
τu(k),εψ

↑(t, k)
τu(k),−εψ

↓(t, k)

)
,

(11)

where Ŝ denotes the effect of S but on the two-dimensional
ψ’s, and τµ,ε is the translation by ε along the µ-axis. This
looks like it does implement the correct usual partial shift Tu,ε
in the u(k) direction of a cubic QW. Let us look at this in more
detail. On a cubic lattice, a partial shift in some direction u is
written as

Tu,ε

(
ψ↑(t, k)
ψ↓(t, k)

)
=

(
ψ↑(t, k + εu)
ψ↓(t, k − εu)

)
=

(
τu,εψ

↑(t, k)
τu,−εψ

↓(t, k)

)
.

(12)

B. Coin operator

Since the walker changes direction along the dynamics, and
since our aim is to mimic a transport equation such as ∂tψ =
σx∂xψ+σy∂yψ+σz∂zψ, we have to introduce basis changes
to map σµ−1 into σµ. We notice that Rσz

(θ)Rσx
(θ) with θ =

π/2 maps the Bloch vector of σµ−1 into that of σµ with µ =
1, 2, 3, i.e:

σµ = Rσz
(θ)Rσx

(θ)σµ−1R
†
σx
(θ)R†

σz
(θ) (13)

since (Rσz
(θ)Rσx

(θ))3 = −I and we want it to be the
identity, we define C = ei

π
3Rσz

(θ)Rσx
(θ). This C operation

is applied on each facet at once, it is therefore facet-localized.

FIG. 5: Independent sub-walks of a 2-dimensional walk.
Forget about grey arrows for now. As the amplitudes that

were at blue positions follow the black arrows, they now find
themselves at red positions, without ever interacting with
those which where red initially, who have now left to blue

positions.

C. Complete dynamics

It is important to observe that, within the first quantum
walker whose propagation is described by Fig. 4b, there exist
in fact three sub-walkers that are “independent”, in the sense
that they avoid each other and never interact. This is easier to
see in 2 spatial dimensions, see Fig. 5, where the equivalent
of Ŝ features two independent sub-walkers. If we remove
one of the two sub-walkers, we see that the one remaining
follows operator Tx, then Ty , etc. This is whyCŜ is a suitable
implementation of CTyCTx.

III. THE DIRAC EQUATION

Let us briefly recall some properties of the Dirac equation
[29], in order to better understand the connection with the QW
defined above. The Dirac equation describes the motion of a
relativistic spin 1/2 particle with mass m. It can be written as

(iγµ∂µ −m)ψ = 0, (14)

where γµ (µ = 0, 1, 2, 3) are the gamma matrices. This
equation can be decomposed into a pair of coupled Weyl-like
(i.e., with and additional mass term) equations [28] acting
on the first two and last two indices of the original four-
component spinor, i.e. by writing

ψ =

(
ψR

ψL

)
, (15)

where ψL and ψR are each two-component Weyl
spinors. This can be achieved by using the so-called chiral
representation of the gamma matrices [29]. Following this
procedure, Eq. (14) becomes equivalent to a pair of coupled
Weyl equations

iσµ∂µψR = mψL (16)



6

iσµ∂µψL = mψR. (17)

In the above equations, σµ has components (I2, σ
i) and

σ̄µ has components (I2,−σi), with I2 the two-dimensional
identity matrix. In the massless m = 0 case both equations
become two true decoupled Weyl equations. The coupling
between both equations (16) and (17) is associated to the
action of the γ0 matrix, which “flips” both Weyl spinors.

In the following sections we will make use of the above
ideas to construct a QW that describes the massive Dirac
equation. First we construct a QW for the massless Dirac
equation. Then, the necessary flipping operation will be
introduced to include the mass term.

IV. DIRAC QUANTUM WALK

A. Massless Dirac QW

After multiplication by γ0, the massless Dirac equation
takes the form

i∂0Ψ = D̂Ψ with

D̂ = i

3∑
j=1

αj∂j
, (18)

where αj = γ0γj . To obtain the massless Dirac equation,
we therefore need a four-dimensional spinor and a new
coin acting on these four amplitudes. Let Ψ(t, k) =
(Ψi(t, k))

T
i=0,...,3 be such a spinor. Its components are the

coloured dots located on the small cubes of Fig. 4b. Therefore,
such a spinor contains components of two tetrahedra, LH and
RH. Note that this spinor contains either blue and cyan, or
red and magenta components, depending on the parity of the
position. For those containing blue and cyan (resp. red and
magenta) components; the first component (i = 0) is the cyan
(resp. magenta) dot of the RH tetrahedron, the second (i = 1)
is the blue (resp. red) of the RH, the third (i = 2) is the blue
(resp. red) of the LH, and the last one (i = 3) is the cyan
(resp. magenta) of the LH tetrahedron. It turns out that the
chiral representation keeps the strict locality, thus:

αj = σ3 ⊗ σj . (19)

The coin operator Ĉ must verify αµ = Ĉαµ−1Ĉ†. That way,
Ĉ = σ0 ⊗ C is the coin operator. We keep identical the first
(black) and second (grey) steps of the shift operation, only

reexpressing their effects in terms of these spinors:

(TB,u(k),εΨ)(t, k) =




Ψ0(t, k + εu(k))

Ψ1(t, k + εu(k))

Ψ3(t, k − εu(k))

Ψ2(t, k − εu(k))

 if k is LH


Ψ1(t, k + εu(k))

Ψ0(t, k + εu(k))

Ψ2(t, k − εu(k))

Ψ3(t, k − εu(k))

 otherwise

,

(TG,u(k),εΨ)(t, k) =




Ψ0(t, k)

Ψ1(t, k)

Ψ3(t, k)

Ψ2(t, k)

 if k is LH


Ψ1(t, k)

Ψ0(t, k)

Ψ2(t, k)

Ψ3(t, k)

 otherwise

.

(20)

Hence,

(TG,b(k),εTB,u(k),εΨ)(t, k) =

Ψ0(t, k + εu(k))
Ψ1(t, k + εu(k))
Ψ2(t, k − εu(k))
Ψ3(t, k − εu(k))

 , (21)

performs a partial shift in the u(k) direction. For the z axis,
this approximates as:

(I+ ε(σ3 ⊗ σ3)∂3)Ψ = TG,3,εTB,3,εΨ+O(ε2). (22)

In the same way, along the y-axis,

(I+ ε(σ3 ⊗ σ2)∂2)Ψ = Ĉ†TG,2,εTB,2,εĈΨ+O(ε2). (23)

Lastly, for the x-axis we obtain:

(I+ ε(σ3 ⊗ σ1)∂1)Ψ = ĈTG,1,εTB,1,εĈ
†Ψ+O(ε2). (24)

The time evolution of the massless Dirac QW thus reads:

Ψ(t+ ε, k) = ŴεΨ(t, k), (25)

with:

Ŵε = Ĉ†TG,2,εTB,2,εĈ
†TG,1,εTB,1,εĈ

†TG,3,εTB,3,ε. (26)
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FIG. 6: Displacement graph of the tetrahedral Dirac QW.

Using Eq. (B15) and Eq. (26) we get:

Ψ(t+ ε, k) =

3∏
j=1

Ĉ†(I+ ε(σ3 ⊗ σ3)∂j)Ψ(t, k) +O(ε2)

Ψ(t+ ε, k) =

3∏
j=1

(I+ ε(σ3 ⊗ σj)∂j)Ψ(t, k) +O(ε2)

(I+ ε∂0)Ψ(t, k) =

I+
3∑

j=1

ε(σ3 ⊗ σj)∂j

Ψ(t, k) +O(ε2)

∂0Ψ(t, k) =

3∑
j=1

(σ3 ⊗ σj)∂jΨ(t, k) +O(ε2).

(27)

Therefore, in the continuum limit we approximate the
massless Dirac equation in (3+1)-dimensions.

B. Dirac with mass

The QW we introduced only portrays the movement of
massless particles. To prevent them from travelling at the
speed of light we introduce an additional new coin acting as
the mass term. The massive Dirac equation now takes the
form:

i∂0Ψ = DΨ with

D = mγ0 + i

3∑
j=1

αj∂j
, (28)

where m is the mass of the particle. The αj matrices are that
of Eq. (19) and γ0 is defined as:

γ0 = σ1 ⊗ σ0. (29)

Let M = e−iεmγ0

be the mass coin. According to our choice
of representation in Eq. (19) and Eq. (29), the coin Ĉ makes
the first and second (resp. third and fourth) components of Ψ
interact with each others, meaning that it is a strictly localized
operator. On the other hand, the mass coin M makes the first
and third (resp. second and fourth) components interact with

each others, which means that it is weakly localized i.e. it can
be decomposed into weakly local operators, each of which is
allowed to access an amplitude from across one of the facets
of the tetrahedron.
Moreover, we notice that:

.
ĈMĈ† =M

MĈM† = Ĉ
, (30)

making it is possible to successively apply the coins without
disturbing the walk. The time evolution of the massive Dirac
tetrahedral QW is defined as:

Ψ(t+ ε, k) = (WεΨ)(t, k), (31)

where

Wε = Ĉ†TG,2,εMTB,2,εĈ
†TG,1,εMTB,1,εĈ

†TG,3,εMTB,3,ε

= T̂G,2,εTB,2,εT̂G,1,εTB,1,εT̂G,3,εTB,3,ε

,

(32)

with T̂G,µ,ε = Ĉ†TG,µ,εM .
In the end, the tetrahedral Dirac QW is just the repetition

of two steps, one being causal and the other one localized.
More precisely, according to Eq. (32) it consists in: (i) a causal
shift TB,µ,ε and (ii) applying the mass coin M , performing a
shift TW,µ,ε and applying a basis change coin Ĉ†, all three
localized.

In the continuum limit we do obtain the massive Dirac
equation since:

Ψ(t+ ε, k) = (I− iεD)Ψ(t, k) +O(ε2)

=

3∏
j=1

Ĉ†(I+ ε(σ3 ⊗ σ3)∂j)MΨ(t, k) +O(ε2)

=

3∏
j=1

(I+ ε(σ3 ⊗ σj)∂j)MΨ(t, k) +O(ε2).

(33)

Moreover, as M = I− iεmγ0 +O(ε2), we have:

(I+ ε∂0)Ψ(t, k) =

I− 3imεγ0 +

3∑
j=1

ε(σ3 ⊗ σj)∂j

Ψ(t, k)

+O(ε2)

∂0Ψ(t, k) =

−3imγ0 +

3∑
j=1

(σ3 ⊗ σj)∂j)

Ψ(t, k)

+O(ε2).

(34)

Let us notice that it would be possible to modify the QW
operator defined in Eq. (32) so that the mass term appears
only once, by redefining

Wε =MĈ†TG,2,εTB,2,εĈ
†TG,1,εTB,1,εĈ

†TG,3,εTB,3,ε.
(35)
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It is easy to check that the corresponding continuum limit
is the same as in Eq. (34), without the factor 3 in front
of the first term on the rhs. The latter definition might be
more economical when it comes to implementing the QW on
experimental devices. However, we preferred to use the first
definition of Wε because it can be more elegantly integrated
on the action of each of the T̂B,µ,ε operators, instead of an
isolated operation that only appears at the end of each time
step.

C. Spin network

In this work we have considered a particular simplicial
complex, namely a regular lattice of tetrahedra. It is quite
common to consider the dual graph of a simplicial complex,
namely by allocating, to each simplex a node, and to each
glueing between facets, a link between the nodes, see Fig. 7.
When the simplices are tetrahedra as in our case, the dual
graph is a four-valent graph quite close to a spin network, see
Fig. 8.

Spin networks form a basis of the Hilbert space of 3D
geometries in Loop Quantum Gravity. The questions of how
to propagate matter, such as massive Dirac particles, is a
long-standing problem in Loop Quantum Gravity. Our four-
valent graphs are variants, the main difference is that the
neighbours of each node are ordered, and that there are left-
handed and right-handed nodes, but those extra ingredients
seem crucial in order to achieve matter propagation. Indeed,
the present paper has just achieved a scheme which, upon the
spin network-like graph that is closest to flat space, reproduces
the Dirac equation in flat space. We wonder whether there
is a sense in which this exact same scheme, generalized to a
spin network (or a superposition of them) representing curved
space, reproduces the Dirac equation in this curved space.

FIG. 7: Simplicial complex and dual representation of a LH
tetrahedron.

V. SUMMARY AND PERSPECTIVES

In this paper we tessellate the 3D space with just two kinds
of tetrahedra, whose shapes are mirror of each other. We
place the amplitudes on their facets, and we alternate two
steps of dynamics according to Eq. (32): (i) we do a causal

shift, displacing amplitudes within the tetrahedron and across
their facets (ii) we apply a weakly localized mass coin, we
do a partial shift and apply a basis change coin, both strictly
localized to each tetrahedron. We prove that, in the continuum
limit, we obtain the Dirac equation in (3+1)-dimensions. By
taking the graph that is dual to the simplicial complex, we
obtain a variant of a Loop Quantum Gravity spin network.
The main difference is that the neighbors of each node
are ordered, and that there are left-handed and right-handed
nodes. Our scheme then provides a way to propagate spin
1/2 particles over these modified spin networks. Interestingly,
these modifications seem necessary in order to achieve such
matter propagation.

There are many possible avenues to explore. 3 + 1
Dirac QW on the grid have been extended to include the
electromagnetic field, or to account for the multi-particle
sector (quantum cellular automata). One could try to do
the same for tetrahedra. More interestingly perhaps, there
exists 3 + 1 ‘curved’ Dirac QW on the grid which, in the
continuum limit, yield the Dirac equation in curved spacetime,
as modelled by a metric field, which is used to parametrize
the coin. Alternatively, curved space can be modelled in
a combinatorial manner just by glueing tetrahedra in a way
that matches the discretization of 3D manifold. We wonder
whether running our Tetrahedral QW over some discretized
manifold, yields the same behaviour as the 3+1 curved Dirac
QW over the manifold, in some limit.
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𝑚𝑖𝑑𝑑𝑙𝑒

𝑙𝑒𝑓𝑡

𝑏𝑎𝑐𝑘

𝑢𝑝

(a) Causality of the black shift, represented with the
arrows, which is the first step of the shifting dynamics.

Arrows coming out of or going into the observed
tetrahedra have a gradient effect to show the need to

chained them up.

𝑚𝑖𝑑𝑑𝑙𝑒

𝑙𝑒𝑓𝑡

𝑏𝑎𝑐𝑘

𝑢𝑝

(b) Strict locality of the grey shift and basis coin
operator, the shift corresponds to the grey arrows

(second step of the shifting dynamics) and the action of
the strictly localized coin Ĉ is represented with the blue

and red lines. Weak locality of M is shown by the
dashed blue and red lines.

FIG. 8: Part of the spin network associated to the Dirac tetrahedral QW. Green and yellow nodes corresponds to the LH and RH
tetrahedra, and two nodes are linked if their corresponding tetrahedra share a facet. The amplitudes lie on the edges. Therefore,
a cube is represented by an hexagon. The position of the cubes in relation to each other is indicated by the label in their center.

We show the action of the shift and coin operators for the two tetrahedra framed in black. In Fig. 8a we focus on the causal
operations (the black shift), and in Fig. 8b we show the localized ones (grey shift, basis coin and mass coin).

Appendix A: Same path

To show that the second walker follows the steps of the
first one, we may compare the coordinates after one time step
of a blue or red component to that of a cyan or magenta
components initially located in the same tetrahedron. By
looking at the direction of the arrows of Fig. 4b we see that
in the LH (resp. RH) tetrahedra the direction of motion is
positive (resp. negative) with respect to the three axis x, y, z
shown in Fig. 4a. Let k1(t) (resp. k2(t)) be the coordinate
of a blue or red (resp. cyan or magenta) component of the
tetrahedron of coordinate k at time t:

k1(t) =

kxky
kz

 , k2(t) = k1(t)± ε

κxκy
κz

 (A1)

where one of the κµ is equal to 1/2 and the rest are 0. The
non-vanishing element is located on the axis on which the first
walk receives information at time t, as shown in Fig. 4a. After
one time step, since a movement along one of the axis by a
distance ε has been made, it is straightforward noticing that:

k1(t+ ε) = k1(t)± ε

κxκy
κz

 , (A2)

where one of the κµ is equal to 1 and the values of the others
are identically 0. Similarly, by looking at Fig. 4b we see that:

k2(t+ ε) = k2(t)± ε

κxκy
κz

 . (A3)

Now, two scenarios may arise. Either two of the κµ are 1/2
and the remainder is 1, or the component is simply swaped
on the other side of the facet on which it was, and so without
involving a change of coordinates. There is only a difference
of ±ε/2 in one of the coordinates of k1 and k2 at time t. This
proves that the second walker follows the first very closely.
We show on Fig. 9 that the amplitudes of first and second
walkers are following each others. Thus, we consider that
they follow the same cubic path.

Appendix B: Robust QW

As explained in the core of the paper, one of the main
motivations of this study of QW over tetrahedra is to then be
able to apply the same QW scheme over arbitrary graphs of
degree bounded by four: whether to represent curvature in
the combinatorial languague of simplicial complexes; exotic
crystalling structures; boundaries or defects. For instance in
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FIG. 9: Path followed by amplitudes of the first and second
walkers for the LH and RH tetrahedra after 3 time steps. The
blue and red (resp. cyan and magenta) arrows are displayed

with filled (resp. dashed) linestyle.

[31, 32] defects are coded as missing nodes or broken links
and located through a QW search.
Unfortunately the QW presented in the core of the paper
is not robust to the presence of broken links, as it stands.
To understand where the problem lies, comparison with the
simpler 2 spatial dimensions scenario of Fig. 5 helps. Ignore
the grey arrows and suppose that one of the nodes is missing.
This leaves two black arrows dangling, with nowhere to go.
The amplitudes that they carry cannot be dropped as this
would break unitarity. Nor can they be placed back in their
originating nodes, as new amplitudes have come to occupy
the space.
The only possible fix is to double up the number
of amplitudes, and balance the flow of information by
considering the grey arrows. It seems unlikely that we
can achieve robustness without doubling up the number of
amplitudes. In the absence of a node, we shall be able to plug
back the dangling outcoming black arrow of a node into its
dangling incoming grey arrow. In this appendix, we do the
Tetrahedral QW counterpart of this construction, in order to
reach a less optimised, but more robust scheme.

1. Dynamics

As explained above, we can define a robust QW by
doubling the number of amplitudes as shown in Fig. 10, and
modifying the dynamics. We now only use swap operations
for the shifting dynamics. This robust QW contains two
independent walkers. The mirror walker does the same
displacements as the first walker but in the opposite direction.
Each facet of a tetrahedron owns one amplitude of each
walker. Recall that the two-dimensional spinors lie in the facet
shared by neighboring tetrahedra and contain an up and down
component. Hence, each facet of a tetrahedron owns an up
and down component of the two different walkers. The state
of tetrahedron k at time t reads:

ϕ(t, k) = (ϕ(t, k, i, ↑), ϕ(t, k, i, ↓))Ti=0,...,3 . (B1)

The blue, red, cyan, magenta dots of Fig. 10 correspond
to i = 0, 1, 2, 3. In the shifting dynamics of the non-
robust first walker, the amplitudes located on the LH (resp.
RH) tetrahedra move in a positive (resp. negative) direction
over time. Moreover, we know from Eq. (7) that the up
(resp. down) component of the non-robust first walker goes
in negative (resp. positive) direction over time. Therefore, in
the LH (resp. RH) tetrahedra, the up (resp. down) component
is that of the mirror (resp. first) walker. Lastly, we define the
j-th component of a tetrahedron as:

ϕj(t, k)j=0,...,7 =

{
ϕ(t, k, j/2, ↑) if j is even
ϕ(t, k, (j − 1)/2, ↓) otherwise

.

(B2)

a. Shifting operator

The shifting dynamics is done in 3 steps. Inspecting Fig.
11, we see that for the LH (resp. RH) tetrahedra it consists
in: (i) swap the mirror (resp. first) blue and the first (resp.
mirror) cyan components, swap the first (resp. mirror) blue
and mirror (resp. first) red components, swap the first (resp.
mirror) red and mirror (resp. first) magenta components, (ii)
swap the first and mirror blue components, swap the first and
mirror red components, swap the first (resp. mirror) cyan
and neighboring mirror (resp. first) magenta, swap the mirror
(resp. first) magenta and the neighboring first (resp. mirror)
cyan, (iii) swap the blue/cyan first (resp. mirror) components
and swap the red/magenta mirror (resp. first) components.
The time evolution of a tetrahedron reads:

ϕ(t+ ε, k) = (S2S1S0ϕ)(t, k) , (B3)

where the Si operators formally act on a tetrahedron as:
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FIG. 10: Dissection of a cube into six tetrahedra for the
robust QW. The big (resp. small) dots are that of the first

(resp. mirror) walker.

(S0ϕ)(t, k) =



ϕ5(t, k)
ϕ2(t, k)
ϕ1(t, k)
ϕ6(t, k)
ϕ4(t, k)
ϕ0(t, k)
ϕ3(t, k)
ϕ7(t, k)


, (B4a)

(S1ϕ)(t, k) =



ϕ1(t, k)
ϕ0(t, k)
ϕ3(t, k)
ϕ2(t, k)
ϕ4(t, k)

ϕ6(t, n(k, 2))
ϕ5(t, n(k, 3))
ϕ7(t, k)


, (B4b)

(S2ϕ)(t, k) =



ϕ0(t, k)
ϕ5(t, k)
ϕ6(t, k)
ϕ3(t, k)
ϕ4(t, k)
ϕ1(t, k)
ϕ2(t, k)
ϕ7(t, k)


. (B4c)

Let us compute the state of a tetrahedron after one time step:

FIG. 11: Shifting dynamics of the robust tetrahedral QW.
The black (filled), orange (thin) and pink (dotted) arrows
correspond to the first, second and third step needed to
implement our shifting dynamics. We have labelled the

amplitudes for readability, after the several displacements the
amplitudes moved from: 1 → 3, 2 → B, 4 → 2. Note that

only the dynamics of the amplitudes of the middle
tetrahedron is shown, thus, unrepresented displacements

contain: A→ 1, D → 4. Also, notice that only the coin step
shuffles the amplitudes between LH and RH tetrahedra.
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(S2S1S0ϕ)(t, k) = S2S1S0



ϕ0(t, k)
ϕ1(t, k)
ϕ2(t, k)
ϕ3(t, k)
ϕ4(t, k)
ϕ5(t, k)
ϕ6(t, k)
ϕ7(t, k)



= S2S1



ϕ5(t, k)
ϕ2(t, k)
ϕ1(t, k)
ϕ6(t, k)
ϕ4(t, k)
ϕ0(t, k)
ϕ3(t, k)
ϕ7(t, k)



= S2



ϕ2(t, k)
ϕ5(t, k)
ϕ6(t, k)
ϕ1(t, k)
ϕ4(t, k)

ϕ6(t, n(k, 2))
ϕ5(t, n(k, 3))
ϕ7(t, k)



=



ϕ2(t, k)
ϕ6(t, n(k, 2))
ϕ5(t, n(k, 3))
ϕ1(t, k)
ϕ4(t, k)
ϕ5(t, k)
ϕ6(t, k)
ϕ7(t, k)


.

(B5)

We see that after one time step, only the blue (j = 0, 1)
and red (j = 2, 3) components moved, while the others are
left unchanged. Therefore, the global dynamics of our robust
tetrahedral QW does not involve the cyan (j = 4, 5) and
magenta (j = 6, 7) components. Thus, we only focus on
the blue and red components. Although the cyan and magenta
components do not move in the robust scheme after a time
step, they are still necessary as ancillas in order to implement
the shifting dynamics, as can be seen in Fig. 11. They
act as intermediaries between adjacent tetrahedra to avoid
instantaneous displacements. However, after one time step,
these components have not actually moved. Therefore, they
are simply a tool contributing to the smooth running of the
robust displacement dynamics. In the non-robust scheme, the
cyan and magenta components were moving, which is not the
case in the robust scheme. Restricting shifting operations to
swaps makes it difficult to replicate the non-robust dynamics
where all components move. Moreover, the robust dynamics
that comprise two walkers moving in opposite directions
is more intuitive and straightforward than the walkers that
follow each other of the non-robust scheme. Thus, it is
more convenient to consider a simple dynamics involving
two walkers moving in opposite directions, at the cost of

FIG. 12: The upper (resp. lower) figure show the global
dynamics of the first (resp. mirror) walker. The global

shifting dynamics of the robust tetrahedral QW is just the
fusion of the two figures.

immobilizing the cyan and magenta components, rather than
trying to replicate the previous, less intuitive dynamic at all
costs.

b. Coin operators

The coin operator of the first walker is C =
ei

π
3Rσz

(θ)Rσx
(θ) with θ = π/2.

The mirror walker is doing the first walker walk in reverse.
Thus, when applying the coin operator on the facets we want
to map σµ into σµ−1. Therefore, the coin of the mirror walker
is C̃ = C†.

In the following sections we will construct a robust QW
that has the massive Dirac equation as its continuum limit.
First, we will show how a Weyl equation can be simulated in
the continuum limit. By combining two of such equations,
we then can construct a robust QW for the massless Dirac
equation. Finally, we will introduce the mass term to prevent
travelling at the speed of light.
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2. Weyl QW

a. First walker

Each facet of a tetrahedron hosts a two dimensional spinor,
let ψ(t, k) (resp. ψ̃(t, k)) be that of the first (resp. mirror)
walker. We formally define them as:

ψ(t, k) =



(
ϕ0(t, n(k, 0))

ϕ1(t, k)

)
if k is LH(

ϕ2(t, k)

ϕ3(t, n(k, 1))

)
otherwise

, (B6)

ψ̃(t, k) =



(
ϕ0(t, k)

ϕ1(t, n(k, 0))

)
if k is LH(

ϕ2(t, n(k, 1))

ϕ3(t, k)

)
otherwise

. (B7)

Let us first derive the continuum limit of the first walker.
Interestingly, the first walker was constructed to have the Weyl
equation as its continuum limit. Recall the Weyl equation can
be rewritten as:

i∂0ψ = Dψ with

D = i
∑
j

σj∂j . (B8)

It is known that a translation by ε along the µ-axis
approximates as:

τµ,εψ = (I+ ε∂µ)ψ +O(ε2). (B9)

Using the definition of σ3 and Eq. (12) we have:

(I+ εσ3∂3)ψ = T3,εψ +O(ε2). (B10)

Given that σ1 = Cσ3C
†, we also have:

(I+ εσ1∂1)ψ = CT1,εC
†ψ +O(ε2). (B11)

Finally along the y-axis, as σ2 = Cσ1C
† = CCσ3C

†C† and
C2 = C†, we obtain:

(I+ εσ2∂2)ψ = C†T2,εCψ +O(ε2). (B12)

Lastly, the time evolution of the first walker is:

ψ(t+ ε, k) = (Wεψ)(t, k) +O(ε2), (B13)

with:

Wε = C†T2,εCCT1,εC
†T3,ε

= C†T2,εC
†T1,εC

†T3,ε.
(B14)

Using Eq. (B8) and Eq. (B9) we have:

ψ(t+ ε, k) = (I+ ε∂0)ψ(t, k) +O(ε2). (B15)

Moreover, with Eq. (B13) we get:

ψ(t+ ε, k) =

3∏
j=1

C†(I+ εσ3∂j)ψ(t, k) +O(ε2)

ψ(t+ ε, k) =

3∏
j=1

(I+ εσj∂j)ψ(t, k) +O(ε2)

(I+ ε∂0)ψ(t, k) =

I+ ε

3∑
j=1

σj∂j

ψ(t, k) +O(ε2)

∂0ψ(t, k) =

3∑
j=1

σj∂jψ(t, k) +O(ε2).

(B16)

In the continuum limit, we approximate the Weyl equation in
(3+1)-dimensions, that is Eq. (B8).

b. Mirror walker

We now focus on the mirror walker. The Weyl equation for
the second chiral component has the form:

i∂0ψ̃ = D̃ψ̃ with

D̃ = −i
∑
j

σj∂j .
(B17)

Doing the same computations as before, we get for the z-axis:

(I− εσ3∂3) ψ̃ = T3,εψ̃ +O(ε2). (B18)

Since σ1 = Cσ3C
†, we also have:

(I− εσ1∂1) ψ̃ = CT1,εC
†ψ̃ +O(ε2). (B19)

Lastly as σ2 = C†σ3C, we obtain:

(I− εσ2∂2) ψ̃ = C†T2,εCψ̃ +O(ε2). (B20)

The time evolution of the mirror walker is:

ψ̃(t+ ε, k) = W̃εψ̃(t, k), (B21)

with:

W̃ε = CT1,εC
†C†T2,εCT3,ε

= CT1,εCT2,εCT3,ε.
(B22)

In the continuum limit we do obtain the seeked Weyl
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equation in (3+1)-dimensions since:

ψ̃(t+ ε, k) =

3∏
j=1

C(I− εσ3∂j)ψ̃(t, k) +O(ε2)

ψ̃(t+ ε, k) =

3∏
j=1

(I− εσj∂j)ψ̃(t, k) +O(ε2)

(I+ ε∂0)ψ̃(t, k) =

I− ε

3∑
j=1

σj∂j

 ψ̃(t, k) +O(ε2)

∂0ψ̃(t, k) = −
3∑

j=1

σj∂jψ̃(t, k) +O(ε2).

(B23)

3. Dirac QW

a. Massless Dirac QW

The four-dimensional spinor Ψ of the massless Dirac QW
contains all the amplitudes own by a facet where the first and
second (resp. third and fourth) components are that of the first
(resp. mirror) walker, that is Ψ(t, k) = ψ(t, k) ⊕ ψ̃(t, k). In
(3+1)-dimensions, the massless Dirac equation is:

i∂0Ψ = D̂Ψ with

D̂ = σ3 ⊗D

= i

3∑
j=1

αj∂j

, (B24)

where D is that of Eq. (B8) and αj = σ3 ⊗ σj . The coin
operator is Ĉ = σ0 ⊗ C, as αj+1 = ĈαjĈ†. Since the
dynamics of our robust QW takes place in 3 steps, let T (i)

µ,ε

be the i-th step of translation of ε along the µ-axis. We start
with the z-axis:

(I+ ε(σ3 ⊗−σ3)∂3)Ψ = T (2)
3,ε T

(1)
3,ε T

(0)
3,ε Ψ+O(ε2). (B25)

For the y-axis we get:

(I+ ε(σ3 ⊗−σ2)∂2)Ψ = Ĉ†T (2)
2,ε T

(1)
2,ε T

(0)
2,ε ĈΨ+O(ε2).

(B26)
Lastly, for the x-axis we obtain:

(I+ ε(σ3 ⊗−σ1)∂1)Ψ = ĈT (2)
1,ε T

(1)
1,ε T

(0)
1,ε Ĉ

†Ψ+O(ε2).
(B27)

The time evolution of the massless robust Dirac QW reads:

Ψ(t+ ε, k) = (ŴεΨ)(t, k), (B28)

with:

Ŵε =

3∏
j=1

ĈT (2)
j,ε T (1)

j,ε T (0)
j,ε . (B29)

We now verify that we approximate the Dirac equation:

Ψ(t+ ε, k) =

3∏
j=1

Ĉ(I+ ε(σ3 ⊗−σ3)∂j)Ψ(t, k) +O(ε2)

Ψ(t+ ε, k) =

3∏
j=1

(I+ ε(σ3 ⊗−σj)∂j)Ψ(t, k) +O(ε2)

(I+ ε∂0)Ψ(t, k) =

I+
3∑

j=1

ε(σ3 ⊗−σj)∂j

Ψ(t, k) +O(ε2)

∂0Ψ(t, k) =

3∑
j=1

(σ3 ⊗−σj)∂jΨ(t, k) +O(ε2).

(B30)

In the continuum limit we approximate Eq. (B24).

b. Massive Dirac QW

We add the mass term to the Dirac QW in the same way we
did in Sec. IV B, namely by adding an additional mass coin.
Hence, the Dirac equation in Planck units reads:

i∂0Ψ = DΨ with

D = mγ0 + i
∑
j

αj∂j , (B31)

where m is the mass. The matrix γ0 is that of Eq. (29), i.e.

γ0 = σ1 ⊗ σ0. (B32)

Let M = e−iεmγ0

be the associated mass coin. Moreover, we
notice that

ĈMĈ† =M

MĈM† = Ĉ
, (B33)

making it possible to apply both coins after translating along
each axis. Hence, the time evolution of the robust Dirac
tetrahedral QW is:

Ψ(t+ ε, k) = (WεΨ)(t, k), (B34)

where

Ŵε =

3∏
j=1

ĈT (2)
j,ε T (1)

j,ε T (0)
j,ε M. (B35)

Lastly, in the continuum limit we get:

Ψ(t+ ε, k) = (I− iεD)Ψ(t, k) +O(ε2)

=

3∏
j=1

Ĉ†(I+ ε(σ3 ⊗ σ3)∂j)MΨ(t, k) +O(ε2)

=

3∏
j=1

(I+ ε(σ3 ⊗ σj)∂j)MΨ(t, k) +O(ε2).

(B36)
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Moreover, as M = I− iεmγ0 +O(ε2), we have:

(I+ ε∂0)Ψ(t, k) =

I− 3imεγ0 +

3∑
j=1

ε(σ3 ⊗ σj)∂j

Ψ(t, k)

+O(ε2)

∂0Ψ(t, k) =

−3imγ0 +

3∑
j=1

(σ3 ⊗ σj)∂j)

Ψ(t, k)

+O(ε2),

(B37)

which approximates Eq. (B31).
Finally, the robust Dirac tetrahedral QW is summarized in

Eq. (B35). It consists of: (i) applying a mass coin in a strictly
localized manner, (ii) making three translations, where the
second one is strictly localized, and the first and last ones
are weakly localized, (iii) applying a directional coin that is
weakly localized to the tetrahedra. The different stages can
not be merged due to their slightly different locality. Indeed,
even though the directional coin Ĉ and the second translation
step T (1)

j,ε are strictly local, and the remaining translations

T (0,2)
j,ε with the mass coin M are weakly local, the merger

is impossible, as the directional coin must be applied after the
translations, and these do not commute.
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