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FINITE AND INFINITE DEGREE THURSTON MAPS WITH A SMALL

POSTSINGULAR SET
NIKOLAI PROCHOROV

ABSTRACT. We develop the theory of Thurston maps that are defined everywhere on the
topological sphere S2? with a possible exception of a single essential singularity. We estab-
lish an analog of the celebrated W. Thurston’s characterization theorem for a broad class of
such Thurston maps having four postsingular values. To achieve this, we analyze the cor-
responding pullback maps defined on the one-complex dimensional Teichmiiller space. This
analysis also allows us to derive various properties of Hurwitz classes of the corresponding
Thurston maps.
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1. INTRODUCTION

1.1. Thurston theory for finite and infinite degree maps. In the one-dimensional ra-
tional dynamics, the crucial role is played by the family of postcritically finite (or pcf in
short) rational maps, i.e., maps with all critical points being periodic or pre-periodic. In
this context, one of the most influential ideas has been to abstract from the rigid underly-
ing complex structure and consider the more general setup of postcritically finite branched
self-coverings of the topological 2-sphere S2. Nowadays, orientation-preserving pcf branched
covering maps f: S — 52 of topological degree deg(f) = 2 are called Thurston maps (of
finite degree), in honor of William Thurston, who introduced them to deepen the under-
standing of the dynamics of postcritically finite rational maps on C.

These ideas can be extended to the transcendental setting to explore the dynamics of
postsingularly finite (psf in short) meromorphic maps. A meromorphic map is called postsin-
gularly finite if it has finitely many singular values, and each of them eventually becomes
periodic or lands on the essential singularity under the iteration. We can generalize the
notion of a Thurston map to include postsingularly finite topologically holomorphic non-
injective maps f: X — 52, where X is a punctured topological sphere, f does not extend
continuously to the entire S? and meets a technical condition of being a parabolic type map;
see Sections and 2.3 Note that in this case the map f must be transcendental, meaning
that it has infinite topological degree. For simplicity, we will use the notation f: S% --» S?
to indicate that the Thurston map f, whether finite or infinite degree, might not be defined
at a single point of S2.

For a Thurston map f: S? --» 52, the postsingular set Py is defined as the union of all
orbits of the singular values of the map f. It is important to note that some of these orbits
might terminate after several iterations, if a singular value reaches the point where the map f
is not defined. The elements of the postsingular set Ps are called the postsingular values of
the Thurston map f. If the map f is defined on the entire sphere S?, we simply refer to its
posteritical set and posteritical values, as the set of singular values of f coincides with the set
of its critical values. Two Thurston maps are called combinatorially (or Thurston) equivalent
if they are conjugate up to isotopy relative to their postsingular sets; see Definition

A fundamental question in this context is whether a given Thurston map f can be realized
by a psf meromorphic map with the same combinatorics, that is, if f is combinatorially
equivalent to a psf meromorphic map. If the Thurston map f is not realized, then we say
that f is obstructed. William Thurston answered this question for Thurston maps of finite
degree in his celebrated characterization of rational maps: if a finite degree Thurston map
f: 8% — S? has a hyperbolic orbifold (this is always true, except for some well-understood
special maps), then f is realized by a pcf rational map if and only if f has no Thurston
obstruction [DH93|]. Such an obstruction is given by a finite collection of disjoint simple
closed curves in S? — P; with certain invariance properties under the map f. In many
instances, it suffices to restrict to simpler types of Thurston obstructions provided by Levy
cycles or even Levy fixed curves; see Definition , and [Hub16, Theorem 10.3.8], [HP22,
Corollary 1.5], or [Par23, Theorems 7.6 and 8.6] for examples of such cases.

The same characterization question can be also asked in the transcendental setting. The
first breakthrough in this area was obtained in [HSS09], where it was shown that an ez-
ponential Thurston map is realized if and only if it has no Levy cycle. In this context,
the exponential Thurston map is defined as a Thurston map with two singular values, both
of which are omitted, and one of which is the only essential singularity of the considered
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Thurston map. Furthermore, the results of [She22] and [MPR24] suggest that a Thurston-
like criterion for realizability may hold in a greater generality. However, the characterization
question in the transcendental setting remains largely open, as many of the techniques used
in Thurston theory for finite degree maps do not extend to this context.

Thurston theory lays out the relationship between the topological properties of a map, its
dynamics, and its geometry in terms of the existence of a holomorphic realization. Further-
more, it is strongly connected with the combinatorial and algebraic aspects of the dynamics
of pcf rational and psf meromorphic maps. The results mentioned above have substantial
applications for both rational and transcendental dynamics. For instance, Thurston’s char-
acterization result has allowed to classify various families of postcritically finite rational maps
or finite degree Thurston maps in terms of combinatorial models [Poi93] [Poil0, BLMW22],
[DMRS19, [LMS22], [HIul9, [HP22|. Building on the result of [HSS09], similar classifications
were obtained in [LSVO0S] in terms of kneading sequences and in [PRS21] in terms of homo-
topic Hubbard treed for the family of postsingularly finite exponential maps. Moreover, the
concept of a homotopic Hubbard tree was extended to general postsingularly finite entire
maps in [Pfr19] (see also [PPS21]). It is plausible that a Thurston-like criterion is the final
missing ingredient for the complete classification of the family of all psf entire maps.

1.2. Pullback maps. The key method in determining whether a given finite or infinite
degree Thurston map f: S? --» S? with the postsingular set P; = A is realized by a psf
meromorphic map is the analysis of the dynamics of a holomorphic operator o, known as the
pullback map, defined on a complex manifold called the Teichmailler space Ta; see Sections
and 2.5, Crucially, the Thurston map f is realized if and only if the pullback map oy has
a fixed point in Ty; see 2.17 Moreover, the dynamics of the pullback map encodes many
other properties of the corresponding Thurston map; see, for instance, [BEKP09|, [KPS16],
and [BDP24].

Instead of working directly in the Teichmiiller space Ty, it is often more convenient to
work in a simpler complex manifold M 4, known as a moduli space. This space, roughly
speaking, encodes all possible complex structures biholomorhic to a punctured Riemann
sphere that can be put on the punctured topological sphere S — A (see Section for the
precise definition). There is a natural projection map 7: Ty — My that is a holomorphic
universal covering. However, the map o rarely descends to a map on the moduli space M 4.
Nevertheless, for a finite degree Thurston map f: S? — S2, there exists a complex manifold
Wy, known as the Hurwitz space of the Thurston map f, along with the holomorphic X -
map Xy: Wy — My, a holomorphic covering map Yy: Wy — My, called the Y-map, and
a holomorphic covering wy: T4 — Wy, such that the following diagram commutes [Kocl3,
Section 2[:

Ti T
wf
™ \ Wi ™
AN
My My

F1GURE 1. Fundamental diagram.
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In other words, the pullback map o is semi-conjugate to a self-correspondence X o Yf_1
of the moduli space My. If f: S* — S? with Py = A is a finite degree Thurston map,
then the Y-map Y;: Wy — M, has a finite topological degree; see [Kocl3l Theorem 2.6].
This observation plays a crucial role in the proof of Thurston’s characterization of rational
maps. In fact, it allows to conclude that for a Thurston map f with a hyperbolic orbifold,
the o-orbit (o3"(7)) of 7 € Ta converges (indicating that f is realized), if the projection
(m(o§™(7))) of this orbit visits some compact set of the moduli space M infinitely many
times; see [Hub16| Section 10.9 and Lemma 10.11.9] and [Sel12, Proof of Theorem 2.3, p. 20].

The objects introduced above, along with commutative diagram and the fact that
Yi: Wy — My has a finite degree, have broad applications beyond the proof of Thurston’s
characterization of rational maps; see, for example, [BNOG, BEKP09, [Sel12] [Sel13, Koc13],
Lod13, [KPS16, IFKK™17, [Smi24a. [Smi24bl BDP24]. These tools, for instance, allow to
simultaneously study the entire Hurwitz (equivalence) class Hy of the finite degree Thurston
map f. Here, two Thurston maps f1: S? --» S? and fy: S? --» S? with Py, = P, are said to
be Hurwitz equivalent if there exist orientation-preserving homeomorphisms ¢, ¢o: S? — S?
such that ¢1|Py, = ¢o| P, and ¢y 0 fi = fa 0 ¢9; see [BNO6L, Lod13, IKPS16] for examples of
results on Hurwitz classes. For instance, one can pose a question whether a given Thurston
map is totally unobstructed, i.e., H; consists of only realized Thurston maps.

Commutative diagram is particularly powerful in two specific cases. The first is when
the Thurston map f: S? — S? has the postcritical set P; = A consisting of exactly four
points. In this situation, the spaces 74, My, and Wy are simply Riemann surfaces. In
fact, the Teichmiiller space is biholomorphic to the unit disk D zAmd the moduli space M4
is biholomorphic to the three punctured Riemann sphere ¥ = C — {0,1,00}. This allows
the use of powerful machinery of one-dimensional holomorphic dynamics to study pullback
maps. For example, this approach was utilized in [Smi24a] to derive an alternative proof of
Thurston’s characterization of rational maps in the case of four postcritical values, as well as
in [Smi24al, [Smi24b| to investigate the global curve attractor conjecture, which was ultimately
resolved in [BDP24| for all pcf rational maps with four postcritical values. Secondly, when
the X-map Xy is injective, the “inverse” of oy descends to the so-called g-map gy := Y5 on’l,
which is defined on the subset X ;(Wy) of the moduli space M 4; see [Kocl3, Section 5| for
examples of finite degree Thurston maps that satisfy this condition.

The theory of moduli maps, as outlined above, is developed for finite degree Thurston
maps but has not yet been established in the context of transcendental Thurston maps. In
this paper, we consider a certain family of Thurston maps, that includes maps of both finite
and infinite degree, with four postsingular values and show that the corresponding pullback
maps admit an analogue of commutative diagram , where the X-map is always injective,
but the Y-map has infinite degree if the initial Thurston map f: S? --+ S? is transcendental.
Using tools of one-dimensional holomorphic dynamics and hyperbolic geometry, we establish
a Thurston-like realizability criterion for this family of maps. In particular, we demonstrate
that the obstacle of the Y-map having infinite degree can be finessed. Afterward, we illustrate
how the developed machinery can be used to investigate the properties of the corresponding
Hurwitz classes.

1.3. Main results. In this paper, we study the family of Thurston maps f: S? --» S?
satisfying the following conditions:

(A) the map f has at most three singular values;
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(B) the postsingular set Py consists of exactly four points;
(C) there exists a set B < Py such that |B| =3, Sy < B, and |f~1(B) n Py| = 3.

Here, f~1(B) is the closure of the set f~'(B) in the topology of S?. In particular, it
coincides with f~1(B) if the Thurston map f has a finite degree; otherwise, it also includes
the point where f is not defined.

Clearly, conditions and are independent from the function-theoretical properties
of the map f. More specifically, if the map f has at most three singular values, then these
conditions can be verified by analyzing the dynamics of the map f on the finite set P;. For
instance, in the case of entire Thurston maps (those that can be restricted to self-maps of R?;
see Section with three singular and four postsingular values, three out of seven possible
postsingular portraits satisfy condition ; see Example . More examples of families of
Thurston maps that meet these conditions can be found in Section 4.3|

Although conditions are quite restrictive, there are still uncountably many pair-
wise combinatorially inequivalent both realized and obstructed Thurston maps that meet
them; see Remark Notably, these conditions are preserved under Hurwitz equivalence
of Thurston maps. Finally, it is worth mentioning that all of our further results work in a
slightly more general setting of marked Thurston maps satisfying analogous properties to

(A)}H(C)} see Sections [2.3] and [l

1.3.1. Characterization problem. We establish an analog of Thurston’s characterization re-
sult for the family of Thurston maps that satisfy conditions |[(A)H(C)l In fact, we show
that it is sufficient to consider one of the simplest types of Thurston obstructions — Levy
fixed curves — to determine whether such a Thurston map is realized. For a Thurston map
f: 8% --» 52 a Levy fixed curve is a simple closed curve v 5% — Py such that v is essential,
i.e., it cannot be shrinked to a point by a homotopy in S* — Py, and there exists another
simple closed curve ¥ < f~!(7) such that v and § are homotopic in S? — Py and f|7: 5§ — v
is a homeomorphism. If the map f is injective on one of the connected components of S? -7,
then we say that the Levy fixed curve v is weakly degenerate.

Main Theorem A. Let f: S? --+ S? be a Thurston map of finite or infinite degree that
satisfies conditions . Then f s realized if and only if it has no weakly degenerate
Levy fized curve. Moreover, if f is obstructed, then it has a unique Levy fixed curve up to
homotopy in S* — Py; otherwise, it is realized by a psf meromorphic map that is unique up
to Mobuis conjugation.

To prove Main Theorem @, we start by showing that the corresponding pullback map o
defined on the Teichmiiller space T4 ~ D, where A = Py, admits an analog of commutative
diagram , where the X-map is injective, the Y-map is a covering, potentially of infinite
degree, and the analog of the Hurwitz space W is a finitely or countably punctured Riemann
sphere (see Proposition and Remark . Further analysis reveals a crucial observation
similar to that in the proof of Thurston’s characterization result: if the sequence (7 (05" (7)))
with 7 € T4 visits a certain compact set of the moduli space M4 infinitely many times,
then the op-orbit (05"(7)) of 7 converges to the unique fixed point of oy (see Claim 1 of the
proof of Theorem

Moreover, we establish a more refined result: if the pullback map o, does not have a fixed
point (indicating that the Thurston map f is obstructed), then the sequence (w(0%"(7)))

converges to the same “cusp” x € IMy ~ 0% = {0, 1,0} of the moduli space M 4, regardless
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of the choice of 7 € T4. Furthermore, the map g = Yy o Xf_1 can be holomorphically
extended to a neighborhood of this cusp and z becomes a repelling fixed point of g¢. It is
worth noting that these results hold not only for pullback maps, but also in a broader class
of holomorphic self-maps of the unit disk; see Theorem [3.10. Finally, this analysis provides
a sufficient control over the dynamics of o to derive the existence of a Levy fixed curve for
the obstructed Thurston map f: S? --» S%.

Main Theorem [A]is the first result addressing the characterization problem in the transcen-
dental setting that is established with minimal reliance on the function-theoretical properties
of the considered Thurston maps. This differs from [HSS09], which focuses on exponential
Thurston maps, and [She22], which is primarily devoted to structurally finite Thurston maps.
Note that the geometric and analytic properties of entire or meromorphic maps, even those
with few singular values, can be highly varied and subtle; see [Bis15al Bis15bl Bis17].

Main Theorem [A] also offers an alternative proof for the characterization of postsingularly
finite exponential maps [HSS09, Theorem 2.4] for the case of four postsingular values; see
Example £.12 While the proof in [HSS09] relies on the intricate machinery of integrable
quadratic differentials and their thick-thin decompositions, our approach uses more explicit
techniques that shed the light on the geometry of the pullback dynamics on Teichmiiller and
moduli spaces. At the same time, Main Theorem [A] provides a novel proof of Thurston’s
characterization of rational maps within a broad class of examples, and this proof does not
rely on the fact that Y-map has a finite degree.

1.3.2. Hurwitz classes. Techniques explained in Section [1.3.1] also allow us to derive several
properties of Hurwitz classes:

Main Theorem B. Let f: S? --» S? be a Thurston map of finite or infinite degree that

satisfies conditions ((C). Then

(1) f is totally unobstructed if and only if there are no two points a,b € Py such that
deg(f,a) = deg(f,b) =1 and f({a,b}) equals {a,b} or P; —{a,b};

2) if f is not totally unobstructed, then its Hurwitz class H¢ contains infinitely man

Y f Y y

pairwise combinatorially inequivalent obstructed Thurston maps;

(3) if f has infinite degree, then its Hurwitz class Hy contains infinitely many pairwise
combinatorially inequivalent realized Thurston maps.

The main tool for proving Main Theorem [B|is the relationship between fixed points of the
map g5 = Yy on_1 and the elements of the Hurwitz class H;. Let f: S? --» S? be a Thurston
map with P; = A satisfying assumptions We show that if the corresponding map gy
can be holomorphically extended to a neighborhood of z € oMy ~ 0% = {0,1,00} and =
becomes a repelling fixed point of g, then the Hurwitz class H; must contain an obstructed
Thurston map. Moreover, f is totally unobstructed if and only if none of the “cusps” of
the moduli space M 4 exhibit this behavior; see Proposition 4.6l Using additional properties
of the map gy, we establish a simple criterion, as in item (1)) of Main Theorem , for
determining whether a given Thurston map with properties ' is totally unobstructed.
Furthermore, with the understanding of possible obstructions provided by Main Theorem [A]
we can construct infinitely many pairwise combinatorially inequivalent obstructed Thurston
maps within the Hurwitz class Hy starting from just one of them.

To prove item of Main Theorem , we show that a fixed point x € My of the map g;
corresponds to a realized Thurston map within the Hurwitz class H¢; see Proposition .
Furthermore, only finitely many fixed points of g; can correspond to the same Thurston
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map up to combinatorial equivalence (see the proof of Theorem [4.8)). The desired result
then follows because the map g; has infinitely many fixed points when f is transcenden-
tal; see Proposition [£.1] and Lemma

Similar connections between the fixed points of the map ¢g; and Thurston maps within the
Hurwitz class Hy are already established in the context of finite degree Thurston maps (cf.
[Koc13, Propositions 4.3 and 4.4] and [KPS16, Theorem 9.1]). However, their extensions
to the setting of transcendental Thurston maps are novel contributions. Additionally, as an
application of Main Theorem [B] we can obtain the following result regarding the structure
of parameter spaces of finite-type meromorphic maps (see Definition [4.9):

Corollary 1.1. Let g: C — C be a transcendental meromorphic map such that |S,| < 3.
Then its parameter space Par(g) contains infinitely many pairwise (topologically or confor-
mally) non-conjugate psf maps with four postsingular values.

1.4. Organization of the paper. Our paper is organized as follows. In Section 2], we review
some general background. In Section 2.1, we fix the notation and state some basic definitions.
We discuss topologically holomorphic maps in Section [2.2. The necessary background on
Thurston maps is covered in Section Section [2.4] introduces the Teichmiiller and moduli
spaces of a marked topological sphere. Finally, in Section [2.5, we define pullback maps,
discuss their basic properties and their relations with the associated Thurston maps.

In Section [3] we present several results concerning the hyperbolic geometry and dynamics
of holomorphic self-maps of the unit disk. Section provides tools for identifying ob-
structions for Thurston maps with four postsingular values. We establish some estimates
for hyperbolic contraction of inclusion maps between two hyperbolic Riemann surfaces in
Section [3.2] In Section [3.3] we investigate dynamics of holomorphic self-maps of the unit
disk satisfying certain additional assumptions.

Further, in Section [4] we develop the Thurston theory for a family of Thurston maps
satisfying condition . In particular, in Section we address the characterization
problem for this class of Thurston maps and prove Main Theorem [A] We study properties
of Hurwitz classes and prove Main Theorem |Bf and Corollary in Section [4.2] Finally, in
Section [4.3] we provide and analyze various examples.

Acknowledgments. I would like to express my deep gratitude to my thesis advisor, Dierk
Schleicher, for introducing me to the fascinating world of Transcendental Thurston Theory.
I am also profoundly thankful to Kevin Pilgrim and Lasse Rempe for the their valuable
suggestions and for many helpful and inspiring discussions. I would like to thank Centre
National de la Recherche Scientifique (CNRS) for supporting my visits to the University of
Saarland and University of Liverpool, where these conversations took place. Special thanks
go to Anna Jové and Zachary Smith for the discussions on the dynamics of holomorphic
self-maps of the unit disk and their diverse applications.

2. BACKGROUND

2.1. Notation and basic concepts. The sets of positive integers, non-zero integers, inte-
gers, real and complex numbers are denoted by N, Z*, Z, R, and C, respectively. We use
the notation I := [0, 1] for the closed unit interval on the real line, D := {z € C: |z] < 1}
for the open unit disk in the complex plane, D* := D — {0} for the punctured unit disk,
C* := C — {0} for the punctured complex plane, H := {z € C : Im(z) > 0} for the upper
half-plane, C := C u {oo} for the Riemann sphere, and ¥ for the three-punctured Riemann
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sphere C - {0,1,00}. The open and closed disks of radius r > 0 centered at 0 are denoted
by D, and D,, respectively. Finally, arg(z) € [0,27) and |z| denote the argument and the
absolute value, respectively, of the complex number z.

We denote the oriented 2-dimensional sphere by S2. In this paper, we treat it as a purely
topological object. In particular, our convention is to write g: C — C or g: C — C to
indicate that g is holomorphic, and f: S? — S?if f is only continuous. The same rule
applies to the notation g: C --» C and f: S% --+ S? (see Section for the details).

The cardinality of a set A is denoted by |A| and the identity map on A by ids. If f: U -V
is a map and W < U, then f|W stands for the restriction of f to W. If U is a topological
space and W < U, then W denotes the closure and W the boundary of W in U.

A subset D of C is called an open Jordan region if there exists an injective continuous
map ¢: D — C such that D = (D). In this case, 0D = ¢(dD) is a simple closed curve in C.
A domain U < C is called an annulus if C — U has two connected components. The modulus
of an annulus U is denoted by mod(U) (see [Hub06l, Proposition 3.2.1] for the definition).

Let U and V' be topological spaces. A continuous map H: U x 1 — V is called a homotopy
from U to V. When U = V| we simply say that H is a homotopy in U. Given a homotopy
H:UxI — V, for each t € I, we associate the time-t map H, := H(t,-): U — V. Sometimes
it is convenient to think of the homotopy H as a continuous family of its time maps (Hy)er-
The homotopy H is called an (ambient) isotopy if the map H;: U — V is a homeomorphism
for each t € I. Suppose A is a subset of U. An isotopy H: U x I — V is said to be an isotopy
relative to A (abbreviated “H is an isotopy rel. A”) if Hy(p) = Ho(p) for all pe A and t € L.

Given M, N c U, we say that M is homotopic (in U) to N if there exists a homotopy
H:U x1— U with Hy = idy and H;(M) = N. Two homeomorphisms g, ¢1: U — V are
called isotopic (rel. A < U) if there exists an isotopy H: U x I — V (rel. A) with Hy = ¢q
and Hy = 1.

We assume that every topological surface X is oriented. We denote by Homeo™ (X)) and
Homeo™ (X, A) the group of all orientation-preserving self-homeomorphisms of X and the
group of all orientation-preserving self-homeomorphisms of X fixing A pointwise, respec-
tively. We use the notation Homeog (X, A) for the subgroup of Homeo™ (X, A) consisting of
all homeomorphisms isotopic rel. A to idx.

2.2. Topologically holomorphic maps. In this section, we briefly recall the definition of a
topologically holomorphic map and some of its basic properties (for more detailed discussion
see [MPR24], Section 2.3]; see also [LP20]).

Definition 2.1. Let X and Y be two connected topological surfaces. A map f: X — Y is
called topologically holomorphic if it satisfies one of the following four equivalent conditions:

(1) for every p € X there exist d € N, a neighborhood U of z, and two orientation-
preserving homeomorphisms ¢: U — D and ¢: f(U) — D such that ¥ (p) = ¢(f(p)) =
0 and (po foy1)(2) = 2% for all z € D;

(2) f is continuous, open, discrete (i.e., f~!(q) is discrete in X for very q € V'), and for
every p € X such that f is locally injective at p, there exists a neighborhood U of p
for which f|U: U — f(U) is an orientation-preserving homeomorphism;

(3) there exist Riemann surfaces Sx and Sy and orientation-preserving homeomorphisms
©:Y — Sy and ¢: X — Sy such that po foy~t: Sy — Sy is a holomorphic map;
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(4) for every orientation-preserving homeomorphism ¢: Y — Sy, where Sy is a Riemann
surface, there exist a Riemann surface Sx and an orientation-preserving homeomor-
phism 1: X — Sx such that po fo™!: Sy — Sy is a holomorphic map.

Note that in condition of Definition , the homeomorphism 1 is defined uniquely up
to post-composition with a conformal automorphism of Sx for fixed ¢ and Sk.

It is straightforward to define the concepts of reqular, singular, critical, and asymptotic
values, as well as reqular and critical points and their local degrees (denoted by deg(f,-)) for
the topologically holomorphic map f (see [MPR24, Definition 2.7]). We denote by Sy < Y
the singular set of f, i.e., the union of all singular values of the topologically holomorphic
map f: X — Y. We say that the map f is of finite type or belongs to the Speiser class S if
the set Sy is finite.

In this paper, we study topologically holomorphic maps f: X — S2, where X is either
the sphere S? or the punctured sphere S? — {e}. In the latter case, we assume that f cannot
be extended as a topologically holomorphic map to the entire sphere S?. For the sake of
simplicity, we are going to use the notation f: S? --» S? in order to indicate that f might
not be defined at a single point e € S%. Similar to the holomorphic case, the point e is
referred as the essential singularity of the map f. Likewise, for a holomorphic map g defined
everywhere on C with the possible exception of a single essential singularity, we use the
notation g: C --» C and we say that g: C --»Cis holomorphic.

It is possible to derive the following isotopy lifting property for topologically holomorphic
maps as above in the case when they are of finite type (cf. [ERG15, Propostion 2.3]).

Proposition 2.2. Let f: X — S2 and f: X — S2 be topologically holomorphic maps of
finite type, where X and X are either topological spheres or punctured topological spheres.
Suppose that wo o f = f oy for some @o, 1 € Homeo* (S?). Let A = S? be a finite set
containing Sy and ¢, € Homeo™ (S?) is isotopic rel. A to pg. Then @io f = fo Wy for some
Yy € Homeo™ (S?) isotopic rel. f~1H(A) u (S* — X) o f~1(A) to .

Proof. Let (o)1 be the corresponding isotopy. From the definition of a singular value,
it follows that the restrictions ¢, o f|Y: Y — Z are covering maps for each ¢t € I, where
Y :=X— f(A) and Z := S* — A. Therefore, [ABF21, Lemma 2.7] implies the existence
of an isotopy (¢)ser in Y such that ¢, o f = ¢g o f o ¢y. Each homeomorphism ¢;: Y — Y
extends to a self-homeomorphism of the entire sphere S? since all but at most one point of the
set 5?2 —Y are isolated. Moreover, it is straightforward to check that ¢;|f~'(A4) U (S? - X) =
dolf71(A) U (S? — X) for each t € I. In other words, the homotopy (¢;)s«r can be viewed as
an isotopy in 5% rel. f~1(A) U (5? — X).

At the same time, g o f = g o f o ¢g and, therefore, we have the following:

prof =gpoofopr=I(poofode)ody o =woofogyopr=fo(dgody o).
Thus, we can set 1, 1= 1y o ¢y* 0 ¢y, and (g o ¢y o ¢;)ser provides the required isotopy
rel. f71(A) U (S? — X). Clearly, if p € S? is an accumulation point of the set f~1(A), then
p ¢ X, which implies f~1(A) < f~1(A) u (§* — X). Finally, 1, is orientation-preserving
since f and f are local orientation-preserving homeomorphisms outside the sets of their
critical points. [l

Corollary 2.3. Let f: X — S? be a topologically holomorphic map of finite type, where
X =58%0rX =5%—{e}, e 5% and A < S? be a finite set containing Sy. Suppose that
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Yo is a simple closed curve in S* — A, and let Yy < f~(vy) be a simple closed curve with
deg(f|¥: Yo — o) = d. If y1 is a simple closed curve that is homotopic in S* — A to v,
then there exists a simple closed curve ¥, < f~'(v1) such that 5y and F, are homotopic in

X — f7H(A) = 82 = f71(A) and deg(fPFr: T = n) = d.

Proof. According to [Bus10, Theorem A.3] (see also [FM12, Sections 1.2.5 and 1.2.6]), there
exists an isotopy (¢4)ser rel. A in S? such that g = idy and ¢1(70) = 71. Since @y = idge
is orientation-preserving, then ¢, is also orientation-preserving for each ¢ € I. By Propo-
sition [2.2] there exists a homeomorphism ¢; € Homeo™ (S?, f~(A) u (S? — X)) such that
p10 f = foty. Thus, we can take J; := ¥1 (). Finally, X — f~1(A) = 5% — f~1(A), since
any accumulation point p € S? of the set f~!(A) cannot be in X. O

Due to the Uniformization Theorem and item of Definition 2.1} in the case when
X = 52, a topologically holomorphic map f: X — 52 can be ertten as [ = pogoyp
where g: C — C is a non-constant rational map and @, 1: S? — C are orientation- preservmg
homeomorphisms. In fact, in this case f: S? — S? is simply a branched self-covering of S?,
which is always of finite type and has finite topological degree. R

Similarly, in the case when X = S% —{e}, we can write f as pogot ™! such that g: R — C
is a non-constant meromorphic map, ¢: S2 — C and ¥: S2 — {e} — R are orientation-
preserving homeomorphisms, where R = C or R = ID. Suppose that the map f is of finite
type. Then the image of ¢y above does not depend on the choice of the homeomorphism ¢
(see [Ere04, pp. 3-4]; it essentially follows from Proposition and some well-known facts
from the theory of quasiconformal mappings). Thus, finite-type topologically holomorphic
maps for which the image of ¢ is C are referred to as parabolic type maps, while those for
which the image of ¢ is D are called hyperbolic type maps.

Further, we assume that every topologically holomorphic map f: S? --+ S? we consider
either has no essential singularities or is a finite-type topologically holomorphic map of
parabolic type. Definition [2.1] and Great Picard’s Theorem imply that in any neighborhood
of an essential singularity e of such a map f, every value is attained infinitely often with at
most two exceptions. In particular, f can have at most two omitted values, i.e., points p in S?
such that the preimage f~1(p) is empty. Furthermore, each omitted value is an asymptotic
value of f. Additionally, observe that if A < S? is a finite set with |A| > 3 and S; < A, then
the restriction

FIS* = fH(A): 8= fH(A) > §* - A

is a covering map. Note that the closure f~1(A) equals f~1(A) if f: S? — S? has no essential
singularity. Otherwise, f~1(A) consists of f~!(A) and the essential singularity e € S? of f
due to Great Picard’s Theorem and the assumption |A| > 3.

We say that a topologically holomorphic map f: S? --» S? is transcendental if it has
an essential singularity. Given our previous assumptions on the map f, this is equivalent
to saying that f has infinite topological degree. The map f: S? --» S? is called entire if
either f has finite topological degree and there exists a point p € S? such that f~1(p) = {p}
(in which case f is called a topological polynomial), or f has infinite topological degree and
f~Ye) = ¢, where e is the essential singularity of f. We can view entire topologically
holomorphic maps as topologically holomorphic self-maps of R
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2.3. Thurston maps. Let f: S2 --» S? be a topologically holomorphic map. Then the
postsingular set Py of the map f is defined as

P;:={qe S*:q= f"(p) for some n > 0 and p € S;}.

In other words, the postsingular set Py is the union of all forward orbits of the singular
values of f. It is worth noting that some of these orbits might terminate after several
iterations if a singular value reaches the essential singularity of the map f.

We say that f: S? --» S? is postsingularly finite (psf in short) if the set Py is finite,
i.e., f has finitely many singular values and each of them eventually becomes periodic or
lands on the essential singularity of f under the iteration. Postsingularly finite topologically
holomorphic maps of finite degree are also called posteritically finite (pcf in short), and their
postsingular values are called postcritical, as their singular values are always critical.

Now we are ready to state one of the key definitions of this section.

Definition 2.4. A non-injective topologically holomorphic map f: S? --» S? is called a
Thurston map if it is postsingularly finite and either f has no essential singularity or f is a
parabolic type map.

Given a finite set A < S? such that Py = A and every a € A is either the essential singu-
larity of f or f(a) € A, we call the pair (f, A) a marked Thurston map and A its marked set.

We often consider marked Thurston maps in the same way as usual Thurston maps and
use the notation f: (5%, A) © while still assuming that f might not be defined on the entire
sphere S%. If no specific marked set is mentioned, we assume it to be P;. Note that when
the marked set A contains the essential singularity of the map f, the set A is not forward
invariant with respect to f in the usual sense. However, if |A| = 3, then A < f~1(A).

The dynamics of a Thurston map on its marked set or some other finite subsets of S? can
also be represented graphically, in a way that turns out to be useful in study. Suppose that
f: 8% --» S%is a Thurston map and A = S? is a finite set such that every a € A is either the
essential singularity of f or f(a) € A. Then the dynamical portrait of the map f on the set
A is a directed abstract graph with the vertex set A, where for each vertex v € A that is not
the essential singularity of f, there is a unique directed edge from v to f(v), and if v € A is
the essential singularity of f, there are no outgoing edges from v. If the set A coincides with
the postsingular set Py, the dynamical portrait of f on the set A is called the postsingular
portrait of the Thurston map f.

Definition 2.5. Two Thurston maps fi: (5%, A) ©O and fo: (52, A) © are called isotopic
(rel. A) if there exists ¢ € Homeog (52, A) such that f; = fy 0 ¢.

Remark 2.6. Let f1: (S?, A) © and fy: (S?, A) © be two Thurston maps satisfying the rela-
tion ¢ 0 f1 = fo 0 ¢y for some ¢y, ¢ € Homeog (5%, A). Then it follows from Proposition
that f; and f5 are isotopic rel. A.

The notion of isotopy for Thurston maps depends on their common marked set. Conse-
quently, we sometimes refer to isotopy relative A (or rel. A for short) to specify which marked
set is being considered. This applies to other notions introduced below that also depend on
the choice of the marked set.

We say that two (marked) Thurston maps are combinatorially equivalent if they are “topo-
logically conjugate up to isotopy”:
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Definition 2.7. Two Thurston maps fi: (5%, A;) O and fy: (5%, Ap) O are called com-
binatorially (or Thurston) equivalent if there exist two Thurston maps fi: (5%, 4;) © and

fo: (52, Ay) © such that:
o f; and Ji are isotopic rel. A; for each ¢ = 1,2, and o
e f1 and f, are conjugate via a homeomorphsim ¢ € Homeo™ (S?), i.e., ¢po fi = f20 ¢,
such that ¢(A;) = As.

Remark 2.8. Definition [2.7] can be reformulated in a more classical way. Thurston maps
fi: (S?, A1) © and fy: (5% Ay) © are combinatorially equivalent if and only if there exist
two homeomorphisms ¢y, ¢» € Homeo™ (S?) such that ¢1(A;) = ¢o(A;) = As, ¢1 and ¢ are
isotopic rel. A, and ¢ 0 fi = fy 0 ¢a.

Remark 2.9. If Ay = Py, and Ay = Py,, then the condition that ¢(A;) = Ay in Definition [2.7]
and the condition ¢1(A41) = ¢2(A;) = Ay in Remark can be removed since they are
automatically satisfied if all other conditions hold.

A Thurston map f: (52, A) © is said to be realized if it is combinatorially equivalent to a
postsingularly finite holomorphic map g: (@, P) ©. If f: (8%, A) © is not realized, we say
that it is obstructed.

Let A = S? be a finite set. We say that a simple closed curve v < S? — A is essential in
52— A if each connected component of S?—+ contains at least two points of the set A. In other
words, 7 is essential in S? — A if it cannot be shrinked to a point via a homotopy in S? — A.

Definition 2.10. Let f: (52, A) © be a Thurston map. We say that a simple closed curve
forms a Levy cycle for f: (S?, A) © if 7 is essential in S? — A and there exists another simple
closed curve ¥ < f~"(~) for some n > 1 such that v and § are homotopic in S* — A and

deg(f"[7: 7 — ) = 1.

If n = 1 in Definition , then ~ is called a Levy fized (or Levy invariant) curve. Levy
fixed curve 7 is called weakly degenerate if f is injective on one of the connected components
of S? — 7. If additionally the image of this connected component U under f contains the
same points of the set A as U, i.e., U n A = f(U) n A, we say that 7 is a degenerate Levy
fixed curve for the Thurston map f: (5%, A) ©.

The following observation is widely known in the context of finite degree Thurston maps

[Hub16l, Exercise 10.3.6], and its proof extends to the case of transcendental Thurston maps
as well (see Section [3.1] for the proof).

Proposition 2.11. Let f: (S*, A) © be a Thurston map. If there exists a simple closed
curve y < S% forming a Levy cycle for f: (S%, A) ©, then f is obstructed rel. A.

We require one more notion of equivalence between Thurston maps.

Definition 2.12. We say that two Thurston maps fi: (S?, A) © and fy: (5% A) O are
pure Hurwitz equivalent (or simply Hurwitz equivalent) if there exist two homeomorphisms

é1, o € Homeo™ (5%, A) such that ¢ o f; = fo 0 ¢o.

If f: (5% A) © is a Thurston map, then the Hurwitz class Hya of f is the union of all
Thurston maps with the marked set A that are Hurwitz equivalent to f. If A coincides with
the postsingular set Py of f, we simply use the notation H;. We say that a Thurston map
[:(S% A) © is totally unobstructed if every Thurston map in H 4 is unobstructed.
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Remark 2.13. According to [FMI12, Proposition 2.3|, if two orientation-preserving homo-
meomorphisms ¢: S? — C and P S? — C agree on the set A < S? with |A| < 3, they are
isotopic rel. A. This observation can be used to show that any Thurston map f: (52, A) ©
is realized when the marked set A contains three or fewer points. Similarly, in thise case,
one can show that Hy 4 consists of a single Thurston map up to a combinatorial equivalence
rel. A. However, when |A| = 4, the question of realizability already becomes significantly
more challenging.

2.4. Teichmiiller and moduli spaces. Let A = S? be a finite set containing at least three
points. Then the Teichmiiller space of the sphere S? with the marked set A is defined as

Ta:={p: S>> C is an orientation-preserving homeomorphism}/ ~

where @7 ~ o if there exists a Mobius transformation M such that ¢, is isotopic rel. A
to M o ©2.
Similarly, we define the moduli space of the sphere S? with the marked set A:

My :={n: A— C is injective}/ ~,

where 71 ~ 7y if there exists a Mobius transformation M such that n, = M o ns.

Further, [-] denotes an equivalence class corresponding to a point of either the Teichmiiller
space T or the moduli space M 4. Note that there is an obvious map 7: T, — M 4 defined
as m([]) = [¢|A]. According to [EMI12, Proposition 2.3], when |A| = 3, both the Teichmiiller
space Ty and the moduli space M4 are just single points. Therefore, for the rest of this
section, we assume that |A| > 4.

It is known that the Teichmiiller space 74 admits a complete metric dp, known as the
Teichmdiller metric [Hub06, Proposition 6.4.4]. Moreover, with respect to the topology
induced by this metric, T is a contractible space [Hub06, Corollary 6.7.2]. At the same
time, both T4 and M 4 admit structures of (| A|—3)-complex manifolds (see [Hub06, Theorem
6.5.1]) so that the map 7: Ty — M4 becomes a holomorphic universal covering map [Hub16l,
Section 10.9].

Moreover, the complex structure of M, is quite explicit in the general case. Let A =
{ay, a9, ..., ak, Gry1, Qks2, akr3}, kK = 1, where the indexing of the points of A is chosen
arbitrarily. Define the map h: M4 — CF — L;, by

h([e]) = (e(a1), ¢(az), ..., plar)),

where the representative ¢: S? — C is chosen so that olar+1) = 0,0(ags2) = 1, and
o(ary3) = o0, and where L is the subset of C* defined by

Lrp:={(z1,2,...,2)€eCF: z = z; for some i # j, or z; =0, or z; = 1}.

It is known that the map h provides a biholomorphism between M 4 and CF— L, (see [Hub16),
Section 10.9]).

Our focus in this paper is on the case when |A| = 4. In this situation, the Teichmiiller
space T, is biholomorphic to D, with the metric dr coinciding with the usual hyperbolic
metric on D; see [Hub06, Corollary 6.10.3 and Theorem 6.10.6]. Furthermore, the moduli
space M 4 is biholomorphic to the three-punctured Riemann sphere X.
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2.5. Pullback maps. In this section, we illustrate how the notions introduced in Section [2.4
can be applied for studying the properties of Thurston maps. Most importantly, using Defi-
nition and Proposition , we can introduce the following crucial concept (see [MPR24,
Proposition 2.21] for the proof; note that this is where the parabolic type condition in the
Definition plays a crucial role).

Proposition 2.14. Suppose that f: (S?, A) © is a Thurston map, or f € Homeo™ (S?) and
f(A) = A, where3 < |A] < 0. Letp: 5% — C be an orientation-preserving homeomorphism.
Then there exists an orientation-preserving homeomorphism 1: S — C such that Jp =
po fort: C--»C s holomorphic. In other words, the following diagram commutes

The homeomorphism 1 is unique up to post-composition with a Mobius transformation. Dif-
ferent choices of ¢ that represent the same point in Ty yield maps 1) that represent the same
point in Ty.

In other words, we have a well-defined map op: Ta — Ta such that o([¢]) = [¢], called
the pullback map (or the o-map) associated with the Thurston map f: (S?, A) ©. As ¢
ranges across all maps representing a single point in Ta, the map g, is uniquely defined up
to pre- and post-composition with Mobius transformations.

Remark 2.15. Let ¢: S* — S? be an orientation-preserving homeomorphism with ¢(A) = A
and |A| > 3. It is straightforward to verify that if 7 = [p]| € T4, then o,([¢]) = [¢ o ¢].
Moreover, if f: (S?, A) © is a Thurston map, it is easy to see that o4, = oy 0 04 and
Ofopp =0y O O0f.

Proposition 2.16. Suppose that we are in the setting of Proposition [2.1]). If there exists
a subset B < A, such that Sy < B and |B| = 3, then g,, up to pre-composition with a
Mobius transformation, depends only on @|B. Furthermore, if there exists a subset C' < A
such that |C| = 3 and C < f~Y(B), then g, is uniquely determined by ¢|B and ¥|C, and if
A c f~1(B), then oy is a constant map.

Proof. Suppose that ¢, @, 11,19 S? — C are orientation-preserving homeomorphisms such
that ¢1|B = 3| B, and the maps g,, = ¢10 fo Yt and Gpy = P20 foO Yy ' are holomorphic
possibly outside of single points in C. One can easily see that we have the following:

9o = (901 © Q0;1> © Gp, © (¢2 © wfl)v

where the homeomorphism ¢ := ¢; 0 ;' fixes each point of the set ¢(B) = o(B). Since
|B| = 3, [EM12, Proposition 2.3] implies that ¢ is isotopic rel. 1(B) to idsz. According
to Proposition [2.2] this isotopy can be lifted, leading to the relation g, = g, o ¥, where
1) € Homeo™ (S%). Tt is easy to see that the homeomorphism 1 is a Mobius transformation.

Now, suppose that there exists a subset C' = A such that |C| = 3 and C' < f~}(B), and

11|C = 9»|C. Note that the homeomorphism ¢ is isotopic rel. g_l(¢1(B)) = ¥1(f~1(B)) to
Py 017! due to Proposition . Consequently, ¥|11(C) = (2091 )|1(C) = idy, (¢). Since
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1 is a Mobius transformation fixing three distinct points in ((Aj, it must be the identity ids.

Thus, the maps g,, and g,, coincide.
If A< f-1(B), then 1y 017" is isotopic rel. 1 (A) to the Mdbius transformation ¢ = ida.
Thus, o¢([¢1]) = [¢1] = [¥2] = o¢([¢2]) in the Teichmiiller space T4, and the rest follows.
OJ

The following observation provides the most crucial property of pullback maps (see [MPR24,
Proposition 2.24] for the proof).

Proposition 2.17. A Thurston map f: (S?, A) O with |A] = 3 is realized if and only if the
pullback map oy has a fized point in the Teichmiiller space Ty.

To illustrate the principle formulated in Proposition [2.17], we present the following remark.

Remark 2.18. Let f: (S% A) © be a Thurston map with |A| > 3, and suppose that there
is a subset B < A such that Sy ¢ B, |B| = 3, and A ¢ f~1(B). Then f is realized rel.
A because oy is a constant map according to Proposition [2.16] Additionally, by applying
Remark and Proposition [2.16] it is easy to show that the Hurwitz class H s 4 consists of
a single Thurston map, up to combinatorial equivalence rel. A.

However, Thurston maps that satisfy these conditions are somewhat artificial. For such a
marked Thurston map f: (S?, A) ©, it must hold P; = B and for every a € A — B, either
a is the essential singularity of f or f(a) € B. For instance, this scenario is impossible for
unmarked Thurston maps with at least four postsingular values.

Proposition 2.19. Let f: (5% A) © be a Thurston map with |A] > 3. Then the pullback
map oy s holomorphic.

Proof. This result is rather well-known in the context of finite degree Thurston maps (see
[BCT14, Section 1.3] and [Hubl6l Sections 10.6 and 10.7]), and it can be extended analo-
gously to the transcendental setting (see, for instance, [Astl Lemma 3.3]). 0

Remark 2.20. Proposition and [Hub06, Corollary 6.10.7] imply that the map oy is 1-
Lipschitz, meaning dy(os(11),07(72)) < dp(m, 72) for every 71, 75 € T. In fact, in many cases,
such as when the Thurston map f: (5%, A) © is transcendental, it can be shown (see [HSS09,
Section 3.2], [Pfr19, Chapter 5.1], or [Ast] Sections 2.3 and 3.1]) that o is actually distance-
decreasing, i.e., dr(o¢(m1),0¢(72)) < dr(m1, ) for every distinct 7, 72 € T4. This property of
pullback maps can be used to obtain certain rigidity results for transcendental postsingularly
finite meromorphic maps (cf. [Hubl6l, Corollary 10.7.8] and [MPR24l Proposition 2.26]).
However, we do not require these results and the observation of Proposition for our
further arguments since we mostly work with families of Thurston maps satisfying additional
assumptions. For these families, we will directly observe all the properties mentioned above.

3. HYPERBOLIC TOOLS

Let U be a hyperbolic Riemann surface, and let di denote the distance function of the
hyperbolic metric on U. For any rectifiable curve o in U, we denote the length of o with
respect to the hyperbolic metric by £y (a)). When we refer to 7 as a geodesic in U, we always
mean that v is a geodesic with respect to the hyperbolic metric. Also, let By(z,r) be the
hyperbolic ball in U with center z € U and radius r. If U is a subset of C, then the hyperbolic
metric on U, as a conformal metric, can be written as py(z)|dz|, where py: U — [0, +o0) is
the density of the hyperbolic metric on U.
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For a holomorphic map ¢g: U — V between two hyperbolic Riemann surfaces, we denote
by |[Dg(2)|{; the norm of the derivative of g with respect to the hyperbolic metrics on the do-
main U and the range V. More precisely, this norm is given by [Dg(2)|{ = [|D.g()|lv/|lv|v,
where v € T,U is any non-zero vector, and || - | represents the length of a tangent vector
to U with respect to the hyperbolic metric. If U = V| we simply use the notation |[Dg(z)|v.

Schwarz-Pick’s lemma [Hub06l Proposition 3.3.4] implies that for a holomorphic map
g: U — V between two hyperbolic Riemann surfaces, we have |[Dg(2)|}; < 1 for every z € U.
Furthermore, if g is a covering map, this inequality becomes an equality; otherwise, g is
locally uniformly contracting, i.e., for every compact set K < U, there exists a constant
A < 1 such that [Dg(2)|f; < Ak for all 2 € K. Suppose that a is a C'-curve in U and
IDg(2)|}; < A for all z € a. Then it is straightforward to check that £ (g(a)) < My(a). In
particular, Schwarz-Pick’s lemma implies that the map g: U — V is always 1-Lipschitz and,
if g is not a covering map, then g is locally uniformly distance-decreasing.

We will be particularly interested in the case when the map g mentioned above is simply
the inclusion map I: U — V. We are going to denote |DI(2)|f; by ¢ (z). Clearly, if
UcV cC, then ¢f;(2) = pv(2)/pu(2).

3.1. Levy cycles. Let 0 be an essential simple closed curve in the punctured Riemann
sphere X := C — P, where 3 < |P| < 0. According to [Hub06, Proposition 3.3.8], there
exists a unique closed geodesic in X that is homotopic (in X) to d. Note that this geodesic
should be necessarily simple [Hub06, Proposition 3.3.9].

In order to illustrate the utility of the hyperbolic tools, we prove that Levy cycles are
obstructions for Thurston maps of both finite and infinite degree.

Proof of Proposition[2.11. Let v be a simple closed curve forming a Levy cycle for the
Thurston map f: (5%, A) ©. We assume that n = 1 in Definition , ie., v is a Levy
fixed curve. The general case can be handled in a similar manner.

Suppose that f: (S?, A) © is combinatorially equivalent to a postsingularly finite holo-
morphlc map ¢: (C P) ©. Based on Definition and Remark . it is easy to see that

g: (C, P) © also has a Levy fixed curve § — o P Note that |P| > 4 since, otherwise, §
Would not be essential in C — P. According to the previous discussion and Corollary |2 . we
can assume that 0 is a simple closed geodesic in C-P.

Let & be a connected component of g~!(§) such that § and 5 are homotopic in C-— P, and
deg(g]gz 5 — 9) = 1. By Schwarz-Pick’s lemma, it follows that

le_p(d) =l 1(P)(5) >€@_p(5)»

9-
where the last inequality is strict since g~ (P) P is non-empty because of Great Picard’s
theorem and the Riemann-Hurwitz formula [Hub06, Appendix A.3]. However, § is the unique
geodesic in its homotopy class in C — P. Thus, la_p(6) < &C_P((SN), and it leads to a
contradiction. O

Let v be an essential simple closed curve in S? — A, and 7 = [p] be a point in the
Teichmiiller space T4. We define [,(7) as the length of the unique hyperbolic geodesic in
C — ¢(A) that is homotopic in C — ¢(A) to ¢(a). Additionally, we introduce w(T) =
log (7). It is known that w,: T4 — R is a 1-Lipschitz function [Hub06, Theorem 7.6.4].

Let X be a hyperbolic Riemann surface, and suppose @ < X is a simple closed geodesic
with £x(a) < £*, where ¢* := log(3 + 2v/2). In this case, we say that « is short. As stated
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in [Hub06, Proposition 3.3.8 and Corollary 3.8.7], two short simple closed geodesics on a
hyperbolic Riemann surface X are either disjoint and non-homotopic in X, or they coincide.
Therefore, [Hub06, Proposition 3.3.8] implies that a punctured Riemann sphere C— P, where
3 < |P| < o, can have at most |P| — 3 distinct short simple closed geodesics.

The following result allows us to identify a Levy fixed curve for a Thurston map based on
the behavior of the corresponding pullback map.

Proposition 3.1. Let f: (5%, A) © be a Thurston map with |A| = 4, and 7 = [¢]| and
o¢(T) = [¢] be points in the Teichmiller space Ty, where the representatives @,: S* — C
are chosen so that the map g := @ o fo™t: C --» C is holomorphic. Suppose that there
exists an annulus U < C such that:

e cach connected component of C — U contains two points of Y(A);
e mod(U) > 5med /0*, where dy = dr(7,0(T));
e g is defined and injective on U.

Then f: (S%, A) © has a Levy fized curve. Moreover, if g is defined and injective outside

a single connected component of C - U, then f: (S? A) © has a weakly degenerate Levy
fized curve.

Proof. Since ¢ is defined and injective on U, the annulus U contains at most 4 points of the
set g1 (p(A)). Therefore, we can find a parallel subannulus V' of U such that mod(V') >
mod(U)/5 > me®(* and V does not contain any points of g=(¢(A)). Denote X := C—1)(A),

Y = C - o(A), and Z := C — g (¢(A)). In particular, g|Z: Z — X is a holomorphic
covering map.

Let a be a unique hyperbolic geodesic of V. It is known that « is a simple closed curve that
forms a core curve of the annulus V', and its length in V' is given by ¢y () = m/mod(V); see
[Hub06, Proposition 3.3.7]. Let /5 denote the curve g(«). Since « is a simple closed curve and
g|V is injective, then (3 is also a simple closed curve. At the same time, 5 must be essential

in Y since, otherwise, a would not be essential in X (see, for instance, [For91, Theorems 5.10
and 5.11]). Define & := ¢! (a) and § := ¢~1(8), both of which are essential simple closed
curves in S2 — A. It is straightforward to verify that f(&) = 3 and deg(f|&: & — §) = 1.
According to Schwarz-Pick’s lemma and the choice of @« < Z, we have the following
inequality:
Ix(a) < lz(a) < ly(a) = 7/mod(V) < e~ %¢*,

Therefore, since the function wg: T4 — R is 1-Lipschitz, it follows that [5(7) < ¢*. Hence,
there exists a simple closed geodesic § in Y, homotopic in Y to ¢(&), such that ¢y (§) < £*.
At the same time, fy(3) = {z(a) < e~%¢*. Therefore, since both 3 and § are essential in Y,
they are homotopic in Y to short simple closed geodesics. However, as discussed previously,
the four-punctured Riemann sphere Y can have only one short simple closed geodesic. Thig
implies that § and 0 are homotopic in Y, which in turn means that the curves a and 3
are homotopic in S? — A. Hence, 8 provides a Levy fixed curve for the Thurston map
f:(S?%, A) ©. Tt is also straightforward to verify that if g is defined and injective outside a

single connected component of C-U , then this Levy fixed curve is weakly degenerate. [J

The following result guarantees the uniqueness of a Levy fixed curve for a Thurston map
with four marked points, given a specific technical condition.
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Proposition 3.2. Let f: (S?, A) O be a Thurston map with |A] = 4 that has a Levy
fized curve. Suppose that there exists a point T in the Teichmaller space T, such that the
sequence (m(05"(7))) eventually leaves every compact subset of the moduli space M. Then

f: (5% A) © has a unique Levy fized curve up to homotopy in S* — A.

Proof. Let v be a Levy fixed curve for the Thurston map f: (S?, A) ©. Choose a point
p € Ta such that [,(u) < £*. Define 7, := 05"(7) = [¢n] and p, = 05" () = [th,] for all

A~

n = 0. According to Proposition , we can assume that ¢, := ¥, o f o %;113 C--»C
is holomorphic for every n = 0. We also define X, := C — ¢,(A), Y, := C — ¢h,(A), and
Z,=C— 9. (Yn(A)) = C-— Un1(f1(A)) for all n = 0. In particular, g,|Z,: Z, — Y, is a
holomorphic covering map.

Claim. We have [, (j,,) < ¢* for all n > 0.

Proof. Clearly, ,(uo) < ¢* by the choice of pr. We will prove that [, (p1) < ¢*, and the rest
easily follows by induction on n. There exists a short simple closed geodesic 3 in Yj such
that 5 and v¢y(v) are homotopic in Yy, and fy,(8) = [, (ug). Define 8= Yo' (B). Since ]
and 7 are homotopic in S? — A, then by Corollary [2.3 there exists a simple closed curve
& < f~1(@) that is homotopic to v in S? — A, since v is a Levy fixed curve for f: (5% A) ©,
and deg(f|a: & — B) = 1. Now, define o := 1y (&), which is homotopic in Y; to (7).
Clearly, g(a) = 3, deg(g|a: a — B) = 1, and a < Z;. Therefore, by Schwarz-Pick’s lemma,
we have

€Y1 (a) < gZo (Oz) = gYo (ﬁ) < *.
Finally, [, (p1) = la(p1) < €% |

Since (7(7,)) eventually leaves every compact subset of M 4, Mumford’s compactness the-
orem [Hub06l Theorem 7.3.3] states that the length of the shortest simple closed geodesic d,,
in X,, tends to zero. Then wwgl((sn)(,un) < log ¢* for any sufficiently large n, given that
W15 Ta — R is 1-Lipschitz and dr(pn, 7,,) < dr(1, ) by Proposition and Schwarz-
Pick’s lemma. Thus, 9,(v) and ,(¢,'(d,)) are homotopic in Y,, to short simple closed
geodesics. Since Y,, = C - Yn(A) is a four-punctured Riemann sphere, it follows that v and
©1(8,) are homotopic in S? — A for any n large enough.

This argument applies to any Levy fixed curve of f: (S?, A) ©. Therefore, it has to be
unique up to homotopy in S% — A. O

Remark 3.3. If an obstructed Thurston map f: (5%, A) © with |A| > 3 has a finite degree
and hyperbolic orbifold, then it is known (see [Hubl6, Section 10.9 and Lemma 10.11.9] or
[Sel12], Proof of Theorem 2.3, p. 20]) that every point 7 in the Teichmiiller space T4 satisfies
the condition of Proposition [3.2]

Remark 3.4. Suppose that we are in the setting of Proposition[3.2] It is clear that it suffices to
require that the sequence (7(0"(7))) admits a subsequence eventually leaving every compact
subset of the moduli space M 4.

3.2. Estimating contraction. The following proposition provides an estimate for the con-
traction of an inclusion between hyperbolic Riemann surfaces. Although this result is well-
known [McM94, Theorem 2.25], we include the proof here for the sake of completeness.
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Proposition 3.5. Suppose that U and V are two hyperbolic Riemann surfaces such that
UcV. Let ze U and s :=dy(z,V —U). Then
2r|log |

1—7r2"7

cp(2) <

where r := tanh(s/2).

Proof. Suppose that zg € V — U is a point such that s = dy(z, zp). Let p: D — V be a holo-
morphic universal covering with p(0) = 2. Let us chose w € p~!(z) such that dp(0,w) = s.

Finally, we denote by U < D the connected component of w in p~!(U). Then we have the
following commutative diagram:

plU

D* < LU > U
NG
[ JEA, v

Applying Schwarz-Pick’s lemma and recalling that p: D — V and p|ﬁ : U — U are holomor-
phic covering maps, we obtain the following:

YViz) = 2(x PJD)(U)) po(w)
Y =B = o) < et
The rest easily follows since pp(w) = 2/(1 — |w|?), pp=(w) = 1/|wlog|w]|| ([Hub06, Example
3.3.2]), and s = dp(0,w) = 2tanh™'(Jw|) due to [Hub06, Exercise 2.1.8]. O

Remark 3.6. Suppose that we are in the setting of Proposition 3.5 It shows that there exists
an upper bound A(s) < 1 for ¢};(z) depending only on s = dy(2,V — U) and not on U, V,
or z. Moreover, A(s) ~ |slog(s)| as s — 0. In particular, A\(s) — 0 as s — 0.

Proposition and Remark allow us to estimate the contraction of certain inclusions
between countably and finitely punctured Riemann spheres (see [Rem09, Lemma 2.1] for the
result of a similar nature).

Proposition 3.7. Suppose that (z,) is a sequence in C such that lim, oz, = © and
lim, o log|zn41]/log|z,| = 1. Let P be a finite set consisting of at least two elements
of (z,). Then cf;(z) converges to 0 as |z| tends to oo for z € U, where U := C — {z, : n € N}
and V :=C — P.

Proof. Without loss of generality, we can assume that P < D and the sequence of absolute
values (|z,|) is non-decreasing. Let @ := {z, : n € N}, and let p: H — C — D be the
holomorphic universal covering defined as p(z) = exp(—iz) for z € H.

According to Proposition [3.5]and Remark [3.6] it suffices to demonstrate that for any r > 0,
the set | J,cq_p Bv(x,r) covers some punctured neighborhood of o0 in C. Alternatively, it is
sufficient to show that for any r > 0, there exists ¢t > 0 so that

(1) U By(x,r) D H; := {z € C: Im(2) > t}.
zep~!(Q-D)
Indeed, p(H;) = C — D¢ and p(By(z,7)) < By (p(x),r) due to Schwarz-Pick’s lemma.
Note that for sufficiently large n, we have that |z,| > 1 and
(2) 7 (2,) = {27k — arg(2,) +ilog(|z,]) : k € Z} =: {24 - k € Z}.
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Observation implies that
(3)  dyy = diampg ({z : 27k < Re(2) < 2w(k + 1), Im(2,,) < Im(2) < Im(2,414)}) <

1Og ’zn+1| 21
<l + .
og( log |z, log | zy|

Estimate is derived from the following well-known facts about the hyperbolic distance
between two points z,w € H:
e if Re(z) = Re(w), then dy(z,w) = |log(Im(z)/Im(w))|, and
e if Im(z) = Im(w), then dg(z,w) < |Re(z) — Re(w)|/Im(z). In fact, the upper
estimate is the hyperbolic length of the horizontal segment connecting z and w.

Finally, estimate implies that d,,j tends to zero independently from k when n — oo.
Thus, inclusion holds for certain ¢ > 0, and the desired result follows. [l

Remark 3.8. Suppose that we are in the setting of Proposition 3.7 Assume that we know
that log |z,11|/10g |2,| is uniformly bounded from above but does not necessarily converge
to 1 as n — oo0. Following the proof of Proposition 3.7, one can show that there exists A < 1
so that ¢};(z) < A for any z € W n U, where W < C is a neighborhood of .

As an application of Proposition [3.7, we can obtain the following result.

Proposition 3.9. Suppose that g: U — V is a holomorphic covering map, where U < 'V s
a domain of C and V = C — P with 3 < |P| < 0. Let x € P be an accumulation point of
the set U. Then exactly one of the following two possibilities is satisfied:

(1) z is an isolated removable singularity of g: U — V', or
(2) cf;(z) converges to 0 as |z — x| tends to 0 for z € U.

Proof. Without loss of generality, we can assume that z = c0. Suppose that condition ([1)) is
not satisfied. We will prove that there exists a constant a > 1 such that for every sufficiently
large r > 0, the annulus A(r/a,ra) := {z € C : r/a < |z| < ra} contains a point of C — U
(see [BR20, Lemma 3.2] for a similar result in the setting of entire maps). Suppose the
contrary, i.e., that there exist sequences (a,) and (r,) such that a, > 1, a,, — o, r, — o,
and A, := A(r,/ay,,rna,) < U for every n € N.

In particular, g is defined and meromorphic on A, allowing us to consider the sequence
of meromorphic functions g,: A(1/a,,a,) — C, n € N, where g¢,(z) = g(r,z) for every
z € A(1/ay, a,). By Montel’s theorem, the family (g, ) is normal since each g,, omits the values
in the set P. Thus, there exists a subsequence of (g,) that converges locally uniformly on the
punctured plane C*. Without loss of generaliﬁy, we assume that this subsequence coincides
with the original sequence (g,,). Let h: C* — C be the limiting function. If & is not constant,
then by Hurwitz’s theorem [Gam01, p. 231], h also omits the values in the set P. This leads
to a contradiction because either h would have an isolated essential singularity at 0 or oo,
contradicting Great Picard’s theorem, or both 0 and o0 would be removable singularities or
poles of h, and thus, h is a rational map, which cannot omit any values.

Therefore, h is a constant map. Denote by w € C its unique value. Choose a simply
connected domain W 3 w such that W n P = {w} n P. From the previous discussion,
g(A(2r,/an, anr,/2)) < W for all n large enough. Note that every connected component of
g Y (W) < U is either a simply connected domain or a simply connected domain with a single
puncture (see, for instance, [For91, Theorems 5.10 and 5.11]). Hence, for every sufficiently
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large n, either all but at most one of the points in D, » belong to g~* (W), or the same is

true for the set @—ﬁgrn Jan- The first case cannot happen for infinitely many n, so there must
be some n € N for which the second case occurs. It immediately leads to a contradiction, as
we initially assumed that x is not an isolated removable singularity of the map g: U — V.

Now, we can take 2, to be a point of C — U in A(a?", a®"+?) for every sufficiently large n.
It is easy to see that the sequence (z,) satisfies the conditions of Proposition Given that

CZ(Z) _ pV(Z) < pV(Z) ’
pu(z)  pe-q(2)
where @ := P U {z, : n € N}, item follows from Proposition . U

3.3. Iteration on the unit disk. If ~: D — D is a non-injective holomorphic map, the
Denjoy-Wolff theorem |Aba23l Theorem 3.2.1] states that any point z € D converges under
iteration of h to a point z, € D that is independent of the initial choice of z. In this section,
we explore holomorphic maps on the unit disk that satisfy stronger assumptions, allowing us
to achieve more precise control on the behavior of their orbits. Many examples of such maps
will appear in Section . Specifically, many pullback maps of (marked) Thurston maps with
a marked set A, where |A| = 4, satisfy these conditions.

We say that z € Cis a reqular point of a holomorphic map ¢g: U — V, where U and V'
are domains of C, if either z € U and deg(g, z) = 1, or z is an isolated removable singularity
of g and, after extending g holomorphically to a neighborhood of z, deg(g,z) = 1. A point
zeCisa fized point of the map g: U — V if either z € U and ¢(z) = z, or z is an isolated
removable singularity of g and, after extending g holomorphically to a neighborhood of z,
we have g(z) = z. The concepts of repelling or attracting fixed points can be generalized in
a similar way.

Theorem 3.10. Let h: D — D be a holomorphic map, cmd D —>Vand g: U -V are
holomorphic covering maps, where U < V is a domain of(C and V = C—P with 3 < |P| < o0.
Suppose that m(h(D)) c U and m = gomo h, i.e., the following diagram commutes:

D —"— (D)

V7 U
If the map g: U — V is non-injective, then exactly one of the following two possibilities
18 satisfied:
(1) for every z € D, the h-orbit of z converges to the unique fixed point of h, or

(2) the sequence (m(h°™(2))) converges to the same repelling fixed point x € P of the map
g, regardless of the choice of z € D.

Proof Given that the maps 7: D — V and g o ﬂ]U U — V are Coverlng maps, where
=7 }(U), it follows [Hat02) Section 1.3, Exercise 16] that h: D — U is also a covering

map and, in particular, U is connected. Therefore, according to Schwarz-Pick’s lemma,
we have HDh(z)HD = cg(h(z)) = ¢ (m(h(2))) for every z € D. At the same time, Great
Picard’s theorem and the Riemann-Hurwitz formula [Hub06, Appendix A.3] imply that
V' — U contains at least one point. Hence, the inclusion I: U < V is locally uniformly

contracting with respect to the hyperbolic metrics on U and V. As a result, h is locally



22 NIKOLAI PROCHOROV

uniformly contracting with respect to the hyperbolic metric on . In particular, h has at
most one fixed point, and if there exists a point z € D such that its orbit (h°*(z)) converges
in D, then every orbit of h converges to the unique fixed point of h.

Let us pick an arbitrary point zy € D. Define z, = h°*(z) and z, = 7(h°"(z)) for n = 0.
Connect the points zg and z; by the hyperbolic geodesic g = ID. We denote by 6§, = D the
curve h°"(J) that connects z, and z,,1. By Schwarz-Pick’s lemma, the sequence (¢p(9,))
is non-increasing. In particular, if dy = dp(20,21), then dp(z,, zn41) < p(0,) < dy and
Ay (Tp, Tni1) < by (m(6,)) < dy for every n = 0.

Further, we structure the proof as a series of claims.

Claim 1. If there exists a compact set K < V such that z, € K for infinitely many n, then
the sequence (z,) converges in D.

Proof. Since ly(m(0,)) < do, we can enlarge K so that 7(d,) < K for infinitely many n.
First, we demonstrate that there exists A < 1 so that ¢};(z) < X for all z € K nU. Indeed, as
we mentioned earlier, there exists a point w € U — V. Therefore, for any z € K, the distance
dy(z,V —U) < dy(z,w) is uniformly bounded from above. Hence, Proposition and
Remark imply that such X exists. Finally, from the previous discussions, if 7(d,41) < K,
then fp(d,41) < Mp(d,). In particular, this shows that (¢p(d,)) converges to 0 as n — oo.
There exists a subsequence of (x,) that converges to a point x € K. By enlarging K,
we can assume that By (z,2r) < K for a certain r > 0. Now, we choose m such that
lp(0,,) < r(1—X)/2 and dy (,,, x) < r. Notice that m is chosen so that £p(8,,) Dy A < /2.
Using this fact and applying induction (see [Sel12l, Proof of Theorem 2.3, p. 20] for a similar
argument), it can be shown that m(d,) < By(z,r) and ly (7 (0,11)) < My (mw(,)) for all
n = m. In other words, the distance between z, and z,,; decreases exponentially, and the
convergence follows from the completeness of the hyperbolic metric on D. [ |

Claim 2. If the sequence (x,) converges to = € P along some subsequence, then the entire
sequence (z,) converges to x.

Proof. For any x € P, we choose a neighborhood V, = C so that if 2’ # 2", then dy (y1,y2) > dy
for any y; € Vy — P and y, € V,» — P. Now, suppose that the sequence (x,,) has subsequences
that converge to different limits ' € C and y' e @, respectively. If either of 3/ or y” does not
belong to P, then by Claim 1, the sequence (z,) must converge to a limit in D, which leads to
a contradiction. If we instead assume that y',y” € P, then it follows that =, € V —J,.p Vi
for infinitely many n. Once again, Claim 1 implies that (z,) must converge to a limit in D,
and it also leads to a contradiction. Thus, the entire sequence (z,) converges to z € P
as n — 0. [ |

Claim 3. If the sequence (z,,) converges to x € P, then z is a fixed point of the map g: U — V.

Proof. Suppose x € P is not an isolated removable singularity of g. Observe that for suffi-
ciently large n, 7(d,) lies within any given neighborhood of . Therefore, based on Proposi-
tion [3.9/and the fact that |[Dh(2)|p = c;(7(h(z))) for all z € D, we have ¢p(d,11) < Mp(d,)
for n large enough and some A\ < 1. This means that the distance between z, and z,,; de-
creases exponentially, so the sequence (z,) must have a limit in D, leading to a contradiction.
Therefore, x € P is an isolated removable singularity of g. Finally, since x,, = g(x,.1) for all
n = 0, x must be a fixed point of the map g. [ |

Claim 4. If the sequence (z,) converges to a fixed point z € P of the map g, then z is a
repelling fixed point of g.



FINITE AND INFINITE DEGREE THURSTON MAPS WITH A SMALL POSTSINGULAR SET 23

Proof. Without loss of generality, we assume = 0. Let us choose a continuous parametriza-
tion dp: I — D for the arc §;. We then define a continuous curve 6: [0, +00) — D by setting
d(t +n) = h°"(do(t)) for any non-negative integer n and ¢t € I. It is straightforward to see
that w(4(¢)) converges to 0 as t tends to oo, since w(6(n)) = z, — x = 0 as n — o and
ly(m(0([n,n + 1]))) < dp for all n = 0. Furthermore, note that m(0(t)) = g(w(d(t + 1)) for
t = 0. Applying the Snail Lemma |[Mil06, Lemma 13.2, Corollorary 13.3] to the curve mo§
and the map ¢ in a neighborhood of 0, we obtain that either |¢'(0)| > 1 or ¢’(0) = 1.

Suppose ¢'(0) = 1. Further, we assume that g is extended holomorphically to a neighbor-
hood 0. If we choose an arbitrary simply connected domain D < C such that D n P = {0},
then ¢g7'(D) has a connected component D’ containing 0. Moreover, D’ < U u {0} is simply
connected and g|D’: D' — D is a biholomorphism that fixes 0. Similarly, we can define
the local inverse branches ¢, : D — U U {0} of ¢°" in a neighborhood of 0. In other words,
©n = (¢°"|D,)~", where D, is the connected component of 0 in g="(D). In particular, ¢,
is a biholomorphism, ¢, (0) = 0, and (¢,)"(0) = 1/(¢°")'(0) = 1 for every n € N.

Due to the previous discussions, U U {0} does not contain at least three points of C. Hence,
Montel’s theorem implies that the family (¢,) is normal. Therefore, up to a subsequence,
it converges locally uniformly on D to some holomorphic map ¢ such that ¢(0) = 0 and
¢'(0) = 1. Since ¢'(0) = 1, ¢ is injective in a neighborhood of 0. Thus, the iterates (¢°")
converge uniformly in a neighborhood of 0 to ¢!, up to a subsequence. However, if

g(2) =z +ap2 + ...,
where ap # 0, k > 2, and three dots represent higher order terms, then
¢°"(2) = z + napZ + ...,

so (¢°")*)(0) diverges as n — oo. This leads to a contradiction ruling out the possibility
g'(0) = 1. Thus, x = 0 must be a repelling fixed point of the map g. [ |

Claims 1-4 imply that if the sequence (h°"(zy)) diverges in D, then the sequence (7(h°"(20)))
converges to a repelling fixed point « € P of the map g. Furthermore, in this case (7 (h°"(z)))
converges to = for every z € D. Indeed, this follows easily since dy (7(h°"(z)), 7(h°"(2))) is
bounded from above by dp(zg, z) due to Schwarz-Pick’s lemma. O

4. THURSTON THEORY

In this section, we focus on the study of (marked) Thurston maps f: (5%, A) © that
satisfy the following two conditions:

(I) the marked set A contains exactly four points, and
(IT) there exists a set B < A such that |B| = 3, Sy < B, and |f~}(B) n A| = 3.

It is evident that when the marked set A coincides with the postsingular set P, conditions
and are equivalent to conditions from Section [1.3] Also, it is worth noting
that the case when |f~1(B) n A| = 4 or, equivalently, A ¢ f~1(B), is rather trivial due to
Remark 2.18]

Using the tools developed Section |3| and the theory of iteration of meromorphic functions,
we analyze the corresponding pullbacks map defined on the one-complex dimensional Te-
ichmiiller space. It allows us to derived several properties of the corresponding Thurston
maps and their Hurwitz classes. In particular, in Section [4.I] we prove Main Theorem [A]
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(see Theorem [4.4)), and in Section we prove Main Theorem |B| (see Theorem and
Corollary [L.1]

Let A = {a1,as,as3,a4}, B = {ai,, iy, ai,}, and C := f~1(B) n A = {a;,,aj,,a;,}, where
11 < iy < i3 and j; < js < Jj3. Additionally, assume that ¢ and j are the indices so
that a; € A — B and a; € A — C. Under this conventions, we have that f(a;) = @; and
deg(fv aj) =L

It is important to note that there may be multiple choices for the set B. However, when
S| = 3, the set B is uniquely determined by the properties described in condition .
Also, another choice that we made, which will be relevant in our further arguments, is the
indexing for the set A.

Now we are ready to introduce the following objects:

o the map mp: T4 — %, where & = C — {0,1,00}, is defined by 75([¢]) = ¢(a:),
where the representative p: 52 — C is chosen so that (a;,) =0, p(a;,) =1, and
So(ais) = 903

e the map mc: T4 — X is defined by me([¢]) = ¢(a;), where the representative
¢: 52 — C is chosen so that ¢(aj,) =0, ¢(aj,) =1, and p(a,,) = ©;

e the map wy: T4 — X is defined by wy = m¢ 0 oy;

e the map F: C--»Cisa unique (which follows from Proposition holomorphic
map such that Fy = po fot¢~! where ¢,¢: S? — C are orientation-preserving
homeomorphisms satisfying ¢(a;,) = ¥(a;,) = 0, ¢(a;,) = ¥(a;,) = 1, and ¢(a;,) =
w(a’js) = 903

e the map M,;: ¥ — X is defined as h; o hj’l, where h;: My — 3 is defined by
hi([n]) = n(a;), with n: A — C chosen so that n(a;,) = 0, n(ay,) = 1, n(a,) = o,
and the map h;: My — X is defined analogously.

o the set Wy := C - Ff_l({O, 1,0}) is a domain of C;

e the map Gy := Fyo Mifjl: M, ;(Wy) — X.

Of course, the maps Fy and Gy, as well as the domain W/, also depend on the choice of the
subset B, and many other objects defined above depend on the indexing of A. However, for
the simplicity, we are going to exclude these dependencies from the notation. Throughout
this section, we will maintain the notation and conventions established above. Specifically,
if £ (52, A) © is any Thurston map that is Hurwitz equivalent to f: (52, A) ©, then we
use the same set B and the same indexing of the set A when we work with the map f as
we do it with f.

Proposition 4.1. The objects introduced above satisfy the following properties:

(1) diagram commutes.

(2) Sp; ©1{0,1,00} and Fy: Wy — ¥ is a covering map;

(3) mg: Ta = X, mc: Ta — X, and wy: Ta — Wy are holomorphic covering maps;

(4) M, ; extends to a Mébius transformation such that {0,1, 0} is an M; ;-invariant sub-
set;

(5) 0¢(Ta) & Ta is open and dense in Ty and oy: Ta — 0¢(Ta) is a holomorphic cover-
mg map;

(6) the maps Fy and Gy, as well as the domain Wy, depend only on the Hurwitz equiva-
lence class of the Thurston map f.
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Ta z s Ta
AN
T™B Wf T™B
Mm’
A \
> >

F1cURE 2. Fundamental diagram for Thurston maps satisfying

conditions [(T)| and .

Proof. Let 7 = [¢] € Ty and o4(7) = [¢)] € Ta, where the representatives ¢, ¢: S? — C are
chosen so that p(a;,) = ¥(aj,) =0, ¢(ai,) = ¥(aj,) = 1, ¢(aiy) = ¥(aj,) = 0, and the map

oforyt: C--»Cis holomorphic. In particular, p o f o ¢)~! coincides with the map FY.
Since, we([¢]) = me([¥]) = ¥(a;), we have the following

(Fyowp)([e]) = Fr(v(a;)) = o(f(a;)) = ¢lai) = mp(p).
Thus, 7p = Fy owys. At the same time, it is straightforward to verify that 7 = M, ; o mc.
Finally, M; jows = M, jomc ooy = mp ooy, and item follows.

[tem directly follows from the definition of a singular set. Maps 7p and 7o are holo-
morphic coverings, as discussed in Section . The map wy: Ty — Wy is also a holomorphic
covering since both mp: 74 — ¥ and Fy: Wy — X are holomorphic covering maps, and
g = Frowy (see [Hat02, Section 1.3, Excercise 16]). Hence, item (i3] follows.

The discussion of Section shows that the maps h;, hj: My — ¥ are holomorphic.
Consequently, M; ; is a conformal automorphism of ¥ that extends to a M('jbius transfor-
mation of C permuting 0, 1, and co. Alternative way to prove item (4)) is through di-
rect computation. For example when i = j, then M;; = idg; if i = 1 and 7 = 2, then
M, 5(2) = z/(z — 1), and so on.

Since M; j owy = mp o oy, where wy and g are holomorphic covering maps and M, ; is a
Mobius transformation, it follows that o: T4 — o¢(74) is also a holomorphic covering map,
where o;(Ta) = 75" (M, ;(Wy)). Note that by Great Picard’s Theorem and the Riemann-
Hurwitz formula [Hub06, Appendix A.3|, the set C- Wy contains at least one point different
from the points {0, 1, 00}. Therefore, o;(7y) is different from 74. Since Wy is open and dense

in C, it follows that 04(T4) is open and dense in Ty, establishing item (F]).

Finally, let f be a Thurston map Hurwitz equivalent rel. A to f. Suppose that ¢, o f =
fogpa, where ¢y, ¢y € Homeog (5%, A). Then Fy = Po forr~!, where & = pog, and ¥ = Yo,
In particular, $(a;,) = J(ajl) =0, ¢(a;,) = 1[)((1]2) 1, and Plai,) = @Z(aja) = o0. Therefore,
Fyand F 7 coincide, as well as Wy and Wf, and item @ follows. 0]

Remark 4.2. Proposition shows that for Thurston maps satisfying conditions|(I)and |(1I)|
the corresponding pullback maps admit a commutative diagram analogous to diagram (|1
from Section In this context, the Mobius transformation M, ; serves the role of the
X-map, the map Fy takes the place of the Y-map, and the dornain W; is an analog of the
Hurwitz space. In particular, o, has the “g-map” Gy = Fjyo M : M, j(Wy) — X,

In contrast to the finite degree case, when f: (5% A) © 1s transcendental, the map
Fy: Wy — X is a covering of infinite degree and W is a countably punctured Riemann sphere.
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Remark 4.3. Suppose that we are in the setting of Proposition 4.1l We have observed that
o;(Ta) = 5" (M; j(W;)) and the complement of the set M, ;(W;) in ¥ contains at least one
point. Given that 7p: T4 — X is a covering map of infinite degree, the pullback map o has
infinitely many omitted values, i.e., the points of T4 — 04(74), and they are not compactly
contained in 74. Moreover, the set of omitted values of o is not discrete in the Teichmiiller
space T4 if the essential singularity of the map f lies within the set S% — A.

4.1. Characterization problem. In this section, we present and prove a slightly stronger
version of Main Theorem [A] utilizing the tools developed in Sections and along with
the properties of pullback maps established in Proposition

We recall that the Teichmiiller space T4, where |A| = 4, is biholomorphic to the unit
disk D, and the metric dr defined in Section [2.4] coincides with the hyperbolic metric dp. If
f:(S?, A) © is a Thurston map satisfying assumptions|(I)|and , then the the correspond-
ing pullback map o¢: T4 — T4 is holomorphic. It can be established in two ways: either
through the general approach outlined in Proposition [2.19| or by more elementary methods
as in item of Proposition It is worth mentioning that item of Proposition and

Schwarz-Pick’s lemma imply that o is distance-decreasing on the Teichmiiller space T4 (cf.

Remark [2.20)).

Theorem 4.4. Let f: (S?, A) © be a Thurston map of finite or infinite degree that satisfies
properties and . Then f is realized rel. A if and only if it has no weakly degenerate

Levy fixed curve. Moreover,

(1) if f is realized rel. A by postsingularly finite holomorphic maps ¢y : (@, P)) © and
go: (@,Pg) D, then g1 and go are conjugate by a Mobius transformation M, 1i.e.,
M o gy = gyo M, such that M(Py) = Py;

(2) if f is obstructed rel. A, then it has a unique Levy fized curve up to homotopy in S*— A.

Proof. Suppose that the Thurston map f: (5%, A) © is realized. According to Proposi-
tion , f:(S?, A) © cannot have a Levy fixed curve. From Proposition m, it follows
that o; has a fixed point in the Teichmiiller space 74. As it was discussed previously, o is
distance-decreasing on T4, which implies that it has a unique fixed point. Now, it is straight-
forward to verify using Proposition that item holds (cf. [Hubl6l Corollary 10.7.8]
and [MPR24, Proposition 2.26]).

Now, suppose that the Thurston map f: (5%, A) © is obstructed. Choose an arbitrary
point 79 € T4 and define 7, := 0;"(70), Xy = m(Ta), and vy, = 7o (T41) for every n = 0.
Let 7, = [¢n] € Ta, where the representative ¢, : S? - C is chosen so that on(a;,) = 0,
¢n(as,) =1, and @, (a;,) = 0. Denote by ¢, : $% — C the unique (due to Proposition
orientation-preserving homeomorphism so that g, := ¢, o foe!: C--»Cis holomorphic
and ¥, (aj,) = 0, ¢¥n(a;,) = 1, and ¥, (a;,) = 0. According to the definition of the map F,
it must coincide with the map g, for every n = 0. Moreover, it follows that 7,41 = [¢y].
From this, we observe that ¢, (a;) = @y, ¥n(a;) = yn, and Fy(y,) = x, for every n = 0.

According to item of Proposition 1.1, we have mg(of(Ta)) < M;;(Wy) and 75 =
Gyompooy. Since Gy is not injective, items — of Proposition allow us to apply
Theorem to the pullback map o;. This shows that the sequence (x,) converges to a
repelling fixed point x € {0,1, 0} of the map G¢. Given that x,+1 = M, ;(y,), the sequence
(yn) converges to a regular point y € {0, 1, o0} of the map F due to item (4}) of Proposition .



FINITE AND INFINITE DEGREE THURSTON MAPS WITH A SMALL POSTSINGULAR SET 27

We assume that the map F} is extended holomorphically to a neighborhood of y. Then
there exists a disk D « C such that D n {0,1,00} = {y} and F} is injective on D. Consider
another disk D’ such that D’ = D and the annulus D— D’ has modulus greater than 5me /¢*,
where dy = dp (79, 71) and £* = log(3 + 2v/2). Observe that y, € D’ for all n large enough
and, in particular, each connected component of C-— (D — D’) contains two points of the set
Un(A).

Finally, by Schwarz-Pick’s lemma, we have dr(7,, Tm+1) < dr(m0,71) for every n > 0.
The existence of a weakly degenerate Levy fixed curve for the Thurston map f: (5%, A) ©
then follows from Proposition , applied to 7, = [p,] and 7,41 = [¢,], where n is taken
sufficiently large, and the annulus D — D’ as above. The uniqueness part follows from
Proposition since the sequence (7(07"(79))) clearly leaves every compact set of the moduli
space M 4. O

4.2. Hurwitz classes. In Section [{.1, we demonstrated how Proposition [.1] especially
commutative diagram , can be helpful for studying Thurston maps that satisfy assump-
tions and In this section, we further develop this idea by showing the significance
of the dynamical properties of the map Gy in understanding the Hurwitz class Hy 4 of a
Thurston map f: (S%, A) © that satisfies properties and In particular, we prove
Main Theorem [B| (see Theorem and Corollary [1.1l However, before proceeding with
their proofs, we present two propositions that relate the fixed points of the map G to the
Thurston maps in the Hurwitz class H¢ 4, which are either obstructed or realized depending
on the properties of the corresponding fixed point.

Proposition 4.5. Let f: (52, A) ©O be a Thurston map that satisfies condz’tions and .
Suppose that x € ¥ 1s a fized point of the map Gy. Then there exists a homeomorphism
¢ € Homeo" (52, A) such that the Thurston map f = ¢ o f: (S%,A) © is realized by a
holomorphic map g: (@,P) ©, where P = {0,1, o0, x}.

Proof. Proposition suggests that there exist points 79 and 77 in the Teichmiiller space T4
so that 04(m) = 71 and mg(79) = 7p(71) = x. Indeed, choose an arbitrary point 7, of 75" (z).
Since x € M, ;(Wy), 0;1(7'1) is non-empty, and moreover, WB(UJTI(Tl)) = {z}. Thus, we can
take 7y to be any point of 0;1(71).

Let 79 = [¢] and 71 = [+], where the representatives ¢,¢: S* — C are chosen such
that g := po fotp': C --» C is holomorphic, ¢(a;,) = ¥(a;,) = 0, ¢(as,) = ¥(ay) = 1,
o(aiy) = YP(a;;) = 0, and p(a;) = P(a;) = x. It is straightforward to verify that g: (@, P)©
is a postsingularly finite holomorphic map, where P = p(A) = (A) = {0, 1, 0, z}.

Now, define ¢ := 1)"*op € Homeo* (52, A) and f := ¢o f: (S2, A) O. It is easy to see that
P o fo =1 = g. Therefore, the Thurston map f: (52, A) © is combinatorially equivalent
to g: ((@, P)©. O
Proposition 4.6. Let f: (S?, A) ©© be a Thurston map that satisfies conditz’ons and .
If G¢ has a repelling fived point x € {0,1,0}, then there exists a homeomorphism ¢ €

Homeo* (52, A) such that the Thurston map f := ¢ o f: (5%, A) © is obstructed. Moreover,
f s totally unobstructed rel. A if and only if none of the points 0, 1, or oo is a repelling fized
point of the map Gy.

Proof. Suppose that = € {0, 1, 00} is a repelling fixed point of the map G . Assume that Gy is
extended holomorphically to a neighborhood x. Let U < M, ;(W;) u {x} be a neighborhood
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of z where G is injective and U = G(U). Define the local inverse branch g: G;(U) — U of
Gy at z, i.e., g := (G¢|U)~!. Note that every orbit of g converges to x, since g is uniformly
distance-decreasing with respect to the hyperbolic metric on U according to Schwarz-Pick’s
lemma, Proposition [3.5, and Remark

Claim. The distance dx(y, g(y)) converges to 0 as y € G¢(U) tends to x.

Proof. Without loss of generality, assume that © = 0 and y,¢(y) € D. Since z = 0 is a
repelling fixed point of the map Gy, by choosing y sufficiently small, we can ensure that
Ayl < lg(y)| < |y| for some X, where 0 < A < 1. Let p: H — D be the holomorphic universal
covering defined as p(z) = exp(iz) for z € H. Define y; := arg(y) — ilog(|y|) € p~'(y) and
Yo := arg(g(y)) —ilog(|g(y)]) € p~*(g(y)). Similarly to the proof of Proposition we have

lo 27 log |y| + log A o
dH(yl>y2)<10g( g’g(y”) 1o < gly| + log )

log |y] [log |y|| log |y| | log |||’

This shows that the distance dy(y1,y2) converges to 0 as y approaches x. According to
Schwarz-Pick’s lemma, the same holds for dp(y, g(y)) and ds(y, g(y)). [ |

Therefore, by making U even smaller, we can assume that dx(y, ¢(y)) < ds(y,y’), where
y € G4(U) is any point other than = and ' € G;l(y) with y # g(y).

Now, we choose 1 € U—{z} and let 9 = G¢(21). Similarly to the proof of Proposition [4.5]
there exists two points 7 and 7, of the Teichmiiller space T4 so that o¢(7) = 71, m5(70) = o,
and (1) = x1. Since mp: T4 — ¥ is a holomorphic covering map, then there also exists a
point 7 € Tx so that dr(7,7) = ds(xo, z1) and 7p(T) = 0.

Let 7 = [p] and 75 = [¢], where the representatives p,v: S? — C are chosen so that
o|A = 9|A. Define the homeomorphism ¢ := ¢~! o1 € Homeo"(S? A). According to
Remark 2.15 04(7) = 70 and 03(7) = 04(04(7)) = 04(70) = 71, where Fi=0¢of:(5%4)5
is a Thurston map.

Schwarz-Pick’s lemma, along with items and of Proposition , implies that

dE(WB(U}"(T))aWB(UT;(HH)(T))) < dp(7,04(7)) = dr(, 1) = ds (30, 21).
At the same time, it follows from items and @ of Proposition that
m5(03" (7)) € 7 (mp(0F'(7)):
Since mp(7) = x¢ € G¢(U), and based on the previous assumptions, we have 7TB<O';?n(T)) =

9°" (). Thus, WB(U;}”(T)) converges to x as n — c0. Given that o} is 1-Lipschitz, it cannot

have a fixed point. Hence, by Proposition m, the Thurston map f: (52, A) © must
be obstructed. R
Suppose none of points 0, 1, or o is a repelling fixed point of the map Gy. Let f be
any Thurston map Hurwitz equivalent rel. A to f. Then, according to item @ of Proposi-
tion , we have Wy = W7 and Gy = G ;. Taking into account Proposition and applying
Theorem , we see that o7 must have a fixed point. Thus, it follows from Proposition

that ]?is realized rel. A. O

Remark 4.7. Tt is clear that G; extends to a postsingularly finite holomorphic map having at
most one essential singularity and a postsingular set contained within {0, 1, c0}. Therefore,
by Lemma , every fixed point of G is either superattracting or repelling. Furthermore,
the only possible superattracting fixed points are 0, 1, and co.
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Now we are ready to state and prove a slightly stronger version of Main Theorem [B]

Theorem 4.8. Let f: (S? A) O be a Thurston map of finite or infinite degree that satisfies

conditions and . Then
(1) f is totally unobstructed rel. A if and only if there are no two points a,b € A such
that deg(f,a) = deg(f,b) =1 and f({a,b}) equals {a,b} or A —{a,b};
(2) if f is not totally unobstructed rel. A, then its Hurwitz class Hya contains infinitely
many patrwise combinatorially inequivalent obstructed Thurston maps;
(3) if f has infinite degree, then its Hurwitz class Hya contains infinitely many pairwise
combinatorially inequivalent realized Thurston maps.

Proof. Without loss of generality, we assume that A is indexed so that B = {a, a9, az}, and
therefore, i = 4 (see the beginning of Section . We then analyze four different cases based
on the value of j,1 < j < 4, to find out when one of the points 0, 1, or o is a repelling fixed
point of the map G (this analysis will be needed to apply Proposition . We also recall
that deg(f,a;) =1 and f(a;) = a;.

e For the case j = 1, we have My1(z) = 1/z. Therefore,

G(0) = Fy(0) = (po foy™")(0) = ¢(f(as)).
This means that 0 is a fixed point of G is and only if f(as) = ¢ *(0) = a;. Fur-
thermore, according to Remark 0 is a repelling fixed point of G if and only if
f(as) = a1 and a4 is a regular point of f. Similarly, 1 is a repelling fixed point of G;
if and only if f(a3) = ay and deg(f,a3) = 1. Lastly, o is a repelling fixed point of
the map Gy if and only if f(as) = ag and deg(f,as) = 1.

e For the case j = 2, we have My5(z) = (2 — 1)/z. Similarly to the previous case, one
of the points 0, 1, and o is a repelling fixed point of G if and only if f(a3) = a; and
deg(f,az) = 1, or f(as) = ay and deg(f,as) = 1, or f(a1) = az and deg(f,a1) = 1.

e For the case j = 3, we have M, 3(z) = 1 — z. Here, one of the points 0, 1, and o is a
repelling fixed point of G if and only if f(as) = a; and deg(f,az) = 1, or f(a1) = ao
and deg(f,a;) =1, or f(as) = a3 and deg(f,aq) = 1.

e For the case j = 4, we have My4 = idg. In this case, one of the points 0, 1, and oo
is a repelling fixed point of G if and only if f(ax) = a; and deg(f,a;) = 1 for some
k=1,23.

Summarizing the calculations above and applying Proposition we obtain item .

To establish item , we largely follow the approach used in the proof of [KPS16, The-
orem 9.2(V)]. Suppose that f is not totally unobstructed rel. A, i.e., there exists an ob-
structed Thurston map in Hy 4. Without loss of generality, we assume that this map is
f: (5% A) ©. Theorem shows that there exists a Levy fixed curve v for f: (5%, A) ©.
Define f, := T5" o f: (5%, A) ©, where n € Z and T, € Homeo" (S? A) is the Dehn twist
about a curve 7. Clearly, each Thurston map f,, has a Levy fixed curve v, and therefore, is
obstructed rel. A by Proposition 2.11] We will show that these Thurston maps are pairwise
combinatorially inequivalent rel. A.

Suppose the contrary. Then there exist two homeomorphisms ¢1, ¢, € Homeo™ (5?) such
that ¢ (A) = ¢2(A) = A, ¢, is isotopic rel. A to ¢y, and f,, = ¢y 0 f, 0 ¢, ' for some m # n.
Therefore, f,,: (5%, A) ©O has ¢;(7) as a Levy fixed curve. However, Theorem [4.4] states that
this Levy fixed curve is unique up to homotopy in S* — A. This implies that v and ¢;(7)
are homotopic in S? — A, and thus, ¢; and ¢, are isotopic rel. A to TWO’“ for some k € Z.
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One can easily see that f commutes with the Dehn twist 7, up to isotopy rel. A, meaning
T, o f is isotopic rel. A to f oT,. Indeed, up to isotopy rel. A, we can assume that f is
the identity on a certain annulus in S? — A with a core curve . Considering the previous

(m—

discussion, we conclude that f is isotopic rel. A to f o T} " The following claim proves

that it is not possible, and item follows.

Claim. Suppose that f is isotopic rel. A to f o ¢, where ¢ € Homeo™(S?, A). Then ¢ is
isotopic rel. A to idge.

Proof. According to Definition [2.5] we can assume without loss of generality that f = fo ¢.
There exist orientation-preserving homeomorphisms ¢, ¢ : C — S? such that the map g :=
po foel: C --» C is holomorphic. One can easily check that g = g o h, where h :=
Yogorpt: C — C. Since h must be a Mobius transformation and h fixes the points of the
set 1(A), it follows that h = idz. Thus, ¢ is also the identity map, proving the claim. W

Lemma implies that the map G has infinitely many fixed points when the map f is
transcendental. According to Proposition [4.5 every such fixed point, apart from 0, 1, and
o0, corresponds to a realized Thurston map in Hs 4. However, some of these maps might
be combinatorially equivalent rel. A. Nevertheless, we will show that only finitely many of
them can be pairwise combinatorially equivalent rel. A.

Consider two Thurston maps f; and f5 realized rel. A by postsingularly finite holomorphic
maps ¢ : (@, P)) © and go: (@, Py) ©, respectively, where P, = {0,1,00, 2} and P, =
{0,1,00, x5}, with x; and x, being distinct fixed points of the map Gy. If f; and f, are
combinatorially equivalent rel. A, then f; is realized rel. A by both g;: (@, P) © and
go: (@, P,) ©. By item of Theorem , there exists of a Mobius transformation M
such that M o g; = go o M and M(P,) = P,. In particular, M is not the identity map and
{0,1,00} < M({0,1,0,21}). Since a M&bius transformation is uniquely determined by its
values at three distinct points of ((A:, there can be at most 24 such Thurston maps that are
pairwise combinatorially equivalent rel. A, and item follows 0

Let us now proceed to prove Corollary from Section [1.3.2] First of all, we recall the
definition of a parameter space.

Definition 4.9. Let g: C — C be a non-constant meromorphic map of finite type. Then
the parameter space of ¢ is defined as follows:

Par(g) := {¢ 0 got: C — C holomorphic for some ¢ € Homeo*(C) and ¢ € Homeo™ (C)}.

Proof of Corollary|[1.1. Note that g should have at least two singular values and, according
to Great Picard’s Theorem, at most two exceptional values, i.e., points w € C such that
the preimage ¢~ (w) is finite. Clearly, every exceptional value is an asymptotic value of g.
Therefore, by post-composing g with a Mobius transformation, we can assume that {0, 0} <
S, < {0,1,00} and g~'(1) is infinite. By pre-composing g with an affine transformation,
we can assume that g(0) = 1 and g(1) = 1. Let x,y # 0,1,00 be two points in C so that
g9(x) = y.
Next, choose four distinct point a, b, ¢, and d in S?, and two orientation-preserving

homeomorphisms ¢, ¥: S — C such that:

* 90<a> =0, gp(b) =1, QD(C> =y, and Qp(d) = 00, and

o ¥(a) =0, 9¥(b) =z, ¥(c) = 1, and ¥(d) = .
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Then f:=p togow: S? --» 5% is a topologically holomorphic map. Moreover, {a,d}
Sy < {a,b,d}, and f(a) = b, f(b) = ¢, and f(c) = b, while d € Sy is the essential singularity
of the map f. In other words, f is a Thurston map with the postsingular set Py = {a, b, ¢, d}.
Moreover, it is easy to see that f satisfies conditions and . Indeed, by setting B =
{a,b,d}, we have f~1(B) n Py = {a,c,d}.

Item (3)) of Theoremimplies that the Hurwitz class H ; contains infinitely many realized
Thurston maps that are pairwise combinatorially inequivalent. Clearly, each of these maps is
realized by a postsingularly finite map from Par(g). Obviously, these maps must be pairwise
(topologically or conformally) non-conjugate, leading to the desired result. 0

Remark 4.10. If g: C — C is a non-constant entire map of finite type, its entire parameter
space is defined by

Parg(g) := {¢ 0 go1: C — C holomorphic for some ¢, 1) € Homeo™ (C)}.

Following the proof of Corollary , one can show that if g is a transcendental and |S,| < 3,
then Parg(g) contains infinitely many postsingularly finite entire maps with four postsingular
values that are pairwise non-conjugate.

Remark 4.11. Using the framework of line complexes (see [GO08| Section XI| or [MPR24]
Section 2.7]), it can be shown that there are uncountably many distinct parameter spaces.
Therefore, Corollary implies that conditions and are met by uncountably many
pairwise combinatorially inequivalent realized Thurston maps with four postsingular values.
Furthermore, by applying item of Theorem it is easy to verify that the Thurston
maps constructed in the proof Corollary are not totally unobstructed if z = 1 is a regular
point of the map ¢g. This shows that the family of Thurston maps under consideration
also includes uncountably many pairwise combinatorially inequivalent obstructed Thurston
maps. According to Remark [£.10] the same observations hold even if we restrict to the class
of entire Thurston maps.

4.3. Examples. In this section, we provide examples of several families of Thurston maps
that satisfy conditions |(I)| and |(II)l We also demonstrate how the framework of Sections
and applies to these rather concrete cases.

Ezample 4.12 (Exponential maps). Let f: S* --» S? be an entire Thurston map with P; =
{a,b,c,d} and Sy = {a,d}, where d is the essential singularity of f. We recall that Thurston
maps of this type are called exponential Thurston maps. It is easy to see that a must be an
omitted value of the map f. In particular, f has one of the following two dynamical portraits
on the set {a, b, c} as illustrated in Figure[3} either the singular value a has pre-period 1 and
period 2, or it has pre-period 2 and period 1.

KN

a——b——c a b CQ

FIGURE 3. Possible orbit of the singular value of an exponential Thurston
map with four postsingular values.

In both cases, the map f satisfies properties|(I) and . In particular, Theorem shows
that f is realized if and only if it has no Levy fixed curve, which must, in fact, be degenerate.
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This, in particular, provides a new proof for the more general result [HSS09, Theorem 2.4]
in the case of four postsingular values.

According to item of Theorem if the singular value a has pre-period 2 and period 1,
then f it totally unobstructed. However, if a has pre-period 1 and period 2, the Thurston
map [ is never totally unobstructed since f({b,c}) = {b,c} and deg(f,b) = deg(f,c) =1
because otherwise either b or ¢ would be a singular value of f. Moreover, in this case the
Hurwitz class H; contains infinitely many pairwise combinatorially inequivalent obstructed
Thurston maps by item (2]) of Theorem . In both cases, item ({3) of Theorem states
that the Hurwitz class of f contains infinitely many pairwise combinatorially inequivalent
realized Thurston maps.

We further assume that a = a1, b = as, ¢ = a3z, and d = a4, and adopt the notation
introduced at the beginning of Section [ Our goal is to derive explicit formula for the
map Gy, analyze its dynamics, and observe the phenomena described in Propositions
and as well as in the proof of Theorem [4.8

First, we consider the case when the singular value a has pre-period 1 and period 2.
Let B = {a,b,d} = {a1,as,a4}, and then C = f~1(B) n P; = {a,c,d} = {a1,a3,a4}. In
particular, here ¢ = 3 and j = 2.

Let us compute the map Fy. It is evident that F is a transcendental entire function.
Moreover, Sp, = {0,%}. By the classical theory of covering maps, Fy(z) = aexp(Az)
for some a, A € C*. Given that Fy(0) = 1 and Fy(1) = 1, it follows that @« = 1 and
A = 2mik, k € Z*, where k is determined by the Hurwitz equivalence class of f, as stated in
item (@) of Proposition [£.1] At the same time, Wy = C — {I/k : | € Z} and Ms(z) = 1/=.
Therefore, G¢(z) = exp(2mik/z).

In particular, 0 is the essential singularity of Gy, 1 is a fixed repelling fixed point of G
of multiplier 2mik, and Gf(0) = 1. Moreover, by Lemma , the map G has infinitely
many repelling fixed points. Thus, Propositions and already imply that the Hurwitz
class H; contains both realized and obstructed Thurston maps.

Now, let the singular value a has pre-period 2 and period 1. Let B = {a, ¢, d} = {a1, a3, a4}
and then C' = {b,¢,d} = {ag,a3,a4}. Here, i = 2 and j = 1. Similarly to the previous case,
we find that Fy(z) = exp(2mikz) with k€ Z*, Wy = C = {l/k : l € Z}, Ms;(2) = z/(z — 1),
and Gy(z) = exp(2mik/(z — 1)). In particular, 1 is the essential singularity of Gy, and
Gf(0) = G¢(0) = 1. Thus, none of the points 0, 1, or o is a fixed point of the map G.
Therefore, Proposition implies that f is indeed totally unobstructed.

Ezample 4.13 (Entire maps with three singular values). Let f: S? --» S? be an entire
Thurston map with the postsingular set Py = {a,b, c,d}, where Sy = {a,b,d} and d is the
essential singularity of f. If f satisfies condition , then it should have one of the three
(up to relabeling) possible dynamical portraits on the set {a,b, ¢} as illustrated in Figure [4]
Additionally, there are four more dynamical portraits when condition is not satisfied.

Theorem [4.4]states that a Thurston map with one of the dynamical portraits as in Figure
is realized if and only if it has no weakly degenerate Levy fixed curve. Furthermore, according
to item of Theorem , f is totally unobstructed for the first two dynamical portraits
(from left to right) in Figure[d]if and only if deg(f,c) = 1, and f is always totally unobstructed
for the third dynamical portrait.

Let a = a1, b = ag, ¢ = a3, and d = a4. Then we take B = Sy = {a,b,d} = {a1, as, as},
and then C' = {a,c,d} = {a1,a3,a4}. In particular, i = 3 and j = 2. It can can be verified
that Fy is an entire function with Sp, = {0,1,00}. At the same time, Mz5(2) = 1/2, and
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FIGURE 4. Possible dynamical portraits for an entire Thurston map with
three singular and four postsingular values that satisfies condition .

therefore G¢(2) = Ff(1/z). In particular, 0 is the essential singularity of Gy. Thus, we have
the following behavior of the map Gy on the “cusps” 0 and 1 of the moduli space ¥ ~ M 4:

o for the first dynamical portrait, Gy(o0) = 0 and 1 is a fixed point of G; that, according
to Lemma [A.1] is repelling if deg(f, c) = 1, or superattracting otherwise;

e for the second dynamical portrait, Gy(c0) = 1 and 1 is a fixed point of Gy that is
repelling if and only if deg(f,c) = 1, or superattracting otherwise;

e for the third dynamical portrait, G¢(1) = 0 and Gy() = 1. In particular, neither of
0, 1, and o0 is a fixed point of the map GY.

Ezample 4.14 (Non-entire examples). Most of the observations in Example do not de-
pend on the condition f~!(d) = ¢, i.e., that the Thurston map f is entire. Furthermore,
there are more non-entire examples of Thurston maps that satisfy conditions and .
For instance, if f: S* --» S? is a Thurston map with |S;| < 3, where the postsingular set
Py = {a,b,c,d} does not contain an essential singularity (e.g., f could be a finite degree
map), and f has one of the postsingular portraits shown in Figure In particular, The-
orem provides a novel proof of celebrated Thurston’s characterization theorem [DH93,
Theorem 1] for a specific family of finite degree Thurston maps with four postcritical values.

l

|
s

—

FiGURE 5. Examples of postsingular portraits of non-entire Thurston maps

that satisfy conditions and .

Of course, there are more examples, e.g., a Thurston map f with Py = {a, b, ¢, d} satisfies
condition if Sy = {a,b,c}, d is the essential singularity of the map f, f(a) = d, and b
and ¢ form a 2-cycle for the map f.

Example 4.15 (Maps with three postsingular values). Suppose that f: (5%, A) © is a Thurston
map such that |[A| = 4 and |P;| < 3. It is easy to see that if there exists a marked point
a € A — Py that is not periodic (i.e., it is either pre-periodic or lands to the essential singu-
larity of f under the iteration), then the pullback map o is constant by Proposition m
and the Thurston map f: (S?, A) © is realized, as noted in Remark

On the other hand, if every marked point a € A — Py is periodic, then conditions
and are clearly satisfied. For instance, if |Pf| = 3, we can simply take B = P.
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APPENDIX A. FEW FACTS ABOUT DYNAMICS OF MEROMORPHIC MAPS

We require the following two results regarding the dynamics of meromorphic maps. Al-
though these results are mostly folklore, we provide short proofs for the completeness.

Lemma A.1. Every postsingularly finite meromorphic function has only finitely many su-
perattracting periodic orbits, and all other periodic orbits are repelling.

Proof. Let g: C — C be a postsingularly finite meromorphic function. It is evident that g
can have only a finite number of superattracting periodic orbits, as the points of each such
orbit belong to the postsingular set of g.

Now, consider a periodic point z € C of g. If z is attracting (but not superattracting), then
according to [Ber93, Theorem 7], the corresponding cycle of immediate attracting basins
contains a singular value w € S; that has an infinite orbit, leading to a contradiction.
Therefore, if z is in the Fatou set of g, then it is the center of a cycle of Siegel disks
Uy, Us, ..., Uk, and postsingular values of g are dense in oU; for each i = 1,2,... k [Ber93,
Theorem 7]. This implies that the postsingular set of g would be infinite. If z is in the
Julia set of ¢, then it is either a Cremer periodic point or it lies on the boundary of a
cycle of parabolic basins [Mil06, Theorem 7.2]. In both cases, z is an accumulation point of
the postsingular values of ¢ (see [Ber93, Theorem 7] and [Eps93, Proposition 16]; see also
[Eps93, Lemma 72]). Thus, z is either a superattracting or repelling periodic point of the
function g. O

The next result that we require states that a transcendental meromorphic function of fi-
nite type has infinitely many repelling fixed points. This was established in the more general
context of finite type maps in [Eps93, Proposition 14]. Furthermore, in the paper [Benl6],
it was shown that the same is true for transcendental meromorphic functions of bounded
type (i.e., having bounded singular set) under the assumption the oo is a logarithmic sin-
gularity of the considered function. In the following lemma, we show that this assumption
can be removed and, in fact, the result holds for an arbitrary transcendental meromorphic
function of bounded type.

Lemma A.2. Fvery transcendental meromorphic function of bounded type has infinitely
many repelling fized points.

Proof. Let g: C — C be a transcendental meromorphic function of bounded type and D < C
be an open Jordan region containing o such that S, n D = {0} n D. If f~1(D) has a
connected component that is unbounded (in C), then the result follows directly from [Benl6].
Now, suppose that every connected component of f~!(D) is bounded. In this case, f~(D)
has infinitely many connected components, and all but finitely many of them are compactly
contained in D. Let U be one such component, i.e., U is a connected component of g~!(D)
such that U < D. Let z be a unique pole of g in U and let d := deg(g, z). Note that U is an
open Jordan region and g|U — {z}: U — {2z} — D — {0} is covering map of degree d.
Consider a Jordan arc o — D connecting oo with a point on 0D, with the conditions that
landD| =1and a nU = . Then g~'(a) subdivides U in d simply connected domains
Uy, Us, ..., Uy Furthermore, the restriction g|U;: U; — D —« is a biholomorphism. Proposi-
tion|3.5/and Remark imply that the inverse (g|U;) ™! is uniformly distance-decreasing with
respect to the hyperbolic metric on D — «, because U; = g(D — «a) is compactly contained
in D — «. Therefore, by the Banach fixed point theorem, g has a fixed point in each U; for
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i=1,2,...,d. These fixed points are attracting for (g|U;)~! and thus repelling for the map g.
By applying the same argument to every connected component of g~!(D) that is compactly
contained in D, we conclude that the map g has infinitely many repelling fixed points. [
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