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The formalism of quantum theory over discrete systems is extended in two
significant ways. First, quantum evolutions are generalized to act over en-
tire network configurations, so that nodes may find themselves in a quantum
superposition of being connected or not, and be allowed to merge, split and
reconnect coherently in a superposition. Second, tensors and traceouts are
generalized, so that systems can be partitioned according to almost arbitrary
logical predicates in a robust manner. The hereby presented mathematical
framework is anchored on solid grounds through numerous lemmas. Indeed,
one might have feared that the familiar interrelations between the notions of
unitarity, complete positivity, trace-preservation, non-signalling causality, lo-
cality and localizability that are standard in quantum theory be jeopardized as
the neighbourhood and partitioning between systems become both quantum,
dynamical, and logical. Such interrelations in fact carry through, albeit two
new notions become instrumental: consistency and comprehension.

Keywords. Fully quantum networks, Quantum causal graph dynamics, Partial
trace, Indefinite causal orders, Spin networks, Causal Dynamical Triangula-
tions, Quantum Gravity.

1 Introduction

Why study fully quantum networks? Composite systems such as computer processes [1],
neurons [2], biochemical agents [3], particle systems [4], market agents [5], social networks
users, are often modelled as dynamical networks. Dynamical network models are suitable
whenever the connectivity and population of the objects modelled are subject to change,
for instance agents within social networks have the capabilities to spawn, disappear, and
form or (more sadly) sever connections. Another class of composite systems which has
attracted considerable attention lately are those whose constituents are quantum in nature,
as they can be leveraged to perform computational and information processing tasks with
efficiencies beyond those of their best known classical counterparts. In this paper we will
argue that there are in fact many motivations for developing mathematical framework
suitable for reasoning about composite systems in which all of the fundamental features
of dynamical networks are quantum in nature—including connectivity and population.
One such motivation is the evocative idea of a ‘quantum internet’ [6, 7, 8]. The devel-
opment of a fully quantum internet echoes a fundamental question in Computer Science:
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What exactly is a computer? To the best of our knowledge, the key resources granted to
us by nature for the sake of efficient computing are spatial parallelism between systems
and quantum parallelism within the systems. This observation motivates the questions:
Are spatial parallelism and quantum parallelism independent computational resources, or
could the former be subject to the latter? What then, is a quantum network of quantum
computers?

Indeed, a second motivation lies in the study of models of distributed quantum com-
puting. So far only classical dynamical networks of quantum automata [9, 10] have been
addressed. Yet it is known that superpositions of connectivities within distributed quan-
tum computers [11] could used to implement protocols in which the orderings of events [12]
and the trajectories of particles [13] are quantum in their specification. The importance
of modelling the implementation [14, 15, 16] of such protocols is well-argued by noting
that in several tasks, they are more efficient than their standard quantum counterparts
[17, 18, 19, 20, 13, 21]. Despite these established advantages of quantising the networking
of quantum systems, very little is known about the formalisation and the dynamics of such
networkings [22].

As it turns out, motivations for considering quantum networks appear not only in the

development of quantum technologies, but also in the foundations of physics. Whilst a
theory which satisfactorily quantises gravity remains elusive, the intersection of the fun-
damental principles of general relativity and quantum theory suggests that such a theory
will have basic features in common with fully quantum networks. Indeed the geometry of
spacetime is dependent on mass distribution in general relativity, and mass distribution
may be superposed in quantum theory. As a result a striking feature shared by most
attempts to quantise gravity is the possibility of quantum superpositions of spacetime ge-
ometries. Whilst the effects of superposing spacetime geometries have long been thought
to be inaccessible experimentally, recent realistic experimental proposals have been in-
fanted through research at the crossover of quantum information and quantum gravity
[23, 24, 25, 26] which promise the near-term confirmation or invalidation of this feature
[27, 28].
In most theories of quantum gravity, geometries are indeed represented by networks dual
to simplicial complexes [29, 30], and so the networking structure of systems is both a
prominent conceptual feature and a feature whose quantum nature deserves considerable
attention in its own right. The current network representations of geometry in theories
of quantum gravity do however come with a few sources of discomfort. The first, a seem-
ingly technical issue, is that the precise definition of such geometries is often left informal,
whereas choices regarding whether to name nodes and how, or whether to order their
neighbours or not, can have dramatic consequences in terms of disallowing superluminal
signalling, allowing for expansion, allowing for fermionic propagation [31, 32, 33]. The
second is an uncomfortable physical consequence of the path integral formulation of dy-
namics, namely that such a formulation may very well jeopardize the unitary of quantum
theory. A third uncomfortable feature of path integral formulation is that fundamen-
tal physical principles such as locality and causality are only seen as emergent in these
theories, recovered by means of heroic, and not entirely rigorous classical limits.

First strand of contributions. Building on the above motivations, this paper is to
provide a rigorous mathematical framework for reasoning about fully quantum networks
and their dynamics. The framework is sufficiently flexible to allow for arbitrary quantum
superpositions of entire networks, including superpositons of connectivity and population.
All of these network features evolve unitarily. For instance edges can be dropped or cre-
ated, nodes can split or merge in a coherent manner. Yet, the framework offers rigorous
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Figure 1: Necessity of the name algebra. Left: naming vertices is necessary in order to track alignment
across quantum superpositions. Right/grey: A quantum evolution may split v into w.l and w.r. As
the inverse evolution merges them back we need (u.l V u.r) = u. Right/blue: The inverse quantum
evolution may also merge vertices v and v into (u V v). As the forward evolution splits them back we
need (u V).l =uand (uVv).r=mu.

definitions of local, nearest-neighbour interactions, as well as global, non-signalling causal
unitary dynamics—in a strict, non-emergent sense. Thus, the first application of this work
may be the provision of a rigorous mathematical framework for those theories of quantum
gravity in which geometries are represented by networks, e.g. allowing them to seek for
strictly causal, unitary dynamics. The provision of models for quantum complex systems
and distributed quantum computing is another application domain.

To reconcile the flexibility of fully quantum networks dynamics with rigorous notions of
causality and unitarity was a long road. For instance, a first potential ambush was ex-
plained in [31], i.e. the causality of a quantum network dynamics only makes sense if its
nodes are named. This is because of the role that names play in specifying the relative
alignment of the network configurations as they are placed in a quantum superposition.
Still, despite the fact that nodes need a name, the actual name choice should have no effect
on the evolution of a network beyond the aforementioned role: this independence is for-
malised by the notion of renaming-invariance. A second potential ambush was explained in
[32], i.e. we must ensure that names are no obstacle to unitary node creation/destruction.
Indeed, suppose that a node u splits into v and v. How can this evolution be a unitary
U? Won’t UT just erase name v? If v gets renamed into v’ before acting with UT, do we
still get the node u? These questions are solved by means of a name algebra discovered
in the context of reversible causal graph dynamics. In short, a node u can be split into
its left part u.l and its right part u.r. Such a left-right pair can in turn re-merge to form
u.l vV u.r =u, see Fig. 1.

Second strand of contributions. Whilst developing a model of fully quantum networks,
we realised that by taking entire network configurations as states, the usual notion of
tensor product fails us on very basic unsettling questions, such as: When two nodes are
connected, with one on the left of a tensor product, and the other on the right, where does
the edge between them live? When two nodes u and v are in a quantum superposition of
being connected or not, and the neighbours of node u are placed left of the tensor product,
which side of the tensor product is node v?

In order to address these questions we were forced to generalize the usual notion of
tensor product, by means of an approach which is both decompositional and operational.
The approach is decompositional in the sense that, given an entire network |G) we dis-
criminate which nodes go left |G,) and which nodes go right |Gy, of the tensor product ®,
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Figure 2:  Tensor decomposition operation on a superposition of geometries. Top: Connectivity is
encoded within the names of the nodes, e.g. -z being connected to node x V -y in the first branch
of the superposition. In this first branch node y lies within radius 1 of node -z, in the other they are
disconnected. Bottom: As this ' := E%I selects the oriented radius two neighbours of -z, node y
finds itself in a superposition of falling left or right of the tensor.

based on an almost arbitrary logical predicate x, so that we have |G) = |G,)®|Gx). To an-
swer the first question of whereabouts an edge between nodes u € V(Gy) and v € V(Gy),
we extend the name algebra with a symbol “-” used to encode edges within node names,
e.g. node u = -z is connected to node v = z V y. That way, the information about the
cross-connectivity between G, and Gy remains held within their node names, see Fig. 2.

The approach is operational in the sense of linearity, e.g. consider the following expression

|G) + [H) = |Gy ®|Gx) + |Hy) ®|Hy) ,

then xy may well choose to place a note w left of the tensor product in the G branch of the
superposition, but right of the tensor product in the H branch of the superposition, see Fig.
2. This answers the second question on the whereabouts of superposed neighbourhoods.

One question leads to another: Are these generalized tensor products always defined?
For instance, what about the tensor product of a given network, with itself? On what
ground are we allowed to discriminate which nodes go left of the tensor, and which nodes
go right? For instance, can we base this on their proximity to other nodes, their states, or
combinations of these? In what sense are these generalized tensor products a generalization
of the usual ones? Do they also generalize the direct sum? So that the decomposition be
unambiguous, we ask that whenever L and R are not ‘consistent’, i.e. not of the form
L = G, and R = Gy, then |L)®|R) = 0. We define a set of sufficiently well-behaved
logical predicates x for our purposes, which we refer to as ‘restrictions’. Restrictions
then lead to a natural notion of partial trace (|G) (H|)|, = |Gy) (Hy| (Hx|Gx) which is
itself a completely positive and trace-preserving operation. Notice that the partial trace is
denoted with a vertical bar (e.g. pj,), to distinguish it from the restriction (e.g. Gy). The
Hilbert space H and restrictions x are left deliberately general in this paper, so that they
can be used to reason superpositions of geometries, as well as other scenarios, including
the more familiar context of many qudits u, v, ...say. For instance, by considering the
restriction ¢, which keeps just the node u of any graph

Cu: 9’0'_>O7

we recover the standard tensor product of the first qudit with the next. Similarly (encoding
bits for aesthetic purposes as {white,black} as opposed to {0,1}) by considering the
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restriction xy—white Which keeps all nodes when the name w is present and in state |white)
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we recover the direct sum between the subspace of graphs in which w is white and the rest.
More elaborate decompositions as tensor products and direct sums can then be modelled
by restrictions such as (y.white, Which keeps only node u of a network, and only if its state
is |white)
O@®O — O
u 0 w u
Cuaawhite * )

0 — v
u

0 w

as well as p which keeps all nodes marked as white from any graph
OO m— OO
u v w u w

" ocee— O
u v w u
These of course, are presented in addition to restrictions which more explicitly reference
graph geometry, and so pull us away from simple concrete representations in terms of
tensor products and direct sums, for instance the restriction ¢(? which takes the non-
oriented radius 2 neighbourhood around x

XNz XNz
-ZAY -ZAY

x -y x

The point here, is that we can reason about any of these ways of carving out subsystems,
simply because in each case those ways are representable as restrictions. Thus, generalised
tensor products may constitute a powerful analytical tool in quantum information, with
many potential applications e.g. defining generalised, robust forms of entanglement.
Relationship between the two strands. It is the notion of a restriction x on a network
which is then used to define the notions of locality and causality, which in the presence
of unitarity will turn out to interact in a physically intuitive way. We saw above (Fig. 2)
that superpositions of geometries can lead to superpositions of populations left and right
of the tensor product ®. Yet, and even in these situations, the connective ® is sufficiently
well-behaved to serve as the stepping stone for a robust notions of locality and causality.
An operator is considered to be local on a restricted part x of a network if it alters only
that which is within y, ignoring the remainder. Here we define y-locality of operators
as the satisfaction of (H|A|G) = (Hy|A|Gy) (Hx|Gyx) and then prove the equivalence
of this definition with both gate-locality in the operational picture, and dual locality in
the Heisenberg picture. An operator considered to be causal between two restrictions
X, ¢, may on the other hand alter the entire network, but its effects on region ¢ must be
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fully determined by causes in region y. Here we define y(-causality as the satisfaction of
(UpU T)IC = U ,0|XUT)|< and prove equivalence of this definition with dual causality in the
algebraic, Heisenberg picture. Whilst all the usual interrelations between these notions
carry through, the path to them is full ambushes: consistency checking requires great care,
and the usual notion of subrestriction requires an extra condition (‘comprehension’) before
it behaves as expected—which fortunately vanishes in the name-preserving superselected
space.

Plan. Sec. 2 describes the name algebra used for the naming of nodes, defines network

configurations and their induced state space, as well as defining the notions of renaming-
invariance and name-preservation. Sec. 4 defines locality in its various forms, proves
their equivalences, and proves that every unitary operator can be extended into a local
unitary operator. Sec. 9 defines causality in its two forms, proves their equivalences, and
shows that causal unitary operators can be implemented by a product of local ones. Sec.
6 summarizes the contributions of this paper and outlines potential avenues for future
work on the formalism presented. Sec. 6 furthermore enumerates several perspective
applications of the formalism, beyond those that motivated work originally.
Introducing a new formalism for quantum theory is a slippery exercise. We have had
reestablish basic facts first through numerous lemmas found in Appendix A, including
compositionality laws akin to the axioms of categorical approaches to quantum theory. The
consequences of imposing renaming-invariance on the dynamics of networks are explored
in B. The formal sense in which these restrictions really recover notions of direct sum and
tensor product is given in Appendix C, since some care has to be taken to move away from
the Fock-space viewpoint of this paper.

2 An algebra for naming nodes of quantum networks

The problem of defining superpositions of graphs immediately leads to the following co-
nundrum. Consider a pair of systems, white and black, superposed with again a pair of
systems, black and white. One must decide whether the mathematics assigned to this
sentence should be either of [o—e) + |[e—o0) or 2|o—e) (where no distinguishment is made
between black-white and white-black). The only way to disambiguate this situation is by
naming those vertices. The alternative choice, to neglect this alignment information by
claiming that it does not matter since the graphs are isomorphic, leads to the physically
unreasonable consequence of permitting super-luminal signalling [31].

Still, vertex names can be cumbersome. In the classical regime, and in a variety of
different early formalisms, it was shown that their presence leads to vertex-preservation, i.e.
the forbidding of vertex creation/destruction [34] . This was a somewhat uncomfortable
situation, because the informally defined model of Hassalcher and Meyer [35] did seem to
feature reversibility, vertex creation/destruction, and non-signalling causality. Again in
the classical regime, the issue was finally solved by introducing a name algebra [32]. We
now bring the notion of a name algebra over to the quantum regime, simplified. First, let
us remind the reader of why we cannot do without such an algebra.

Indeed, say as in Fig. 1 that some quantum evolution splits a vertex u into two. We
need to name the two infants in a way that avoids name conflicts with the vertices of the
rest of the graph. But if the evolution is locally-causal, we are unable to just ‘pick a fresh
name out of the blue’, because we do not know which names are available. Thus, we have
to construct new names locally. A natural choice is to use the names u.l and u.r (for left
and right respectively). Similarly, say that some other evolution merges two vertices u, v
into one. A natural choice is to call the resultant vertex u V v, where the symbol V is
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intended to represent a merger of names.

This is, in fact, what the inverse evolution will do to vertices u.l and w.r that were just
split: merge them back into a single vertex w.l Vu.r. But, then, in order to get back where
we came from, we need that the equality u.l V u.r = u holds. Moreover, if the evolution
is unitary, as is prescribed by quantum mechanics, then this inverse evolution does exists,
therefore we are compelled to accept that vertex names obey this algebraic rule.

Reciprocally, say that some evolution merges two vertices u, v into one and calls them
u V v. Now say that some other evolution splits them back, calling them (u V v).l and
(u V v).r. This is, in fact, what the inverse evolution will do to the vertex u V v, split it
back into (u V v).l and (u V v).r. But then, in order to get back where we came from, we
need the equalities (u V v).l =u and (u V v).r = v.

A quick note on notations. Throughout the paper, the symbol := means ‘is defined
by’.  Unquantified letters are implicitly introduced by a “for all” across the range that
corresponds to the typographic convention used.

We now formally introduce the algebra that we will use the name nodes:

Definition 1 (Name algebra). Let K be a countable set. Let -K := {-c | ¢ € K}. The
name algebra N'[K] has terms given by the grammar

u,v n= clut|uVvVo with ceK, te{lr}
and is endowed with the following equality theory over terms (with e the empty word):
(uVw)l=u (uVw)r=uv u.e=1u wlVur=u
We define V := NKU -K]|. We write V=V if and only N|V] = NV'].

From now on we take K = N\ {0}. We use letters x,y to denote elements of KU-K =
Z\ {0}.

The + sign will be used to capture the two tips of the edges of the graphs. (NB: To
deal with d—dimensional simplicial complexes instead, we might for instance encode them
as +—bipartite graphs, or take z € [0,d] x K.)

2.1 Defining graphs

Next, we take a ‘system’ to mean both a ‘state’ and a ‘name’, whereas a ‘graph’ is a set
of systems having disjoint names, see Fig. 3. Our formal definition of a graph is given by
the following;:

Definition 2 (Graphs). Let X be the set of internal states. We define the set S := X x V,
whose elements will be referred to as systems, with
e 0 € X the internal state of the system

e v €V the name which supports the system
A graph G is a finite set of systems such that

ow, o’v' €S and vt =0t impliesoc =0 andv =1 andt =1 (1)

We define its support V(G) :={v | Jo € ¥ s.t. o.v € G}. We denote by G := {G | G C
Y XV and G is a graph} the set containing every possible graph.

We denote by H the Hilbert space whose canonical basis is labelled by the elements of G.
We denote by Bi(H) the trace class operators on H. Consider C C G some constrained
configurations. We denote by HE the Hilbert space whose canonical basis is labelled by the
elements of C.
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Figure 3:  Graphs. Left: A system with state 'white' and name v = ((3.] V 8.rl) vV -2). Right: A
system with state 'black’ and name v = (2 vV 4). Middle/grey: Here we decided to interprete u.r = -2
and v.l = 2 as the presence of an unoriented edge {u,v}. Middle/blue: We could have chosen to
interprete it as an oriented edge (u,v) instead. Middle: In both cases, geometry is derived from relative
information that is already present within systems, and which is invariant under renamings.

Notice that a graph G could be seen as a partial function from V to X. Defining it
as a relation, i.e. a set of pairs, will be convenient later in order to define set theoretical
operations upon them.

We are aware that the above definition is not quite the traditional one. Here, edges
are derived information from the systems.

Definition 3 (Induced edges). The following defines the induced undirected edges:
E(G):={{v,v'} |vt=-zs and vt =zs and ow,0’v' €G with ov#o '}
The following defines the induced directed edges:

E(G) := {(, ) |vt=-zs and V' t'=zs and ow,o' W €V(G) with owv#o '},

Notice that in both these conventions, geometrical information is encoded by means
of names.

Most often we want those names to indeed describe the geometry, and nothing else. In
other words the geometry and the dynamics that governs its evolution need be renaming-
invariant.

Definition 4 (Renaming and renaming-invariance). A renaming is an isomorphism R :
N[K] = N[K], i.e. a bijection such that

R(u.t) = R(u).t R(uVv)=R(u)V R(v)

It is fully specified by its action on domain K.
It is extended to V by letting R(-x) := -R(x), with -(u.t) := -u.t and -(u Vv) = -uV -v.
It is extended to S by letting R(o.v) = 0.R(v). It is extended to G by acting pointwise. It
is extended to H by linearity.

Let A be an operator over graphs, possibly parameterized by v € V. It said to be
renaming-invariant if and only if RA, = Ap,)R.

Renaming-invariance and its consequences are worked out in appendix B. For instance
it leads to 4-name-preservation. Yet, several results of this paper require full name-
preservation:

Definition 5 (Name-preservation). Let A be an operator over graphs. It is said to be
name-preserving (n.-p. for short) if and only if V(G) AV (H) implies (H| A|G) = 0.
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Again, notice that name-preservation does not prevent node-creation, for instance node
2 is allowed to split into 2.l and 2.r. Nor does it prevent edge-creation, for instance both
2.0 and 2.r will then be connected to node -2, say.

Throughout the paper we track what becomes of the renaming-invariance and name-
preservation properties, making it clear whenever they are used as necessary premises of
the established result.

Interestingly traceouts preserve...name-preservation.

3 Generalized tensors and traces over quantum networks

We will now generalise the partial trace first, and the tensor product, by means of a
decompositional and operational approach.

In the traditional, compositional approach, qubit u has Hilbert space H", qubit v has

Hilbert space HY, and the pair of qubits uv has Hilbert space H"Y. The tensor product
takes |o) € H" and |o’) € HY to yield |o,0’) € H", as such it is not an internal binary
operator of some Hilbert space, and in fact implicitly carries a strong ‘typing information’
HY x HY — HY.
In contrast, the starting point of our approach is a Hilbert space that is quite large:
it can accommodate both a graph and its subgraphs; a single qubit u or v, and the
pair of them wv or even none of these. le. H = H*" S H ' @ H"W @& .... E.g. the
superposition « |0.u) + $]0.v) happily denotes a qubit with a superposition of names,
whereas o |@) + ]0.u) + v |1l.u) ® |1.v) denotes a superposition of having zero, one or two
qubits. This is reminiscent of a Fock space of particles, but rather, it is similar to a Fock
space of qubits as can be found in the quantum programming language literature whenever
the language includes a new qubit creation operation. As a consequence, our generalised
tensor product takes |o.u) € H and |o’.v) € H to yield |o.u,0’.v) € H, as such it is an
internal binary operator of some Hilbert space and has no typing information. Then, the
tensor product becomes a way of decomposing a state in H, e.g. [0.u) ®, [0.v,0.w) =
|0.w,0.v,0.w), but there could be many others, e.g. [0.v)®, |0.u, 0.w) = |0.u,0.v,0.w). The
restriction xy, Xu, - . . is what specifies what needs to go left of the tensor, thereby replacing
its typing information. The formalism is designed so that any graph |G) can be decomposed
according to any restriction x according to |G) = |Gy)®|Gx), for instance if the restriction
takes all, the rest can always be the empty graph, e.g. [0.u) = |0.u) ®, |@). It is not the
case, however, that any two pairs of graphs can be composed', e.g. |0.u)®|0.u) = 0. Still,
the generalised tensor product does generalize the traditional tensor product, as made
formal in App. C. Interestingly it even generalizes the direct sum (for suitable choices of
restrictions), combinations of direct sums and tensor products, and beyond.

We begin by introducing these restrictions x and generalised partial traces, which are
similarly internalised act over Bi(H), e.g. dropping system v in |0.u,0.v) (0.u,0.v| yields
|0.u) (0.u|. App. C also discusses the nature of those partial traces induced by restrictions
suited to direct sums. Interestingly, and thanks to the empty graph playing the role of a
placeholder, these can be interpreted as a linear trace-preserving alternative to the Born
rule.

!The choice of sending these expression to the null vector, rather than letting the tensor product be
partially defined, will be necessary in order to be able to characterize x-local operators as being of the
form A®1T later.
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Definition 6 (Restrictions, partial trace, comprehension). Consider a function

X:G—G
xX:G—G,CG

It is called a restriction if and only if G, = G, where we introduced the notation G¢ =
(Gy)¢ and thus xC := (o x. We use the notation Gy := G \ Gy even though the function
X : G = Gx is not necessarily a restriction..

A restriction is extensible if and only if Gy, C H C G = H, = G,. Given ¢ an extensible
restriction, (" is the extensible restriction such that Ger is induced by V(G¢) and its r-
neighbours according to E(G). Similarly for (™ and E(G), where the r-neighours are those
pointing toward V (G¢).

Given x, ¢ two extensible restrictions, x U( is the extensible restriction such that Gyy¢ =
Gy UG..

A restriction is pointwise if and only if Gy, = Uy, e g{ov}y-

They induce a partial trace: (|G) (H|)}, = |Gy) (Hy| (Hx|Gx)-

Let p denote a trace-class operator.

Plx is defined from the above by linear extension.

pjp denotes the usual, full trace Tr(p).

We use the notation [x, (] = 0 to mean that x{ = (x.

We say that ¢ is comprehended within x and write ¢ E x if and only if Gy¢ = G¢ and

(HZ|Ge) = (H £|G z) (Hx|Gx) (2)
as illustrated in Fig. 4.

Soundness. We need to show that if x,( are two extensible restrictions, then (" and
x U ( are extensible restrictions. See Lemmas 3, 4, 5. O

Before going on lets be explicit about some basic examples

Example 1 (Namewise restriction). The most familiar way of picking out a subsystem
i quantum information theory, is to pick a factor of some standard tensor product. The
closest analogy to this here is to use a namewise restriction such as (,, where G¢, =
UpveGwen 0-v- In this setting we choose to consider the constrained Hilbert space HC of
graphs spanned by the set C of all graphs such that if v € V(G) and v A u then v = wu.
Consider the unitary isomorphism E : HC = (H*19) @ HC~* where H"*? is the Hilbert
space generated by states of the form |o.u) or|@) with u fized and o allowed to vary within
3. The set C — u is taken to be the set of all graphs in C which do not have a node wu.
Then, the generalised trace for this restriction induces a map (e)c, : Bi(H) — Bi(H"7)
which acts explicitly as
e = Tragz(p),

where we use = to mean equality up-to the unitary isomorphism E. In other words, for
the most natural kind of restriction, the standard partial trace is recovered, indeed,

(louUG) (" uUG)), = lou) (o' .u| (G|G')
= |o.u) {0’ u| dgar
= Trizl(ow) ® |G))((o'.ul @ (G'])]
=Tri5E(louUG) (o' uU G'|)ET]

The same syntactic proof method works in the special case in which one or more of the
graphs is |@) simply by making the notational substitution & — S.u
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Since we work with name algebras to identify when pieces of some name u such as
u.l or u.r are present as parts of other names of nodes within the graph, it is often more
natural to consider (5. Here G¢, = Uy peqione 0-0- Where we have used the symbol v A u
to encode the statement ”3¢, ¢’ such that v.t = ut”. In simple terms this restriction picks
out any node which contains some part of u, allowing us to define a notion of subsystem
which keeps track of the pieces of u and they split, merge, and distribute across the graph
over time.

Example 2 (Statewise restriction). Instead of picking out names, we could choose instead
to pick out particular internal states, this is analogous to picking out part of a direct sum
decomposition of Hilbert spaces. Formally we can define for any subset {@} C C C G the
corresponding xc by Gy, = G if G € C and Gy, = @ otherwise (note that this restriction
is mot in general extensible). Consider this time the isomorphism E : H = HC ©HIC we

can construct the map (@), : Bi(H) — Bi (HC) by

Plxe = mepme +|2) (@] Trrg-cpmg—cl.
Where e is simply the orthogonal projection from H to HC. Indeed, see that

((e|G) + B H)) (o' (G| + B (H']))

= ad'|G) (G'| + BB |2) (2] o nr

= (mc(®)me + @) (@| Tr[rg—c(®)mg—c])((a|G) & B [H)) (' (G'| @ B (H']))

= (mc(#)mc + |2) (2] Trimg—c(#)mg—c])(E(«|G) + B |H)) (o' (G| + 5 (H') ET)

This could be interpreted as the viewpoint upon state p, of a limited observer, who sees
nothing beyond the states C. Le., in so far as p lies beyond C, the observer sees nothing,
where nothing is represented by the empty graph—as opposed to the null vector 0. Inter-
estingly this interpretation of the generalised partial trace offers an linear trace-preserving
alternative to Born rule for quantum measurements (e.g. the projective update rule for
some observable ¢ ).

Example 3 (A pointwise restriction). Some pointwise restrictions model mixtures of direct
sums and tensor products. For instance (,.g can be defined which keeps only node u and
only when u is in a state in a subset S C Y. Here G¢,.o = Usveqo—u and ocs 0-v. We
again choose to consider the constrained Hilbert space HE of graphs spanned by the set C
of all graphs such that if v € V(G) and v A u then v = u. This time thinking in terms of
the unitary isomrophism E : HC = ((H*79)% @ (H*T2)*=5) @ HC~* we can then write

Pleus = msTrogzlplms + [2) (D] Trirs—sTrozlplms-s].

The proof of this identity consists in combining the techniques of the previous two examples.
To unpack this in intuitive terms, the Cy.s-partial trace first applies a standard partial trace
to reduce to u and then the viewpoint of a limited observer who sees nothing beyond S.

Example 4 (Marked restriction). Instead of picking out names, we could choose in-
stead to just pick out particular internal states. Formally we can define for any sub-
set S C X the corresponding ps by Guy = Uyveaoes 0. In this case we can rewrite
H=Docy HELET2 @ NS yhere for each Q C V then HEE\S is the space of graphs
with names exactly the elements of Q and with states in ¥\ S, and HOELE2 s the space
of graphs such that for every node in the graph, its name does not intersect Q and its state
lies in S. Notice the empty @ belongs to that space.

Plus = ZQTr(ﬁQ;s)Jfg [mopmal,
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Figure 4:  Comprehension of restrictions ( C x demands condition Eq. (2), which states that for
any G, H, equality outside the small restriction ¢ (i.e. whether GE = HZ) may be decomposed as
both equality outside ¢ but inside x (i.e. whether fo = HXE)’ and equality outside y (i.e. whether
G = Hy). Condition Eq. (2) may fail if a difference lying within ¢ influences the way x partitions the
outside of (. The condition holds in most relevant cases as shown by Prop. 2. It is needed to establish
Lem. 8.

where we define wg to be the projection of H into HOLOH2 @ HEINS | Indeed, see that
for any pair of name sets Q, Q" then (using G(g) as notation for the graph G appearing
in direct sum branch Q):

G o)V H()) (Gl U H i)l =1G(0)) {Gan] dnmdoe

= SpovTrpgalmr (1G(9) © [Hi) (Gion| @ (Hig)|))mp]

= Yol pgyisl

Therefore, to implement (°)|us in terms of standard partial traces and projectors, one needs
to first project on the subspace where the bad states carrying systems are well-identified,
before tracing out those systems.

Example 5 (Disks). A key motivation of this paper is to be able to talk about neighbour-
hoods of nodes, even when the neighbourhoods of those nodes are in superposition, we have
referred to such neighbourhoods as disks. To recap, given ( an extensible restriction, (" is
the extensible restriction such that Ger is induced by V(G¢) and its radius r non-oriented
neighbours according to E(G). Similarly, E” selects radius r oriented neighbourhoods. It
is unclear how to express the corresponding generalised trace (in the presence of super-
positions of geometries as we have here), as a composition of standard partial traces and
projections—nonetheless we can reason directly in terms of pjcr.

Note that since all (except the statewise restriction) of the above restrictions are exten-
sible, they can be combined under unions (and taking neighbourhoods) to produce more
elaborate ones.

Notice that restrictions are in general oblique projections, aka non-hermitian pro-
jections. They must not be confused with the partial traces (.), that they induce, as
illustrated in Fig. 5.

Now, the tensor product corresponding to a restriction y works by weaving a restricted
graph |Gy) and its complement |Gy) back together, as illustrated in Fig. 6 and formalized
as follows.
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o
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X xVay yv-z ((xVX)V-y yVv.z |C§
=] O @00 0) O0-0-0 0O
| X xV-y yv-z (-=xVX)V-y yV.z |
(| o> =0 =0 =00 ¥ 00000 |},
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= | O—e =0 ) o0 |

X xVy yvez o (xVx)V-ay yv-z

Figure 5: Generalized partial trace. Across figures v := y V -z, restriction (, retains vertex v. Top:
the ket and bra do not coincide on the complement of the neighbourhood, this goes to zero. Middle:
the ket and bra coincide beyond first neighours, this goes to the restriction of the ket and bra on first
neighbours. Below: with oriented edges, the neighbours are those which can signal to v. Overall: the
question of what to do with edges of the frontier zone does not arise, as edges are derived information.

y yv-z YV -z
| o—0—0 Y| 0—0 ) =lo—o0—0—0—0)
i lj’\f—'v zZV =X XV -_lf' yv-z zVx xV...

Figure 6: Generalized tensor product. Here, x, = ¢! and X, := Z}J Top: the two graphs do not
correspond to a disk around v and its complement, this goes to zero. Middle: the two graphs correspond
to a disk and its complement. Moreover, an edge between them can be derived from names. Below:
Same with oriented edges.

Definition 7 (Tensor, consistency). Every restriction x induces a tensor:

IL)®|R) = {|G> when L = Gy, R = Gx for some G € G

0 otherwise
When working over constrained configurations, G needs belong to HE in the above, if not
we return the null vector.
|Y) ®[¢') is defined from the above, by bilinear extension.
G) (H|®|G') (H'] := (|G)®|G")) (H|®(H]).
For any two operators A, B, we define A® B from the above by bilinear extension.
|¥), [0 are x-consistent if and only if (G|) (G'|¢") # 0 implies |G) ®|G') # 0.
p, o are x-consistent if and only if paroc g # 0 implies |G)®|G') # 0 # |H)®|H'), where
par = (G| p|H).
A is x-consistent-preserving if and only if (H| A|G,) # 0 entails |H) ® |Gx) # 0, and
(H| AT|Gy) # 0 entails |H)®|Gx) # 0.

Notice that the definition is unambiguous, as G := H U H'.
To get an intuition for the strictness of this notion of tensor product, consider three
disjoint non-empty graphs G, M, H such that GU M U H is defined. With the above
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definition, |G U M)®|M U H) = 0, whatever the y. This may seem unnecessarily strict;
a more permissive alternative would have been to let |G U M)®|M UH) = |GUM U H).
This, however, would entail A® I = I with I the identity operator, which we will find we
do not want (cf. Prop. 3).

Note that for our simpler examples of restrictions then ® can often be directly com-
puted.

e In the case of Example 1, i.e. (, one can concretely say that

A©uI = Aqu@ ® Igfua

where we have again decomposed HC as HC = (H"t?) @ HC™" where A,y =
Tutr o ATyt e With 7,1 & the projection onto the space H*"?. Indeed,

(cuUG|AQ I |0 u UG = (o.u| Ao’ u) (G|G")

= (au\ Au+g |a’.u> (5@0/
({oul @ (G])(Aure ® I) (0" u) @ |G'))
(

(cuUG)E(Auro @ NE (o' uUG").

An identical result holds for the restriction which picks out all names which intersect
with u (rather than just u).

e In the case of Example 2, i.e. ¢ and using the isomorphism E : H = HC @ HI €
we can write
A®I =2 Ac @ Aplg_c.

where Ay stands (| A|@). Notice that A®cI does not exactly decompose as A@ 1.
This has a natural interpretation: as our limited agent sees nothing beyond C, it
must treat it just like it treats the empty graph. Indeed:

(a (G| + B(H|)A®cI(o' |G') + B |H'))

= ad’ (G| A|G) +0+0+ BF (2| A|@) dgnr

= (a (G| + B (H|)(A® (2] Al@) I)(|G') + 8" |H'))
= (a (G| + B(H|)E(A® AsDE' (o' |G') + ' |H'))

e In the case of Example 3, i.e. xy.5 then we can use similar observations to the above
primitive cases to see that

A®yu.s] = (As1o @ Agls_5) @ Io_y,

where we have used the decomposition H¢ = (HIt2 @ H>5)@HC ", and, we define
Asto = T510ATS 0.
e In the case of Example 4, ug we have that

Abdgl = @ WLQ:SAﬂ'ﬁQ:S & IQ:ﬁ,SU
QCV

where m-0.g is the composition mgmg with 7o defined as before and g the projection
into states which have names non-intersecting with Q and states in S (along as always
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with the empty graph). Indeed, let us show this directly:
<G(7;) U H(p)| Awdgl |G,('P’) U HE’])/)>

= (Gm| © (Hipy ( Sev 7 0.5AT-0:5 ® Ioi-s) [Gipn) ® [Hpn)
= (G(py U H(p)| E(QG?VWZQ:SALQ:S ® Igs)E" |G/(7>/) U H(,P’)> :

These generalized partial traces and tensors are powerful tools, but working with them
sometimes feels like a step into the unknown. Our old intuitions about traceouts and
tensors guide us, but sometimes they mislead us. We have as a result had to check the
conditions of applications of several basic facts about the way these tensor products and
tracing operators interact with one another, leading to the Toolbox of table 1.

Again a quick note on notations. Throughout the paper, greek symbols p,o represent
elements of the space B1(H) of trace class operators (e.g. states), capital letters A, B
represent bounded operators (e.g. transformations and observables.

A good rule of thumb is that usual intuitions about A® B will carry through provided
that y-consistency conditions are met. In fact much of the attention in the proofs is spent
keeping track of which terms get zeroed by the ®.

Another good rule of thumb is that our usual intuitions about subsystems ¢ of a wider
system x will carry through, provided that the comprehension condition given by Eq. (2)
is met, which is true of most natural cases thanks to name-preservation, see Prop. 2.

Sometimes the two rules of thumb interact, e.g. it is the name-preservation assumption
that helps meet y-consistency, as in Prop. 7.

Properties of traceouts over quantum networks

An early attempt to define a (non-modular) partial trace for quantum causal graph dy-
namics actually failed to exhibit positivity-preservation, i.e. there exists p non-negative
with pj, not non-negative [11]. Here we show that partial traces are actually positive-
preserving. In fact we check they are completely-positive-preserving, meaning that they
remain positive-preserving when tensored with the identity, as required for general quan-
tum operations. We do the same for trace-preservation and name-preservation.

We denote by |, ©I the map that is the partial trace |, tensored with the identity by
means of some arbitrary generalised tensor product ©, i.e. the linear map p ~ (|, ©1)(p)
which is such that whenever p = 0 ©¢’ then (|, ©1)(p) = 0}, ©0".

Proposition 1 (Traceouts positivity-preservation, trace-preservation, name-preservation).
The map p = ( |y ©I)(p) over Bi(H) is completely positive-preserving and name-
preservation preserving.

If moreover |GCX>©|GZ> # 0, then the same map is trace-preserving.

Positivity preservation. A trace class operator p is a compact operator, hence it is non-
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Table 1: Mathematical toolbox.

Lem. 2 (H|G) = <HX|GX> <HY‘GY>

Lem. 3. XX = X xx =0

(p|G) (HI)g = (H|p|G) (pA)j0 = (Ap)jo (ap)iy = alppy)

If |G)®|G") # 0

then |G)@|G) = |GUG) and  (G)O|A), = |G)

Py = 2.a,Heg, Gy=Hy PGH Gyx) (Hy|

Lem. 8 IfCE X, (py)ic =p¢ and A (-local is x-local.
Lem. 6 A®B = Y peg Acym,Boon. |G) (H| Al = AQ Iy
Lem. 7 Ifh.¢d=Kxd=kd=x =0

then (AOB)®(C©D) = (A®C)©(B®D)

Lem. 9 If p,o x-consistent, (p®0a), =p oy

If ¢ C x, p,0 x-consistent, (p®0a)c = pjc o)

Lem. 10 I [, ¢ = [%¢] = [\ & = [%.C] = 0, and p, o y-consistent,

(p@0o)ic = pic @0y

Lem. 11 (A®I)|G) = A|Gy) ®|Gx).

If A, A’, B, B’ are x-consistent-preserving,(A®B’)(A®B) = A’ A®B'B.
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negative if and only if it has the form 3", |¢) {
Consider some [|¢) = Z aga |GY®|G")
G, G eg
W= > ayw (HOH

H, H cg

v

acerog |G) (H|®|G) (H'

(1) (D) ageroq |G) (H| (H'|G')
G,G,H H g
G)®IG) # 0
[H)®|H") # 0
= > agrayy |G) (H|
G, H K eg
G)OIK) # 0
H)®|K) # 0
-y 3 ack |G) > afi (H
Keg Geg Heg
|G)®|K) # 0 [H)®|K) # 0
|67) (0"
Keg
= |6°5) WKI
i, K €g
[Complete positivity preservation]
|G) (H| = |G¢) (H|©|Ge) (H]
(W©D)|G) (H| = |Gey) (Hox| {(HexlGex) © |G (e
Accepted in { Yuantum 2024-08-20, click title to verify. Published under CC-BY 4.0. 17



agg if [Gy)O|K) = |G)
Let o )= X .
O lG {O otherwise
Consider some [¢) = Z age |G)o|G")
G, G €@

W= > apm (HOH

H H g

) (¢] = > ageroyy |G) (H|O|G) (H]

G,G',H, H €gG
(O ([9) (¥]) = acaragm |Gy) (Hyl (Hx|Gx) ©|G') (H'|

= > agar g |Gy) (Hy|©|G") (H'|
G, H G, H €g
Gy = Hy
G)o|G") # 0
|H)O[H') # 0

= Z ag ke |Gy) (Hy|©|G') (H']
Gy, Hy, K, G, H € G
(IGy) ®|K >)©\G’> # 0
(|Hy)®|K))©[H') # 0

[6%) = > o, xa |Gy) ©|G")
Gy, G € G
(IGx) ®|K))o|G") # 0
(n©D) (J0) @)= Y [¢%) ("]

Keg

©I) (ZIW)W\)Z > 168 (6"

Keg, i

[Name-preservation preservation]
An operator p is name-preserving if and only if it is a sum of terms of the form |G) (H|
with V(G)=V(H).

G) = |Gx) ®|Gx)
(H| = (Hy|®(Hx]
(1G) (H)j, = |Gx) (Hy| (Hx|Gx)
When this is non-zero, V(Gy) = V (Hy).
Then by Lem. 1, V(G,) = V(G) \ V(Gx)=V(H) \ V(Hy) = V(H,).
So, py is a sum of terms of the form |Gy ) (H,| with V(G,)=V (H,).

[Complete name-preservation preservation]
An operator p is name-preserving if and only if it is a sum of terms of the form |G) (H|
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Figure 7: When a “wider” traceout decoheres an “inner” traceout.

with V/(G)=V (H).

G) (H| = |G¢) (H¢|©|Gy) (He
(1x©1) |G) (H| = |Gey) (Hex| (Hex|Gex) ©|Ge) (He|
= (Hz|Gex) (1Gex) ©1GR)) ((Heyl © (Hg))
When this is non-zero, V(G¢x) = V(Hex)- Let |G') := |Gex)©|Gg)  and |H') := |Hey) ©|H)
Then by Lem. 1, V(G') = V(G) \ V(Ge) 2V (H) \ V(He) = V(H).

So, ( x©I)(p) is a sum of terms of the form |G') (H'| with V(G")=V (H').
[Trace Preservation]

Notice that (x U ¢ = (X.
((OxoN)(IG) (H]) = (IG¢) (Hl)), © |Gg) (He|
= (IGex) (Hey ©1G) () (Hesl Ge)
= ’GCXUZ> <ngu2| (Hx|Gex)

(OxeD) (1G) (H)jg = (He e lGeyiz) (HexlGer)
By Lem. 2 = (H|G)

O

Even though, (2¢} = ¢,, i.e. ¢! is included in ¢? in a natural sense, the comprehension
condition Eq. (2) does not hold in general and thus ¢} Z (2. As a consequence, Lem.
8 does not apply and it is not the case that pjc1 = (p‘cg)m, as shown in Fig. 7, where
we see that pjc2 decoheres certain superpositions of names whilst pje1 does not. This
counter-intuitive behaviour disappears over name-preserving states.

Proposition 2 (Name-preservation and comprehension). Consider ( an extensible re-
striction such that x := (" verifies x( = (.

When V(G)=V (H), we have <HZ|GZ> = <HXZ|GXZ> (Hx|Gx) -

Hence, over name-preserving superselected states and operators, ( C x.

Proof. The LHS and RHS of Eq. (2) can either be 0 or 1.
[RHS=1 =LHS=1]

G RHS=1 implies HXE = GXZ and Hy = Gy. ThUS, HXZUY = HXZ U Hy = GXZ U GY =

xCUx
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Figure 8: Local operators. Left: A x-local will only modify G,. Middle: (,-local operator 7, just
toggles a 'black/blue’ bit inside the system at v. Right: x,-local operator K, is a reversible update
rule which computes the future state of the system at v (according to M, see Fig. 10) and toggles it
out, whilst attempting to leave the rest mostly unchanged, cf. Th. 6.

But ( = x{ = x(U¥X. So, HZ = GZ’ i.e. LHS=1.

[LHS=1 =RHS=1]

LHS=1 implies HZ = GZ =K.
Combined with name-preservation, V(H¢) = V/(H) \ V(Hp)=V(G) \ V(Gg) = V(Go).
Thus, H: and G¢ have the same r-neighbours in K, namely H = = G =, and the same

xX¢ —
complement to the r-neighbours, namely Hy = G5. Hence RHS=1. ]

x¢?

4 Local operators over quantum networks

Since a restriction y isolates a part of each possible graph, one can introduce the notion
of a x-local operator, one that only acts on the restriction y, leaving its complement Y
unchanged. I.e. a y-local operator acts only on the left of ®.

Definition 8 (Locality). A is x-local if and only if
(H| A|G) = (Hy| A|Gy) (Hx|Gx) 3)

A is strictly x-local if, moreover, ATA and AAY are x-local.
In particular, every unitary x-local is strictly x-local.

Soundness. [Unitary case] Suppose U is unitary x-local. Then U U = UU = I, which
is x-local by Lem. 2. O

The standard way to state the locality of A is to write it as a facotrisation of the form
A = B® I. Here follows a generalization of this statement, a key point that allows for
this generalisation is that tensoring with the identity zeroes out the non-local terms of B.

Proposition 3 (Operational locality). A is x-local if and only if A= A®I.
For all B, even if it is non-x-local, B®1 is x-local.
Moreover, if B is n.-p., so is BOI.

Proof. [Preliminary]
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AOL = ( > <H!A\G>\H><G!>®<Z \K><K!>

G,Heg Keg
- ( S (H|A|G)|H) <G|>®< > (H'|G)|H) <G’!>
G,Heg G' H'eg
= Y (HIA|G)(H'|G") (|H) (G|®|H') (G])
G Heg
G' H €g
By Lem. 6 = ) (H,|A|G,) (Hx|Gx) |H) (G|
G,HeG

[First part]

A x-local & (H| A|G) = {Hy| A|Gy) (Hz|Gx)

&A= )" (H|A|G,) (Hy|Gx)|H) (G| = A®I
G,Heg

[Second part]
(H| (B®I)|G) = (Hy| B |Gy) (Hx|Gx) by the preliminaries. So, B®I is x-local.
We show that (B®I) = ((B®I)® I). By preliminaries:
(H|(BoI)® I)|G) = (Hy| (BOI)|Gy) (Hy|Gx)
By prelim. = (Hyy| B |Gyy) (Hyx|Gxx) (Hx|Gx)
By idempotency and Lem 3 = (Hy| B |Gy) (9|9) (Hx|Gx)
= (Hy| B|Gy) (Hx|Gx)
By prelim. = (H|(B®I)|G)
[Name-preserving case]
A matrix B is n.-p. if and only if it is a sum of terms of the form |G) (H| with
V(G)2V (H).
Then, B®I is a sum of terms of the form |G’) (H'| = (|G) ®|K)) ((H|®(K]|), with V(G’) =
V(G)UV(K)2V(H)UV(K) = V(H).
O

Let us now go back to simple concrete examples: At this stage we have characterised
local operators in terms of generalised tensors, and for some example we have expressed
generalised tensors in terms of standard tensors and direct sums. For these we can express
local operators in terms of standard tensors and direct sums:

e For Example 1, i.e. (,, we have that from the above theorem (,-locality of an

operator A entails
AZ Ayro®1.

e For Example 2, i.e. x¢ we have that from the above theorem yc-locality of an

operator A entails
A= Ac ® Apl.

Accepted in { Yuantum 2024-08-20, click title to verify. Published under CC-BY 4.0. 21



e For Example 3, i.e. xy.5, we have that from the above theorem y,.g-locality of an
operator A entails
A= (Agyo @ Agl) @ 1.

e For Example 4, i.e. pug, we have that from the above theorem p-locality of an
operator A entails
A= @(Wﬁg;sflﬂ'ﬁg;s ®I).
Q

Proposition 4 (Strict locality and consistency). A is strictly x-local if and only if A is
x-local and x-consistent-preserving.

Proof. [Preliminary]
Notice that Af is also y-consistent-preserving by the symmetry of the definition, and
x-local since

(G| AT |H) = (H| A|G)"
= (Hy[A|Gy)" (Hx|Gx)®
= (G| AT|Hy) (Gx|Hy)

=]

Notice that A x-consistent-preserving is equivalent to || (A|Gy)) ®|Gx) || = ||A|Gy) ||
and || (AT|Gy)) ®|Gx) || = ||AT|Gy)||. Indeed, the only reason why the norm conditions
would not hold, would be if some |H) was such that (H|A|G,) or (H| AT|G,), and yet
|H)®|Gy) =0, i.e. if A weren’t x-consistent.

Since A is x-local, ||A|G) || = || (A|Gy)) ®|Gx)||. But since ATA is y-local we also
have that

141G) || = (G ATA|G)
= (G| ATA|Gy) (Gx|Gx)
= [[AlG ]

So the first norm condition is fullfilled. Similarly with AT for the second norm condition.
[«<]
By Prop. 3, A= A®J and At = AT®1.

By Lem. 11, ATA = ATA®T and AAT = AAT®T.

Thus A is strictly x-local. O

An operator A may sometimes be y-local but not strictly y-local, see Fig. 9. Since

such an A is not consistent-preserving, Lem. 11 fails, it follows that the composition of
two y-local operators is not always y-local.
None of these issues arise, however, if A is unitary, or if it is just x-consistent-preserving.
These entail strict y-locality, which is composable by Prop. 3 and Lem. 11. For instance, in
the Example 2, i.e. xc¢, whilst locality entails A = Ac® Aglg\ ¢ the additional requirement
of strict locality entails that instead A = Ay o © Aglg\cye. This stronger decomposition
in this case ensures that A cannot excite any state out of the empty graph.
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Figure 9: Local but not strictly local. Consider the restriction x which keeps all the nodes if none are
white, and keeps just the white nodes otherwise. It can be checked to be extensible. Consider A which
maps fully white graphs into the corresponding fully black graphs, and sends every other graph to zero.
Such an A is x-local: (H|A|G) # 0 if and only if H = H, is the black coloured version of the white
coloured G = G, which can be seen equivalent to (H,| A |G,) (Hx|Gx) # 0. It is not strictly local
because (11| ATA |01) =0 # 1 = (1] ATA|0) (1]1). It is not consistent preserving because [0)®|1) # 0
yet |1)®|1) = 0.

4.1 Locality in the Heisenberg picture
The result of an x-local observable on p solely depends on its partial trace py,.

Proposition 5 (Dual locality). A is x-local if and only if (Ap)iz = (Ap)y)|e-

Proof. [=]
(A|G) (H|)jy = (H| A|G)
= (H,| A|Gy) (H|Gy)
= (A[Gy) (Hy| (Hz|GR))g
= (4de) (1)),
<]

(H|A]G) = (A]G) <H!)m

(A
- ( \x)m
! |GX> | (FlG)) g
= (Hy| A|Gy) (Hx|Gx)
]

The above proposition states that pj, contains the part of p that is observable by
X-local operators. The next proposition states that p|, does contain anything more.

Proposition 6 (Local tomography). If for all A x-local (Ap)g = (Ao)|g then pjy = o}y.
Moreover, if p, o are name-preserving and for all A x-local and name-preserving (Ap)p =
(Aa)g, then pj = oy

Proof. In general,

plx = Z aGXHX |GX> <HX|
Gy, Hy € Gy
and Olx = Z Bay Hy |Gy) (Hy]
Gy, Hy € Gx

Accepted in { Yuantum 2024-08-20, click title to verify. Published under CC-BY 4.0. 23



Let EYXCX .= |H,) (G| and EHxCx := EYX%*® I, which is local by Prop. 3.

H,G .
We have (EHXGX/))M = (E'HXGX/)‘X)|® = (EXX Xp‘X)m = ag,H,, as the following
shows:

(EHxGme)m = > acyy, (([Hy) ®|K)) (G| @ (K])|G) (HL)
Gl H,eGyKeg
=Y acum (GO G (L (1H) ©O|K))
Gl H, €6y KE€G
(Gx|®@(GxD) 1G}) = (Gx|®(Gx]) (IG}) ®1G'x))
By idempotency. = ((Gy| ® (Gyx (|G' ®|® )
= < G (Gxl0)
(EHXGXMX)I@ = > agymy (Gy|G) (K@) (H) | Hy) (2| K)
G, H, € G Kecg
|IGy)®K # 0
|Hy)©K # 0
= QG Hy

0 (n.-p.) x-local "measurements” can tell any difference between p|, and o}y.
[Name-preserving case]
In this case,

Pix = > G, |Gy) (Hyl
Gy, Hy € Gy
V(Gy)=V (Hy)
and Olx = Z Béy Hy, |Gy) (Hy|
Gy, Hy € Gy
V(Gy)=V (Hy)

The fact that V(G )=V (Hy) comes from the assumption that p, o are n.-p. and the
fact that the partial trace preserves that by Prop 1.
Then EHX X = |H,) (G| and BfxCx = E’HX X® I are n.-p. by Prop. 1. O

Notice that if we stick to n.-p. observables, we limit our power of observation. For
instance whenever V(G) AV (H), n.-p. observables cannot tell the difference between:

(IG) +[H)) (G| + (H]) and ﬁ=%|G><G\+ |H) (H|

l\D\»—l

i.e. they cannot read-out superpositions of supports coherently. That is unless states are
n.-p., too.

4.2 Extending unitaries acting on a subnetwork

Often we are given a operator over H,, and we want to extend it to H. In standard
quantum theory it is easy to show that any such unitary operator can be extended, with
the result being unitary. To generalise this to unitaries over quantum networks we will
need name-preservation.
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Proposition 7 (Unitary extension). Consider x pointwise.

If U is a n.-p. operator over H,, then U x-consistent-preserving.

If U is a n.-p. unitary over Hy, then U :=U®I is a n.-p. unitary with Ut=UtolI.
If moreover x and U are renaming-invariant, so is U’.

Proof. [Consistency-preservation)]

We need to prove first that (G |U|Gy) # 0 entails |G}) ®|Gx) # 0 and second that
(G UT|Gy) # 0 entails |G,) ®|Gx) # 0.

Let us prove the first.

Since U is over Hy, U |Gy) = X, e g, Una, [Hy)-
For any G, consider H, such that (H,|U |Gy) # 0 and construct the graph G’ = H, UGx.
Notice that this union is always defined since U is assumed n.-p., and hence N[V (G, )| N
NIV (Gx)] = 0 entails N[V (H,)] N N[V (Gx)] = 0 — assuming that we work over the set
of all graphs G. In general this could fail for some arbitrary constrained configurations C
and a restriction x over it.
Moreover since x is pointwise it verifies that G, = H, and G%. = Gx.
Thus, |Hy) ®|Gx) = |G’) # 0.
It follows that (U |Gy)), |Gy) are x-consistent.

Similarly for U'. Hence U is y-consistent-preserving.

[Unitarity]
By Lem. 11,
oI (Ulel) = (UU'el) =(IoI) =1
(vtern) el = (Ulvel) = (ol =1
Ula)elGe) = Y. Una, (IH)®|Gx)
H, € Gy
e = >  UmeUnc, ((H]®(Gxl) (IHy) ®|Gx))
Hy, H{ € Gy
= > Uny 6, UnyGy (H)|Hy) (Gx|Gx)
Hy, Hj € Gy
|Hy)®|Gx) # 0
[H)®|Gx) # 0
By U, I x-consistent-preserving. = Z U}';,;(GX Unya, (H|Hy) (Gx|Gx)
Hy, HLE Gy
By unitarity of U. = Ua, Une, =1
Hy € Gy

Thus U’ is an isometry, i.e. UTU’ = 1I.

Notice that (UTQDI) is its right inverse since by means of Lem. 11.

Since U is over H,, we have that U fpreserves the range of x, and so U, I are
X-consistent-preserving.
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Thus,
(Uten)|Gy= Y U m, (1H,)®|Gs))
Hy € Gy
U’ (UT@DI) G) = > Unym U i, (1Hy) ®|Gx))
Hy € Gy
|Hy)®|Gx) # 0

By U', I x-consistent-preserving. = Z U, UG, 1, (|H,) ®|Gx))
Hy € Gx

= 2 lwe, (1H)0|6x)
Hy € Gy
=1G)
[Name-preservation]
Follows from Prop. 3.
[Renaming-invariance]
Let G’ = RG and H = RH'.
(H|(UOIR|G) = (H|(U®I)|G")
= (H|(U®I) (|G})®|G5))
= ((Hy|®{Hy]) (U|G}) ®|G%))
U
x-consistent-preserving. = (H,|U |G') (Hy|G%)
Since x renaming-invariant. = (H,|UR|Gy) (Hy| R|Gx)
Since U renaming-invariant. = (H,| RU |G,) (Hx| R|Gx)
Since x renaming-invariant. = (H,| U |Gy) (Hx|Gx)
U x-consistent-preserving. = ((H, |® (Hz|) (U |Gy) ®|Gx))
= (H'|(U®I) (IGy)®|Gx))
=(H|RU®I)|G)

5 Causal operators over quantum networks

A key principle in physical frameworks is causality, understood as constraints upon the
propagation of information. In the quantum information-theoretic settings, it has become
standard to express causality constraints by means of partial traces [36]. Now that we have
a generalised trace, we can have generalised notions of causality. A canonical example of
a causal unitary operator is given in Fig. 10. A generalised causality example is given in
11.

Consider two restrictions x, ( over networks, a x(-causal operator is one which restricts
information propagation by imposing that region ( at the next time step depends only
upon region x at the previous time step. Subject to this constraint, y(-causal operator
will be permitted to edit the entirety of the graphs they act on.

Definition 9 (Causality). U is x(-causal if and only if

(vt = (T

I< I<
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xV .y yV-z x’

Figure 10: Causal operators. Left: U x(-causal may modify the whole of p. But it is such that pic
solely depends on p,. Right: x,(,-causal operator M propagates particles. They bounce on borders.
Middle: Causal H is involutive merges/splits all occurrences of these particular patterns, synchronously.

c0s(0).¢ @0 cos(¢)-O . 5)_‘” yg_z 0.0 [cos(.) —sin. )]
+5in(0).0—©—0 |+ sin(@).o >— ©—O sin(.) cos(.)
SV H DXV (yVz) yVz)V-x'
o—ao0 o—0 e 00
v xV-y yv-z zV X

Figure 11: Causal operators yielding superpositions of states. Left: Instead of simply iterating M,
we could iterate MC, where C' acts on every right-moving (resp. left-moving) particle by placing it
in a superposition of being right-moving with amplitude cos(6) and left-moving with amplitude sin(6)
(resp. left-moving with amplitude cos(6) and right-moving with amplitude —sin(6). Right: Instead
of simply merging or splitting according to H, we could do so in a superposition. Here the splitting
applies with amplitude sin(y). Similarly the merge needs be applied with amplitude —sin(y). Lastly,
we may compose these, e.g. U = H'MC makes for an interesting quantum causal graph dynamics.
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U is name-preserving xC-causal if and only if it is n.-p. and for all p n.-p., Eq. (4) holds.

Notice that it is not the case that n.-p. causality implies causality. In particular, the
identity is n.-p. (2(}-causal, but not ¢2¢!-causal, because ¢} [Z (2, as discussed in Fig.
7. That is unless we restrict ourselves to n.-p. superselected states as in Prop. 2. This
suggests that n.-p. causality is potentially more relevant than causality.

A robust notion of causality ought to be composable.

Proposition 8 (Composability). Say that for all n, there exists m such that U,V are

(n.-p.) ¢™¢™-causal.
We have that for all n there exists m such that UV is (n.-p.) (" ("-causal.

Proof. [=]
For all p (n.-p.),

(v (vavi) v

|¢™
U caus. = (U (VPVT)Kk UT>|Cn
V caus. = (U (VP\CWVT)Kk UT>|<n
U caus. = (U (Vp|ngT) UT)Kn

5.1 Causality in the Heisenberg picture

In the Heisenberg picture, it turns out that y(-causality actually states that whatever can
be (-locally observed at the next time step, could be x-locally observed at the previous
time step.

Proposition 9 (Dual causality). U is (n.-p.) x(-causal if and only if (it is n.-p. and)
for all A (n.-p.) C-local, UTAU is (n.-p.) x-local.

If U is (n.-p.) xC-causal, then for all A (n.-p.) strictly C-local, UTAU is (n.-p.) strictly
x-local.

Proof. [=]

For all p (n.-p.), (UpUT)IC = (Up|XUT)|C.
By Prop. 5, A (-local entail (AU,OUT)W) = (AU,O|XUT)
Thus, for all p, (UTAUp) , = (UTAUp),) -

(For the name-preserving case, then U, A are n.-p., so UtAU is n.-p., and so if p is
not n.p. both sides of the equation are zero, so the above does stand for all p.)

So, by Prop. 5, B=U'AU is (n.-p.) x-local.

[ Strict=>]

If A is strictly ¢-local then ATA and AAT are ¢-local.
From the above it follows that UTATAU and UAATU are x-local.
But UTATAU = UTATUUTAU = BB and UAA'U = UAUUTA'U = BB'.
So, B = UTAU is strictly x-local.

[<]

For all A (n.-p.) ¢-local, UTAU is (n.-p.) x-local. By Prop. 5, for all p, (UTAUp)m =
(UTAUp‘X) 0" from which it follows that for all A (n.-p.), for all p, (AUpUT) 0= (AUp|XUT)

Finally by Prop. 6, for all p (n.-p.), we have(UpUT)K = (Up‘XUT)K.

0"

|0°
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(In the name-preserving case, by taking p to be n.-p. we have that py,, UpUT, Up|XUJr
are n.-p, so that n.-p. local tomography can still be used to reach the final equality.)
Thus U is (n.-p.) x(-causal. O

Often we are given a causal operator over H,, and we want to extend it to a causal
operator over H, the above theorem on the dual notion of causality in the Heisenberg
picture can be used to show that such an extension is always possible.

Proposition 10 (Causal extension). First consider U a x'(’-causal operator and x' C x,
(C(¢.
Then U is an x(-causal operator.

Second say x is extensible and consider u,( two restrictions such that [u, (] = [@, (] =
(11, ¢] = [11,¢] = 0, with u pointwise and ¢ extensible. Consider U an n.-p. x(-causal
unitary operator over H,, and U’ := U®I its unitary extension.

Then U’ is £C-causal operator, w.r.t the extensible restriction & := ux U (.

Proof. [First part]

Suppose U is x'(’-causal and x' C x, ¢ C ¢’

Prop. 9 and using Lem. 8, A (-local implies A ¢’-local implies UTAU y/-local implies
UTAU x-local. Thus A (-local implies UTAU y-local which by Prop. 9 is equivalent to
x(-causality.

[Second part] From Lem. 5 we have [u,&] = [I,€] = [1,€] = [7,€] = 0, and € a
restriction.

Any A (-local is of the form A = LOI with L =" ag.n, |G¢) (Hel-

|Ge) (He|OT = (|Gep) (Heul @1Gep) (Hep|) © (I, @ Ig;)
Commut. & Lem. 7. = (|Guc) (Hyuc|©1,7) @ (|Ge) (He| © L)
U' (1Ge) (He| @ 1) U = (U (1Guc) (Hycl ©1,2) U') @ (Gc) (M| © L)
(By dual caus.) = (Mm@ 1, )@ (|Ge) (Huc|OL7)
U over Hy, = (M@ @ I,,) ©(|Gre) (Hae| @ L)
= (MOruc o1 2) @ (|Grc) (Hc| © Lz )
Commut. & Lem. 7. —(MGMHMC@|GMC>< Hy|) ©(1,® I)
Lem. 6. = (MSrcHuc ©|Gre) (Hyc|) © I
U'AU" = 3" agn, ((MOwcHic @|Gre) ( MC!)@I)
By bilinearity = (Zagch (M wellue @ |Gre) ( uC’))

So, U’ AUt is &-local by the Prop. 3. By Prop. 7, U’ is name-preserving. By Prop. 9, U’
is £(-causal. O

5.2 Operational causality

Causality is a basic Physics principle, anchored on the postulate that information-propagation
is bounded by the speed of light. Yet causality is a top-down axiomatic constraint.

When modelling an actual Physical phenomenon, we need a bottom-up, constructive way
of expressing the dynamics. We usually proceed by describing it in terms of local interac-
tions, happening simultaneously and synchronously.
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The following shows that causal operators are always of that form. Caution: this relies
on Prop. 10, which does not hold for an arbitrarily constrained configuration space HC.

Theorem 6 (Renaming-invariant block decomposition). Let ¢, be the pointwise restriction

such that C,({o".u}) := {{a’.u} ifu=u

0 otherwise’
Consider a family x,, of extensible restrictions indexed by the names of V. Consider U a
n.-p. unitary operator over H, which for all v € V is x,(} -causal, with ¢, C (.

Let ¥ = {0,1} xX. Let G’ be the set of finite subsets of 8" := X' xV and H' the Hilbert
space whose canonical 0.n.b is G'—as obtained by considering the free (complex) vector
space using the configurations as the gemerating set; equipping it with the inner product
that is such that the generating forms an orthonormal basis; and taking the completion of
resulting inner product space to obtain the Hilbert space.

{0.0u} ifb=0

0 otherwise

Over H', there exists T, a renaming-invariant strictly ,-local unitary and K, a strictly
&y-local unitary such that

V) € H, = H, (H n) ( 11 Kv) ) =Uly)
1%

v € v eV

Let u be the pointwise restriction such that p({b.o.u}) := {

where &, := pux, URC, is an extensible restriction and ”H; is the sub-Hilbert space of graphs
with all nodes of the form 0.0.u for some o.u. In addition, [K,, K] = 15,7, = 0.
If moreover U is renaming-invariant, then so are U’ and K,.

Proof. Notice that p is renaming-invariant.
Notice that ¢, is renaming-invariant.

Clearly [u, (] = [i,¢] = [, ¢] = [, ¢] = 0 as both are pointwise.
By Prop. 7, U’ := U®I is unitary over H'.
Since p is renaming-invariant, if U is renaming-invariant, so is U’.
By Prop. 10 and since U is x,(,-causal, it is x,(y-causal, and U’ is &,(,-causal, with
&y 1= pxv U TC, an extensible restriction.

Let the toggle T be the bijection over systems such that 7(b.o.u) = —b.o.u.
Extend 7 to G’ by acting pointwise upon each system, and to H’ by linearity.
Notice that it is unitary, name-preserving and renaming-invariant.

Notice that 7 (|G) ® |Gg)) = (7 |Gr) @7 |GL)).
It is also unitary over Hc,, thus 7, := 7 ©, I is unitary over ' by Prop. 7.
By Prop. 3, 7, is (,-local. By unitarity, it is strictly (,-local.
Since 7 and (, are renaming-invariant, so is 7.
Moreover,
(1)
v eV
Notice also that [, 7,] = 0.
Let K, := U"Tr,U".

It is name-preserving as a composition of name-preserving operators.
If U’ is renaming-invariant, since 7, is renaming-invariant, so is K.
Since adjunction by a unitary is a morphism, [K,, K,] = 0.

By Prop. 9, it is &,-local. By unitarity, it is strictly &,-local.
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Finally,

(1,2) (1 5) =)

v eV

By unitarity of U". = 7 U’ ( H TU> U |G)
v eV

s Ut U |G)
By Prop. 7=17 (UT@I) = (U®I) (|G,)®|Gx))
=7 (UTeI) 7 (U|G,)®|GR)
Since U preserves the range of u. = 7 (UT@I) (1|Gp)@7U |Gp))
=7 (U'7|Gr) @7V |G,))
Since U preserves the range of . = 72U |G,) ®7 U'r |Gx)
Since T involutive. = U |G,,)®T U'r|Gy)

(ML) (L)oo = (11 ) (115 et

=U|G,) @1 Ulr|2)
By n.-p.,, =U|G,)®|2)
=U|Gy)

O]

Notice that a similar theorem was proven in the particular case of (j (,-causal opera-
tors over static networks first [9], and then for node-preserving but connectivity-varying
networks [11], a.k.a ‘quantum causal graph dynamics’. The point here is that the result
carries through to arbitrary restrictions x, and over dynamical networks, both of which
were non-trivial extensions. Moreover, from a methodological point of view, we used this
theorem a test bench, to make sure that we had put together a set of mathematical tools
that would be sufficient to combine and establish non-trivial results in this kernel of a
quantum networks theory.

6 Conclusion

Summary of contributions.

In this paper each node has an internal state and is identified by a unique name. The
names are constructed by means of operators used for linking (e.g. node -y is understood
as connected to node y), merging (e.g. nodes u and v may merge into node uVv), splitting
(e.g. node w may split into w.l and w.r). The fact that the inverse of a merger operation
is required to split w = u V v back into w.l = uw and w.r = v imposes equalities such
as (u V v).l = u, leading to a simple name algebra. Notice that splits and merges are
name-preserving (up to algebraic closure) and that the names of nodes are used to carry
edge information.

We place ourselves in the Hilbert space whose canonical basis are network configura-
tions. We study operators over that space, including those leading to quantum superpo-
sitions of network configurations.

Accepted in { Yuantum 2024-08-20, click title to verify. Published under CC-BY 4.0. 31



We then introduce the notion of restriction, a function y mapping G a network into
Gy C G a subnetwork, fulfilling the idempotency condition Gy, = G,. We also introduce
extensible restrictions, fulfilling the the stronger condition that G, € H C G = H, = G
to ensure stability under taking unions y U ¢ and neighbourhoods x".

Each restriction leads to a partial trace (|G) (H|);, = |Gy) (Hy|(Hx|Gx) which is
completely positive trace-preserving, as well as name-preservation preserving. This gen-
eralized partial trace is robust, e.g. comprehension ¢ C x implies (p)|c = p¢. The notion
of comprehension is well-behaved over name-preserving states, e.g. for every extensible
restriction ¢, we have that ( C (.

Each restriction also defines a parallel composition a.k.a tensor product

Lyo|R) = {\G) if L = QX and R = Gy

0 otherwise
which is unambiguous, at the cost of zeroing out inconsistent terms. The notion of -
consistency becomes central: for instance the y-consistency-preserving operators defined
by (H| A|G,) # 0 = |H)®|Gx) # 0 (plus the same for AT) are intuitively those which “do
not break the y-wall” and hence gently slide along the tensor: (A'®B’)(A®B) = A’ A®B'B.

Intuitively, local operators alter only a part x of the network, and ignore the rest. In

this paper we say that an operator is x-local whenever (H| A |G) = (H,| A|G,) (Hx|Gx)
and prove the equivalence with the requirement that A = A®I and Tr(Ap) = Tr(Apj, ).
We say that an operator A is strictly y-local whenever ATA and AAT are also x-local.
Interestingly this corresponds to A being both x-local and x-consistency-preserving, from
which it follows that every x-local unitary is automatically y-consistency-preserving.

Intuitively, causal operators act over the entire network, yet respecting that effects on

region ¢ be fully determined by causes in region x. In this paper we say that operator U
is causal when (UpU T)IC = (Up, U T)\C and prove equivalence with asking for A (-local to
imply UTAU x-local.

Causality refers to the physical principle according to which information propagates at

a bounded speed, localizability refers to the principle that all must emerge constructively
from underlying local mechanisms, that govern the interactions of closeby systems. The
two notions of causality and localizability are related by our final theorem which shows
that for fully quantum networks, causality implies localizability.

Further work.

A number of mathematical results seem within reach and many more questions have

yet to be considered, as we had to end somewhere.

e The examples provided in Figs 8, 10 and 11 are intuitive enough, but in all rigour
they should be formalised and their corresponding properties proven. To this end
we may need to show that causality is preserved under simple encodings/decodings
such as splitting/merging all nodes.

e Schmidt decomposition, purification, Stinespring dilation, are all fundamental results
of quantum theory that crucially rely on properties of the tensor product. Important
next steps should include phrasing and assessing the validity of these result in terms
of generalized tensor products of quantum networks.

e The results of this paper carry through to arbitrarily constrained configuration spaces
HC, except for Lemma 5, Props. 7, 10, 12, Th. 6 and 7. Even these ought to
hold in many relevant cases of constrained configuration spaces, which ought to be
investigated.

e In our formalism edges are not given explicitly, rather they are induced from the
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information contained in the names of nodes. However, Appendix B suggests a pre-
cise alternative formalism where edges are given explicitly. Although likely heavier,
the formalism ought to be evaluated: if successful, renaming-invariance would then
imply full name-preservation, as used throughout the paper.

Other mathematical challenges where left aside simply because they seemed difficult.
For instance we have shown that if U is Vm3n (™("-causal, so is U?, see Prop. 8. But
what if U is just Vm (™(-causal? Does the final theorem presented help to provide an
answer to this question? In the realm of static networks, so is U2. This works because
knowing UA,UT with A, is local upon some node v in some region R, induces knowing
UARUT = Y, Tlver UAPUT since Apg has to be of the form )7, ®,cr AP But how does
this generalise? Are splits and merges the only new generators of the quasi-local algebras
A,?7 We leave such mathematical challenges as open problems.

Perspectives.

In the introduction we mentioned our original motivations for providing a theory of
quantum networks:

e to provide rigorous kinematics and fully quantum dynamics for networks, equipped

with rigorous notions of locality and causality;

e for the sake of taking networks models of complex systems, into the quantum realm.

For instance, in the field of Quantum Gravity we are now in a position to provide discrete-
time versions of quantum graphity [37, 38], thereby placing space and time on a equal
footing, and demanding strict causality, instead of approximations a la Lieb-Robinson
bound [39]. We are also in a better position to study the statuses of causality and unitarity
in LQG [29] and CDT [30]: are these jeopardized by the Feynman path-based dynamics
used in these theories?
Similarly, in the field of Quantum Computing, we now have a framework in which to model
fully-quantum distributed computing devices, including dynamics over indefinite causal
orders [22], e.g. by means of causal unitary operators over superpositions of directed
networks.

In order to reach this theory we have had to generalize the tensor product and partial
trace in a rather modular and robust way, and this per se suggests a whole range of
unexpected perspective applications:

Towards base-independence. To make the notion of subsystem base-independent, alge-
braic quantum field theory tends to think of them as Von Neumann algebras instead
[40][41]. This approach has been formalised in [42] in the the setting of categorical
quantum mechanics, where the tensor product is a seen as a binary operator be-
tween states associated to commuting algebras. Such tensor products are therefore
partially defined and remain abstract mathematical objects. The generalised tensor
products of the present paper are everywhere defined and constructive, but they are
base-dependent. It would be interesting to bridge the gap between these two notions
to get the best of both worlds. One way to go about this is to use the Wedderburn-
Artin theorem, which states that up to a unitary, Von Neumann algebras are direct
sums of full matrix algebras tensored with the identity, i.e. of the form A® I for
a well-chosen x. Another route to follow would be to take, as base-independent
restrictions, any oblique projector, regardless of the graph structure.

Decomposition techniques, causal-to-local. These generalized operators were essential to
the theorem representing causal unitary operators by means of local unitary gates.
Many variants of this question are still open however, even for static networks over
a handful of systems [36, 43, 44], as soon as we demand that the representation be
exact. Recent approaches [45] to phrasing the answers to these questions make the
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case for annotating wires with a type system specifying which subspace will flow
into them; this in turn has the flavour of a generalized tensor product. This suggests
that the generalized operators, by means of their increased expressiveness, may be
key to reexpress and prove a number of standing conjectures.

Construction techniques, local-to-causal. In [46] the authors provide a hands-on, concrete
way of expressing a family of unitary evolutions over network configurations allow-
ing for quantum superpositions of connectivities. One may wonder whether these
addressable quantum gates, if extended to become able to split and merge, could be
proven universal in the class of causal operators over quantum networks.

Fusion products between parts of constrained configuration spaces. In most physical theo-
ries, the set of allowed configurations is constrained. For instance, charges and fields
are constrained by the Gauss law. It follows that the tensor product between two
regions of space may be ill-defined, for instance because both of them follow the
Gauss law at the individual level, but not when they are placed next to one another.
The hereby devised generalised tensor product is robust enough to handle these sit-
uations whilst preserving most desired algebraic properties, simply by sending them
to the null vector. The gauge-invariant ‘fusion product’ of [47] focusses upon this
issue in the continuum by following a different, gauge-invariant and partially-defined
approach.

Flexible notions of entanglement, between logical spaces. A mnatural generalisation of
product states emerges from this paper. Namely, |¢) is a y-product state iff

|6) = [)®[¢) and [[|¢) || = [[1¢) [l [} ]I

A contrario, non-y-product states are y-entangled states, thereby allowing us to
define entanglement between left and right factors according to as specified by an
almost arbitrary logical criterion x. For a bipartite pure state we may quantify this
entanglement as the Von Neumann entropy of p|,. It is our feeling that such gener-
alised notions of entanglement will allow us to tackle scenarios where the standard
notion fails to be defined.

Modelling delocalized observers, quantum reference frames. Decoherence theory [48]
models the observer as a quantum system interacting with others; and the post-
measurement state as that obtained by tracing out the observer. But since the
observer is quantum, it could be delocalized, raising the question of what it means
to take the trace out then. Here we can model a delocalized observer by delocalized
black particles, and trace them out. This ability to “take the vantage point of de-
localized quantum system” is in fact a feature in common with quantum reference
frames.

Ad hoc notions of causality, emergence of space. The notion of x(-causality allows us to
define causality constraints according to almost arbitrary families of logical criteria
(X, ¢). This includes scenarios where all black particles communicate whatever their
network distance, say. In fact the very notion of network connectivity is arbitrary in
the theory, i.e. (" can in principle be redefined in order to better fit ad hoc causality
constraints, possibly emerging in a similar way to pointer states in decoherence
theory [48].
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A Lemmas

Lemma 1 (Complement names). Let G, H, x be such that V(G)=V (H) and V(Gy)=V (Hy),
then it follows that V(G) \ V(Gy)=V(H) \ V(Hy).

Proof. In this proof we write V- A W if and only if N[V]|NN[W] # @.
First note the following law

(VAW and W=Z) =V AZ

It follows that if (V(G)\ V(Gy)) AV (Hy) then (V(G)\ V(Gy)) AV (Gy) which is in turn
a contradiction with Eq. (1).

Consider u € N[V(G)\V(Gy)]. Because N[V (G)] = N[V (H)], this u can be expressed
by means of the operator V applied on elements of N[V (H)]. Suppose that u lies beyond
NV(H)\V(Hy)], n N[V(H)\N[V(H)\V(H,)]. Then the expression for v must contain
at least one element of v in N'[V(H,)]. As a consequence there exists t € {l,r}* such that
v = u.t. But because the operator .t € {l,r}* preserves inclusion within N[V (G)\V(Gy)],
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v also lies in N[V(G) \ V(Gy)]. It follows that (V(G) \ V(Gy)) A V(Hy)—leading to the
contradiction of the previous paragraph.

We conclude that the expression for u in terms of elements of N[V (H)] must only
include elements of N[V (H) \ V(H,)] and so u itself lies inside N[V (H) \ V(H,)]. By
reversing the above it must be that every v € N[V (H) \ V(H,)] also exists in N[V (G) \
V(Gy)] and so NV (G)\ V(Gy)] = N[V (H) \ V(H,)] in other words it must be the case
that V(G) \ V(Gy)EV(H) \ V(H,). O

Lemma 2 (Tensor-bracket). For every restriction x : G — Gy C G, inner products
factorise with respect to x, i.e. (H|G) = (H,|Gy) (Hx|Gx)-

Proof. Either of the RHS and LHS are either zero or one. The RHS is 1 if and only if
both G, = H, and Gy = Hy. Since G := G, UGy and H := H, U Hy this is equivalent
to simply requiring that G = H. The LHS being (G|H) is also 1 if and only if G = H, so
the RHS is always equal to the LHS. O

Lemma 3 (Properties of restrictions). If x be a restriction, then xx = 0. If x is an
extensible restriction, then it is a restriction, i.e. xx = X.

Proof. The first point is because Gy = Gy \ Gyy = Gy \ Gy = 0.

Next, for any extensible restriction x then by definition G, € H C G = H, = G,,
noting that the assignment H = G, always satisfies the LHS of this statement the right
hand side must also hold for H = G, meaning that G, = G,.. O

Lemma 4 (Special restrictions). Every order-preserving idempotent function v : G
G, C G is an extensible restriction and as a corollary every pointwise function p (and its
complement function [i) is an extensible restriction.

Proof. Let v be an order-preserving idempotent function. It follows that for any G, C
H C @G then since v is order-preserving G,, C H, C G, and so since v is idempotent
G, C H, C G,, in other words G, = H,.

Every pointwise function preserves the order: G C H = U, ¢ ¢{ov}y S Uy e glovly =
G, C H,. Furthermore every pointwise function is idempotent. Since every order-
preserving idempotent is an extensible restriction it then follows that every pointwise
function is an extensible restriction.

Finally for every point-wise restriction p its complement function 7 for single-node
graphs satisfies {o.v}y := {o.w} \ {o.v}, and for generic graphs satisfies

Gp:=G \ U {ow}, = U {ow} \ {ow}, = U {ov}n

ov € G ov € G ov € G

. It follows that 71 is also pointwise function. By the previous section of the lemma & must
be a (pointwise) restriction. O

Caution: the following works over H, but it may not hold for an arbitrarily constrained
configuration space HC and extensible restrictions over it.

Lemma 5 (Properties of extensible restrictions). Let x,( be extensible restrictions, then
e (" is an extensible restriction.
e xUC( is an extensible restriction.
Furthermore let p be a pointwise function, then pux and & := px U ¢ are extensible
restrictions. The extensible restrictions u, & and their complements furthermore commute,
satisfying [p, §] = [71, €] = [, €] = [A, €] = 0.
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Proof. Let Ger € H C G, then G¢ € G¢er € H C G. Because ( is an extensible restriction,
H; =G = K. Since H C G, we have that Her € G¢r because the neighbours of K in H
are also in G. Since G¢r € H, we have that G- C H¢r because the neighbours of K in G
are also in H. Since H¢r € G¢r and G¢r C Her then Her = Ger.

Let Gyu¢ € H C G, then since G, C G,y¢ we have G, C Gyue € H C G
which since x is an extensible restriction implies that H, = G,. Similarly G, C
Gyu¢c € H C G implies H: = G¢. The above equalities imply equalities for the union,
quc = HX U HC :GX U GC :GXUC‘

For any pointwise restriction p and extensible restriction xy we have uxu = py. As
a result:

G CH CG
= G SHy CGu
= Guy CH, CGy
= Hyy = Guy

Let ¢ := pux U ¢ and notice that € = pux U¢. The function £ is an extensible
restriction since py and ¢ are extensible restrictions by the previous part, and their
union is an extensible restriction by the second part.

We now show that [u,&] = [, €] = [u, €] = [B, €] = 0. First since u is pointwise, then
for any v we have pvp = pv. Similarly, uvg = v and pvp = grvp = (). We also have
(vUV)u =vp UV i and as always p(v Uv') = pr U pr/. This is enough to derive the
commutation rules by the following steps:

Ep=pxpUnCp=px and pg = ppux Uppg = px

§p=pxpUnCp=mpn¢ and né=pux Unppg =png

p=pxpUnCp = px and p§ = ppx U ppg = px

o= pxpUnplp=pn¢ and  [§ = npx Uppg = g O

Lemma 6 (Tensor). For all A:G* — C,

> Agymyon, |G) (H| = > Aguor |G) (H|®|G') (H'|
G,Heg G,Heg,
G/,H/ S gy
= Y. Agmew |G)(H|®|G) (H|
G,Hecg,
G H g
= Y. Agmew |G)(H|®|G) (H'|
G HeGg
G H €g

In particular,
>a Heg A i BagH |G) (H| = A®B I=1,0I A®L; = A®I
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Proof. [First part]

Y. Acun: [G)(Hl = Y Acmeng |Gy) (Hy|®|Gx) (Hy]
GLHEG G.HEG
= > Acrerm |G) (H|®|G") (H|
G,HeG, G H Gy
|G)®|G") #0
|H)®|H') # 0

= > Aguerm |G) (H|®|G) (H'|
G,Hcg,
G/,H, € gy

where the last line is obtained by summing also over those G, G’, H, H' that are such that
|IG)®|G') =0 or |H)®|H') = 0, since for them |G) (H|®|G’) (H'| = 0. For the same
reason we can sum also over those G', H' € G \ G, and obtain the second stated equality,
and over those G, H € G\ G, to obtain the third.

[Second part]

> Ag,mBoo, |G)(H| = > AcguBoy |G) (H|®|G') (H'| = A®B
G.HeG G,Heg
G H eg
I= Y ébamdan,. |G)(H =L,
G,HeG
A®IY = Z AqHOq i ‘G> <H|®’G/> <H/’ = Z AcHOG HY ’G> <H‘®|GI> <HI|

G,H € G, G,Hecg,
G' H' € Gy G' H €g

= A0y =A®I

O

Lemma 7 (Tensor-tensor). Write E(sz)*{ = |GWY (HW®)|. Forall A: G = C, if [x,(] =

x.¢l = ¢ =[x =0,

> Agopoamnw.. (EG ©EG!) o (EG 0BG
GO gV .. eg
HO gO  eg
= > Agonocono.. (EG) OEG!) o (EG) o EG)
GO M. . eg
HO O eg
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Proof.
(EG 0BG )@ (EG 0 EG)') #0
3GV, HO/ GO = ¢, 6M = ¢ HO = .. Bffio(BG 0EG]") #0
3600 7OV ) g g0 =™ 6@ =cP,  EGToEGH £0
36, H/ GO =6¢,¢ = G,,...,.¢» =c P = ¢y, ...
3G, H) GO =Gy, GV = G 5, GP = Gg, G¥) = Gz, HO =
<36, H) GO =G, aY = GCX,G(Q) G@,G(?’):G&,H(O):
& (EG o EG)) o (G o EGY) #0
Moreover, when they are non-zero,
(EG) 0BG} ) o (G 0 EG)Y)
= (|Gxc) (Hyc|©|G, ) (H,gl) @ (|Gxe) (Hye| ©|Gz) (Higl)
=|G) (H]
(IGex) (Hex| @ |Gex) (Hex) © (IGg, ) (He, |®©|Gey) (He )
= (IG¢) (Hc| ®|Gxe) (Hyc)© (IG,2) (H, | ®|Gsz) (Higl)
= (B o BGY) o (EGY o BGY)

So,

Agoro copn.. (EGOEGT) o (EG oEGT)

)o
=AcO o) a0 .. ( H®E(2)) ( GH@EGH)
0.

=Ago o gogm.. |G) (H| or
O
In particular,
(AOB)®(CoD)= (A®C)0(B®D)
Indeed write A = " 50)cg Ago go GOV (GO, B = ... and let AG<0 O GW FD)
Aco g Baoy gy - .. in the Lemma.
Lemma 8 (Trace-trace). If ¢ C x, then (p|,)c = p|¢c and any (-local A is also x-local.
Partial trace.
((16) (HD)y,) = (IG) (HyD) (Hx|GR)
= |Gx¢) (Hycl (H g|G z) (HylGx)
When ¢ T x. = [G¢) (H¢| (H|Gg) = (1G) (HI) ¢
[Locality]
(H| A|G) = (H| A|Go) (H\Ge)
When ¢ C x. = (Hyc| A|Gy¢) <HXZ|GXZ> (Hx|Gx)
By C-loc. = (Hy| A|Gy) (Hy|Gy)
O
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Lemma 9 (Tensor-trace 1). If p,o x-consistent, (p®a), = p o).
If ¢ C x, p,0 x-consistent, (p®@a)|c = pi¢c o)p-

First part. Notice that |G)®|G") # 0 implies (|G) ®|G")), = |G) and (|G) ®|G")); = |G').
Similarly if |G)®|G') #0 # |H)®|H'),

() (H|®|c) (1)), = (1G)@|a"), ((H|®(H]),
= |Gy (H)

(I6) (H|®|¢") (1)) = (1G) ®|6")) ((H|® (H])-
= |Gy (|

(I6) (H|®|@") (7)), = (1G)0|G")  ((H|®{H']) ((H|@(H') (16)0|¢").
= (@) (H|(H'|C")

Next assume p, o y-consistent, i.e. pagoc g # 0 implies |G)®|G') # 0 # |H)®|H').

pOo = Y. reroc |G)(H|®|G) (H|
GHG H €G
(PO = > panoc (|G) (H|®|G') (H')),

G,H,G,H € ¢

|G)®IG") # 0

[H)O|H') # 0

= > perocr |G) (H| (H'|G)

G,H,G' H € @G

G)®|G) # 0

[H)o|H) # 0

By consistency = Z peroc i |G) (H| (H'|G')
GHG H €G

= Y peulG)(H| > oew (H|G)
GH € g G',H' € G

= P oy

[Second part]
Next assume ¢ C x and p,o x-consistent. By Lem. 8,

(p®a)ic = ((p®0)y)i¢
By first part. = (p op))c
= Plc %0

O]

Lemma 10 (Tensor-trace 2). If [x,¢] = [X,¢] = [x.¢] = [X, (] =0, and p, o x-consistent,

(p@o)c = pcDo
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Proof. Assume p, o y-consistent, i.e. pggog g # 0 implies |G)®|G') #0 # |H)®|H').

pOc = Y reuogm |G) (H|®|G') (H'|
G.HG H'EG
By Lem. 6 = Y pgm0c.m, |G) (H|
G,HegG

(p®a)ic = D pamochs |Ge) (He| (HglGy)
G,Heg

By Lem. 2= 3" pa,m06er [Goy) (Hol ®|Gex) (Hexl (He, |G, ) (Hey|Gry)
G,HeG

= Y e [Gey) (Heyl (He |Gz, ) @06 n |Gex) (Hex| (HeglGey)
G,Heg

By commut. = Y pa o, [Gye) (Hye| (HglG2) ®ocen [Gxe) (Hye| (HyrlGye)
G,HeG

= > (e, |Gy (H))  © (062 |Gr) (Hl )
G,Heg

- > (P |G) (H|) ® (oG |G') (H'])
G,H G H €g
G)o|E) # 0
[H)®|H') # 0

By consistency = Z (pcu |G) (HI)| ® (ccru |G") <H’|)IC
G,H,G'" H'eG

I<

= pOoy¢

Lemma 11 (Interchange laws). (A®I)|G) = A|G,)®|Gy).

If A x-consistent-preserving or B X-consistent-preserving, (A®I)(I®B) = (A®B).
If A, A’ x-consistent-preserving, (A'®T)(A®I) = (A'A®I).

If A, A’ x-consistent-preserving, A'A is x-consistent-preserving.

If moreover B, B' are x-consistent-preserving, (A’®B')(A®B) = A’/A®B'B.

Proof. [First part]

Aol= Y Agy |G) (H|®|K) (K|

G'HK € G

= Y Agn (IG)O|K)) (H|®(K])
G'.HK € G

(Aen|a)= 3 Agw (IG)0|K)) ((H|®(K])(IGy)®|Gx))

G' HK € G

= Y Age, (IG)0|GY))
G e€g

= (4|Gy)0|Gx)
[Second part]
IeB = > Bowyo (IL)®|GW)) (Lo (HM])
GO, HD L € G

L)®|GW) # 0
LyolHD) # 0
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(A®D)(I®B) = Aco o Bew ga |GO) (HC

GO L=HO K=cW, HO cg
IGO)Yo|K) # 0
HO)OIK) # 0
lelles > #
Lo |HW) #

o ©

GO, HY eg

G(o)’ H(o) G(l) HD €g
HD)o|cW) # 0
By consist. preserv. = Z
GO HO gV HD) ¢ g
=A®B

[Third part]

Al = >
GO HO K g
GO o|K) # 0
|H'O)®|K) # 0

Aol — Z Ago 50 (’Gm))@’m) (<H(O)
GO HO L €g
G© >®|L> 0

[HO)®|L) # 0

0
Ac© goBewgay |GO

Ago o Bow gy |G (HO

0
Acoy g Bswga |GO

Ao o (IGO)@]K)) ((H'©|o(K])

)|®\G(1)> <H(1)|

@My (HW)|

)|®yg(1)> <H(1)]

H(O)‘ ® yg(1)> (H(l)‘
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(AonAcl) = > Ao o Ao o) (IG0) 0 |K)) ((HO|o(K|)

GO HO =g gHO K=L ¢ g
IGCO)o|K) # 0
H'O)o|K) # 0
IGO)olL) #
|HO)®|L) #

= Z Ay oy Ao o) (IGO0 (HO) @ | K) (K] )
GO gO HO K g
GO0 |K) # 0
HO)OIK) # o
[HO)o|K) # 0

= Ao o Ao o (|G (HO 0 |K) (K|)
GO O HO K e g
[H'O)0|K) # 0

By consist. preserv. = > A0y g A i) 1) (]G’(O)> (H9|®|K) (K\)

G0 qH'(0) HO) K € G

= (A'A®I)

When Al o) oy 7 0 and Appo) o) # 0, |H'OY®|K) # 0 is entailed by A’ y-consistent-
preserving and |G"©)®|K) # 0, or by A x-consistent-preserving and |[H(O)®|K) # 0.
[Fourth part]

Say (H|A'A|Gy) #0
& (H|A|K) (K| A|Gy) #0
K

=3K,(H|A"|K) (K| A|Gy) #0
=3K, (H|A'|K) #0and (K|A|Gy)#0
By consist. pres. =3K, (H|A'|K)#0and |[K)®|Gg) # 0
By consist. pres. quad = |H)®|Gy) # 0

Similarly for (H| (A’A)T|G,) # 0
[Fifth part]

(A®B)(A®B) = (I®B)(A®I(A®I)(I®B)
= (I®@B)(AA®I)(I®B)
= (A'A®B')(I®B)

= (AA®I)(I®B)(I®B)
= (A'A®I)(I®B'B)

= (

A'A®B'B)
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B Renaming-invariance

As always, in order to implement a symmetry R : p — RpR! in a quantum theory, one
can symmetrize states, i.e. demanding [R, p] = 0, so that

(ARpRT)I .= (ApRRT)| ) = (Ap)p-

But one can also symmetrize observables, i.e. demanding RA = AR, so that

(ARpRT)| )= (RApRT)| )= (RTRAp>‘ ) = (Aup)p
The first option was that taken for name-preservation, in order to obtain Prop. 2.

The second option is that taken for renaming-invariance in Def. 4, because it is more
expressive. For instance, think of A as an observable asking the question whether vertex
v is connected or isolated. The question would make no sense on a rename-invariant state
p, because the question itself is not rename-invariant. Still we can make the question
rename-invariant by parametrizing it by v in a way that RA, = Ag,)R, and letting it
transform according to R : A, + Ap(,). Then the question make sense on a generic p,
whilst maintaining name-invariance:

(AroRpRT) = (RAwR') = (R'RAup) ) = (Aup)g

Here are a few helpful facts to help us tame the notion of renaming.

Lemma 12 (Inverse renamings). Let R :V — V be a homomorphism of the name algebra.
The test condition that R(x).t = R(y).t' implies x =y and t = t', is equivalent to injec-
tivity.

If R is a renaming, so is R™1.

If A, is renaming-invariant, so is Aj.

Proof. [Injectivity condition]
Notice that R(x).t = R(y).t' is equivalent to R(z.t) = R(y.t') and that z.t = y.t’ is
equivalent to z = y and t = t'.
Thus the injectivity of R implies the test condition.
Conversely assume the test condition is satisfied.
u # v implies there exists s such that u.s = x.t # y.t' = v.s.
Then, R(u).s = R(u.s) = R(z.t) = R(z).t # R(y).t' = R(y.t') = R(v.s) = R(v).s.
Thus R(u) # R(v).
Thus R is injective.
[Inverse renaming]
Let R be a renaming. We need to check that R~! is a homomorphism of the name
algebra.
For any u’, v take u,v such that v’ = R(
R7Y(Wt)= R "YR(u).t) = R ~Y(R(u. ).
R'uVvv)=R YRu)VRW)=R YRuvv)=uVvev=R 1) v R ).
[Adjoint renaming-invariance]

RA} = (A,RN = (R 1Agu))' = A6, R. O

(v)

The renaming-invariant operator A, := |&) ({0.v}| may destroy name v. The renaming-
invariant operator Al may create it. But this is only because they are parameterized by
v. Other than that, renaming-invariant operators preserve support up to +.
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Proposition 11 (Renaming-invariance implies +-name-preservation). We define the +-
vertices of G to be VE(G) := V(G)U{-v | o.v € G}.

Let A, be a renaming-invariant operator over H, parameterized by v C V. Then,
(H|A,|G) #0 = VF(G) U {v,-0}2=VE(H) U {v, -v}

Proof. [N [VE(H)] € N [VE(G) U {v, v}]]
By contradiction. Say there exists (H| A, |G) = a # 0 such that u € N [V*(H)] and u ¢
N [VE(G) U {v, -v}].
Pick R such that RG = G, R(v) = v, R(u) ¢ N [V*(H)], i.e. map u into a fresh name
v’ whilst preserving v and G. We have:
a = (H| A, |G)
=(RH| RA, |G)
By renaming-inv. = (RH| Ag, R |G)
=

By choice of R =(RH| A, |G)

There are infinitely many such R, and since u € N [V*(H)], there are infinitely many such
RH. It follows that A, |G) is unbounded, hence the contradiction. The result follows, from
which we also have that N [V*(H) U {v,-v}] C N [VE(G) U {v, -v}].
W [VE(G)] S N [VE(H) U {v, -v}]
(H|A,1G) #0 & (GIAL[H) £0 < (G| A}|H) £0.
Moreover, by Lem. 12, Al is also renaming-invariant.
So, the same reasoning applies.
We therefore have that N [V*(G) U {v,-v}] C N [VE(H) U {v, -v}]
[VE(G)U{v, -v}=VE(H)U{v, -v}] is by definition N [VF(G) U {v, -v}] = N [VE(H) U {v, -v}].
O

In order to obtain full name-preservation as used the core of the paper, as a con-
sequence of renaming-invariance, we could have restricted our attention to graphs that
have no half-edges, i.e. such that if c.t € V(G), then -c.t € V(G). Indeed for such closed
graphs, full name-preservation amounts to +=—name-preservation, and is therefore entailed
by renaming-invariance. However the operations that we study in the paper do not pre-
serve closed graphs. For instance, G' may be closed, but not G. This is why we have
treated name-preservation as a independent assumption.

In the pursuit of obtaining full name-preservation, as a consequence of renaming-
invariance, we could demand full renaming-invariance, i.e. letting renamings R be ar-
bitrary isomorphisms on N[K U -K] rather than extensions of isomorphisms on N[K].
However, such an R may map x to y and -z to z, thereby destroying the geometrical
information held by names that x and -z are connected by an edge. We could then
compensate for that loss by providing each graph G with a adjacency function ag, trans-
forming according to apg := R o ag o R~'. Which ag should be allowed? We posit the
following conditions:

® o is a partial renaming over V.

e Vu, ag(u) =v = ag(v) undefined.

e Vu € dom(ag), 3, u.t € NV(G)] or ag(u.t) € NV(G)].

The first two conditions imply Yu, = (N]a(u)] C Mu] or Na(u)] D NMu]), which is rein-
suring as ”edges from a part to its subpart” seem undesirable. Going that this route, care
must be taken when defining ag, to also encompass edges that are incoming from G, or
else Prop. 7 will fail. Indeed, say that ag(u) = v with u € V(Gy) and v € V(G,). An
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operator U acting over G, may otherwise fail to see that v is occupied, thereby producing
G', such that |G ) ®|Gx). Overall, this is a legitimate route to take, but we chose not to
clutter this paper.

Finally, notice that a number of results in the core of the paper held without name-
preservation. At the cost of name-preservation, we can even reach an interesting version
of Th. 6, which does not require an extra bit of information per system.

Proposition 12 (Unitary restriction). A restriction is namewise if and only if there exists
S such that Gy, = {ow € G |v¢ N[VE(S)]}.

If x is namewise, and U is renaming-invariant, then U preserves H.,.
If moreover U is unitary, then it is unitary over H,.

Proof. Since x is namewise, there exists S such that G = G, if and only if = (N [V(G)] NN [VE(S))).
Since U is renaming-invariant, then by Prop. 11, we have N [V* (U |G))] € N [VE (|G))],
ie. for all u, u € N[V (U|G))] implies u € N [V* (|G))], and so N [VE (U|G))] N
N [VE(S)] implies N [VE (|G)] NN [VE(S)]
As a consequence ~(N [V* (|G)) NN [VE(S)]) implies = (N [VE (U |G))] NN [VE(S))).
Say G = G,. We therefore have ~(N [V* (U |G)] NN [Vi( )]) As a consequence for
any H such that (H|U |G) # 0, we have — (N [VE(H)] NN [VE(S)]). Thus H = H,,.
[Unitary case]
If U is renaming-invariant and unitary, then by Lemma Inverse renaming and renaming-
invariance, so is UT. It follows that UT preserves H. Therefore, U is unitary when
restricted to H,. O

Theorem 7 (Block decomposition without ancilla). Let , be the pointwise restriction
. ) N
such that (,({o.u}) := {{U u} if Nl N[U]

1%} otherwise
Consider U a renaming-invariant unitary operator over H, which for all v € V is x,(,, -
causal with ¢, T ¢ and x, an extensible restriction.
{ow} ifug¢ N[Z*1]

%) otherwise

Let pu be the namewise restriction such that p({o.u}) := { where

7.1 denotes odd numbers in their binary notation.
Similarly let V.0 denote those names built out of even numbers.

There exists T, a non-name-preserving (,-local unitary and K, a non-name-preserving
&x-local unitary such that

VIp) € My = H, (xH )(HK) =U|y)

€N rz € N
where & = Xz U ¢, is an extensible restriction. In addition, [K., K,| = [, 7] = 0.

Proof. Clearly [u, (] = [@1,¢] = [, (] = [, (] = 0 as both are pointwise.

By Prop. 7, since u is namewise, and U is a renaming-invariant unitary, it is unitary
over H,, and U’ := U®] is unitary over H with U'T = UT®1.
By Prop. 10 and since U is x,(,-causal, it is x,(y-causal, and U’ is &,(,-causal, with
&y 1= pxw U TC, and extensible restriction.

Let the toggle 7, be the renaming such that 7,(y.b) = {Tx(m'_‘b) ife= y :

Y otherwise

Le. 7, toggles the last by of 2.0 and z.1.
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Notice that it is unitary and (,-local, and that [7,,7,] = 0.

Moreover,
(1)
z €N

where 7 is the renaming such that 7(y.b) = 7(y.—b).

Let K, := U'tr,U".
Since adjunction by a unitary is a morphism, [K,, K] = 0.
By Prop. 9, is £;-local.

Finally,

(mHN n) (:,an K:C) Gy =7... (UTnU") (Ul |Gy

S €

By unitarity of U’. = 7 U'f < H | U |GL)
zeN
=7 UT U |G)
By Prop. 7=71 (U'@I) r (U@I) (|G,)®|2))
=7 (Ulel) r (U|G,)®|2))
Since U preserves the range of p. =7 (UT@I) @)oTU |G))
By Prop. 11 =71 (|@)@1U |G,))
=72 U|G,)

Since 7 involutive. = U |G},)

C Standard tensor product and direct sum as special cases

In this section we are going to make precise the connection with more standard notions of
decompositions of Hilbert spaces. Before we begin let us outline a general way to construct
sub-spaces on which our tensor products act.

Given any restriction x we can define the Hilbert space H, as the Hilbert space whose
orthonormal basis is G, = {|Gy) |G € G}. Note that living inside this space is the
empty graph since &, = &; this is a remnant of the ‘fock-space of qubits’ point of view
taken in this paper. The quantum circuit formalism, on the other hand, works with a
fixed number of qubit and hence has no vacuum state. Thus, to make contact with the
standard formalism, we will need to remove de vacuum state and consider mzH,, i.e. the
Hilbert space given by the range of 7z, the projector over the orthogonal subspace of |@).

Consider x4 such that xx4 = xa. Just like a linear map A over H4 can be extended
as A® I to act over H4 ® Hp, we need to be able to take an operator A over mzH, , and
extend it as an operator A®4I over mzH, . In this appendix this will be done by taking

Ayl = W@((A D I) @AI).

Similarly, the generalised trace ()}, , over Bi(H,) may yield vacuum states, which
we do not want in the standard formalism. For this reason will need a ‘mz-projected
generalised trace’ Try, (e) as defined in the following way:

TrYA (,0) = ngleﬂ'g.
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C.1 Recovering the standard tensor product

The general results below will be formulated in terms of a three restrictions x, x4, xB-

In order to gain concrete intuitions about them, it will be helpful to keep in mind the

example where

‘H, is the Hilbert space spanned by the empty graph and the graphs consisting exactly
two nodes with names u and v. In other words, every graph in H is either empty or
has the form {a.u} U {b.v} for a,b € ¥ and u,v € V.

H,, is the Hilbert space spanned by the empty graph and the graphs consisting of one
node named u.

H, is the Hilbert space spanned by the empty graph and the graphs consisting of one
node named v.

So, consider three restrictions x, x4, xp such that

® XXA = XA, XXB = XB-
® x4 = XXp i-e. x4 and xp are the complement of the other in x.

o forall [v)) € My, [¥) € Hyg, [ [0) @a [0 [P = [ [} 1211 [9") |12
o for all G,G" € Gy, x Gy,; with G,G' # @ then GUG’ € G,.
and consider Hy 1= mgH,,, Hp := mzHyp-
We will now formalise the sense in which the standard tensor product

®:HAaXHp > HAQHB
coincides with ®4, by means of the unitary isomorphism
E:Hs®HB = T Hy -
|G) ®@|G") — |G)®u |G') = |GUG")
The existence of this isomorphism holds thanks to the norm and union conditions, and
furthermore witnesses an equivalence A®41 = AQ I:
(GI(G'| EYA@ADE|H) |H') = (GUG'| A®@al [HU H')
=(GUG'|(Aa )l |HUH')
= (G| A& I|H)(G'|H)
=
=

G|A|H)(G'|H)
G| A|H)(G'|I|H')
= (GG’ A I|H) |H')
so that (A® I) = ET(A®4D)E.

In this precise sense then, the generalised tensors recover the standard tensors. Similarly,
the mz-projected generalised trace recovers the standard trace out by means of

Trp(e) = Tryg (ET<’)E)’
where Trp(p) = > r(I ® (R|)p(I ® |R)) is the standard partial trace. Indeed,
Try, (B(IG) © |G)((H| @ (H')EY) = Try, (IGUG))(H U H')))
= |G) (H|{G'|H')

= Y (e (R)(G)e|G)(H|e (H')(I|R)
ReGy g

=Trp((|IG) @ |G") ((H| & (H'])).

By linearity the result holds for any trace class operator.
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C.2 Recovering the direct sum

The general results below will be formulated in terms of a three restrictions x, x4, xB-
In order to gain concrete intuitions about them, it will be helpful to keep in mind the
example where

‘H, is the Hilbert space spanned by the empty graph and the graphs consisting of one
node with name u. In other words, every graph in H is either empty or has the form
{a.u} for a € X and u € V.

H,, is the Hilbert space spanned by the empty graph and the graphs consisting of one
node with name u with internal state in S. In other words, every graph in H,, is
either empty or has the form {a.u} fora € SC ¥ andu e V.

H,p is the Hilbert space spanned by the empty graph and the graphs consisting of one
node with name u with internal state not in S. In other words, every graph in H,
is either empty or has the form {a.u} fora € ¥\ S and v € V.

So, consider three restrictions x, x4, xp such that

® XXA = XA, XXB = XB-
® x4 = XxXp i-e. x4 and xp are the complement of the other in x.
o for all [¢) € Hy,, [U) € Hyp,

¥y @alp') 12 = [ (@|¢) Pllmg [9) P + 1 (@) %lmz [0) | + [ {@lv) 17 (2]v) |

o forall G € G, , UG, then G € G
and consider H 4 == mzH,, Hp = mzH -
We will now formalise the sense in which the standard direct sum

®:HaXHp = HADPHB
coincides with ®4, by means of the unitary isomorphism

E:’HAEBHBEHTE’HX
G) @ |G) = |G) + &)

Indeed it witnesses the equivalence A®s = A& I:

(Gl (G'NEN (A E(|H) @ |H") = (G| + (G') A®aL(|H) + |H'))

:(<G\+<G'D(( @ I)®al)(|H) + |H))

= (Gl (A® )®al) |H) + (G| (A® I)®al) |H)
(G (A I)®al) [H) + (G'| (A I)@al) |H')

Using the norm requirement = (G| (A& I)|H) (9|9) + (G| (Aa ) |2) (|H')

+ (2| (A® ) H)(G'2) + (2] (Aa ) |2)(G'|H)

= (G|A®I|H)+ (G'|H")

= (G| A[H) + (G'|H')

= (G|A|H) +(G'|I|H')

= (Gle(G'DAI(|H) @ |H'))
and so this time (A® 1) = ETN(A®D)E

In this precise sense then, the generalised tensors recovers the standard direct sum.
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Interestingly, the mz-projected generalised trace turns out to be just a projection:
Trys (E(e)E) = ma(e)ma,
where 74 is the projector upon H 4. Indeed,

TrXB (ETPE) = Z PGH TrXB (ET |G> <H’ E)
G,H

= > por Try, (|IG) (H|)
G,H

= rermz(G) (H|) 75
G,H

= > rerlG)(H]

G,HEeGE

= TApTA

Note that whilst (e)|,, is always trace preserving, Tr, ,(e) is not. This is because (e)|,
preserves trace by those sending states that would have been projected out by 74, to the
empty graph.

In the standard, non-Fock-space setting then, we therefore are faced with a choice
between charybdis and scylla. 1/ We can either leave things as such, and sacrifice trace-
preservation; or 2/ we can renormalise Try, to get the post-measurement state-collapse
rule % at the cost of sacrificing linearity and being only partially defined (since no
amount of renormalisation will help if the result of Tr, ,(p) is 0).

The Fock-space of qubit setting is both mathematically more convenient, and physically
well-motivated, we argue. Mathematically, it allows use to have our cake and eat it,
having both linearity and trace-preservation for a trace based on a direct-sum structure.
Physically, it has the natural interpretation of yielding representation of the viewpoint of
a limited observer, who sees nothing beyond the state set H4. Consider for instance a
situation in which a particle may occupy one of many energy levels distributed across space
(say for instance the energy levels of the hydrogen atom), and imagine that an observer,
Alice, only has access to a limited range of spatial positions and thus a limited range of all
possible eigenstates. According to her viewpoint, she sees mapm4 with some probability,
and nothing |@) (| with some other, i.e. precisely

Pixa = Tapma + Tr(mzpm3) |2) (2] .

Thus, the generalised trace is also a linear, trace-preserving way to take the viewpoint of
a limited observer.

C.3 Between the direct sum and the tensor product

Let us find an example, simpler in spirit than for instance disks of fixed radius around
nodes, that goes beyond both the standard tensor product and direct sum. Specifically,
the example mixes them up.

Consider H, the Hilbert space spanned by the empty graph and the graphs consisting of
one or two nodes with names v and v. Consider the restriction (,.g which picks out the
node u but only when u has a state in .S C ¥X. This time we can define H,.s := mzHc, o
and Hy.x—s := m5H¢, . s along with H,, = mzH,,. We can now see that there is a unitary

Accepted in { Yuantum 2024-08-20, click title to verify. Published under CC-BY 4.0. 52



isomorphism:

E: _>(Hu:5 S Hu:Efs) & Hv %6 H
a{a.u| @ B (b.u|) (cv| = a{auUcv|+ B (buUc.v

which witnesses the equivalence A©y.51 = (A @ Iy, 5, ) ® I3, in the usual sense, indeed
(where we include scalars this time for clarity):

(o {a.ul & B (baul) (o] (BT AusTE)(o | wy & 816 ) | o)

= (a{a.uUco|+ B{buUcv|)AQ,sI(a ld wUc )+ B b uuc.v))

= (a{auUco|+ B (buUcv))(A® I)Ousl(a |a wUc v) + B b uuc )

= ad/ (auUco| (A& 1) Ousl |a uUc v) +af (auUcv| (AST)OusI |buUc v)
+ B (buUcw| (ABI)Ousl ja wUc v) + BB (buUco|(Ad I)Ousl b .uUc )
= ad (au| (A I)|a ) (colc v) + af (au| (Ad 1) |2) (colp wUc o)

+ B (@] (A®T)|a ) (buUcw|c v) + B8 (D] (A I)|@) (buUculb .uUc .v)

= ad (au| A® Ia u)der + BB SpiySer

= (aa/ (a.u| Ala".u) + BB'Sp)bee

= (o {a.u| ® B (bu|) (co|( A D) @ I(d |a u) @ B b .v))|c.v)

and so in this case we can say that:
(Ad Iy, . ) ®Iy,) = EN(AQ.sI)E.

Thus, generalised tensors recover mixtures of tensors and direct sums. Similarly Trc—u is
now a combination of a standard partial trace and a projection:

Tr?u(ET(o)E) = 7mg Try(e)ms
where Try(p) = >y (I @ (b.v])p(I, @ |b.v)) is the standard partial trace. Indeed,

Tre—(E' (|la.u) ® [bv)) (@' u| @ (b)) E) = Trg, ¢ (Jau Ub0))((a".uU b 0])
_ {‘au> (a'w|, ifa,a’ €S and b=V

0, otherwise

= g Trg(Ja.u) @ [b.v))((a .u| @ (b v)))7g
Note that Tr@(\a.u Ub.v))((a .uUb .v|)) =0 when a,a’ ¢ S since then
(law Ubw))((a wUb v))c, s = D) (D] Saar Oopy

so that Tr=— which is (e)|¢,.s up to quotient by |&) returns 0.
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