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FINITE AND INFINITE DEGREE THURSTON MAPS WITH EXTRA
MARKED POINTS

NIKOLAI PROCHOROV

Abstract. We investigate the family of marked Thurston maps that are defined every-
where on the topological sphere S2, potentially excluding at most countable closed set of
essential singularities. We show that when an unmarked Thurston map f is realized by
a postsingularly finite holomorphic map, the marked Thurston map pf,Aq, where A Ă S2

is the corresponding finite marked set, admits such a realization if and only if it has no
degenerate Levy cycle. To obtain this result, we analyze the associated pullback map σf,A

defined on the Teichmüller space TA and demonstrate that some of its iterates admit well-
behaved invariant complex sub-manifolds within TA. By applying powerful machinery of
one-dimensional complex dynamics and hyperbolic geometry, we gain a clear understand-
ing of the behavior of the map σf,A restricted to the corresponding invariant subset of the
Teichmüller space TA.
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1. Introduction

1.1. Thurston theory for finite and infinite degree maps. In the one-dimensional ra-
tional dynamics, the crucial role is played by the family of postcritically finite (or pcf in
short) rational maps, i.e., maps with all critical points being periodic or pre-periodic. In
this context, one of the most influential ideas has been to abstract from the rigid underly-
ing complex structure and consider the more general setup of postcritically finite branched
self-coverings of the topological 2-sphere S2. Nowadays, orientation-preserving pcf branched
covering maps f : S2 Ñ S2 of topological degree degpfq ě 2 are called Thurston maps (of
finite degree), in honor of William Thurston, who introduced them to deepen the under-

standing of the dynamics of postcritically finite rational maps on pC.
These ideas can be extended to the transcendental setting to explore the dynamics of

holomorphic maps of infinite degree that are not defined everywhere on the Riemann sphere.
In this paper, we focus on postsingularly finite (psf in short) maps that are holomorphic

everywhere on pC except at the closed at most countable closed set of essential singularities.
Here, the map is called postsingularly finite if it has finitely many singular values, and each of
them eventually becomes periodic or lands on an essential singularity under the iteration. We
can generalize the notion of a Thurston map to postsingularly finite topologically holomorphic
non-injective maps f : S2 ´ E Ñ S2, where E Ă S2 is at most countable closed set, f does
not extend continuously to a neighborhood of any of the points of E and meets a technical
condition of being an admissible type map; see Sections 2.2 and 2.3. It is important to note
that the set E is non-empty if and only if f is transcendental, meaning that it has infinite
topological degree. For simplicity, we will use the notation f : S2 99K S2 to indicate that the
Thurston map f , whether finite or infinite degree, might not be defined on at most countable
closed set of S2.

For a Thurston map f : S2 99K S2, the postsingular set Pf is defined as the union of all
orbits of the singular values of the map f . It is important to note that some of these orbits
might terminate after several iterations if a singular value reaches a point where the map f
is not defined. The elements of the postsingular set Pf are called the postsingular values of
the Thurston map f . If the map f is defined on the entire sphere S2, we simply refer to its
postcritical set and postcritical values, as the set of singular values of f coincides with the set
of its critical values. Two Thurston maps are called combinatorially (or Thurston) equivalent
if they are conjugate up to isotopy relative to their postsingular sets; see Definition 2.15.

A fundamental question in this context is whether a given Thurston map f : S2 99K S2 can
be realized by a psf holomorphic map with the same combinatorics, that is, if f : S2 99K S2 is
combinatorially equivalent to a psf holomorphic map. If the Thurston map f is not realized,
then we say that f is obstructed. William Thurston answered this question for Thurston
maps of finite degree in his celebrated characterization of rational maps : if a finite degree
Thurston map f : S2 Ñ S2 is not a p2, 2, 2, 2q-map, then f is realized by a pcf rational map
if and only if f has no Thurston obstruction [DH93]. Such an obstruction is given by a
finite collection of disjoint simple closed curves in S2 ´Pf with certain invariance properties
under the map f . In many instances, it suffices to restrict to simpler types of Thurston
obstructions provided by Levy cycles ; see [Hub16, Theorem 10.3.8], [Sha13, Proposition 1.1],
[HP22, Corollary 1.5], or [Par23, Theorems 7.6 and 8.6] for examples of such cases. The
family of p2, 2, 2, 2q-maps that are not covered by Thurston’s characterization result consists
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of all Thurston maps with four postcritical values, where each critical point is simple and
strictly pre-periodic.

The same characterization question can be also asked in the transcendental setting. The
first breakthrough in this area was obtained in [HSS09], where it was shown that an ex-
ponential Thurston map is realized if and only if it has no Levy cycle. More recently, the
characterization question was resolved for a broad class of Thurston maps with four postsin-
gular values and a single essential singularity in [Pro24]. Furthermore, the results of [She22]
and [MPR24] suggest that a Thurston-like criterion for realizability may hold in a greater
generality. However, the characterization question in the transcendental setting remains
largely open, as many of the techniques used in Thurston theory for finite degree maps do
not extend to this context.

Let f : S2 99K S2 be a Thurston map and A be a subset of S2. We say that A is f -pseudo-
invariant if the orbit of each point a P A, whether it terminates after several iterations or
not, remains within A. Clearly, every f -invariant set is f -pseudo-invariant; however, the
converse is not necessarily true, since one of the points in A could be an essential singularity
of f . If A is a finite f -pseudo-invariant subset of S2 containing Sf (and therefore, the entire
postsingular set Pf ), we can consider the pair pf, Aq called a marked Thurston map, where
A is referred to as the marked set. For clarity in notation, we denote the marked Thurston
map pf, Aq by f : pS2, Aq ý. If no marked set is explicitly mentioned, it is assumed to
coincide with the postsingular set Pf . Two marked Thurston maps f1 : pS2, A1q ý and
f2 : pS2, A2q ý are said to be combinatorially equivalent if they are conjugate up to isotopy
relative to their marked sets; see Definition 2.15. It implies, for instance, that f1|A1 and
f2|A2 are conjugate. Furthermore, for the unmarked Thurston map f : S2 99K S2, we can
explore whether f is realized with respect to different marked sets. Naturally, the larger the
marked set we consider, the finer the notion of combinatorial equivalence becomes. Finally,
it is worth noting that the notion of a marked Thurston map naturally emerges even if we
focus solely on unmarked Thurston maps. This phenomenon, for instance, arises in Pilgrim’s
decomposition theory ; see [Pil03], [Sel13], and [BD17].
This leads to the same realizability question as before, but now in the broader context of

marked Thurston map. According to [BCT14] (see also [JB23] for an alternative approach),
Thurston’s characterization criterion extends directly to the setting of finite degree marked
Thurston maps that are not p2, 2, 2, 2q-maps. Marked Thurston p2, 2, 2, 2q-maps were studied
in [SY15] and [BD21]. Additionally, although not explicitly stated, the result of [HSS09] also
applies in the context of marked exponential Thurston maps. Finally, in [Pro24, Theorem 4.4
and Example 4.15], it is shown that a marked Thurston maps with at most one essential
singularity, at most three postsingular values, and four marked points is realized if and only
if it has no Levy cycle.

1.2. Pullback maps. From this point forward, we assume that any marked set contains at
least three points, as the case of fewer marked points is rather trivial; see Proposition 2.18.
The key method in determining whether a given finite or infinite degree marked Thurston
map f : pS2, Aq ý is realized by a psf holomorphic map is the analysis of the dynamics
of an operator σf,A, known as the pullback map, defined on the Teichmüller space TA; see
Sections 2.4 and 2.5. Roughly speaking, the Teichmüller space TA encodes all possible ways
to put a complex structure, which is biholomorphic to a punctured Riemann sphere, on
the punctured topological sphere S2 ´ A, up to a certain equivalence depending on the
set A. Crucially, the Thurston map f : pS2, Aq ý is realized if and only if the pullback map
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σf,A has a fixed point in TA; see Proposition 2.24. Moreover, the dynamics of the pullback
map encodes many other properties of the corresponding Thurston map; see, for instance,
[BEKP09], [KPS16], and [BDP24].

Teichmüller space has the structure of p|A| ´3q-complex-dimensional manifold and can be
equipped with a complete metric dT , known as the Teichmüller metric. It is known that every
pullback map σf,A is holomorphic and 1-Lipschitz on TA, meaning dT pσf,Apτ1q, σf,Apτ2qq ď

dT pτ1, τ2q for all τ1, τ2 P TA. Moreover, if f is transcendental, then σf,A is distance-decreasing,
i.e., dT pσf,Apτ1q, σf,Apτ2qq ă dT pτ1, τ2q for all distinct τ1, τ2 P TA. The same property holds for
some iterate σ˝k

f,A provided that f is not a p2, 2, 2, 2q-map; see Proposition 2.25. In particular,
if such a pullback map σf,A has a fixed point, then it is necessarily unique. However,
these properties no longer apply for p2, 2, 2, 2q-maps. For instance, if f is a p2, 2, 2, 2q-
map, then σf,Pf

is an isometry of TPf
, and it is even possible that σf,Pf

“ idTPf
; see [Hub16,

Appendix C.6]. This creates the main challenge of working with marked Thurston p2, 2, 2, 2q-
maps, and one of the reasons why Thurston’s result does not extend to this context.

Although the pullback maps of transcendental Thurston maps are distance-decreasing,
they exhibit more intricate behavior compared with those of finite degree Thurston maps.
To explain this further, we need to introduce the moduli space MA, which, roughly speaking,
captures all possible complex structures on S2 ´ A that are biholomorhic to a punctured
Riemann sphere; see Section 2.4 for the precise definition. There is a natural projection map
πA : TA Ñ MA from the Teichmüller space TA to the moduli space MA. For finite degree
maps, there is a close interplay between the σf -orbit pσ˝n

f,Apτqq of a point τ P TA and its
projection pπApσ˝n

f,Apτqqq to the moduli space MA; see [Koc13] and [Hub16, Section 10.9].
However, this relationship becomes more subtle and less understood in the case when f is a
transcendental map (partial results can be found in [Pro24]). For instance, one of the key
steps in the proof of Thurston’s characterization theorem is to show that σf,A-orbit of τ P TA
converges (indicating that f is realized) if and only if its projection to the moduli space has
a limit, provided that f is not a p2, 2, 2, 2q-map; see [Hub16, Theorem 10.9.2]. This result is
not yet known for transcendental Thurston maps, posing one of the significant challenges in
extending Thurston’s original proof to the transcendental setting.

In this paper, we seek to understand the properties of a marked Thurston map, assuming
we have knowledge about the same Thurston map with respect to a smaller marked set.
Specifically, we discuss realizability question in this context, employing explicit techniques
that shed light on the geometry of the pullback dynamics on Teichmüller and moduli spaces.

1.3. Main results. Let f : pS2, Aq ý be a marked Thurston map, with finite or infinite
degree, which may have at most countable closed set of essential singularities. Suppose
that B Ă A is an f -pseudo-invariant subset containing Sf . Then, we can also consider
the Thurston map f : pS2, Bq ý. It is natural to ask how the dynamical properties of the
Thurston map f : pS2, Aq ý are related to those of f : pS2, Bq ý. For instance, it is clear
that if f : pS2, Aq ý is realized, then f : pS2, Bq ý must also be realized, but the converse
does not necessarily hold. The main result of this paper provides sufficient and necessary
condition for when this happens.

Main Theorem A. Let f : pS2, Aq ý be a Thurston map of finite or infinite degree. Suppose
that B Ă A is an f -pseudo-invariant set containing Sf . If the Thurston map f : pS2, Bq ý

is realized, then the Thurston map f : pS2, Aq ý is realized if and only if it has no degenerate
Levy multicurve consisting of curves that are non-essential in S2 ´ B.
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Here, if A is a finite subset S2, then a simple closed curve γ Ă S2 ´ A is non-essential
if it can be shrinked to a point by a homotopy in S2 ´ A. Otherwise, we say that γ is
essential in S2 ´ A. A collection G “ tγ1, γ2, . . . , γru of essential simple closed curves in
S2 ´ A is called a Levy cycle for the Thurston map f : pS2, Aq ý if there exists a cyclic
permutation σ of t1, 2, . . . , ru so that for every i there is a simple closed curve rγi P f´1pγiq
that is homotopic in S2 ´A to γσpiq and degpf |rγi : rγi Ñ γiq “ 1. A Levy cycle G is degenerate
if each γi bounds an open Jordan region Di so that for every i some connected component
rDi of f

´1pDiq is homotopic in S2 ´A to Dσpiq and maps with degree 1 by the map f to Di.
Finally, Levy cycle G is called a Levy multicurve if all curves in G are pairwise disjoint and
pairwise non-homotopic in S2 ´ A; see Section 2.6 for further discussion.
Main Theorem A treats the following three cases for the map f in a unified manner:

(1) f is a finite degree map that is not a p2, 2, 2, 2q-map;
(2) f is a p2, 2, 2, 2q-map;
(3) f is an infinite degree map.

In scenario (1), the Main Theorem A can be derived as a direct consequence of Thurston’s
characterization criterion for marked Thurston map. However, for the other two cases,
Thurston’s result does not apply, and we have to address the challenges discussed in Sec-
tion 1.2.

Note that Main Theorem A does not make any assumptions about the function-theoretic
properties of the considered Thurston maps. This differs from other results in this direction:
[HSS09], which focuses on exponential Thurston maps, [She22], which is primarily devoted
to structurally finite Thurston maps, and [Pro24], where all Thurston maps have at most
three singular values. Note that the geometric and analytic properties of even entire or
meromorphic maps with finitely many singular values can be highly non-trivial; see [Bis15a,
Bis15b, Bis17].

1.3.1. Strategy of proof. For simplicity, we will outline how to derive the existence of a Levy
cycle for the Thurston map f : pS2, Aq ý in the context of Main Theorem A. With further
efforts, the complete version of Main Theorem A can be established.

We begin by considering the case where the set C :“ A ´ B consists of a single fixed
point c of the map f . Suppose that the Thurston map f : pS2, Bq ý is realized by a

postsingularly finite holomorphic map g : ppC, P q ý, and let µ P TB be the corresponding
fixed point of the pullback map σf,B defined on the Teichmüller space TB. There exist a
holomorphic submersion tA,B : TA Ñ TB naturally induced by forgetting the marked point c.
It is straightforward to show that the fiber ∆ :“ t´1

A,Bpµq is an σf,A-invariant subset of the
Teichmüller space TA. Furthermore, as the following proposition indicates, the pullback map
σf,A behaves particularly well on ∆; see Proposition 3.5 for a more detailed version of this
result.

Proposition 1.1. (1) ∆ is a properly and holomorphically embedded unit disk in TA such
that σf,Ap∆q Ă ∆;

(2) there exists a holomorphic covering map π : ∆ Ñ pC ´ P such that diagram (1) com-

mutes, where W :“ pC ´ g´1pP q.

In other word, although the pullback map σf,A is defined on the p|A| ´ 3q-complex-
dimensional manifold TA, it admits a one-complex-dimensional invariant subset. This allows
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∆ σf,Ap∆q

pC ´ P W

σf,A|∆

π π

g|W

Figure 1. Behavior of σf,A on ∆.

us to use powerful tools of one-dimensional complex dynamics and hyperbolic geometry to
better understand the dynamical behavior of σf,A.

Holomorphic self-maps of the unit disk that satisfy commutative diagram (1) have been
already investigated. Notably, pullback maps defined on the one-complex-dimensional Te-
ichmüller space, which is biholomorphic to the unit disk, frequently exhibit this property;
see [Koc13] for various examples and extending this observation to higher-dimensional Te-
ichmüller spaces in the context of finite degree Thurston maps, and [Pro24] for the broad
family of such pullback maps for infinite degree Thurston maps. In particular, by applying
[Pro24, Theorem 3.10], we conclude that if the Thurston map f : pS2, Aq ý is obstructed,
then for any τ P ∆, the projection pπpσ˝n

f,Apτqqq of the σf,A-orbit of τ converges to the same
repelling fixed point x P P of the map g, regardless of the choice of τ . Finally, we develop
tools (see Section 3.1) that allow us to deduce the existence of a Levy cycle for the Thurston
map f : pS2, Aq ý based on the behavior of σf,A|∆.

These ideas also extend to the case when the set C “ B´A consists of several fixed points
of the map f . We say that a point c P A is a trivial marked point of the Thurston map
f : pS2, Aq ý if c P A ´ Pf and either c is strictly pre-periodic, or it eventually lands to an
essential singularity of the map f after several iterations (this includes the case when c is
already an essential singularity of f). In other words, a point c P A ´ Pf is non-trivial if it
is periodic under the map f . In Section 3.2, we demonstrate that extending the marked set
by adding trivial marked points essentially does not change the properties of the Thurston
map or the corresponding pullback map, allowing us to ignore them in the context of the
proof of Main Theorem A. Therefore, from this point forward, we assume that every point
c P C is periodic under the map f .

Given the previous assumptions, we can find an iterate f ˝m : pS2, Aq ý of the original
Thurston map such that every point c P C becomes fixed, which allows us to apply previous
considerations to the map f ˝m. It is straightforward to see that the existence of a Levy
cycle for the Thurston map f ˝m : pS2, Aq ý also implies the existence of one for the original
Thurston map f : pS2, Aq ý. However, to complete the argument, we must show that
f ˝m : pS2, Aq ý is obstructed if f : pS2, Aq ý is also obstructed. This is a trivial result
for Thurston maps that are not of p2, 2, 2, 2q-type because of the contraction properties of
the corresponding pullback maps. However, for the family of marked Thurston p2, 2, 2, 2q-
maps, this conclusion is non-trivial. Nevertheless, we confirm the positive answer in the
following statement, which finishes the proof of Main Theorem A; see Section 3.5, particularly
Proposition 3.8.

Proposition 1.2. For each m ě 1, a Thurston map f : pS2, Aq ý is realized if and only the
iterate f ˝m : pS2, Aq ý is realized.
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In conclusion, we mention that the result of Main Theorem A is known for finite degree
marked Thurston maps; see [SY15, Main Theorem II] and [BD21, Theorem E]. However,
our approach differs significantly from these two works, and most crucially, applies to the
infinite degree case.

1.4. Organization of the paper. The paper is organized as follows. In Section 2, we review
some general background. In Section 2.1, we fix the notation and state some basic definitions.
We discuss topologically holomorphic maps in Section 2.2. The necessary background on
Thurston maps is covered in Section 2.3. Section 2.4 introduces the Teichmüller and moduli
spaces of a marked topological sphere. In Section 2.5, we define pullback maps, discuss their
basic properties and their relations with the associated Thurston maps. Finally, Section 2.6
is devoted to Levy cycles.

In Section 3, we investigate the realizability question and obstructions for marked Thurston
maps. Specifically, in Section 3.1, we provide tools for detecting Levy cycles for marked
Thurston maps. We then focus on the relations between the properties of Thurston maps
f : pS2, Aq ý and f : pS2, Bq ý, where B Ă A is an f -pseudo-invariant subset containing
Sf . In Section 3.2, we consider the case when the set A´B consists of trivial marked points.
Section 3.3 addresses the situation when A´B consists of a single fixed point of the map f .
In Section 3.4, we explore the relations between the fixed points of the pullback maps σf,A
and σf,B. In Section 3.5, we use previously established results to relate the properties of a
marked Thurston map to those of its iterates. Finally, in Section 3.6, we study obstructions
for the Thurston map f : pS2, Aq ý to be realized, under the assumption that the Thurston
map f : pS2, Bq ý is realized. In particular, we establish the proof of Main Theorem A.

Acknowledgments. I would like to express my deep gratitude to my thesis advisor,
Dierk Schleicher, for introducing me to the fascinating world of Transcendental Thurston
Theory. I am also profoundly thankful to Kevin Pilgrim and Lasse Rempe for their valuable
suggestions and for many helpful and inspiring discussions. I would like to thank Centre
National de la Recherche Scientifique (CNRS ) for supporting my visits to the University of
Saarland and University of Liverpool, where these conversations took place. Special thanks
go to Anna Jové and Zachary Smith for the discussions on the dynamics of holomorphic self-
maps of the unit disk and their diverse applications. Lastly, I would like to thank Kostiantyn
Drach and Dzmitry Dudko for valuable remarks.

2. Background

2.1. Notation and basic concepts. The sets of positive integers, real and complex num-
bers are denoted by N, R, and C, respectively. We use the notation I :“ r0, 1s for the closed
unit interval on the real line, D :“ tz P C : |z| ă 1u for the open unit disk in the complex

plane, and pC :“ C Y t8u for the Riemann sphere. If m,n P N, the greatest common divisor
of m and n is denoted by gcdpm,nq.

We denote the oriented 2-dimensional sphere by S2. In this paper, we treat it as purely

topological object. In particular, our convention is to write g : C Ñ pC or g : pC Ñ pC to
indicate that g is holomorphic, and f : S2 Ñ S2 if f is only continuous. The same rule

applies to the notation g : pC 99K pC and f : S2 99K S2 (see Section 2.2 for the details).
The cardinality of a set A is denoted by |A| and the identity map on A by idA. If f : U Ñ V

is a map and W Ă U , then f |W stands for the restriction of f to W . If U is a topological
space and W Ă U , then W denotes the closure and BW the boundary of W in U .
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A subset D of S2 is called an open or closed Jordan region if there exists an injective
continuous map φ : D Ñ S2 such that D “ φpDq or D “ φpDq, respectively. In this case,

BD “ φpBDq is a simple closed curve in S2. A domain U Ă pC is called an annulus if pC ´ U
has two connected components. The modulus of an annulus U is denoted by modpUq (see
[Hub06, Proposition 3.2.1] for the definition).

Let U and V be topological spaces. A continuous map H : U ˆ I Ñ V is called a homotopy
from U to V . When U “ V , we simply say that H is a homotopy in U . Given a homotopy
H : UˆI Ñ V , for each t P I, we associate the time-t map Ht :“ Hpt, ¨q : U Ñ V . Sometimes
it is convenient to think of the homotopy H as a continuous family of its time maps pHtqtPI.
The homotopy H is called an (ambient) isotopy if the map Ht : U Ñ V is a homeomorphism
for each t P I. Suppose A is a subset of U . An isotopy H : U ˆ I Ñ V is said to be an isotopy
relative to A (abbreviated “H is an isotopy rel. A”) if Htppq “ H0ppq for all p P A and t P I.

Given M,N Ă U , we say that M is homotopic (in U) to N if there exists a homotopy
H : U ˆ I Ñ U with H0 “ idU and H1pMq “ N . Two homeomorphisms φ0, φ1 : U Ñ V are
called isotopic (rel. A Ă U) if there exists an isotopy H : U ˆ I Ñ V (rel. A) with H0 “ φ0

and H1 “ φ1.
We assume that every topological surface X is oriented. We denote by Homeo`

pXq and
Homeo`

pX,Aq the group of all orientation-preserving self-homeomorphisms of X and the
group of all orientation-preserving self-homeomorphisms of X fixing A pointwise, respec-
tively. We use the notation Homeo`

0 pX,Aq for the subgroup of Homeo`
pX,Aq consisting of

all homeomorphisms isotopic rel. A to idX .
Further, we will require the following two topological facts. Here, IsolpXq denotes the set

of isolated points of the topological space X.

Lemma 2.1. If E is at most countable closed set of S2, then E coincides with the closure
of its isolated points, i.e., E “ IsolpEq, and its complement S2 ´ E is path-connected.

Proof. Let E´IsolpEq “ te1, e2, . . . , en, . . . u, and define Ei :“ E´teiu for each i P N. Clearly,
each Ei is open and dense in E. Therefore, by the Baire category theorem, IsolpEq “

Ş

iPNEi
is dense in E.

The set S2 ´ E is path-connected because, for any two points e1, e2 P S2 ´ E, there are
uncountably many arcs in S2 connecting e1 to e2 and intersecting each other only at their
endpoints. □

Lemma 2.2. Let φ : X Ñ Y be a homeomorphism, where X “ S2 ´EX and Y “ S2 ´EY ,
with EX and EY being at most countable closed sets of S2. Then φ has a unique continuous
extension to S2. Moreover, this extension is a self-homemorphism of S2 with φpEXq “ EY .

If X “ pC ´ EX and Y “ pC ´ EY , where EX and EY are at most countable closed sets

of pC, and φ : X Ñ Y is a biholomorphism, then φ extends to a Möbius transformation.

Proof. Let p P EX . We can select a sequence of closed Jordan regions pUnqnPN such that

p P Un, Un`1 Ă Un, and BUn Ă X for every n P N, and
Ş

nPN Un “ tpu. Let Vn :“ φpUn ´ Xq

be a closed Jordan region with BVn “ φpBUnq. Denote V :“
Ş

nPN Vn.

Claim. The set V is a singleton.

Proof. Note that V is non-empty due to Cantor’s intersection lemma. Next, we show that
V is connected. Suppose, for the sake of contradiction, that V “ V 1 Y V 2, where V 1 and V 2

are both open and closed sets of V , and V 1 X V 2 “ H. Since V is closed in S2, then V 1 and
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V 2 must also be closed subsets of S2. Since S2 is a normal topological space, we can find
two open sets W 1 Ą V 1 and W 2 Ą V 2 such that W 1 X W 2 “ H.
Denote W :“ W 1 Y W 2. We aim to show that Vn Ă W for sufficiently large n. Suppose,

on the contrary, that it is not the case. Then the compact set Wn :“ Vn ´ W is non-empty
for every n P N. Since, Wn`1 Ă Wn, Cantor’s intersection lemma guarantees the existence
a point q P

Ş

nPNWn. However, it contradicts to the fact that
Ş

nPNWn “ V ´ W “ H.
Therefore, Vn Ă W for sufficiently large n. But then Vn can be written as a disjoint union
of two open non-empty sets Vn X W 1 and Vn X W 2, and we obtain a contradiction with the
fact that Vn is connected.

Suppose there exists a point q P V X Y . Then the point φ´1pqq P X belongs to Un for all
n P N, which is impossible. Hence, V Ă EY . But EY is totally disconnected, and therefore,
V must be a singleton. ■

Now let us define φppq by setting φppq :“ q, where tqu “ V “
Ş

nPN Vn, and apply the
same procedure to every point p P EX . It is straightforward to verify that this construction
is independent of the choice of the sequence pUnq. Indeed, it easily follows from the fact that
if D is a neighborhood of p, then Un Ă D for all sufficiently large n. At the same time, one
can prove that φ is continuous on S2 by showing that limnÑ8 fppnq “ fppq for any sequence
ppnq of points in S2 converging to p P S2. Clearly, this is the unique continuous extensions
of φ to S2.

Suppose there are two points p1, p2 P S2 such that fpp1q “ fpp2q. We can pick two disjoint
open Jordan regions D1 and D2 such that pi P Di and BDi Ă X for i “ 1, 2. In this case,
fpD1q and fpD2q should intersect at uncountably many points of S2, and that would imply
that the original map was not injective on X. Thus, φ is injective on S2. Now, let q P S2 be
an arbitrary point and pqnq be a sequence of points in Y converging to q. Then the sequence
pφ´1pqnqq has a converging subsequence in S2. Without loss of generality, we assume that
the entire sequence pφ´1pqnqq converges to p P S2. Since φ : S2 Ñ S2 is continuous, it
follows that φppq “ q. Thus, φ : S2 Ñ S2 is surjective and, because S2 is both compact and
Hausdorff, φ is a self-homeomorphism of S2. Obviously, φpEXq “ EY .

Now, suppose that φ : X Ñ Y is a biholomorphism. As discussed earlier, it has a unique

extension to a self-homeomorphism of pC. By post-composing φ with a Möbius transfor-
mation, we can assume that it restricts to a self-homeomorphism of C that is holomorphic
outside of at most countable closed set. Then it can be shown, using Morera’s theorem

[Con95, Theorem 5.10], that φ must be holomorphic everywhere on pC. We leave this verifi-
cation to the reader. □

2.2. Topologically holomorphic maps. In this section we recall the definition of a topo-
logically holomorphic map and some of its basic properties (for more detailed discussion see
[MPR24, Section 2.3] and [Pro24, Section 2.2]; see also [LP20]).

Definition 2.3. Let X and Y be two connected topological surfaces. A map f : X Ñ Y is
called topologically holomorphic if it satisfies one of the following four equivalent conditions:

(1) for every p P X there exist d P N, a neighborhood U of x, and two orientation-
preserving homeomorphisms ψ : U Ñ D and φ : fpUq Ñ D such that ψppq “ φpfppqq “

0 and pφ ˝ f ˝ ψ´1qpzq “ zd for all z P D;
(2) f is continuous, open, discrete (i.e., f´1pqq is discrete in X for very q P Y ), and for

every p P X such that f is locally injective at p, there exists a neighborhood U of p
for which f |U : U Ñ fpUq is an orientation-preserving homeomorphism;
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(3) there exist Riemann surfaces SX and SY and orientation-preserving homeomorphisms
φ : Y Ñ SY and ψ : X Ñ SX such that φ ˝ f ˝ ψ´1 : SX Ñ SY is a holomorphic map;

(4) for every orientation-preserving homeomorphism φ : Y Ñ SY , where SY is a Riemann
surface, there exist a Riemann surface SX and an orientation-preserving homeomor-
phism ψ : X Ñ SX such that φ ˝ f ˝ ψ´1 : SX Ñ SY is a holomorphic map.

Remark 2.4. Note that in condition (4) of Definition 2.3, the pair pψ, SXq is uniquely deter-

mined up to the following equivalence: pψ, SXq „ p rψ, rSXq if there exists a biholomorphism

θ : SX Ñ rSX such that ψ “ θ ˝ rψ. In particular, the conformal type of the surface SX is
uniquely determined by the homeomorphism φ : Y Ñ SY . If φ and the surface SX are fixed,
then the homeomorphism ψ : X Ñ SX is uniquely determined up to post-composition with
a biholomorphism of SX .

It is straightforward to define the concepts of regular, singular, critical, and asymptotic
values, as well as regular and critical points and their local degrees (denoted by degpf, ¨q) for
the topologically holomorphic map f (see [MPR24, Definition 2.7]). We denote by Sf Ă Y
the singular set of f , i.e., the union of all singular values of the topologically holomorphic
map f : X Ñ Y . We say that the map f is of finite type or belongs to the Speiser class S if
the set Sf is finite.
It is possible to derive the following isotopy lifting property for finite-type topologically

holomorphic maps (cf. [ERG15, Propostion 2.3] and [Pro24, Proposition 2.2]).

Proposition 2.5. Let f : X Ñ Y and rf : rX Ñ rY be topologically holomorphic maps of finite

type, where X, Y , rX, and rY are connected topological surfaces. Suppose that φ0 ˝ f “ rf ˝ψ0

for some orientation-preserving homeomorphisms φ0 : Y Ñ rY and ψ0 : X Ñ rX. Let A Ă Y

be a finite set containing Sf and φ1 : Y Ñ rY be an orientation-preserving homeomorphism

isotopic rel. A to φ0. Then φ1 ˝ f “ rf ˝ψ1 for some orientation-preserving homeomorphism

ψ1 : X Ñ rX isotopic rel. f´1pAq to ψ0.

Proof. Let pφtqtPI be the corresponding isotopy. From the definition of a singular value,
it follows that the restrictions φt ˝ f |Z : Z Ñ T are covering maps for each t P I, where
Z :“ X ´ f´1pAq and T :“ Y ´A. Therefore, [ABF21, Lemma 2.7] implies the existence of
an isotopy pϕtqtPI in Z such that φt˝f “ φ0˝f ˝ϕt. Each homeomorphism ϕt : Z Ñ Z extends
to a self-homeomorphism of the entire surface X since all points of the set X ´Z “ f´1pAq

are isolated. Moreover, the homotopy pϕtqtPI can be viewed as an isotopy in X rel. f´1pAq.
At the same time, φ0 ˝ f “ φ0 ˝ f ˝ ϕ0 and, therefore, we have the following:

φ1 ˝ f “ φ0 ˝ f ˝ ϕ1 “ pφ0 ˝ f ˝ ϕ0q ˝ ϕ´1
0 ˝ ϕ1 “ φ0 ˝ f ˝ ϕ´1

0 ˝ ϕ1 “ rf ˝ pψ0 ˝ ϕ´1
0 ˝ ϕ1q.

Thus, we can set ψ1 :“ ψ0 ˝ ϕ´1
0 ˝ ϕ1, and pψ0 ˝ ϕ´1

0 ˝ ϕtqtPI provides the required isotopy rel.

f´1pAq. Finally, ψ1 is orientation-preserving since f and rf are local orientation-preserving
homeomorphisms outside the sets of their critical points. □

We say that a topological surface X is a countably-punctured sphere, if X “ S2 ´E, where
E is a closed subset of S2 that is at most countable. It is worth noting that we allow the set E
to be finite or even empty. In this paper, we mainly focus on topologically holomorphic maps
f : X Ñ S2 defined on a countably-punctured sphere X. Additionally, we always assume
that f cannot be extended as a topologically holomorphic map to a neighborhood of any of
the points of the set S2 ´ X. For simplicity, we will use the notation f : S2 99K S2 in order
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to indicate that f might not be defined on at most countable closed set of S2. Similar to
the holomorphic case, any point e P S2 ´X is referred as an essential singularity of the map
f , which is isolated if it is an isolated point of the set S2 ´ X. We say that a topologically
holomorphic map f : S2 99K S2 is transcendental if it has an essential singularity. Given our
previous assumptions on the map f , this is equivalent to saying that f has infinite topological

degree. Likewise, for a holomorphic map g defined everywhere on pC, potentially excluding

at most countable closed set of singularities, we use the notation g : pC 99K pC, and we say

that g : pC 99K pC is holomorphic.

Let φ : S2 Ñ pC be an orientation-preserving-homeomorphism and f : X Ñ S2 be a topo-
logically holomorphic map of finite type, where X is a countably-punctured sphere. Ac-
cording to item (4) of Definition 2.3, there exists an orientation-preserving homeomorphism

ψ : X Ñ R, where R is a connected Riemann surface, so that the map φ ˝ f ˝ ψ´1 : R Ñ pC
is holomorphic. Moreover, according to Remark 2.4, the conformal type of R is uniquely
determined for a given homeomorphism φ.

Definition 2.6. We define f as a topologically holomorphic map of admissible type if the
Riemann surface R, as described above, is biholomorphic to a countably-punctured Riemann

sphere for any orientation-preserving homeomorphism φ : S2 Ñ pC.

In fact, the following proposition shows that Definition 2.6 is independent of the choice
of φ.

Proposition 2.7. Suppose that f : X Ñ S2 is a finite-type topologically holomorphic map,
where X is a countably-punctured sphere. If f is of admissible type, then for every orientation-

preserving homeomorphism φ : S2 Ñ pC, there exists an orientation-preserving homeomor-
phism ψ : X Ñ R such that R is a countably-punctured Riemann sphere and the map

φ ˝ f ˝ ψ´1 : R Ñ pC is holomorphic. Moreover, such ψ is unique up to post-composition
with a Möbius transformation.

Proof. Since f has an admissible type, there exist two orientation-preserving homeomor-

phisms φ1 : S
2 Ñ pC and ψ1 : X Ñ pC ´ E, where E is at most countable closed subset of pC,

such that the map g1 :“ φ1˝f ˝ψ´1
1 : pC´E Ñ pC is holomorphic. Now let φ2 : S

2 Ñ pC be any
other orientation-preserving homeomorphism. By item (4) of Proposition 2.3, there exists a
connected Riemann surface R and an orientation-preserving homeomorphism ψ2 : X Ñ R so

that the map g2 :“ φ2 ˝ f ˝ ψ´1
2 : R Ñ pC is holomorphic. In particular, g2 “ rφ ˝ g1 ˝ rψ´1 on

R, where rφ :“ φ2 ˝ φ´1
1 : pC Ñ pC and rψ :“ ψ2 ˝ ψ´1

1 : pC ´ E Ñ R are orientation-preserving

homeomorphisms. Note that rφ is isotopic rel. Sf to some diffeomorphism of pC (see, for
instance, [FM12, Theorem 1.13]). According to Proposition 2.5, without loss of generality,

we can assume that rφ is itself a diffeomorphism of pC, and therefore, it is a quasiconformal
mapping. Let µ

rφ :“ rφ˚µ0 be the Beltrami form corresponding to rφ, where µ0 is the zero

Beltrami form on pC (see [BF14, Sections 1.2 and 1.3]). We define another Beltrami form on
pC by

µpzq “

#

pg1q
˚µ

rφpzq, if z P pC ´ E,

0, otherwise.

By a standard argument (see, for example, [BF14, Definition 1.34]) involving Riemann Mea-
surable Mapping Theorem [BF14, Theorem 1.28], it is easy to establish the existence of a
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quasiconformal mapping θ P Homeo`
pCq such that µθ “ µ almost everywhere on pC and the

map g :“ rφ ˝ g1 ˝ θ´1 : pC ´ θpEq Ñ pC is holomorphic. Thus, applying Remark 2.4 to the

map g1 and pairs p rψ,Rq and pθ, pC ´ θpEqq, we conclude that R must be biholomorphic to a
countably-punctured Riemann sphere.

The uniqueness of ψ as stated in this proposition can be deduced from Lemma 2.2 and
Remark 2.4. □

Further, we will focus on finite-type topologically holomorphic maps f : S2 99K S2 of
admissible type. These maps serve as topological models for the family of holomorphic maps

g : pC 99K pC having finitely many singular values. The most straightforward examples of such
maps are branched self-covers of S2. The singular sets of these maps consist of finitely many
critical values, and they do not have any essential singularities. A finite-type topologically
holomorphic map f : S2 99K S2 with a single essential singularity is of admissible type if and
only if f is of parabolic type (see [Pro24, Section 2.2]).

Let f : S2 99K S2 be a finite-type topologically holomorphic map of admissible type. Then
Great Picard’s Theorem and Lemma 2.1 imply that in any neighborhood of an essential
singularity of such a map f , every value is attained infinitely often with at most two ex-
ceptions. In particular, f can have at most two omitted values, i.e., points p in S2 such
that the preimage f´1ppq is empty. Furthermore, each omitted value is an asymptotic value
of f . Additionally, observe that if A Ă S2 is a finite set with |A| ě 3 and Sf Ă A, then
the restriction

f |S2
´ f´1pAq : S2

´ f´1pAq Ñ S2
´ A

is a covering map. Note that the closure f´1pAq consists of f´1pAq along with all essential
singularities of the map f .

The main motivation for introducing maps with countably many essential singularities
is that the family of topologically holomorphic maps with at most one (or even finitely
many) essential singularities is not closed under composition. Indeed, it is straightforward
to construct two such maps, each with a single essential singularity, whose composition has
infinitely many of them. However, the class of finite-type topologically holomorphic maps
f : S2 99K S2 of admissible type is closed under the operation of composition.

Proposition 2.8. Let f1 : X1 Ñ S2 and f2 : X2 Ñ S2 be two finite-type topologically
holomorphic maps, where X1 and X2 are countably-punctured spheres. Then the compo-
sition f1 ˝ f2 : X2 X f´1

2 pX1q Ñ S2 is also a finite-type topologically holomorphic map, with
Sf1˝f2 “ Sf1Yf1pSf2q. Moreover, if both f1 and f2 are of admissible type, then the composition
f1 ˝ f2 : S

2 99K S2 is of admissible type as well.

Proof. The first part of this proposition easily follows from Definition 2.3 and the definition
of a singular value.

Let φ : S2 Ñ pC be an orientation-preserving homeomorphism. Then by Lemma 2.2 and

Proposition 2.7, there exists another orientation-preserving homeomorphism ψ : S2 Ñ pC such

that φ˝f ˝ψ´1 : ψpX1q Ñ pC is holomorphic. Applying the same argument to the map f2 and
the homeomorphism ψ, we derive the existence of an orientation-preserving homeomorphism

θ : S2 Ñ pC such that ψ ˝ f ˝ θ´1 : θpX2q Ñ pC is holomorphic. Hence,

φ ˝ pf1 ˝ f2q ˝ θ´1
“ pφ ˝ f1 ˝ ψ´1

q ˝ pψ ˝ f2 ˝ θ´1
q : θpX2 X f´1

2 pX1qq Ñ pC
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is holomorphic as well. Obviously, θpX2 X f´1
2 pX1qq is a countably-punctured Riemann

sphere, and therefore, f1 ˝ f2 is of admissible type. □

Finally, observe that Lemma 2.2 allows us to state the following version of Proposition 2.5.

Corollary 2.9. Let f : X Ñ S2 and rf : rX Ñ S2 be finite-type topologically holomorphic

maps, where X and rX are countably-punctured spheres. Suppose that φ0 ˝ f “ rf ˝ ψ0 for
some φ0, ψ0 P Homeo`

pS2q. Let A Ă S2 be a finite set containing Sf and φ1 P Homeo`
pS2q

is isotopic rel. A to φ0. Then φ1 ˝ f “ rf ˝ ψ1 for some ψ1 P Homeo`
pS2q isotopic rel.

f´1pAq Y pS2 ´ Xq Ą f´1pAq to ψ0.

Analogously to [Pro24, Corollary 2.3], we have the following result.

Corollary 2.10. Let f : X Ñ S2 be a finite-type topologically holomorphic map, where X
is a countably-punctured topological sphere. Let A Ă S2 be a finite set containing Sf , and
suppose that γ0 is a simple closed curve in S2 ´A. Let rγ0 Ă f´1pγq be a simple closed curve
with degpf |rγ0 : rγ0 Ñ γ0q “ d. If γ1 is a simple closed curve that is homotopic in S2 ´ A to
γ0, then there exists a simple closed curve rγ1 Ă f´1pγ1q such that rγ0 and rγ1 are homotopic

in X ´ f´1pAq Ă S2 ´ f´1pAq and degpf |rγ1 : rγ1 Ñ γ1q “ d.

Moreover, suppose that D0 and rD0 are connected components of S2 ´ γ0 and S2 ´ rγ0,

respectively, such that f | rD0 : rD0 Ñ D0 is a homeomorphism. Then there exist connected

components D1 and rD1 of S2 ´ γ1 and S2 ´ rγ1, respectively, such that D0 is homotopic in

S2 ´ A to D1, rD0 is homotopic in X ´ f´1pAq Ă S2 ´ f´1pAq to rD1, and f | rD1 : rD1 Ñ D1

is a homeomorphism.

2.3. Thurston maps. Let f : X Ñ S2 be a topologically holomorphic map, where X “

S2 ´E is a countably-punctured sphere. Then we define the orbit Of ppq of p P S2 under f as

Of ppq :“ tq P S2 : q “ f ˝n
ppq for some n ě 0u.

It is worth to note that f ˝nppq might be defined only for finitely many n if f ˝mppq P E for
some m ě 0. In this case, we say that the orbit of p terminates after m iterations of f .

The postsingular set Pf of the map f is defined as the union of all forward orbits of the
singular values of f . We say that f : S2 99K S2 is postsingularly finite (psf in short) if
the set Pf is finite, i.e., f has finitely many singular values and each of them eventually
becomes periodic or lands on an essential singularity of f under the iteration. Postsingularly
finite topologically holomorphic maps of finite degree are also called postcritically finite (pcf
in short), and their postsingular values are called postcritical, as their singular values are
always critical.

Definition 2.11. For a topologically holomorphic map f : S2 99K S2, the subset A P S2 is
called f -pseudo-invariant if the orbit of each a P A belongs to the set A.

Every f -invariant set is f -pseudo-invariant and, if the map f has no essential singularities,
the converse holds as well. Note that if |A| ě 3 and f is a finite-type topologically holomor-

phic map of admissible type, then the set A is f -pseudo-invariant if and only if A Ă f´1pAq.
The postsingular set Pf provides an example of f -pseudo-invariant set.

Now we are ready to state one of the key definitions of this section.

Definition 2.12. A non-injective topologically holomorphic map f : S2 99K S2 is called a
Thurston map if it is postsingularly finite and of admissible type.
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Given a finite f -pseudo-invariant set A Ă S2 such that Pf Ă A, we call the pair pf, Aq a
marked Thurston map and A its marked set.

We often consider marked Thurston maps in the same way as usual Thurston maps and
use the notation f : pS2, Aq ý while still assuming that f might not be defined on the entire
sphere S2. If no specific marked set is mentioned, we assume it to be Pf .

Definition 2.13. Two Thurston maps f1 : pS2, Aq ý and f2 : pS2, Aq ý are called isotopic
(rel. A) if there exists ϕ P Homeo`

0 pS2, Aq such that f1 “ f2 ˝ ϕ.

Remark 2.14. Let f1 : pS2, Aq ý and f2 : pS2, Aq ý be two Thurston maps satisfying the
relation ϕ1 ˝f1 “ f2 ˝ϕ2 for some ϕ1, ϕ2 P Homeo`

0 pS2, Aq. Then it follows from Corollary 2.9
that f1 and f2 are isotopic rel. A.

The notion of isotopy for Thurston maps depends on their common marked set. Conse-
quently, we sometimes refer to isotopy relative A (or rel. A for short) to specify which marked
set is being considered. This applies to other notions introduced below that also depend on
the choice of the marked set.

We say that two (marked) Thurston maps are combinatorially equivalent if they are “topo-
logically conjugate up to isotopy”:

Definition 2.15. Two Thurston maps f1 : pS2, A1q ý and f2 : pS2, A2q ý are called com-

binatorially (or Thurston) equivalent if there exist two Thurston maps rf1 : pS2, A1q ý and
rf2 : pS2, A2q ý such that:

‚ fi and rfi are isotopic rel. Ai for each i “ 1, 2, and

‚ rf1 and rf2 are conjugate via a homeomorphsim ϕ P Homeo`
pS2q, i.e., ϕ ˝ rf1 “ rf2 ˝ ϕ,

such that ϕpA1q “ A2.

Remark 2.16. Definition 2.15 can be reformulated in a more classical way. Thurston maps
f1 : pS2, A1q ý and f2 : pS2, A2q ý are combinatorially equivalent if and only if there exist
two homeomorphisms ϕ1, ϕ2 P Homeo`

pS2q such that ϕ1pA1q “ ϕ2pA1q “ A2, ϕ1 and ϕ2 are
isotopic rel. A, and ϕ1 ˝ f1 “ f2 ˝ ϕ2.

Remark 2.17. If A1 “ Pf1 and A2 “ Pf2 , then the condition that ϕpA1q “ A2 in Defini-
tion 2.15 and the condition ϕ1pA1q “ ϕ2pA1q “ A2 in Remark 2.16 can be removed since
they are automatically satisfied if all other conditions hold.

A Thurston map f : pS2, Aq ý is said to be realized if it is combinatorially equivalent to a

postsingularly finite holomorphic map g : ppC, P q ý. If f : pS2, Aq ý is not realized, we say
that it is obstructed.
In the following statement we explore the case when the marked set of a Thurston map

consists of at most three points.

Proposition 2.18. Let f : pS2, Aq ý be a Thurston map. The marked set A must contain
at least two points. Furthermore:

(1) if |A| ď 3, then f : pS2, Aq ý is realized, and

(2) if |A| “ 2, then f : pS2, Aq ý is combinatorially equivalent to either z ÞÑ zd : ppC, t0,8uq ý

or z ÞÑ z´d : ppC, t0,8uq ý, where d :“ degpfq.

Proof. Let X be the complement of the set of essential singularities of f . Then the restriction
f |X ´ f´1pAq : X ´ f´1pAq Ñ S2 ´A is a covering map. If A “ H or |A| “ 1, this covering
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map must be a homeomorphism, since S2 ´ A is simply connected, and X ´ f´1pAq would
either be S2 or a once-punctured sphere, respectively. In either case, it is clear that f must be
a homeomorphism of S2, which is impossible for a Thurston map. Thus, the set A contains
at least two points.

If |A| “ 2, classical theory of covering map gives two possibilities: either X ´ f´1pAq is a
once-punctured sphere and the covering f |X ´ f´1pAq : X ´ f´1pAq Ñ S2 ´ A has infinite
degree, or X ´ f´1pAq is a twice-punctured sphere and the corresponding covering has a
finite degree. In the first case, f has an essential singularity, implying that S2 ´ X consists
of a single point and f´1pAq is empty. However, this leads to a contradiction, as there exists
a point a P A that is not an essential singularity of f and, in particular, fpaq P A.
In the second case, f has a finite degree and two critical values a, b P A “ Sf “ Pf with

f´1pta, buq “ ta, bu. By item (4) of Definition 2.3, there exist two orientation-preserving

homeomorphisms φ : S2 Ñ pC and ψ : S2 Ñ pC such that f “ φ ˝ g ˝ ψ´1, where g is a
rational map. Clearly, |Sg| “ 2, and therefore, we can post-compose φ and ψ with Möbius
transformations, to ensure that Sg “ t0,8u, φpaq “ ψpaq “ 0, and φpbq “ ψpbq “ 8. It
follows that gpzq “ z˘d, where d “ degpfq. According to [FM12, Proposition 2.3], φ and ψ
are isotopic rel. A and the rest of item (2) follows.
Similarly, by [FM12, Proposition 2.3], two orientation-preserving homeomorphisms φ : S2 Ñ

pC and ψ : S2 Ñ pC that agree on the set A Ă S2, where |A| ď 3, are isotopic rel. A. Just as
in the case when |A| “ 2, this observation implies that any Thurston map f : pS2, Aq ý is
realized when the marked set A contains three or fewer points, leading to item (1). □

2.4. Teichmüller and moduli spaces. Let A Ă S2 be a finite set containing at least three
points. Then the Teichmüller space of the sphere S2 with the marked set A is defined as

TA :“ tφ : S2
Ñ pC is an orientation-preserving homeomorphismu{ „

where φ1 „ φ2 if there exists a Möbius transformation M such that φ1 is isotopic rel. A
to M ˝ φ2.

Similarly, we define the moduli space of the sphere S2 with the marked set A:

MA :“ tη : A Ñ pC is injectiveu{ „,

where η1 „ η2 if there exists a Möbius transformation M such that η1 “ M ˝ η2.
Further, r¨sA denotes an equivalence class corresponding to a point of either the Teichmüller

space TA or the moduli space MA. In situations when the considered marked set is obvious,
we simply use the notation r¨s. Note that there is a natural map πA : TA Ñ MA defined as
πAprφsq “ rφ|As. According to [FM12, Proposition 2.3], when |A| “ 3, both the Teichmüller
space TA and the moduli space MA are just single points. Therefore, for the rest of this
section, we assume that |A| ě 4.

It is known that the Teichmüller space TA admits a complete metric dT , known as the
Teichmüller metric [Hub06, Proposition 6.4.4]. Moreover, with respect to the topology
induced by this metric, TA is a contractible space [Hub06, Corollary 6.7.2]. At the same time,
both TA and MA admit structures of p|A| ´ 3q-complex manifolds (see [Hub06, Theorem
6.5.1]) so that the map πA : TA Ñ MA becomes a holomorphic universal covering map
[Hub16, Section 10.9].

Moreover, the complex structure of MA is quite explicit in the general case. Let A “

ta1, a2, . . . , ak, ak`1, ak`2, ak`3u, k ě 1, where the indexing of the points of A is chosen
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arbitrarily. Define the map h : MA Ñ Ck ´ Lk by

hprφsq “ pφpa1q, φpa2q, . . . , φpakqq,

where the representative φ : S2 Ñ pC is chosen so that φpak`1q “ 0, φpak`2q “ 1, and
φpak`3q “ 8, and where Lk is the subset of Ck defined by

Lk :“ tpz1, z2, . . . , zkq P Ck : zi “ zj for some i ‰ j, or zi “ 0, or zi “ 1u.

It is known that the map h provides a biholomorphism betweenMA and Ck´Lk (see [Hub16,
Section 10.9]).

The case |A| “ 4 is particularly simple. In this situation, the Teichmüller space TA is
biholomorphic to D, with the metric dT coinciding with the usual hyperbolic metric on
the unit disk ([Hub06, Corollary 6.10.3 and Theorem 6.10.6]). Additionally, the moduli

space MA is biholomorphic to the three-punctured Riemann sphere pC ´ t0, 1,8u.
Suppose that A and B are finite subsets of S2 such that B Ă A. There exist two maps

tA,B : TA Ñ TB and mA,B : MA Ñ MB that are naturally induced by forgetting the marked
points of the set A ´ B. More precisely, tA,BprφsAq “ rφsB and mA,BprηsAq “ rηsB, where
rφsA P TA, rφsB P TB, rηsA P MA, and rηsB P MB.
Suppose thatA “ ta1, a2, . . . , ak, ak`1, ak`2, ak`3u andB “ ta1, a2, . . . , al, ak`1, ak`2, ak`3u,

where l ď k. Define the maps hA : MA Ñ Ck ´ Lk and hB : MB Ñ Cl ´ Ll as follows:
hAprφsAq “ pφpa1q, φpa2q, . . . , φpakqq, hBprψsBq “ pψpa1q, ψpa2q, . . . , ψpalqq.

where the representatives φ : S2 Ñ pC and ψ : S2 Ñ pC are chosen so that φpak`1q “

ψpak`1q “ 0, φpak`2q “ ψpak`2q “ 1, and φpak`3q “ ψpak`3q “ 8.
Then it easy to verify that diagram (2) commutes, where projk,l : Ck Ñ Cl is the projection

onto the first l coordinates.

TA TB

MA MB

Ck ´ Lk Cl ´ Ll

tA,B

πA πB

mA,B

hA hB

projk,l

Figure 2. Maps induced by forgetting marked points.

The previous discussion, along with diagram (2), indicates that both tA,B and mA,B are
holomorphic submersions. In particular, according to the submersion lemma (see, for in-
stance, [Lee12, Corollary 5.13]), if τ P TB, then its fiber t´1

A,Bpτq is a properly embedded

complex submanifold of the Teichmüller space TA and dimCpt´1
A,Bpτqq “ |A| ´ |B|. Analo-

gously, if ν P MB, then its fiber m´1
A,Bpνq is a properly embedded complex submanifold of

MA, also with complex dimension |A| ´ |B|.
When the sets A and B differ by only one point, a more refined result can be obtained

from Bers Isomorphism; see [Nag82].

Proposition 2.19. Suppose that A and B are finite sets such that B Ă A Ă S2, |B| ě 3,
and |A| “ |B| ` 1. If τ P TB, then t´1

A,Bpτq is a properly and holomorphically embedded unit
disk in the Teichmüller space TA.
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2.5. Pullback maps. In this section we illustrate how the notions introduced in Section 2.4
can be applied for studying the properties of Thurston maps. Most importantly, we introduce
the following crucial concept.

Proposition 2.20. Suppose that f : S2 99K S2 is finite-type topologically holomorphic map
of admissible type, and A and B are two finite subsets of S2 such that |A|, |B| ě 3 and B Ă

f´1pAq. Let φ : S2 Ñ pC be an orientation-preserving homeomorphism. Then there exists an

orientation-preserving homeomorphism ψ : S2 Ñ pC such that gφ :“ φ ˝ f ˝ ψ´1 : pC 99K pC is
holomorphic. In other words, the following diagram commutes

pS2, Bq ppC, ψpBqq

pS2, Aq ppC, φpAqq

ψ

f gφ

φ

The homeomorphism ψ is unique up to post-composition with a Möbius transformation. Dif-
ferent choices of φ that represent the same point in TA yield maps ψ that represent the same
point in TB.

In other words, we have a well-defined map σf,A,B : TA Ñ TB such that σf,A,BprφsAq “ rψsB,
called the pullback map (or the σ-map). As φ ranges across all maps representing a single
point in TA, the map gφ is uniquely defined up to pre- and post-composition with Möbius
transformations.

Proof. The existence of a homeomorphism ψ : S2 Ñ pC, as well as its uniqueness up to pre-
composition by a Möbius transformation, is guaranteed by Lemma 2.2 and Proposition 2.7.
If we modify φ by an isotopy rel. A, then ψ changes only by an isotopy rel. f´1pAq Ą B
according to Corollary 2.9. Post-composition of φ by a Möbius transformation does not
affect the homeomorphism ψ. Thus, varying φ within its equivalence class in TA does not
affect rψsB, showing that the pullback map σf,A,B introduced above is well-defined. These
arguments also show that gφ is uniquely determined up to pre- and post-composition with a
Möbius transformation. □

Remark 2.21. In the more classical convention, the roles of the sets A and B are usually
reversed, meaning the domain of the pullback map is the Teichmüller space TA, while the
range is the Teichmüller space TB; see [KPS16] and [Ast, Definition 3.1]. However, in this
paper, we adopt the opposite convention.

Moreover, except for this section (i.e., Section 2.5), the sets B and C are always considered
subsets of A, unless stated otherwise.

Analogously to [Pro24, Proposition 2.16], we can easily derive the following property
related to the behavior of pullback maps.

Proposition 2.22. Suppose that we are in the setting of Proposition 2.20, and there exist
subsets C Ă A and D Ă B with Sf Ă C, D Ă f´1pCq, and |C|, |D| ě 3. Then, the map gφ
depends only on the isotopy class rel. C of φ and ψ|D, and the equivalence class rψsD depends
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only on rφsC, i.e., the following diagram commutes:

TA TB

TC TD

σf,A,B

tA,C tB,D

σf,C,D

Using Proposition 2.8, it is straightforward to verify that the following composition rule
holds in the context of pullback maps.

Proposition 2.23. Let f1 : S
2 99K S2 and f2 : S

2 99K S2 be two finite-type topologically
holomorphic maps of admissible type. Suppose that A, B, and C are finite subsets of S2,

each containing at least three points, and satisfying Sf1 Ă A, Sf2 Ă B, B Ă f´1
1 pAq, and

C Ă f´1
2 pBq. Then σf1˝f2,C,A “ σf2,B,C ˝ σf1,A,B.

In this paper, the primary focus is on the case when A “ B. In this scenario, either
f : pS2, Aq ý is a Thurston map or f is an orientation-preserving homeomorphism such that
fpAq “ A. We will use the notation σf,A for the pullback map σf,A,A. Note that the domain
and co-domain of σf,A are the same, allowing us to explore its dynamical properties.

The following observation provides the most crucial property of pullback maps.

Proposition 2.24. A Thurston map f : pS2, Aq ý with |A| ě 3 is realized if and only if the
pullback map σf,A has a fixed point in the Teichmüller space TA.

Proof. Suppose that f : pS2, Aq ý is realized by a postsingularly finite holomorphic map

g : ppC, P q ý. Then, as noted in Remark 2.16, there exist orientation-preserving homeo-

morphisms φ, ψ : S2 Ñ pC such that φpAq “ ψpAq “ P , φ and ψ are isotopic rel. A, and
φ ˝ f “ g ˝ ψ. Clearly, τ “ rφs “ rψs P TA is a fixed point of σf,A.

Now, suppose that τ “ rφs P TA is a fixed point of σf,A. By Proposition 2.20, there exists

an orientation-preserving homeomorphism ψ : S2 Ñ pC such that gφ :“ φ ˝ f ˝ ψ´1 : pC 99K pC
is holomorphic and rφs “ rψs. Therefore, there exists a Möbius transformation M such that
φ and M ˝ ψ are isotopic rel. A and, in particular, φ|A “ M ˝ ψ|A. Hence, the holomorphic

map g :“ gφ ˝ M´1 : ppC, φpAqq ý is postsingularly finite and combinatorially equivalent
to f : pS2, Aq ý. □

We say that a Thurston map f : pS2, Aq ý is a p2, 2, 2, 2q-map if f has a finite degree,
exactly four postcritical values, and each of its critical points is simple (i.e., has local de-
gree 2) and strictly pre-periodic. The following proposition summarizes the most important
properties of pullback maps.

Proposition 2.25. Let f : pS2, Aq ý be a Thurston map with |A| ě 3. Then

(1) σf,A holomorphic;
(2) σf,A is 1-Lipschitz, i.e., dT pσf,Apτ1q, σf,Apτ2qq ď dT pτ1, τ2q for every τ1, τ2 P TA;
(3) σf,A is distance-decreasing, i.e., dT pσf,Apτ1q, σf,Apτ2qq ă dT pτ1, τ2q for every distinct

τ1, τ2 P TA, if f is transcendental;
(4) σ˝k

f,A is distance-decreasing for some k ě 1 if f is not a p2, 2, 2, 2q-map;
(5) σf,Pf

is an isometry of TPf
if f is a p2, 2, 2, 2q-map.
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Proof. This result is rather well-known in the context of finite degree Thurston maps (see
[BCT14, Section 1.3] and [Hub16, Sections 10.6 and 10.7, and Appendix C.6]), and it can
be extended analogously to our setting. We provide only an outline of the argument here,
leaving some of the details to the reader.

According to Lemma 2.2 and Proposition 2.7, there exist two orientation preserving home-

omorphisms φ, ψ : S2 Ñ pC and a holomorphic map g : pC 99K pC so that f “ φ´1 ˝ g ˝ ψ. Let
B :“ φpAq and C :“ ψpAq. In this proof, we identify the topological sphere S2 with the

Riemann sphere pC. By Proposition 2.23, we have the following:

σf,A “ σψ,C,A ˝ σg,B,C ˝ σφ´1,A,B.

It is well-known that σψ,C,A : TC Ñ TA and σφ´1,A,B : TA Ñ TB are holomorphic isometries
(see [Hub06, Sections 6.4 and 7.4]). Using an approach analogous to [Ast, Lemma 3.3], one
can show that σg,B,C : TB Ñ TC is also holomorphic, which establishes item (1). Similarly,
according to [Eps93, Lemma 16] or [Ast, Sections 2 and 3], the pullback map σg,B,C must
be distance-decreasing if the map f is transcendental, leading to item (3). Item (2) follows
from [Hub06, Corollary 6.10.7], and item (4) comes from the previous discussion and [BCT14,
Lemma 2.9] (see also [Hub16, Corollary 10.7.8]). Lastly, item (5) is well-known; see [DH93,
Section 9] or [Hub16, Appendix C.6]. □

Remark 2.26. Suppose that f is a p2, 2, 2, 2q-map. According to item (5), the pullback map
σf,Pf

is an automorphism of the Teichmüller space TPf
, which is biholomorphic to the unit

disk, as discussed in Section 2.4. Moreover, it is known that there exist examples of Thurston
maps f for which σf,Pf

is the identity, or it is conjugate to an elliptic, parabolic, or hyperbolic
transformation of the unit disk; see [Hub16, Appendix C.6].

Proposition 2.25, called Thurston’s rigidity (cf. [Hub16, Corollary 10.7.8]), illustrates how
the properties of a pullback map can be used to derive conclusions about dynamics of the
corresponding Thurston map.

Proposition 2.27. Suppose that f : pS2, Aq ý is not a p2, 2, 2, 2q-map. If f : pS2, Aq ý is

realized by two postsingularly finite holomorphic maps g1 : ppC, P1q ý and g2 : ppC, P2q ý, then
there exists a Möbius transformation M such that M ˝ g1 “ g2 ˝ M and MpP1q “ P2.

Proof. According to Remark 2.16, there exist orientation-preserving homeomorphisms φ1,

φ2, ψ1, ψ2 : S
2 Ñ pC such that φi and ψi are isotopic rel. A, ψipAq “ φipAq “ Pi, and

gi “ φi ˝ f ˝ψ´1
i for each i “ 1, 2. Clearly, if |A| ě 3, the points τi “ rφis “ rψis, i “ 1, 2 are

fixed points of the pullback map σf,A. However, item (4) of Proposition 2.25 demonstrates
that σf,A can have at most one fixed point in the Teichmüller space TA. Therefore, τ1 “ τ2,
and there exists a Möbius transformation M such that φ2 is isotopic rel. A to M ˝ φ1.
Consequently, ψ2 must isotopic rel. A toM ˝ψ1 andMpP1q “ P2. Corollary 2.9 then implies
that g1 and g2 must be conjugate byM . If |A| “ 2, the same conclusion follows from [FM12,
Proposition 2.3]. □

2.6. Obstructions. Let A be a finite subset of S2. We say that a simple closed curve
γ Ă S2 ´ A is essential in S2 ´ A if each connected component of S2 ´ γ contains at least
two points of the set A; otherwise γ is called non-essential. In other words, γ is essential in
S2 ´ A if it cannot be shrinked to a point via a homotopy in S2 ´ A. It is easy to see that
this property is independent from the homotopy class of the curve in S2 ´ A. Finally, we
note that essential simple closed curves in S2 ´ A exist if and only if |A| ě 4.
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Now, let f : S2 99K S2 be a topologically holomorphic map of finite type, and let A
and B be two finite sets with Sf Ă A and B Ă f´1pAq. Suppose that γ Ă S2 ´ A and

rγ Ă S2 ´ f´1pAq are two simple closed curves such that rγ Ă f´1pγq. If γ is non-essential in
S2 ´A, then rγ is also non-essential in S2 ´B (see, for instance, [MPR24, Propositions 2.11
and 2.12]). However, if γ is essential in S2´A, then rγ may or may not be essential in S2´B.
A multicurve G in S2 ´ A is a finite collection of essential simple closed curves in S2 ´ A
that are pairwise disjoint and pairwise non-homotopic in S2 ´ A.

Definition 2.28. Let f : pS2, Aq ý be a Thurston map. A collection G “ tγ1, γ2, . . . , γru
of essential simple closed curves in S2 ´ A is called a Levy cycle for the Thurston map
f : pS2, Aq ý if there exists a cyclic permutation σ of t1, 2, . . . , ru so that for every i there
is a simple closed curve rγi P f´1pγiq that is homotopic in S2 ´A to γσpiq and degpf |rγi : rγi Ñ

γiq “ 1. A Levy cycle G is degenerate if each γi bounds an open Jordan region Di so that

for every i some connected component rDi of f
´1pDiq is homotopic in S2 ´ A to Dσpiq and

maps with degree 1 by the map f to Di.

The following observation is widely known in the context of finite degree Thurston maps
[Hub16, Exercise 10.3.6], and its proof extends to the case of transcendental Thurston maps
as well [Pro24, Proposition 2.11].

Proposition 2.29. A Thurston map f : pS2, Aq ý having a Levy cycle is obstructed.

If G “ tγ1, γ2, . . . , γru is a Levy cycle for a Thurston map f : pS2, Aq ý, then the number r
is called the period of the Levy cycle G. We say that the Levy cycle G is minimal, if the
curves in G are pairwise non-homotopic in S2 ´ A. Clearly, if G is not minimal, we can
extract G 1 Ă G that provides a minimal Levy cycle for f : pS2, Aq ý.

We observe that if G “ tγ1, γ2, . . . , γru is a Levy cycle for a Thurston map f : pS2, Aq ý

and G 1 “ tγ1
1, γ

1
2, . . . , γ

1
ru is a collection of simple closed curves in S2 ´ A such that γi and

γ1
i are homotopic in S2 ´ A for i “ 1, 2, . . . , r, then by Corollary 2.10, G 1 is also a Levy

cycle for f : pS2, Aq ý. Furthermore, if G is degenerate, then according to the second part
of Corollary 2.10, G 1 must also be degenerate.

If additionally G is a multicurve, we say that G is a Levy multicurve. When the period of
a Levy cycle G equals 1, then G consists of a single essential simple closed curve γ in S2 ´A
that is called a Levy fixed or Levy invariant curve. When the Levy cycle G of period 1 is
degenerate, then γ is called degenerate Levy fixed (or invariant) curve.

It is known that a Levy cycle, or even a Levy fixed curve, is not necessarily degenerate
(see, for instance, [HP22, Section 3] for a large class of such examples). At the same time, it
is easy construct an example of a degenerate Levy cycle G for a Thurston map f : pS2, Aq ý

that does not form a Levy multicurve even after replacing curves in G with simple closed
curves homotopic to them in S2 ´ A.

3. Marked Thurston maps

In this section, we investigate the realizability question and Levy cycles for marked
Thurston maps as introduced in Section 2.3. In Section 3.1, we present tools for detect-
ing and analyzing Levy cycles. Further, in Sections 3.2-3.6, we explore how the properties of
a Thurston map f : pS2, Aq ý are related to those of the Thurston map f : pS2, Bq ý, where
B Ă A is an f -pseudo-invariant subset containing Sf . Also, in Section 3.5, we investigate
the relationship between the properties of a Thurston map and those of its iterates. Main
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Theorem A is proven in Section 3.6, while Propositions 1.1 and 1.2 from the introduction
are established in Sections 3.3 and 3.5, respectively.

3.1. Detecting Levy cycles. Let X be a hyperbolic Riemann surface, and let α Ă X be
a simple closed C1-curve. The length of α with respect to the hyperbolic metric on X is
denoted by ℓXpαq. Now, let α be an essential simple closed curve in the punctured Riemann

sphere X :“ pC ´ P , where 3 ď |P | ă 8. According to [Hub06, Proposition 3.3.8], there
exists a unique closed geodesic in X that is homotopic (in X) to α. Note that this geodesic
should be necessarily simple [Hub06, Proposition 3.3.9].

Let γ be an essential simple closed curve in S2 ´ A, and τ “ rφs be a point in the
Teichmüller space TA. We define lγpτq as the length of the unique hyperbolic geodesic in
pC ´ φpAq that is homotopic in pC ´ φpAq to φpαq. Additionally, we introduce wγpτq :“
log lγpτq. It is known that wγ : TA Ñ R is a 1-Lipschitz function [Hub06, Theorem 7.6.4].
Let X be a hyperbolic Riemann surface, and suppose α Ă X is a simple closed geodesic

with ℓXpαq ă ℓ˚, where ℓ˚ :“ logp3 ` 2
?
2q. In this case, we say that α is short. As stated

in [Hub06, Proposition 3.3.8 and Corollary 3.8.7], two short simple closed geodesics on a
hyperbolic Riemann surface X are either disjoint and non-homotopic in X, or they coincide.

Therefore, [Hub06, Proposition 3.3.8] implies that a punctured Riemann sphere pC´P , where
3 ď |P | ă 8, can have at most |P | ´ 3 distinct short simple closed geodesics.

The following result allows us to identify a Levy cycle for a Thurston map based on the
behavior of the corresponding pullback map.

Proposition 3.1. Suppose that f : pS2, Aq ý is a Thurston map with |A| “ k ` 3, k ě 1.

Let τ1 P TA and τi “ rφis “ σ
˝pi´1q

f,A pτq for i “ 1, 2, . . . , k ` 1, where the representatives

φi : S
2 Ñ pC are chosen so that the map gi :“ φi ˝ f ˝ φ´1

i`1 :
pC 99K pC is holomorphic for each

i “ 1, 2 . . . , k. Assume that there exists an annulus U Ă pC such that

‚ each connected component of pC ´ U contains at least two points of φk`1pAq;
‚ modpUq ą pk ` 4qπekd0{ℓ˚, where d0 :“ dT pτ1, τ2q;
‚ g1 ˝ g2 ˝ ¨ ¨ ¨ ˝ gk is defined and injective on U .

Then the Thurston map f : pS2, Aq ý has a Levy multicurve G. Moreover, for each γ P G,
the inequality lγpτiq ă pk ` 4qπekd0{modpUq holds for each i “ 1, 2, . . . , k ` 1.

Proof. Define U1 :“ U and Ui`1 :“ gk´i`1pUiq for each i “ 1, 2, . . . , k. Notice that each
Ui is an annulus with modpUiq “ modpUq. Therefore, we can find a parallel subannulus
V of Uk`1 such that modpV q ě modpUq{pk ` 4q and V does not contain any points of
φ1pAq. Next, define V1 :“ V , and for each i “ 1, 2, . . . , k, let Vi`1 be the annulus coinciding
with the connected component of g´1

i pViq within Uk´i`1. Clearly, Vi X φipAq “ H for each

i “ 1, 2, . . . , k ` 1. It also can be easily verified that each connected component of pC ´ Vi
contains at least two points of φipAq; otherwise, there would exist a connected component

of pC ´ U containing at most one point of φk`1pAq (see, for instance, [For91, Theorems 5.10
and 5.11]).

Let αk`1 be a unique hyperbolic geodesic of Vk`1. It is known that αk`1 is a simple closed
geodesic that forms a core curve of the annulus Vk`1, and its length in Vk`1 is given by
ℓVk`1

pαk`1q “ π{modpVk`1q; see [Hub06, Proposition 3.3.7] For each i “ 2, 3, . . . , k ` 1, let

αi´1 :“ gi´1pαiq. Next, define βi :“ φ´1
i pαiq for each i “ 1, 2, . . . , k` 1. It is straightforward
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βk`1 S2 S2 U1 Vk`1 αk`1

βk S2 S2 U2 Vk αk

β3 S2 S2 Uk´1 V3 α3

β2 S2 S2 Uk V2 α2

β1 S2 S2 Uk`1 V1 α1

f f

φk`1

gk gk gk gk

φk

f f

φ3

g2 g2 g2 g2

f f

φ2

g1 g1 g1 g1

φ1

Figure 3. Diagram depicting the relationships among the
introduced objects.

to verify that βi is an essential simple closed curve in S2 ´ A, with βi´1 “ fpβiq and
degpf |βi : βi Ñ βi´1q “ 1; see Figure 3 for further clarifications.

Let Xi :“ pC ´ φipAq for each i “ 1, 2, . . . , k ` 1. Recall that gi|Vi`1 : Vi`1 Ñ Vi is a
biholomorphism for each i “ 1, 2, . . . , k, and therefore, by Schwarz-Pick’s lemma, we have
ℓVipαiq “ ℓVjpαjq for all i and j. Thus, according to Schwarz-Pick’s lemma and the choice of
αk`1, we have:

ℓXi
pαiq ď ℓVipαiq “ ℓVk`1

pαk`1q “
π

modpVk`1q
“

π

modpV q
ď

pk ` 4qπ

modpUq
.

By item (2) of Proposition 2.25, we have dT pτi, τjq ď |i´j| ¨d0 for each i, j “ 1, 2, . . . , k`1.
Therefore, since the function wβi : TA Ñ R is 1-Lipschitz, it follows that lβipτjq ă pk `

4qπekd0{modpUq. In particular, there exist short simple closed geodesics δ1, δ2, . . . , δk`1 in
X1, with each δi homotopic in X1 to φ1pβiq.

As it was discussed previously, any two short geodesics, δi and δj, are either disjoint
and non-homotopic in X1, or they coincide. However, the punctured Riemann sphere

X1 “ pC ´ φ1pAq can contain at most k distinct short simple closed geodesics. There-
fore, there must be distinct indices i1 and i2 such that δi1 “ δi2 . Without loss of generality,
assume that i2 is the minimal index such that i2 ą i1 and δi1 “ δi2 . Since φ´1

1 pδiq is
homotopic in S2 ´ A to βi for each i “ 1, 2, . . . k ` 1, Corollary 2.10 implies that the mul-
ticurve tφ´1

1 pδi1`1q, φ
´1
1 pδi1`2q, . . . , φ

´1
1 pδi2qu forms a Levy multicurve for the Thurston map

f : pS2, Aq ý. Finally, note that lφ´1
1 pδiq

pτq “ lβipτq for each i “ 1, 2, . . . , k ` 1 and τ P TA,
and the rest follows from the previous discussion. □

The following proposition demonstrates that, under specific conditions, a Levy multic-
urve can be obtained from a Levy cycle by simply modifying the homotopy classes of the
corresponding simple closed curves.

Proposition 3.2. Let G “ tγ1, γ2, . . . , γru be a minimal Levy cycle for a Thurston map
f : pS2, Aq ý. Suppose there exist a curve γ P G and a point τ in the Teichmüller space TA
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such that lγpτq ă ℓ˚e´pr´1qd0, where d0 :“ dT pτ, σf,Apτqq. Then, there exists a Levy multicurve
G 1 “ tγ1

1, γ
1
2, . . . , γ

1
ru for f : pS2, Aq ý such that each γ1

i is homotopic in S2 ´ A to γi.
Moreover, if G is a degenerate Levy cycle, then G 1 is a degenerate Levy multicurve.

Proof. Without loss of generality, assume that γ “ γ1 and σpiq “ i ` 1mod r, where σ is a
cyclic permutation associated with the Levy cycle G (see Definition 2.28).

Let τi “ rφis “ σ
˝pi´1q

f,A pτq for i P N, where the representatives φi : S
2 Ñ pC are chosen so

that gi :“ φi ˝ f ˝ φ´1
i`1 :

pC 99K pC is holomorphic. Additionally, define Xi :“ pC ´ φipAq and

Yi :“ pC ´ g´1
i pφipAqq “ pC ´ φi`1pf´1pAqq for all i P N.

Claim. For each i “ 1, 2, . . . , r, we have the inequality lγipτiq ď lγ1pτ1q.

Proof. We assume that r ě 2, and begin by showing that lγ2pτ2q ď lγ1pτ1q. The rest then
follows by induction. There exists a simple closed geodesic α1 in X1 such that ℓX1pα1q “

lα1pτ1q and α1 is homotopic in X1 to φ1pγ1q. Denote β1 :“ φ´1
1 pα1q. Since β1 is homotopic

in S2 ´ A to γ1, by Corollary 2.10, there exists a simple closed curve β2 Ă f´1pβ1q that is
homotopic in S2 ´ A to γ2 and satisfies degpf |β2 : β2 Ñ β1q “ 1. Let α2 :“ φ2pβ2q Ă Y1.
Obviously, g1pα2q “ α1 and degpg1|α2 : α2 Ñ α1q “ 1. Therefore, since g1|Y1 : Y1 Ñ X1 is a
holomorphic covering map, Schwarz-Pick’s lemma gives:

ℓX2pα2q ď ℓY1pα2q “ ℓX1pα1q “ lγ1pτ1q.

At the same time, clearly, lγ2pτ2q ď ℓX2pα2q, and the rest follows. ■

Item (2) of Proposition 2.25 implies that dT pτi, τjq ď |i´j| ¨d0 for each i, j P N. Therefore,
based on the claim above and the fact that wγi : TA Ñ R is 1-Lipschitz, we conclude that
lγipτ1q ă ℓ˚ for each i “ 1, 2, . . . , r. Therefore, there exist short simple closed geodesics
δ1, δ2, . . . , δr in X1, where each δi is homotopic in X1 to φ1pγiq.

Since G is a minimal Levy cycle, no two geodesics δi and δj are homotopic in X1 for i ‰ j.
Therefore, as each δi is a short simple closed geodesic, δi and δj must be disjoint in X1. Now,
define γ1

i :“ φ´1
1 pδiq and G 1 :“ tγ1

1, γ
1
2, . . . , γ

1
ru, which forms a multicurve in S2 ´A. Since γi

and γ1
i are homotopic in S2 ´A, G 1 is a Levy multicurve for the Thurston map f : pS2, Aq ý,

and if the original Levy cycle G is degenerate, then G 1 is also degenerate. □

3.2. Trivial marked points. Let f : pS2, Aq ý be a Thurston map. We say that a marked
point a P A is trivial for f : pS2, Aq ý if a P A ´ Pf and either a is strictly pre-periodic,
or it eventually lands to an essential singularity of the map f after several iterations (this
includes the case when a is already an essential singularity of f). It is easy to see that if
a P A ´ Pf is not a trivial marked point of f : pS2, Aq ý, then a must be periodic under f .
The following proposition demonstrates that adding trivial marked points to the marked set
does not affect the essential properties of a Thurston map (cf. [Par22, Proposition 2.8]).

Proposition 3.3. Let f : pS2, Aq ý be a Thurston map, where the set A can be decomposed
as A “ B\C, with Sf Ă B, B being f -pseudo-invariant, and C consisting of trivial marked
points. Then

(1) f : pS2, Bq ý is realized if and only if f : pS2, Aq ý is realized. Moreover, if |B| ě 3
and τ P TB is a fixed point of the pullback map σf,B, then the pullback map σf,A has
a unique fixed point in t´1

A,Bpτq;
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(2) f : pS2, Bq ý has a Levy cycle (or degenerate Levy cycle, Levy multicurve, or degen-
erate Levy multicurve) G “ tγ1, γ2, . . . , γru, then f : pS2, Aq ý has a Levy cycle (or
degenerate Levy cycle, Levy multicurve, or degenerate Levy multicurve, respectively)
rG “ trγ1, rγ2, . . . , rγru such that γi and rγi homotopic in S2 ´B for each i “ 1, 2, . . . , r;

(3) if G is a Levy cycle (or a degenerate Levy cycle) for f : pS2, Aq ý, then G is also a
Levy cycle (degenerate Levy cycle, respectively) for f : pS2, Bq ý.

Proof. Let m ě 1 be an integer such that every point of C lands either to a point in B within
at most m iterations, or to an essential singularity of f after at most m´ 1 iterations. It is
straightforward to see that A Ă f´mpBq.

For item (1), we can assume that |B| ě 3. If |B| ď 2, this can be easily adjusted by
moving points from C to B and applying item (1) of Proposition 2.18. If the Thurston map
f : pS2, Aq ý is realized, then naturally f : pS2, Bq ý is also realized. Now, assume that
f : pS2, Bq ý is realized, and the pullback map σf,B has a fixed point τ P TB. According to
Propositions 2.22 and 2.23, it follows that rψsA “ σ˝m

f,AprφsAq “ σf˝m,AprφsAq depends only

on rφsB for any rφsA P TA, and that rψsB “ rφsB if rφsA P t´1
A,Bpτq. Therefore, σ˝m

f,Apt´1
A,Bpτqq

consists of a single point µ P t´1
A,Bpτq, making µ a unique fixed point of σf,A within t´1

A,Bpτq.

In particular, Proposition 2.24 implies that f : pS2, Aq ý is realized.
For items (2) and (3), we assume that m “ 1, i.e., for every c P C, either fpcq P B or c is

an essential singularity of f . Equivalently, this means that A Ă f´1pBq. The general case
can be obtained through induction on m, and we leave this to the reader.

Suppose f : pS2, Bq ý has a Levy cycle G “ tγ1, γ2, . . . , γru, and let σ be the corresponding
cyclic permutation of the set t1, 2, . . . , ru. Then, for each i “ 1, 2, . . . , r, there exists a simple
closed curve rγi Ă f´1pγiq such that rγi is homotopic in S2 ´ B to γσpiq and degpf |rγi : rγi Ñ

γiq “ 1. Now, consider the collection of essential simple closed curves rG :“ trγ1, rγ2, . . . , rγru in

S2 ´ A. We aim to show that rG provides a Levy cycle for the Thurston map f : pS2, Aq ý.
There exists a simple closed curve rγσpiq Ă f´1pγσpiqq such that degpf |rγσpiq : rγσpiq Ñ γσpiqq “ 1

for each i “ 1, 2, . . . , r. Since rγi and γσpiq are homotopic in S2 ´ B, Corollary 2.10 guar-
antees the existence of a simple closed curve δi Ă f´1prγiq such that δi is homotopic in

S2 ´ f´1pBq Ă S2 ´ A to rγσpiq and degpf |δi : δi Ñ rγiq “ 1. Thus, rG provides a Levy cycle
for f : pS2, Aq ý. Moreover, by the second part of Corollary 2.10, if G is a degenerate Levy

cycle for f : pS2, Bq ý, then rG is also a degenerate Levy cycle for f : pS2, Aq ý. Similarly,

if G is a multicurve, then rG is a multicurve as well, establishing item (2).
Suppose that G “ tγ1, γ2, . . . , γru is a Levy cycle for the Thurston map f : pS2, Aq ý.

If G were not a Levy cycle for f : pS2, Bq ý, it would mean that some curve γj P G is
non-essential in S2 ´ B. That implies that if δ Ă f´1pγjq is a simple closed curve, then δ is
non-essential in S2 ´A. However, there exists an essential simple closed curve rγj Ă f´1pγjq
in S2 ´ A, which leads to a contradiction. Finally, it is clear that if G is a degenerate
Levy cycle for the Thurston map f : pS2, Aq ý, then it is also degenerate for the Thurston
map f : pS2, Bq ý. □

Remark 3.4. Suppose we are in the setting of Proposition 3.3. Let m ě 1 be the minimal
integer such that every point of C lands either to a point in B within at most m iterations,
or to an essential singularity of f after at most m ´ 1 iterations. Based on the ideas from
the proof of item (1), and Propositions 2.18 and 2.22, it can be shown that if |B| “ 3, then
σ˝m
f,A is constant, although σ˝n

f,A is never constant for 1 ď n ď m ´ 1.
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3.3. Single marked fixed point. Let f : pS2, Bq ý be a Thurston map with |B| ě 3. If
c P S2´B is a fixed point of the map f , then we can analyze the Thurston map f : pS2, Aq ý,
where A :“ B Y tcu, using the information about the original Thurston map f : pS2, Bq ý.

In this section, we assume that f : pS2, Bq ý is realized. This allows us to gain a deeper
understanding of the behavior of the pullback map σf,A, which is defined on the Teichmüller
space TA.

According to Proposition 2.24, there exists a fixed point µ “ rθ1s “ rθ2s P TB of the

pullback map σf,B. We assume that the representatives θ1, θ2 : S
2 Ñ pC are chosen such that

θ1 and θ2 are isotopic rel. B (in particular, θ1|B “ θ2|B) and g :“ θ1 ˝ f ˝ θ´1
2 : ppC, P q ý is

a postsingularly finite holomorphic map, where P :“ θ1pBq “ θ2pBq.
Now, we are ready to introduce the following objects:

‚ ∆ :“ t´1
A,Bpµq, which is a σf,A-invariant subset of TA according to Proposition 2.22;

‚ π : ∆ Ñ pC ´ P , defined by πprφsq “ φpcq, where the representative φ : S2 Ñ pC is
chosen so that φ|B “ θ1|B “ θ2|B;

‚ ω : ∆ Ñ pC ´ P , defined as ω :“ π ˝ σf,A|∆;

‚ W :“ pC ´ g´1pP q, which is a domain of pC.
Naturally, the objects introduced above depend on the map f , the marked set B, the fixed

point c, as well as the choice of the representatives θ1 and θ2 for the fixed point µ P TB (which
might not be unique if f is a p2, 2, 2, 2q-map; see Remark 2.26). However, for simplicity, we
exclude these dependencies from the notation.

∆ ∆

W

pC ´ P pC ´ P

σf,A|∆

π

ω

π

g|W

Figure 4. Fundamental diagram.

Proposition 3.5. The objects defined above satisfy the following properties:

(1) diagram (4) commutes.
(2) ∆ is a properly and holomorphically embedded unit disk in TA;
(3) π : ∆ Ñ pC ´ P , g|W : W Ñ pC ´ P , and ω : ∆ Ñ W are holomorphic covering maps;
(4) σf,Ap∆q Ĺ ∆ is open and dense in ∆, and σf,A|∆: ∆ Ñ σf,Ap∆q is a holomorphic

covering map.

Proof. Let τ “ rφs P ∆, where the representative φ : S2 Ñ pC is chosen such that φ|B “

θ1|B “ θ2|B. By Propositions 2.20 and 2.22, there exists an orientation-preserving home-

omorphism ψ : S2 Ñ pC such that g “ φ ˝ f ˝ ψ´1 and ψ|B “ θ1|B “ θ2|B. Clearly,
gpψpcqq “ φpcq. At the same time, πpτq “ φpcq, and ωpτq “ ψpcq because σf,Apτq “ rψs.
Thus, we have π “ ω ˝ g. Using this, we conclude that diagram (4) commutes, establishing
item (1).
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Item (2) follows directly from Proposition 2.19. The map g|W : W Ñ pC ´ P is a covering

because Sg Ă P . Similarly, the map π : ∆ Ñ pC ´ P is a holomorphic covering map due to
the discussion of Section 2.4, and particularly, commutative diagram (2). Therefore, using
the relation π “ ω ˝ g and [Hat02, Section 1.3, Excercise 16], we deduce that ω : ∆ Ñ W is
also a holomorphic covering map, thereby completing item (3).

Similarly, since ω “ π ˝ σf,A|∆, the restriction σf,A|∆: ∆ Ñ σf,Ap∆q is a covering map,
which is holomorphic because ∆ is a complex submanifold of TA and σf,A is holomorphic on
TA by item (1) of Proposition 2.25. Note that by Great Picard’s Theorem and the Riemann-

Hurwitz formula [Hub06, Appendix A.3], the set pC´W contains at least one point different
from the points of the set P . Therefore, σf,Ap∆q “ π´1pW q is different from ∆. Since

W is open and dense in pC, it follows that σf,Ap∆q is open and dense in ∆, establishing
item (4). □

3.4. Fixed points of pullback maps. The following proposition establishes the relation-
ship between the fixed points of the pullback maps σf,A and σf,B, where f : pS2, Aq ý is a
Thurston map and B Ă A is an f -pseudo-invariant subset containing Sf .

Proposition 3.6. Let f : pS2, Aq ý be a realized Thurston map, and let B Ă A be an f -
pseudo-invariant set with |B| ě 3 and Sf Ă B. If µ P TB is a fixed point of the pullback map
σf,B, then the pullback map σf,A has a unique fixed point in t´1

A,Bpµq. Furthermore, every
fixed point of σf,A belongs to the tA,B-fiber of a fixed point of σf,B.

Proof. First of all, if τ is a fixed point of σf,A, then by Proposition 2.22, tA,Bpτq is a fixed
point of σf,B. Next, we will show that the pullback map σf,A has a unique fixed point in
t´1
A,Bpµq, where µ is a fixed point of the pullback map σf,B.
The answer is straightforward for Thurston maps that are not p2, 2, 2, 2q-maps due to

item (4) of Proposition 2.25, which implies that the associated pullback maps can have at
most one fixed point. However, the case of p2, 2, 2, 2q-maps is non-trivial.
First, we demonstrate that trivial marked points of the set C :“ A ´ B can be ignored.

Claim 1. Let C “ C1 \ C2, where C2 consists of trivial marked points of the Thurston map
f : pS2, Aq ý. If the pullback map σf,BYC1 has a unique fixed point in t´1

BYC1,B
pµq, then the

pullback map σf,A also has a unique fixed point in t´1
A,Bpµq.

Proof. Let τ 1 be the unique fixed point of σf,BYC1 such that τ 1 P t´1
BYC1,B

pµq. According to

item (1) of Proposition 3.3, there exists a unique fixed point of σf,A within t´1
A,BYC1

pτ 1q.

Now, suppose that τ is any fixed point of σf,A in t´1
A,Bpµq. By Proposition 2.22, tA,BYC1pτq

is a fixed point of σf,BYC1 . Since tA,B “ tBYC1,C1 ˝ tA,BYC1 , it follows that tA,BYC1pτq P

t´1
BYC1,B

pµq, and therefore, tA,BYC1pτq “ τ 1. Thus, any fixed point of σf,A in t´1
A,Bpµq must

belong to t´1
A,BYC1

pτ 1q, and the rest follows. ■

Next, we address the case when all points of the set C “ A´B “ tc1, c2, . . . , clu are fixed
under the map f .

Claim 1. Suppose that every point c P C is fixed point of f . Then the pullback map σf,A
has a unique fixed point in t´1

A,Bpµq.

Proof. Define Bi “ B Y tc1, c2, . . . , ciu for each i “ 0, 1, . . . , l. In particular, B0 “ B and
Bl “ A. We prove by induction on i with 0 ď i ď l that σf,Bi

has a unique fixed point in
t´1
Bi,B

pµq. The base case is obvious, since t´1
B0,B

pµq “ tµu and µ is a fixed point of σf,B0 .
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Now suppose that for some j with 0 ď j ă l, the pullback map σf,Bj
has a unique fixed

point τj P t´1
Bj ,B

pµq. Define ∆ :“ t´1
Bj`1,Bj

pτjq. According to Proposition 2.19, ∆ is a properly
and holomorphically embedded unit disk in the Teichmüller space TBj`1

. Furthermore, by
Proposition 2.22, ∆ is σf,Bj`1

-invariant, and according to item (4) of Proposition 3.5, the
restriction σf,Bj`1

|∆: ∆ Ñ ∆ is holomorphic but not an automorphism of ∆.
However, the σf,Bj`1

-orbit of any point in ∆ forms a pre-compact set within TBj`1
, and

thus within ∆ as well. This follows easily, for example, from the facts that σf,Bj`1
has a

fixed point in TBj`1
due to Proposition 2.24, and that σf,Bj`1

is 1-Lipschitz on TBj`1
, as

noted in item (2) of Proposition 2.25. As a result, by the Denjoy-Wolff theorem [Aba23,
Theorem 3.2.1], the pullback map σf,Bj`1

has a unique fixed point in ∆.

Now, suppose that τ is any fixed point of the pullback map σf,Bj`1
in t´1

Bj`1,B
pµq. By

Proposition 2.22, it is straightforward to see that tBj`1,Bj
pτq is a fixed point of σf,Bj

. More-

over, since tBj`1,B “ tBj ,B ˝ tBj`1,Bj
, we have tBj`1,Bj

pτq P t´1
Bj ,B

pµq. As τj is unique fixed

point of σf,Bj
in t´1

Bj ,B
pµq, it follows tBj`1,Bj

pτq “ τj, or equivalently, τ P t´1
Bj`1,Bj

pµq “ ∆.
Since we have already shown that σf,Bj`1

has a unique fixed point in ∆, the uniqueness of

the fixed point of σf,Bj`1
within t´1

Bj`1,B
pµq follows. ■

Now, consider the general case. By Claim 1, we may assume that the set C does not
contain any trivial marked points of the Thurston map f : pS2, Aq ý. Therefore, every point
c P C is periodic under f , and we can choose m ě 1 such that every c P C is fixed under
f ˝m. Applying Claim 2 to the Thurston map f ˝m : pS2, Aq ý, we find that there is a unique
fixed point τ of σf˝m,A in t´1

A,Bpµq. By Proposition 2.23, we know that σf˝m,A “ σ˝m
f,A, and in

particular, τ is a periodic point of σf,A.
If τ is a fixed point of σf,A, we are done, because any other fixed point of σf,A in t´1

A,Bpµq

would lead to a fixed point of σf˝m,A “ pσf,Aq˝m, contradicting Claim 2. Now, suppose that
τ is not a fixed point of σf,A. Then τ and σf,Apτq would be distinct fixed points of σf˝m,A.
However, both τ and σf,Apτq lie in t´1

A,Bpµq, as t´1
A,Bpµq is σf,A-invariant by Proposition 2.22.

This leads to a contradiction with Claim 2. □

Corollary 3.7. Let f : pS2, Aq ý be a realized Thurston map. Suppose that B Ă A is an
f -pseudo-invariant set containing Sf , and there exist two orientation-preserving homeomor-

phisms φ, ψ : S2 Ñ pC such that φ and ψ are isotopic rel. B and g “ φ˝f˝ψ´1 : ppC, φpBqq ý is
a holomorphic postsingularly finite map. Then, there exist two orientation-preserving home-

omorphisms rφ, rψ : S2 Ñ pC such that

(1) rφ and rψ are isotopic rel. A;

(2) φ and rφ are isotopic rel. B, and ψ and rψ are isotopic rel. B;

(3) g “ rφ ˝ f ˝ rψ´1 : ppC, rφpAqq ý.

Moreover, if |B| ě 3, the orientation-preserving homeomorphisms rφ and rψ that satisfy prop-
erties (1)-(3) are unique up isotopy rel. A.

Proof. This result is follows directly from Proposition 3.6, along with Proposition 2.22 and
[FM12, Proposition 2.3]. □

3.5. Passing to an iterate. The following proposition establishes a connection between
certain properties of a marked Thurston map and of those of its iterates:

Proposition 3.8. Let f : pS2, Aq ý be a Thurston map and m ě 1. Then:
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(1) f : pS2, Aq ý is realized if and only if f ˝m : pS2, Aq ý is realized;
(2) if f ˝m : pS2, Aq ý has a Levy cycle (or a degenerate Levy cycle) G of period r, then

f : pS2, Aq ý has a Levy cycle (or a degenerate Levy cycle, respectively) F of pe-
riod mr such that G Ă F ;

(3) f ˝m : pS2, Aq ý has a Levy cycle (or a degenerate Levy cycle) G and there exist
γ P G and τ P TA such that lγpτq ă ℓ˚e´pmr´1qd0, where d0 :“ dT pτ, σf,Apτqq, then
f : pS2, Aq ý has a Levy multicurve (or a degenerate Levy multicurve, respectively) F
of period at most mr;

(4) if f : pS2, Aq ý has a Levy cycle (or a degenerate Levy cycle, Levy multicurve, or
degenerate Levy multicurve) G of period r, then f ˝m : pS2, Aq ý has a Levy cycle (or
degenerate Levy cycle, Levy multicurve, or degenerate Levy multicurve, respectively)
F of period r{gcdpm, rq such that F Ă G.

Proof. For item (1), we can assume that |A| ě 3 due to item (1) of Proposition 2.18. Suppose
the Thurston map f : pS2, Aq ý is realized. According to Proposition 2.24, the pullback map
σf,A has a fixed point τ P TA. By Proposition 2.23, τ is also a fixed point of σf˝m,A, since
σf˝m,A “ pσf,Aq˝m. From Proposition 2.24, we conclude that f ˝m : pS2, Aq ý is also realized.
Now, suppose that f ˝m : pS2, Aq ý is realized. As previously discussed, this implies the

existence of a periodic point of period m for the pullback map σf,A. If f is not a p2, 2, 2, 2q-
map, then by item (4) of Proposition 2.25, every periodic point of σf,A must be fixed, and
the desired result follows from Proposition 2.24.

Suppose that f is a p2, 2, 2, 2q-map. As discussed in Section 2.4, the Teichmüller space
TPf

is biholomorphic to the unit disk. Since σf,Pf
has a periodic point by Proposition 2.22,

then Schwarz’s lemma and the classification of automorphisms of D imply that σf,Pf
must

have a fixed point µ. Clearly, µ is also a fixed point of σf˝m,Pf
. Therefore, according to

Proposition 3.6, σf˝m,A has a unique fixed point τ in t´1
A,Pf

pµq. Note that both τ and σf,Apτq

are fixed points of σf˝m,A. Moreover, σf,Apτq P t´1
A,Pf

pµq, since t´1
A,Pf

pµq is σf,A-invariant

according to Proposition 2.22. Therefore, τ and σf,Apτq must coincide, and item (1) follows
from Proposition 2.24.

Suppose f ˝m : pS2, Aq ý has a Levy cycle G “ tγ1, γ2, . . . , γru. Let σ denote the cor-
responding cyclic permutation of the set t1, 2, . . . , ru, and for each i “ 1, 2, . . . , r, let
rγi Ă f´mpγiq be a simple closed curve such that rγi is homotopic in S2 ´ A to γσpiq and

degpf ˝m|rγi : rγi Ñ γiq “ 1. Denote γi,k :“ f ˝pm´kqprγiq for each i “ 0, 1, . . .m ´ 1. In particu-
lar, γi,0 “ γi. It is clear that each γi,k must be an essential curve in S2 ´A, as rγi would not
be essential otherwise. It is straightforward to verify that

F :“ tγi,k : i “ 1, 2, . . . , r and k “ 0, 1, . . . ,m ´ 1u

provides a Levy cycle for the map f : pS2, Aq ý. Similarly, if G is a degenerate Levy cycle
for f ˝m : pS2, Aq ý, then F is a degenerate Levy cycle for f : pS2, Aq ý, and this establishes
item (2).

Suppose that additionally there exist γ P G and τ P TA such that lγpτq ă ℓ˚e´pmr´1qd0 .
Let us choose a minimal Levy cycle F 1 such that γ P F 1 and F 1 Ă F . With this, item (3)
follows from Proposition 3.2 applied to the minimal Levy cycle F 1.
Finally, item (4) can be easily derived from the definition of a Levy cycle (degenerate Levy

cycle, Levy multicurve, degenerate Levy multicurve, respectively); see Section 2.6. □
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3.6. Realizability question. In this section, we investigate the properties of a Thurston
map f : pS2, Aq ý under the assumption that the Thurston map f : pS2, Bq ý is realized,
where B Ă A is some f -pseudo-invariant subset containing Sf . In particular, we establish
Main Theorem A. We begin by proving a result that demonstrates that Levy cycles for the
map f : pS2, Aq ý must exhibit particularly nice properties.

Proposition 3.9. Let f : pS2, Aq ý be a Thurston map, and let B Ă A be an f -pseudo-
invariant subset containing Sf . Suppose that the Thurston map f : pS2, Bq ý is realized,
and the Thurston map f : pS2, Aq ý has a Levy cycle G. Then G is degenerate, and every
γ P G is non-essential in S2 ´ B.

Proof. Let G “ tγ1, γ2, . . . , γru, and let σ denote the corresponding cyclic permutation of the
set t1, 2, . . . , ru. Then, for each i “ 1, 2, . . . , r, there exists a simple closed curve rγi Ă f´1pγiq
such that rγi is homotopic in S2 ´ B to γσpiq and degpf |rγi : rγi Ñ γiq “ 1.
Suppose that some γj is essential in S

2 ´B. Then rγσ´1pjq is also essential in S2 ´B, since
it is homotopic in S2 ´A to γj. This implies that γσ´1pjq is essential in S

2 ´B. Repeatedly
applying this argument, we show that each γi P G is essential in S2 ´ B, and therefore, G
is a Levy cycle for the Thurston map f : pS2, Bq ý. However, this leads to a contradiction
with Proposition 2.29.

Now, let us demonstrate that G forms a degenerate Levy cycle for f : pS2, Aq ý. First,
we suppose that |B| ě 3. For each i “ 1, 2, . . . , r, since γi is non-essential in S

2 ´B, we can
select the unique connected component Di of S

2 ´ γi that contains at most one point of B.

Similarly, we introduce rDi as the unique connected component of S2 ´ rγi that contains at
most one point of B.
Suppose that some Di contains a single point qi from the set B. Since Sf Ă B, by the

classical theory of covering maps (see, for instance, [MPR24, Propositions 2.11 and 2.12]),
there exists a unique connected component Ui of S

2 ´ rγi that contains a single point pi of
f´1pBq Ą B. Moreover, fppiq “ qi, and f |Ui ´ tpiu : Ui ´ tpiu Ñ Di ´ tqiu is a covering

map of degree degpf |rγi : rγi Ñ γiq “ degpf, piq. Clearly, Ui must coincide with rDi. Since

degpf |rγi : rγi Ñ γiq “ 1, we also have degpf | rDi : rDi Ñ Diq “ 1. Similarly, when Di XB “ H,

we can also conclude that fp rDiq “ Di and degpf | rDi : rDi Ñ Diq “ 1.

Finally, it is easy to verify that Dσpiq and rDi are homotopic in S2 ´A. Indeed, there exists

an isotopy pφtqtPI in S
2 rel. A with φ0 “ idS2 and φ1pBDσpiqq “ φ1pγσpiqq “ rγi “ B rDi ([Bus10,

Theorem A.3]; see also [FM12, Sections 1.2.5 and 1.2.6]). Since both Dσpiq and rDi contain at

most one point of B and |B| ě 3, we have φ1pDσpiqq “ rDi. Thus, Dσpiq and rDi are homotopic
in S2 ´ A, implying that G is a degenerate Levy cycle for the Thurston map f : pS2, Aq ý.

In the case when the set B contains fewer then three points, we can use Proposition 2.18
to prove that G is a degenerate Levy cycle for the Thurston map f : pS2, Aq ý. In particular,

open Jordan regions Di and rDi can be defined as the unique connected components of S2´γi
and S2 ´ rγi, respectively, that contain no points of the set B. □

A point z P pC is called a fixed point of a holomorphic map g : U Ñ V , where U and V

are domains of pC, if either z P U and gpzq “ z, or z is an isolated removable singularity of g
and, after extending g holomorphically to a neighborhood z, we have gpzq “ z. The notion
of a repelling fixed point can be generalized in a similar way.

Before proceeding, we present a result regarding the dynamics of holomorphic self-maps
of the unit disk that satisfy certain additional conditions [Pro24, Theorem 3.10].
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Theorem 3.10. Let h : D Ñ D be a holomorphic map, and π : D Ñ V and g : U Ñ V are

holomorphic covering maps, where U Ă V is a domain of pC and V “ pC´P with 3 ď |P | ă 8.
Suppose that πphpDqq Ă U and π “ g ˝ π ˝ h, i.e., the following diagram commutes:

D hpDq

V U

h

π π

g

If the map g : U Ñ V is non-injective, then exactly one of the following two possibilities
is satisfied:

(1) for every z P D, the h-orbit of z converges to the unique fixed point of h, or
(2) the sequence pπph˝npzqqq converges to the same repelling fixed point x P P of the

map g, regardless of the choice of z P D.

Now we are ready to prove Main Theorem A from the introduction.

Proof of Main Theorem A. As stated in Proposition 2.29, if the Thurston map f : pS2, Aq ý

has a Levy cycle, then f : pS2, Aq ý is obstructed, establishing one of the directions of
the desired result. Therefore, from this point, we assume that f : pS2, Aq ý is obstructed.
According to Proposition 3.9, it remains to prove that f : pS2, Aq ý has a Levy multicurve.

At the same time, items (1) and (2) of Proposition 3.3 allow us to assume that the set
C :“ A ´ B contains no trivial marked points, meaning that every point c P C is periodic.
We will focus on the case when every point c P C is fixed under f . We aim to show that
for any such obstructed Thurston map f : pS2, Aq ý (satisfying the assumptions of this
theorem) and for every ε ą 0, there exists a Levy cycle G, a curve γ P G, and a point τ
in the Teichmüller space TA such that lγpτq ă ε. Note that all marked points in C can be
made fixed by passing to an appropriate iterate of the original Thurston map. Therefore,
items (1) and (3) of Proposition 3.8 imply that the scenario described above is sufficient to
conclude the desired result in the general case. Since under these assumptions, every point
c P C is fixed under f , we can suppose without loss of generality that there is no point c P C
such that the Thurston map f : pS2, B Y tcuq ý is realized. This assumption and item (1)
of Proposition 2.18 also ensure that |B| ě 3.

According to Proposition 2.24, there exists a fixed point µ “ rφ1sB “ rψ1sB P TB of the

pullback map σf,B. We assume that the representatives φ1, ψ1 : S
2 Ñ pC are chosen such that

φ1 and ψ1 are isotopic rel. B (in particular, φ1|B “ ψ1|B) and g :“ φ1 ˝ f ˝ ψ´1
1 : ppC, P q ý

is a postsingularly finite holomorphic map, where P :“ φ1pBq “ ψ1pBq.

Now, let τ1 “ rφ1sA P TA and define τn :“ rφnsA “ σ
˝pn´1q

f,A pτ1q for all n P N, where

the representatives φn : S
2 Ñ pC are chosen such that φn|B “ φ1|B and the map φn ˝ f ˝

φ´1
n`1 :

pC 99K pC is holomorphic. Proposition 2.22 ensures that such choice of representatives
is possible and implies that φn ˝ f ˝ φ´1

n`1 “ g for all n P N. Let C “ tc1, c2, . . . , clu, and
define xn,i :“ φnpciq for each n P N and i “ 1, 2, . . . , l.

Claim. For each i “ 1, 2, . . . , l, the sequence pxn,iq converges to a limit xi P P , which is a
repelling fixed point of the map g.

Proof. Let Ai :“ B Y tciu for each i “ 1, 2, . . . , l. Since fpciq “ ci, we can study the
Thurston map f : pS2, Aiq ý. Specifically, we consider the σf,Ai

-orbit of the point rφ1sAi
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in the Teichmüller space TAi
. By Proposition 2.22, this orbit coincides with the sequence

prφnsAi
q.

Define ∆i :“ t´1
Ai,B

pµq, which, according to Proposition 2.22, is a σf,Ai
-invariant subset of

TAi
. Also, let πi : ∆i Ñ pC ´ P be defined by πiprφsAi

q “ φpciq, where the representative

φ : S2 Ñ pC is chosen so that φ|B “ φ1|B, and let ωi “ πi ˝ σf,Ai
|∆i. Recall that these

objects were discussed in Section 3.3. Additionally, we notice that rφnsAi
P ∆i for all n P N

and i “ 1, 2, . . . , l.
According to item (2) of Proposition 3.5, ∆i is biholomorphic to the unit disk, and by

item (1) of the same proposition, we have πipσf,Ai
p∆iqq “ W , where W “ pC ´ g´1pP q, and

πi “ g˝πi˝σf,Ai
. Since g is not injective, items (3) and (4) of Proposition 3.5 allow us to apply

Theorem 3.10 to the map σf,Ai
|∆i. Since the Thurston map f : pS2, Aiq ý is obstructed,

σf,Ai
|∆i has no fixed points, as stated in Proposition 2.24. Therefore, by Theorem 3.10,

the sequence xn,i “ πiprφnsAi
q “ πipσ

˝pn´1q

f,Ai
prφ1sAi

qq converges to a point xi P P , which is a
repelling fixed point of the map g. ■

Let x P P be a point such that there exists a sequence pxn,jq converging to x as n tends
to 8. According to the previous claim, such a point x always exists and must be a repelling
fixed point of the map g. Given this, and the fact that every sequence pxn,iq converges as

n Ñ 8, we can find an annulus U Ă pC such that, for all sufficiently large n, the following
conditions are satisfied:

‚ one of the connected components of pC´U contains points x and xjn, while the other
connected component contains all points of P ´ txu;

‚ g˝p|A|´3q is defined and injective on U .

It is clear that we can take the modulus of the annulus U as large as desired, assuming that
we consider n large enough. Therefore, we can apply Proposition 3.1 to derive the existence
of a Levy cycle G for the Thurston map f : pS2, Aq ý. Moreover, Proposition 3.1 also shows
that, by taking modpUq sufficiently large, we can ensure that for some n and any γ P G,
lγpτnq is as small as we want. This completes the proof. □

Example 3.11. Let f : pS2, Aq ý be a Thurston map, and assume that B Ă A is an f -pseudo-
invariant subset containing Sf .

Now, suppose |A| “ 4 and |B| ď 3. In this case, by Proposition 2.18, the Thurston
map f : pS2, Bq ý is clearly realized. Consequently, Main Theorem A directly implies that
f : pS2, Aq ý is realized if and only if it has no degenerate Levy cycles. Since any multicurve
on the four-punctured sphere S2 ´A consists of just one simple closed curve, f : pS2, Aq ý is
obstructed if and only if it has a degenerate Levy fixed curve, confirming the result [Pro24,
Main Theorem A] in this particular setting.

Remark 3.12. One of the key tools of the proof of Theorem 3.10 (see [Pro24, Theorem 3.10])
is the use of the hyperbolic metric on the unit disk. In the proof of Main Theorem A,
Theorem 3.10 was applied to the restrictions σf,Ai

|∆i : ∆i Ñ ∆i, where ∆i “ t´1
Ai,B

pµq is
a properly and holomorphically embedded unit disk in the Teichmüller space TAi

, where
|Ai| ě 4 and |Ai| ´ |A| “ 1. However, it is worth noting, that the hyperbolic distance on ∆i

does not coincide with the metric inherited from the Teichmüller metric dT on TAi
, except

when |Ai| “ 4 and ∆i “ TAi
, due to [Nag82, Theorem 1]. The same observation applies

to properly and holomorphically embedded unit disk ∆ “ t´1
Bj`1,Bj

pτjq in TBj`1
and the map

σf,Bj`1
|∆: ∆ Ñ ∆ from the proof of Proposition 3.6.
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