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Université Paris-Saclay, CNRS, LISN, 91190 Gif-sur-Yvette, France†

Matt Wilson
Department of Computer Science, University of Oxford, UK

HKU-Oxford Joint Laboratory for Quantum Information and Computation‡

(Dated: July 14, 2022)

The formalism of quantum theory over discrete systems is extended in two significant ways.

First, tensors and traceouts are generalized, so that systems can be partitioned according

to almost arbitrary logical predicates in a robust manner. Second, quantum evolutions

are generalized to act over network configurations, in such a way that nodes be allowed

to merge, split and reconnect coherently in a superposition. The hereby presented math-

ematical framework is anchored on solid grounds through numerous lemmas. Indeed, one

might have feared that the familiar interrelations between the notions of unitarity, com-

plete positivity, trace-preservation, non-signalling causality, locality and localizability that

are standard in quantum theory be jeopardized as the partitioning of systems becomes both

logical and dynamical. Such interrelations in fact carry through, albeit two new notions

become instrumental: consistency and comprehension.

I. INTRODUCTION

Motivations. In classical computer science composite systems such as computer processes [40],

neurons [11], biochemical agents [38], particle systems [32], market agents [34], social networks

users, are often modelled as dynamical networks. The suitability of dynamical network models

for these systems comes from the fact their connectivity and population are subject to change,

for instance agents within social networks have the capabilities to spawn, disappear, and form

or (more sadly) sever connections. Another class of composite systems which has been given

considerable attention in modern computer science are those whose constituents are quantum in

nature, as they can be leveraged to perform computational and information processing tasks with

efficiencies beyond those of their best known classical counterparts. In this paper we will argue

that there are in fact many motivations which can be outlined for developing a unified paradigm

for modelling composite systems in which, as opposed to the quantisation of constituents only, all

of the fundamental features of dynamical network models are lifted into the quantum domain—

including connectivity and population.

One such motivation is the evocative idea of a ‘quantum internet’ [12, 31, 42]. The development

of a fully quantum internet echoes a fundamental question in Computer Science: What exactly is
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a computer? To the best of our knowledge, the key resources granted to us by nature for the sake

of efficient computing are spatial parallelism between systems and quantum parallelism within the

systems, both of which appear in the quantum circuit model of computation, independently. This

observation motivates the questions: Are spatial parallelism and quantum parallelism independent

computational resources, or could the former be subject to the latter? Can we combine both resources

in a unified model of computation?

Indeed, a second motivation is found by considering models for distributed quantum computing,

as such models so far feature only classical dynamical networks of quantum automata [5, 26]. The

quantisation of connectivity within a distributed quantum computer [4] could used to implement

protocols in which the orderings of events [17] and trajectories of particles [18] are quantum in

their specification. The importance of modelling the implementation [25, 43, 46] of such protocols

is well-argued by noting that in several tasks, they are more efficient than their standard quantum

counterparts [1, 3, 18, 22, 24, 39]. Despite the above advantages of quantising the networking of

quantum systems, little is known about the dynamics of such networkings [16].

As it turns out, motivations for considering the quantisation of networks appear not only in

the development of quantum technologies, but also in the foundations of physics. Whilst a theory

which satisfactorily quantises gravity remains elusive, the intersection of the fundamental principles

of general relativity and quantum theory suggests that such a theory will have basic features

in common with quantised networks. Indeed the geometry of spacetime is dependent on mass

distribution in general relativity, and mass distribution may be superposed in quantum theory. As

a result a striking feature shared by most attempts to quantise gravity is the possibility of quantum

superpositions of spacetime geometries. Whilst the effects of superposing spacetime geometries

have long been thought to be inaccessible experimentally, recent realistic experimental proposals

have been infanted through research at the crossover of quantum information and quantum gravity

[13, 14, 36, 37] which promise the near-term confirmation or invalidation of this feature [19, 20].

In most theories of quantum gravity, geometries are represented by networks dual to simplicial

complexes [2, 44], and so the networking structure of systems is both a prominent conceptual

feature and a feature whose quantum nature deserves considerable attention in its own right. The

current network representations of geometry in theories of quantum gravity do however come with

a few sources of discomfort. The first, a technical issue, is that the precise definition of such

geometries is often left informal. The second is an uncomfortable physical consequence of the path

integral formulation of dynamics, namely that such a formulation may very well jeopardize the

unitary of quantum theory. A third uncomfortable feature of path integral formulation is that

fundamental physical principles such as locality and causality are only seen as emergent, by means

of heroic, and not entirely rigorous classical limits.

Building on the above motivations, the aim of this paper is to provide a rigorous mathemat-

ical framework for reasoning about fully quantum networks and their dynamics. Independently

of whether the framework is used to model quantum complex systems, distributed quantum com-

puting, or features of quantum gravity, the key properties are expected to remain the same: the

framework should be sufficiently flexible to allow for arbitrary quantum superpositions of entire

networks, and yet permit the definition of local, nearest-neighbour interactions, as well as global,

non-signalling causal unitary dynamics—in the strictest of manners.

Contributions. In developing a model of fully quantum networks, We find that by taking entire

network configurations as states the usual notion of tensor product fails us on very basic unsettling
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questions such as: When two nodes are connected, with one on the left of a tensor product, and the

other on the right, where does the edge between them live? and On what ground can we discriminate

which nodes go left of the tensor, and which nodes go right? Can we base this on the naming of

nodes, their states, their proximity to other nodes, or even on combinations of these? and finally

Is there a sense in which the tensor product of a given network with itself is even well defined?

We provide an answer to these questions by generalizing the usual notion of tensor product via

a decompositional (as opposed to compositional) approach. That is, we discriminate which nodes

go left of a tensor χ, and which nodes go right, based on an almost arbitrary logical predicate χ,

so that for any network configuration G, we have ∣G⟩ = ∣Gχ⟩ χ ∣Gχ⟩. So that the decomposition be

unambiguous, we ask that whenever L and R are not ‘consistent’, i.e. not of the form L = Gχ and

R = Gχ, then ∣L⟩ χ ∣R⟩ = 0. We define a set of sufficiently well-behaved logical predicates for our

purposes, which we refer to as ‘restrictions’. Restrictions then lead to a natural notion of partial

trace (∣G⟩ ⟨H ∣)∣χ = ∣Gχ⟩ ⟨Hχ∣ ⟨Hχ∣Gχ⟩ which is itself a completely positive and trace-preserving

operation.

The notion of a restriction χ on a network is used to define the notions of locality and causality,

which in the presence of unitarity will turn out to interact in a physically intuitive way. An

operator is considered to be local on a restricted part χ of a network if it alters only that which

is within χ, ignoring the remainder. Here we define χ-locality of operators as the satisfaction

of ⟨H ∣A ∣G⟩ = ⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩ and then prove the equivalence of this definition with both

gate-locality in the operational picture, and dual locality in the Heisenberg picture. An operator

considered to be causal between two restrictions χ, ζ, may on the other hand alter the entire

network, but its effects on region ζ must be fully determined by causes in region χ. Here we define

χζ-causality as the satisfaction of (UρU †)∣ζ = (Uρ∣χU †)∣ζ and prove equivalence of this definition

with dual causality in the algebraic, Heisenberg picture. Whilst all the usual interrelations between

these notions carry through, the path to them is full ambushes: consistency checking requires great

care, and the usual notion of subrestriction requires an extra condition (‘comprehension’) before it

behaves as expected—which fortunately vanishes in the name-preserving superselected space.

Indeed, a first potential ambush is explained in [7], the causality of a quantum network dynamics

only makes sense if its nodes are named. This is because of the role that names play in specifying

the alignment of the network configurations which are superposed. Despite the need for a naming

of nodes, the actual choice of naming of nodes should have no effect on the evolution of a network

beyond this role: this independence is formalised by the notion of renaming-invariance. A second

potential ambush is explained in [8], we must ensure that names are no obstacle to unitary node

creation/destruction. Indeed, suppose that a node u splits into u and v. How can this evolution

be a unitary U? Won’t U † just erase name v? If v gets renamed into v′ before acting with U †, do

we still get the node u?

We answer these questions by means of a name algebra discovered in the context of reversible

causal graph dynamics. In short, a node u can be split into its left part u.l and its right part

u.r. Such a left-right pair can in turn re-merge to form u.l ∨ u.r = u. The same notion of a name

algebra when equipped with a sign “−” can actually be used to encode edges, i.e. node u = x∨ -y is

connected to node v = y ∨ z. This encoding of edges provides a simple way to answer the question

of whereabouts an edge between nodes u and v “goes” when a node u is considered to be on the

left of the tensor, and a node v is considered to be on the right.

Plan. Sec. II describes the name algebra used for the naming of nodes, defines network con-
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FIG. 1. Necessity of the name algebra. Left: naming vertices is necessary in order to track alignment across

quantum superpositions. Right/grey: A quantum evolution may split u into u.l and u.r. As the inverse

evolution merges them back we need (u.l ∨ u.r) = u. Right/blue: The inverse quantum evolution may also

merge vertices u and v into (u ∨ v). As the forward evolution splits them back we need (u ∨ v).l = u and

(u ∨ v).r = v.

figurations and their induced state space, as well as defining the notions of renaming-invariance

and name-preservation. Sec. IV defines locality in its various forms, proves their equivalences, and

proves that every unitary operator can be extended into a local unitary operator. Sec. 9 defines

causality in its two forms, proves their equivalences, and shows that causal unitary operators can

be implemented by a product of local ones. Sec. VI summarizes the contributions of this paper

and outlines potential avenues for future work on the formalism presented. Sec. VI furthermore

enumerates several perspective applications of the formalism, beyond those that motivated work

originally.

Introducing a new formalism for quantum theory is a slippery exercise. We have had reestablish

basic facts first through numerous lemmas found in Appendix A, including compositionality laws

akin to the axioms of categorical approaches to quantum theory. The consequences of imposing

renaming-invariance on the dynamics of networks are explored in B.

II. AN ALGEBRA FOR NAMING NODES OF QUANTUM NETWORKS

The problem of defining superpositions of graphs immediately leads to the following conundrum.

Consider a pair of systems, white and black, superposed with again a pair of systems, black and

white. One must decide whether the mathematics assigned to this sentence should be either of

∣○l●⟩+ ∣●l○⟩ or 2 ∣○l●⟩ (where no distinguishment is made between black-white and white-black).

The only way to disambiguate this situation is by naming those vertices. The alternative choice,

to neglect this alignment information by claiming that it does not matter since the graphs are

isomorphic, leads to the physically unreasonable consequence of permitting super-luminal signalling

[7].

Still, vertex names can be cumbersome. In the classical regime, and in a variety of different

early formalisms, it was shown that their presence leads to vertex-preservation, i.e. the forbidding

of vertex creation/destruction [9] . This was a somewhat uncomfortable situation, because the

informally defined model of Hassalcher and Meyer [30] did seem to feature reversibility, vertex
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creation/destruction, and non-signalling causality. Again in the classical regime, the issue was

finally solved by introducing a name algebra [8]. We now bring the notion of a name algebra over

to the quantum regime, simplified. First, let us remind the reader of why we cannot do without

such an algebra.

Indeed, say as in Fig. 1 that some quantum evolution splits a vertex u into two. We need to

name the two infants in a way that avoids name conflicts with the vertices of the rest of the graph.

But if the evolution is locally-causal, we are unable to just ‘pick a fresh name out of the blue’,

because we do not know which names are available. Thus, we have to construct new names locally.

A natural choice is to use the names u.l and u.r (for left and right respectively). Similarly, say that

some other evolution merges two vertices u, v into one. A natural choice is to call the resultant

vertex u ∨ v, where the symbol ∨ is intended to represent a merger of names.

This is, in fact, what the inverse evolution will do to vertices u.l and u.r that were just split:

merge them back into a single vertex u.l∨u.r. But, then, in order to get back where we came from,

we need that the equality u.l ∨u.r = u holds. Moreover, if the evolution is unitary, as is prescribed

by quantum mechanics, then this inverse evolution does exists, therefore we are compelled to accept

that vertex names obey this algebraic rule.

Reciprocally, say that some evolution merges two vertices u, v into one and calls them u ∨ v.

Now say that some other evolution splits them back, calling them (u ∨ v).l and (u ∨ v).r. This

is, in fact, what the inverse evolution will do to the vertex u ∨ v, split it back into (u ∨ v).l and

(u ∨ v).r. But then, in order to get back where we came from, we need the equalities (u ∨ v).l = u
and (u ∨ v).r = v.

A quick note on notations. Throughout the paper, the symbol ∶= means ‘is defined by’. Un-

quantified letters are implicitly introduced by a “for all” across the range that corresponds to the

typographic convention used.

We now formally introduce the algebra that we will use the name nodes:

Definition 1 (Name algebra). Let K be a countable set. Let -K ∶= {-c ∣ c ∈ K}. The name algebra

N [K] has terms given by the grammar

u, v ∶∶= c ∣ u.t ∣ u ∨ v with c ∈ K, t ∈ {l, r}∗

and is endowed with the following equality theory over terms (with ε the empty word):

(u ∨ v).l = u (u ∨ v).r = v u.ε = u u.l ∨ u.r = u

We define V ∶= N [K ∪ -K]. We write V ≙ V ′ if and only N [V ] = N [V ′].

From now on we take K = N ∖ {0}. We use letters x, y to denote elements of K ∪ -K = Z ∖ {0}.

The ± sign will be used to capture the two tips of the edges of the graphs. (NB: To deal with

d−dimensional simplicial complexes instead, we might for instance encode them as ±−bipartite

graphs, or take x ∈ J0, dK ×K.)

A. Defining graphs

Next, we take a ‘system’ to mean both a ‘state’ and a ‘name’, whereas a ‘graph’ is a set of systems

having disjoint names, see Fig. 2. Our formal definition of a graph is given by the following:
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FIG. 2. Graphs. Left: A system with state ’white’ and name u = ((3.l ∨ 8.rl) ∨ -2). Right: A system with

state ’black’ and name v = (2 ∨ 4). Middle/grey: Here we decided to interprete u.r = -2 and v.l = 2 as the

presence of an unoriented edge {u, v}. Middle/blue: We could have chosen to interprete it as an oriented

edge (u, v) instead. Middle: In both cases, geometry is derived from relative information that is already

present within systems, and which is invariant under renamings.

Definition 2 (Graphs). Let Σ be the set of internal states. The elements of S ∶= Σ×V are referred

to as systems and denoted σ.v, with

• σ ∈ Σ the internal state of the system

• v ∈ V the vertex which supports the system

A graph G is a finite set of systems such that

σ.v, σ′.v′ ∈ S and v.t = v′.t′ implies σ = σ′ and v = v′ and t = t′ (1)

We define its support V (G) ∶= {v ∣ σ.v ∈ G}. We denote by G the set of all graphs.

We denote by H the Hilbert space whose canonical basis is labelled by the elements of G. Consider

C ⊆ G some constrained configurations. We denote by HC the Hilbert space whose canonical basis

is labelled by the elements of C.

We are aware that the above definition is not quite the traditional one. Here, edges are derived

information from the systems.

Definition 3 (Induced edges). The following defines the induced undirected edges:

E(G) ∶= {{v, v′} ∣ v.t = -x.s and v′.t′ = x.s and σ.v, σ′.v′ ∈ G with σ.v ≠ σ′.v′}

The following defines the induced directed edges:

⇀
E(G) ∶= {(v, v′) ∣ v.t = -x.s and v′.t′ = x.s and σ.v, σ′.v′ ∈ G with σ.v ≠ σ′.v′} .

Notice that in both these conventions, geometrical information is encoded by means of names.

Most often we want those names to indeed describe the geometry, and nothing else. In other

words the geometry and the dynamics that governs its evolution need be renaming-invariant.

Definition 4 (Renaming and renaming-invariance). A renaming is an isomorphism R ∶ N [K] →
N [K], i.e. a bijection such that

R(u.t) = R(u).t R(u ∨ v) = R(u) ∨R(v)
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It is fully specified by its action on domain K.

It is extended to V by letting R(-x) ∶= -R(x), with -(u.t) ∶= -u.t and -(u ∨ v) ∶= -u ∨ -v.

It is extended to S by letting R(σ.v) = σ.R(v). It is extended to G by acting pointwise. It is extended

to H by linearity.

Let A be an operator over graphs, possibly parameterized by v ∈ V. It said to be renaming-

invariant if and only if RAv = AR(v)R.

Renaming-invariance and its consequences are worked out in appendix B. For instance it leads

to ±-name-preservation. Yet, several results of this paper require full name-preservation:

Definition 5 (Name-preservation). Let A be an operator over graphs. It is said to be name-

preserving (n.-p. for short) if and only if V (G) /≙ V (H) implies ⟨H ∣A ∣G⟩ = 0.

Again, notice that name-preservation does not prevent node-creation, for instance node 2 is

allowed to split into 2.l and 2.r. Nor does it prevent edge-creation, for instance both 2.l and 2.r

will then be connected to node -2, say.

Throughout the paper we track what becomes of the renaming-invariance and name-preservation

properties, making it clear whenever they are used as necessary premises of the established result.

Interestingly traceouts preserve. . . name-preservation.

III. GENERALIZED TENSORS AND TRACES OVER QUANTUM NETWORKS

We now address this problem by generalizing the notions of partial traces and tensor products,

so that we are able to partition systems in a modular fashion, i.e. parametrized by predicates,

referred to as ’restrictions’.

Definition 6 (Restrictions, partial trace, comprehension). Consider a function

χ ∶ G → G
χ ∶ G↦ Gχ ⊆ G

It is called a restriction if and only if Gχχ = Gχ, where we introduced the notation Gχζ ∶= (Gχ)ζ
and thus χζ ∶= ζ ○ χ. We also write Gχ ∶= G ∖Gχ even though χ is not necessarily a restriction.

A restriction is extensible if and only if Gχ ⊆H ⊆ G⇒Hχ = Gχ. Given ζ an extensible restriction,

ζr is the extensible restriction such that Gζr is induced by V (Gζ) and its r-neighbours according

to E(G). Similarly for
⇀
ζr and

⇀
E(G), where the r-neighours are those pointing toward V (Gζ).

Given χ, ζ two extensible restrictions, χ∪ ζ is the extensible restriction such that Gχ∪ζ ∶= Gχ ∪Gζ .
A restriction is pointwise if and only if Gχ = ⋃σ.v ∈ G{σ.v}χ.

They induce a partial trace: (∣G⟩ ⟨H ∣)∣χ ∶= ∣Gχ⟩ ⟨Hχ∣ ⟨Hχ∣Gχ⟩.
Let ρ denote a trace-class operator.

ρ∣χ is defined from the above by linear extension.

ρ∣∅ denotes the usual, full trace Tr(ρ).

We use the notation [χ, ζ] = 0 to mean that χζ = ζχ.

We say that ζ is comprehended within χ and write ζ ⊑ χ if and only if Gχζ = Gζ and

⟨Hζ ∣Gζ⟩ = ⟨Hχζ ∣Gχζ⟩ ⟨Hχ∣Gχ⟩ (2)

as illustrated in Fig. 3.
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FIG. 3. Comprehension of restrictions ζ ⊑ χ demands condition Eq. (2), which states that for any G, H,

equality outside the small restriction ζ (i.e. whether Gζ =Hζ) may be decomposed as both equality outside

ζ but inside χ (i.e. whether Gχζ =Hχζ), and equality outside χ (i.e. whether Gχ =Hχ). Condition Eq. (2)

may fail if a difference lying within ζ influences the way χ partitions the outside of ζ. The condition holds

in most relevant cases as shown by Prop. 2. It is needed to establish Lem. 8.

FIG. 4. Generalized partial trace. Across figures v ∶= y ∨ -z, restriction ζv retains vertex v. Top: the ket and

bra do not coincide on the complement of the neighbourhood, this goes to zero. Middle: the ket and bra

coincide beyond first neighours, this goes to the restriction of the ket and bra on first neighbours. Below:

with oriented edges, the neighbours are those which can signal to v. Overall: the question of what to do

with edges of the frontier zone does not arise, as edges are derived information.

Soundness. We need to show that if χ, ζ are two extensible restrictions, then ζr and χ ∪ ζ are

extensible restrictions. See Lemmas 3, 4, 5.

Notice that restrictions are in general oblique projections, aka non-hermitian projections. They

must not be confused with the partial traces (.)∣χ that they induce, as illustrated in Fig. 4.
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FIG. 5. Generalized tensor product. Here, χv ∶= ζ1v and ⇀χv ∶=
⇀

ζ1v Top: the two graphs do not correspond

to a disk around v and its complement, this goes to zero. Middle: the two graphs correspond to a disk and

its complement. Moreover, an edge between them can be derived from names. Below: Same with oriented

edges.

Now, the tensor product corresponding to a restriction χ works by weaving a restricted graph

∣Gχ⟩ and its complement ∣Gχ⟩ back together, as illustrated in Fig. 5 and formalized as follows.

Definition 7 (Tensor, consistency). Every restriction χ induces a tensor:

∣L⟩ χ ∣R⟩ ∶=
⎧⎪⎪⎨⎪⎪⎩

∣G⟩ when L = Gχ,R = Gχ for some G ∈ G
0 otherwise

When working over constrained configurations, G needs belong to C in the above, if not we return

the null vector.

∣ψ⟩ χ ∣ψ′⟩ is defined from the above, by bilinear extension.

∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣ ∶= (∣G⟩ χ ∣G′⟩) (⟨H ∣ χ ⟨H ′∣).

For any two operators A,B, we define A χ B from the above by bilinear extension.

∣ψ⟩ , ∣ψ′⟩ are χ-consistent if and only if ⟨G∣ψ⟩ ⟨G′∣ψ′⟩ ≠ 0 implies ∣G⟩ χ ∣G′⟩ ≠ 0.

ρ, σ are χ-consistent if and only if ρGHσG′H′ ≠ 0 implies ∣G⟩ χ ∣G′⟩ ≠ 0 ≠ ∣H⟩ χ ∣H ′⟩, where ρGH ∶=
⟨G∣ρ ∣H⟩.
A is χ-consistent-preserving if and only if ⟨H ∣A ∣Gχ⟩ ≠ 0 entails ∣H⟩ χ ∣Gχ⟩ ≠ 0, and ⟨H ∣A† ∣Gχ⟩ ≠ 0

entails ∣H⟩ χ ∣Gχ⟩ ≠ 0.

To get an intuition for the strictness of this notion of tensor product, consider three disjoint

non-empty graphs G, M, H such that G∪M ∪H is defined. With the above definition, ∣G ∪M⟩ χ

∣M ∪H⟩ = 0, whatever the χ. This may seem unnecessarily strict; a more permissive alternative

would have been to let ∣G ∪M⟩ χ ∣M ∪H⟩ = ∣G ∪M ∪H⟩. This, however, would entail A χ I = I,

which we will find we do not want (cf. Prop. 3).

These generalized partial traces and tensors are powerful tools, but working with them some-

times feels like a step into the unknown. Our old intuitions about traceouts and tensors guide us,

but sometimes they mislead us. We have as a result had to check the conditions of applications

of several basic facts about the way these tensor and tracing operators interact with one another,

leading to the Toolbox of table I.

Again a quick note on notations. Throughout the paper, greek symbols ρ, σ represent trace class

operators (e.g. states), capital letters A,B represent bounded operators (e.g. transformations and

observables.

A good rule of thumb is that usual intuitions about A χ B will carry through provided that

χ-consistency conditions are met. In fact much of the attention in the proofs is spent keeping track
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TABLE I. Mathematical toolbox.

Lem. 2 ⟨H ∣G⟩ = ⟨Hχ∣Gχ⟩ ⟨Hχ∣Gχ⟩

Lem. 3. χχ = χ χχ = ∅

(ρ ∣G⟩ ⟨H ∣)∣∅ = ⟨H ∣ρ ∣G⟩ (ρA)∣∅ = (Aρ)∣∅ (αρ)∣χ = α(ρ∣χ)

If ∣G⟩ χ ∣G′⟩ ≠ 0

then ∣G⟩ χ ∣G′⟩ = ∣G ∪G′⟩ and (∣G⟩ χ ∣G′⟩)χ = ∣G⟩

ρ∣χ = ∑G,H∈G, Gχ=Hχ
ρGH ∣Gχ⟩ ⟨Hχ∣

Lem. 8 If ζ ⊑ χ, (ρ∣χ)∣ζ = ρ∣ζ and A ζ-local is χ-local.

Lem. 6 A χ B = ∑G,H∈G AGχHχBGχHχ
∣G⟩ ⟨H ∣ A χ I = A χ Iχ

Lem. 7 If [χ, ζ] = [χ, ζ] = [χ, ζ] = [χ, ζ] = 0,

then (A ζ B) χ (C ζ D) = (A χ C) ζ (B χ D)

Lem. 9 If ρ, σ χ-consistent, (ρ χ σ)∣χ = ρ σ∣∅

If ζ ⊑ χ, ρ, σ χ-consistent, (ρ χ σ)∣ζ = ρ∣ζ σ∣∅

Lem. 10 If [χ, ζ] = [χ, ζ] = [χ, ζ] = [χ, ζ] = 0, and ρ, σ χ-consistent,

(ρ χ σ)∣ζ = ρ∣ζ χ σ∣ζ

Lem. 11 (A χ I) ∣G⟩ = A ∣Gχ⟩ χ ∣Gχ⟩.

If A, A′, B, B′ are χ-consistent-preserving,(A′ χ B′)(A χ B) = A′A χ B′B.

of which terms get zeroed by the χ.

Another good rule of thumb is that our usual intuitions about subsystems ζ of a wider system

χ will carry through, provided that the comprehension condition given by Eq. (2) is met, which is

true of most natural cases thanks to name-preservation, see Prop. 2.

Sometimes the two rules of thumb interact, e.g. it is the name-preservation assumption that

helps meet χ-consistency, as in Prop. 7.

Properties of traceouts over quantum networks

An early attempt to define a (non-modular) partial trace for quantum causal graph dynamics

actually failed to exhibit positivity-preservation, i.e. there exists ρ non-negative with ρ∣χ not

non-negative [4]. Here we show that partial traces are actually positive-preserving. In fact we

check they are completely-positive-preserving, meaning that they remain positive-preserving when
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tensored with the identity, as required for general quantum operations. We do the same for trace-

preservation and name-preservation.

We denote by ((.)∣χ ζ I) the linear extension of the map ρ ζ σ ↦ ρ∣χ ζ σ.

Proposition 1 (Traceouts positivity-preservation, trace-preservation, name-preservation). The

map ρ ↦ ((.)∣χ ζ I)(ρ) over trace class operators is completely positive-preserving and name-

preservation preserving.

If moreover ∣Gζχ⟩ ζ ∣Gζ⟩ ≠ 0, then the same map is trace-preserving.

Positivity preservation. A trace class operator ρ is a compact operator, hence it is non-negative if

and only if it has the form ∑i ∣ψi⟩ ⟨ψi∣.

Consider some ∣ψ⟩ = ∑
G, G′ ∈ G

αGG′ ∣G⟩ χ ∣G′⟩

⟨ψ∣ = ∑
H, H′ ∈ G

α∗HH′ ⟨H ∣ χ ⟨H ′∣

∣ψ⟩ ⟨ψ∣ = ∑
G, G′, H, H′ ∈ G

αGG′α
∗

HH′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

(∣ψ⟩ ⟨ψ∣)
∣χ = ∑

G, G′, H, H ′ ∈ G
∣G⟩ χ ∣G′⟩ ≠ 0

∣H⟩ χ ∣H ′⟩ ≠ 0

αGG′α
∗

HH′ ∣G⟩ ⟨H ∣ ⟨H ′∣G′⟩

= ∑
G, H, K ∈ G
∣G⟩ χ ∣K⟩ ≠ 0

∣H⟩ χ ∣K⟩ ≠ 0

αGKα
∗

HK ∣G⟩ ⟨H ∣

= ∑
K ∈ G

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
G ∈ G
∣G⟩ χ ∣K⟩ ≠ 0

αGK ∣G⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
H ∈ G
∣H⟩ χ ∣K⟩ ≠ 0

α∗HK ⟨H ∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ∑
K ∈ G

∣φK⟩ ⟨φK ∣

ρ∣χ = (∑
i

∣ψi⟩ ⟨ψi∣)
∣χ

= ∑
i, K ∈ G

∣φi,K⟩ ⟨φi,K ∣

[Complete positivity preservation]

∣G⟩ ⟨H ∣ = ∣Gζ⟩ ⟨Hζ ∣ ζ ∣Gζ⟩ ⟨Hζ ∣
((.)∣χ ζ I) ∣G⟩ ⟨H ∣ = ∣Gζχ⟩ ⟨Hζχ∣ ⟨Hζχ∣Gζχ⟩ ζ ∣Gζ⟩ ⟨Hζ ∣
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Let α′GχKG′ ∶=
⎧⎪⎪⎨⎪⎪⎩

αGG′ if ∣Gχ⟩ χ ∣K⟩ = ∣G⟩
0 otherwise

.

Consider some ∣ψ⟩ = ∑
G, G′ ∈ G

αGG′ ∣G⟩ ζ ∣G′⟩

⟨ψ∣ = ∑
H, H′ ∈ G

α∗HH′ ⟨H ∣ ζ ⟨H ′∣

∣ψ⟩ ⟨ψ∣ = ∑
G, G′, H, H′ ∈ G

αGG′α
∗

HH′ ∣G⟩ ⟨H ∣ ζ ∣G′⟩ ⟨H ′∣

((.)∣χ ζ I) (∣ψ⟩ ⟨ψ∣) = ∑
G, G′, H, H ′ ∈ G
∣G⟩ ζ ∣G′⟩ ≠ 0

∣H⟩ ζ ∣H ′⟩ ≠ 0

αGG′α
∗

HH′ ∣Gχ⟩ ⟨Hχ∣ ⟨Hχ∣Gχ⟩ ζ ∣G′⟩ ⟨H ′∣

= ∑
G, H, G′, H ′ ∈ G
Gχ =Hχ

∣G⟩ ζ ∣G′⟩ ≠ 0

∣H⟩ ζ ∣H ′⟩ ≠ 0

αGG′α
∗

HH′ ∣Gχ⟩ ⟨Hχ∣ ζ ∣G′⟩ ⟨H ′∣

= ∑
Gχ, Hχ, K, G

′, H ′ ∈ G
(∣Gχ⟩ χ ∣K⟩) ζ ∣G′⟩ ≠ 0

(∣Hχ⟩ χ ∣K⟩) ζ ∣H ′⟩ ≠ 0

α′GχKG′α
′∗

HχKH′ ∣Gχ⟩ ⟨Hχ∣ ζ ∣G′⟩ ⟨H ′∣

∣φK⟩ ∶= ∑
Gχ, G

′ ∈ G
(∣Gχ⟩ χ ∣K⟩) ζ ∣G′⟩ ≠ 0

α′GχKG′ ∣Gχ⟩ ζ ∣G′⟩

((.)∣χ ζ I) (∣ψ⟩ ⟨ψ∣) = ∑
K ∈ G

∣φK⟩ ⟨φK ∣

((.)∣χ ζ I)(∑
i

∣ψi⟩ ⟨ψi∣) = ∑
K ∈ G, i

∣φi,K⟩ ⟨φi,K ∣

[Name-preservation preservation]

An operator ρ is name-preserving if and only if it is a sum of terms of the form ∣G⟩ ⟨H ∣ with

V (G) ≙ V (H).

∣G⟩ = ∣Gχ⟩ χ ∣Gχ⟩
⟨H ∣ = ⟨Hχ∣ χ ⟨Hχ∣

(∣G⟩ ⟨H ∣)
∣χ = ∣Gχ⟩ ⟨Hχ∣ ⟨Hχ∣Gχ⟩

When this is non-zero, V (Gχ) = V (Hχ).
Then by Lem. 1, V (Gχ) = V (G) ∖ V (Gχ) ≙ V (H) ∖ V (Hχ) = V (Hχ).
So, ρ∣χ is a sum of terms of the form ∣Gχ⟩ ⟨Hχ∣ with V (Gχ) ≙ V (Hχ).

[Complete name-preservation preservation]

An operator ρ is name-preserving if and only if it is a sum of terms of the form ∣G⟩ ⟨H ∣ with
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FIG. 6. When a “wider” traceout decoheres an “inner” traceout.

V (G) ≙ V (H).

∣G⟩ ⟨H ∣ = ∣Gζ⟩ ⟨Hζ ∣ ζ ∣Gζ⟩ ⟨Hζ ∣
((.)∣χ ζ I) ∣G⟩ ⟨H ∣ = ∣Gζχ⟩ ⟨Hζχ∣ ⟨Hζχ∣Gζχ⟩ ζ ∣Gζ⟩ ⟨Hζ ∣

= ⟨Hζχ∣Gζχ⟩ (∣Gζχ⟩ ζ ∣Gζ⟩) (⟨Hζχ∣ ζ ⟨Hζ ∣)

When this is non-zero, V (Gζχ) = V (Hζχ). Let ∣G′⟩ ∶= ∣Gζχ⟩ ζ ∣Gζ⟩ and ∣H ′⟩ ∶= ∣Hζχ⟩ ζ ∣Hζ⟩ .

Then by Lem. 1, V (G′) = V (G) ∖ V (Gζχ) ≙ V (H) ∖ V (Hζχ) = V (H ′).
So, ((.)∣χ ζ I)(ρ) is a sum of terms of the form ∣G′⟩ ⟨H ′∣ with V (G′) ≙ V (H ′).

[Trace Preservation]

Notice that ζχ ∪ ζ = ζχ.

((.)χ ζ I) (∣G⟩ ⟨H ∣) = (∣Gζ⟩ ⟨Hζ ∣)
∣χ

ζ ∣Gζ⟩ ⟨Hζ ∣

= (∣Gζχ⟩ ⟨Hζχ∣ ζ ∣Gζ⟩ ⟨Hζ ∣) ⟨Hζχ∣Gζχ⟩

= ∣Gζχ∪ζ⟩ ⟨Hζχ∪ζ ∣ ⟨Hζχ∣Gζχ⟩
(((.)χ ζ I) (∣G⟩ ⟨H ∣))

∣∅
= ⟨Hζχ∪ζ ∣Gζχ∪ζ⟩ ⟨Hζχ∣Gζχ⟩

By Lem. 2 = ⟨H ∣G⟩

Even though, ζ2vζ
1
v = ζv, i.e. ζ1v is included in ζ2v in a natural sense, the comprehension condition

Eq. (2) does not hold in general and thus ζ1v ⋢ ζ2v . As a consequence, Lem. 8 does not apply

and it is not the case that ρ
∣ζ1v

= (ρ
∣ζ2v

)
∣ζ1v

, as shown in Fig. 6, where we see that ρ
∣ζ2v

decoheres

certain superpositions of names whilst ρ
∣ζ1v

does not. This counter-intuitive behaviour disappears

over name-preserving states.

Proposition 2 (Name-preservation and comprehension). Consider ζ an extensible restriction such

that χ ∶= ζr verifies χζ = ζ.

When V (G) ≙ V (H), we have ⟨Hζ ∣Gζ⟩ = ⟨Hχζ ∣Gχζ⟩ ⟨Hχ∣Gχ⟩ .
Hence, over name-preserving superselected states and operators, ζ ⊑ χ.
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FIG. 7. Local operators. Left: A χ-local will only modify Gχ. Middle: ζv-local operator τv just toggles

a ’black/blue’ bit inside the system at v. Right: χv-local operator Kv is a reversible update rule which

computes the future state of the system at v (according to M , see Fig. 9) and toggles it out, whilst

attempting to leave the rest mostly unchanged, cf. Th. 1.

Proof. The LHS and RHS of Eq. (2) can either be 0 or 1.

[RHS=1 ⇒LHS=1]

RHS=1 implies Hχζ = Gχζ and Hχ = Gχ. Thus, Hχζ∪χ =Hχζ ∪Hχ = Gχζ ∪Gχ = Gχζ∪χ.

But ζ = χζ = χζ ∪ χ. So, Hζ = Gζ , i.e. LHS=1.

[LHS=1 ⇒RHS=1]

LHS=1 implies Hζ = Gζ =K.

Combined with name-preservation, V (Hζ) = V (H) ∖ V (Hζ) ≙ V (G) ∖ V (Gζ) = V (Gζ).
Thus, Hζ and Gζ have the same r-neighbours in K, namely Hχζ = Gχζ , and the same complement

to the r-neighbours, namely Hχ = Gχ. Hence RHS=1.

IV. LOCAL OPERATORS OVER QUANTUM NETWORKS

Since a restriction χ isolates a part of each possible graph, one can introduce the notion of a

χ-local operator, one that only acts on the restriction χ, leaving its complement χ unchanged. I.e.

a χ-local operator acts only on the left of χ.

Definition 8 (Locality). A is χ-local if and only if

⟨H ∣A ∣G⟩ = ⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩ (3)

A is strictly χ-local if, moreover, A†A and AA† are χ-local.

In particular, every unitary χ-local is strictly χ-local.

Soundness. [Unitary case] Suppose U is unitary χ-local. Then U †U = U †U = I, which is χ-local

by Lem. 2.

The standard way to state the locality of A is to write it as A = B ⊗ I. Here follows a general-

ization of this statement, a key point that allows for this generalisation is that tensoring with the

identity zeroes out the non-local terms of B.

Proposition 3 (Operational locality). A is χ-local if and only if A = A χ I.

For all B, B χ I is χ-local.

Moreover, if B is n.-p., so is B χ I.
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Proof. [Preliminary]

A χ I =
⎛
⎝ ∑
G,H∈G

⟨H ∣A ∣G⟩ ∣H⟩ ⟨G∣
⎞
⎠

χ
⎛
⎝∑K∈G

∣K⟩ ⟨K ∣
⎞
⎠

=
⎛
⎝ ∑
G,H∈G

⟨H ∣A ∣G⟩ ∣H⟩ ⟨G∣
⎞
⎠

χ
⎛
⎝ ∑
G′,H′∈G

⟨H ′∣G′⟩ ∣H ′⟩ ⟨G′∣
⎞
⎠

= ∑
G,H ∈ G
G′,H ′ ∈ G

⟨H ∣A ∣G⟩ ⟨H ′∣G′⟩ (∣H⟩ ⟨G∣ χ ∣H ′⟩ ⟨G′∣)

By Lem. 6 = ∑
G,H∈G

⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩ ∣H⟩ ⟨G∣

[First part]

A χ-local⇔ ⟨H ∣A ∣G⟩ = ⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩
⇔ A = ∑

G,H∈G

⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩ ∣H⟩ ⟨G∣ = A χ I

[Second part]

⟨H ∣ (B χ I) ∣G⟩ = ⟨Hχ∣B ∣Gχ⟩ ⟨Hχ∣Gχ⟩ by the preliminaries. So, B χ I is χ-local.

We show that (B χ I) = ((B χ I) χ I). By preliminaries:

⟨H ∣ ((B χ I) χ I) ∣G⟩ = ⟨Hχ∣ (B χ I) ∣Gχ⟩ ⟨Hχ∣Gχ⟩
By prelim. = ⟨Hχχ∣B ∣Gχχ⟩ ⟨Hχχ∣Gχχ⟩ ⟨Hχ∣Gχ⟩

By idempotency and Lem 3 = ⟨Hχ∣B ∣Gχ⟩ ⟨∅∣∅⟩ ⟨Hχ∣Gχ⟩
= ⟨Hχ∣B ∣Gχ⟩ ⟨Hχ∣Gχ⟩

By prelim. = ⟨H ∣ (B χ I) ∣G⟩

[Name-preserving case]

A matrix B is n.-p. if and only if it is a sum of terms of the form ∣G⟩ ⟨H ∣ with V (G) ≙ V (H).
Then, B χ I is a sum of terms of the form ∣G′⟩ ⟨H ′∣ = (∣G⟩ χ ∣K⟩) (⟨H ∣ χ ⟨K ∣), with V (G′) =
V (G) ∪ V (K) ≙ V (H) ∪ V (K) = V (H ′).

Proposition 4 (Strict locality and consistency). A is strictly χ-local if and only if A is χ-local

and χ-consistent-preserving.

Proof. [Preliminary]

Notice that A† is also χ-consistent-preserving by the symmetry of the definition, and χ-local

since

⟨G∣A† ∣H⟩ = ⟨H ∣A ∣G⟩∗

= ⟨Hχ∣A ∣Gχ⟩ ∗ ⟨Hχ∣Gχ⟩∗

= ⟨Gχ∣A † ∣Hχ⟩ ⟨Gχ∣Hχ⟩
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FIG. 8. Strict locality. 1/ Local but not strictly. Let χ ∶= ζ2x. Consider A = ∣1⟩ ⟨0∣. It is χ-local because

⟨H ∣A ∣G⟩ ≠ 0 if and only if ∣G⟩ = ∣Gχ⟩ = ∣0⟩ and ∣H⟩ = ∣Hχ⟩ = ∣1⟩. It is not strictly χ-local because

⟨02∣A†A ∣02⟩ = 0 ≠ 1 = ⟨0∣A†A ∣0⟩ ⟨2∣2⟩. It is not χ-consistent-preserving because ∣0⟩ χ ∣2⟩ ≠ 0 yet ∣1⟩ χ ∣2⟩ = 0.

2/ Strictly local. Let ξ be the restriction that selects ∣0⟩ or ∣1⟩ whatever their context, and returns the empty

graph if they do not occur. Then U ∶= (∣0⟩ ⟨1∣+ ∣1⟩ ⟨0∣+ ∣∅⟩ ⟨∅∣) ξ I is unitary, strictly ξ-local and ξ-consistent

preserving.

[⇒]

Notice that A χ-consistent-preserving is equivalent to ∣∣ (A ∣Gχ⟩) χ ∣Gχ⟩ ∣∣ = ∣∣A ∣Gχ⟩ ∣∣ and

∣∣ (A† ∣Gχ⟩) χ ∣Gχ⟩ ∣∣ = ∣∣A† ∣Gχ⟩ ∣∣. Indeed, the only reason why the norm conditions would not

hold, would be if some ∣H⟩ was such that ⟨H ∣A ∣Gχ⟩ or ⟨H ∣A† ∣Gχ⟩, and yet ∣H⟩ χ ∣Gχ⟩ = 0, i.e. if

A weren’t χ-consistent.

Since A is χ-local, ∣∣A ∣G⟩ ∣∣ = ∣∣ (A ∣Gχ⟩) χ ∣Gχ⟩ ∣∣. But since A†A is χ-local we also have that

∣∣A ∣G⟩ ∣∣ = ⟨G∣A†A ∣G⟩
= ⟨Gχ∣A†A ∣Gχ⟩ ⟨Gχ∣Gχ⟩
= ∣∣A ∣Gχ⟩ ∣∣

So the first norm condition is fullfilled. Similarly with A† for the second norm condition.

[⇐]

By Prop. 3, A = A χ I and A† = A† χ I.

By Lem. 11, A†A = A†A χ I and AA† = AA† χ I.

Thus A is strictly χ-local.

An operator A may sometimes be χ-local but not strictly χ-local, see Fig. 8. Since such an A

is not consistent-preserving, Lem. 11 fails, it follows that the composition of two χ-local operators

is not always χ-local.

None of these issues arise, however, if A is unitary, or if it is just χ-consistent-preserving, as is the

case of U in Fig.8-2. These entail strict χ-locality, which is composable by Prop. 3 and Lem. 11.

A. Locality in the Heisenberg picture

The result of an χ-local observable on ρ solely depends on its partial trace ρ∣χ.

Proposition 5 (Dual locality). A is χ-local if and only if (Aρ)∣∅ = (Aρ∣χ)∣∅.
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Proof. [⇒]

(A ⟨G∣H⟩)
∣∅
= ⟨H ∣A ∣G⟩
= ⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩
= (A ∣Gχ⟩ ⟨Hχ∣ ⟨Hχ∣Gχ⟩)∣∅
= (A (⟨G∣H⟩)

∣χ)
∣∅

[⇐]

⟨H ∣A ∣G⟩ = (A ∣G⟩ ⟨H ∣)
∣∅

= (A (∣G⟩ ⟨H ∣)
∣χ)
∣∅

= (A ∣Gχ⟩ ⟨Hχ∣ ⟨Hχ∣Gχ⟩)∣∅
= ⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩

The above proposition states that ρ∣χ contains the part of ρ that is observable by χ-local

operators. The next proposition states that ρ∣χ does contain anything more.

Proposition 6 (Local tomography). If for all A χ-local (Aρ)∣∅ = (Aσ)∣∅ then ρ∣χ = σ∣χ.

Moreover, if ρ, σ are name-preserving and for all A χ-local and name-preserving (Aρ)∣∅ = (Aσ)∣∅
then ρ∣χ = σ∣χ.

Proof. In general, ρ∣χ = ∑Gχ, Hχ ∈ Gχ αGχHχ ∣Gχ⟩ ⟨Hχ∣ and σ∣χ = ∑Gχ, Hχ ∈ Gχ βGχHχ ∣Gχ⟩ ⟨Hχ∣ .

Let E
HχGχ
χ ∶= ∣Hχ⟩ ⟨Gχ∣ and EHχGχ ∶= EHχGχχ

χ I, which is local by Prop. 3.

We have (EHχGχρ)
∣∅
= (EHχGχρ∣χ)

∣∅
= (EHχGχχ ρ∣χ)

∣∅

= αGχHχ , as the following shows:

(EHχGχρ∣χ)
∣∅
= ∑
G′χ, H′χ ∈ Gχ K ∈ G

αG′χH′χ ((∣Hχ⟩ χ ∣K⟩) (⟨Gχ∣ χ ⟨K ∣) ∣G′

χ⟩ ⟨H ′

χ∣)∣∅

= ∑
G′χ, H′χ ∈ Gχ K ∈ G

αG′χH′χ (⟨Gχ∣ χ ⟨K ∣) ∣G′

χ⟩ ⟨H ′

χ∣ (∣Hχ⟩ χ ∣K⟩)

(⟨Gχ∣ χ ⟨Gχ∣) ∣G′

χ⟩ = (⟨Gχ∣ χ ⟨Gχ∣) (∣G′

χχ⟩ χ ∣G′

χχ⟩)
By idempotency. = (⟨Gχ∣ χ ⟨Gχ∣) (∣G′

χ⟩ χ ∣∅⟩)
= ⟨Gχ∣G′

χ⟩ ⟨Gχ∣∅⟩
(EHχGχρ∣χ)

∣∅
= ∑
G′

χ, H
′

χ ∈ Gχ K ∈ G
∣Gχ⟩ χ K ≠ 0

∣Hχ⟩ χ K ≠ 0

αG′χH′χ ⟨Gχ∣G′

χ⟩ ⟨K ∣∅⟩ ⟨H ′

χ∣Hχ⟩ ⟨∅∣K⟩

= αGχHχ

so (n.-p.) χ-local ”measurements” can tell any difference between ρ∣χ and σ∣χ.

[Name-preserving case]

In this case, ρ∣χ = ∑ Gχ, Hχ ∈ Gχ
V (Gχ) ≙ V (Hχ)

αGχHχ ∣Gχ⟩ ⟨Hχ∣ and σ∣χ = ∑ Gχ, Hχ ∈ Gχ
V (Gχ) ≙ V (Hχ)

βGχHχ ∣Gχ⟩ ⟨Hχ∣ .
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The fact that V (Gχ) ≙ V (Hχ) comes from the assumption that ρ, σ are n.-p. and the fact that

the partial trace preserves that by Prop. 1.

Then E
HχGχ
χ ∶= ∣Hχ⟩ ⟨Gχ∣ and EHχGχ ∶= EHχGχχ

χ I are n.-p. by Prop. 1.

Notice that if we stick to n.-p. observables, we limit our power of observation. For instance

whenever V (G) /≙ V (H), n.-p. observables cannot tell the difference between:

ρ = 1

2
(∣G⟩ + ∣H⟩) (⟨G∣ + ⟨H ∣) and ρ̃ = 1

2
∣G⟩ ⟨G∣ + 1

2
∣H⟩ ⟨H ∣

i.e. they cannot read-out superpositions of supports coherently. That is unless states are n.-p.,

too.

B. Extending unitaries acting on a subnetwork

Often we are given a operator over Hχ, and we want to extend it to H. In standard quantum

theory it is easy to show that any such unitary operator can be extended, with the result being

unitary. To generalise this to unitaries over quantum networks we will need name-preservation.

Proposition 7 (Unitary extension). Consider χ pointwise.

If U is a n.-p. operator over Hχ, then U χ-consistent-preserving.

If U is a n.-p. unitary over Hχ, then U ′ ∶= U χ I is a n.-p. unitary with U ′† = U † χ I.

If moreover χ and U are renaming-invariant, so is U ′.

Proof. [Consistency-preservation]

∣G′

χ⟩ χ ∣Gχ⟩ ≠ 0 and ∣Gχ⟩ χ ∣G′

χ⟩ ≠ 0.

We need to prove first that ⟨G′

χ∣U ∣Gχ⟩ ≠ 0 entails ∣G′

χ⟩χ ∣Gχ⟩ ≠ 0 and second that ⟨G′

χ∣U † ∣Gχ⟩ ≠ 0

entails ∣G′

χ⟩ χ ∣Gχ⟩ ≠ 0.

Let us prove the first.

Since U is over Hχ, U ∣Gχ⟩ = ∑Hχ ∈ Gχ UHχGχ ∣Hχ⟩.
For any G, consider Hχ such that ⟨Hχ∣U ∣Gχ⟩ ≠ 0 and construct the graph G′ =Hχ ∪Gχ.

Notice that this union is always defined since U is assumed n.-p., and hence N [V (Gχ)] ∩
N [V (Gχ)] = ∅ entails N [V (Hχ)] ∩ N [V (Gχ)] = ∅ — assuming that we work over the set of

all graphs G. In general this could fail for some arbitrary constrained configurations C and a

restriction χ over it.

Moreover since χ is pointwise it verifies that G′

χ =Hχ and G′

χ = Gχ.

Thus, ∣Hχ⟩ χ ∣Gχ⟩ = ∣G′⟩ ≠ 0.

It follows that (U ∣Gχ⟩), ∣Gχ⟩ are χ-consistent.

Similarly for U †. Hence U is χ-consistent-preserving.

[Unitarity]

By Lem. 11,

(U χ I) (U † χ I) = (UU † χ I) = (I χ I) = I
(U † χ I) (U χ I) = (U †U χ I) = (I χ I) = I
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(U ∣Gχ⟩) χ ∣Gµ⟩ = ∑
Hχ ∈ Gχ

UHχGχ (∣Hχ⟩ χ ∣Gχ⟩)

∣∣U ′ ∣G⟩ ∣∣2 = ∑
Hχ, H′χ∈ Gχ

U∗

H′χGχUHχGχ (⟨H ′

χ∣ χ ⟨Gχ∣) (∣Hχ⟩ χ ∣Gχ⟩)

= ∑
Hχ, H

′

χ ∈ Gχ
∣Hχ⟩ χ ∣Gχ⟩ ≠ 0

∣H ′

χ⟩ χ ∣Gχ⟩ ≠ 0

U∗

H′χGχUHχGχ ⟨H ′

χ∣Hχ⟩ ⟨Gχ∣Gχ⟩

By U, I χ-consistent-preserving. = ∑
Hχ, H′χ∈ Gχ

U∗

H′χGχUHχGχ ⟨H ′

χ∣Hχ⟩ ⟨Gχ∣Gχ⟩

By unitarity of U. = ∑
Hχ ∈ Gχ

U∗

HχGχUHχGχ = 1

Thus U ′ is an isometry, i.e. U ′†U ′ = I.

Notice that (U † χ I) is its right inverse since by means of Lem. 11.

Since U is over Hχ, we have that U †preserves the range of χ, and so U †, I are χ-consistent-

preserving.

Thus,

(U † χ I) ∣G⟩ = ∑
Hχ ∈ Gχ

U∗

GχHχ (∣Hχ⟩ χ ∣Gχ⟩)

U ′ (U † χ I) ∣G⟩ = ∑
Hχ ∈ Gχ
∣Hχ⟩ χ ∣Gχ⟩ ≠ 0

UH′χHχU
∗

GχHχ (∣H ′

χ⟩ χ ∣Gχ⟩)

By U †, I χ-consistent-preserving. = ∑
Hχ ∈ Gχ

UHχH′χU
∗

GχHχ (∣H ′

χ⟩ χ ∣Gχ⟩)

= ∑
Hχ ∈ Gχ

IH′χGχ (∣H ′

χ⟩ χ ∣Gχ⟩)

= ∣G⟩

[Name-preservation]

Follows from Prop. 3.

[Renaming-invariance]
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FIG. 9. Causal operators. Left: U χζ-causal may modify the whole of ρ. But it is such that ρ′∣ζ solely

depends on ρ∣χ. Right: χvζv-causal operator M propagates particles. They bounce on borders. Middle:

Causal H is involutive merges/splits all occurrences of these particular patterns, synchronously.

Let G′ = RG and H = RH ′.

⟨H ∣ (U χ I)R ∣G⟩ = ⟨H ∣ (U χ I) ∣G′⟩
= ⟨H ∣ (U χ I) (∣G′

χ⟩ χ ∣G′

χ⟩)
= (⟨Hχ∣ χ ⟨Hχ∣) (U ∣G′

χ⟩ χ ∣G′

χ⟩)
U

χ-consistent-preserving. = ⟨Hχ∣U ∣G′

χ⟩ ⟨Hχ∣G′

χ⟩
Since χ renaming-invariant. = ⟨Hχ∣UR ∣Gχ⟩ ⟨Hχ∣R ∣Gχ⟩
Since U renaming-invariant. = ⟨Hχ∣RU ∣Gχ⟩ ⟨Hχ∣R ∣Gχ⟩
Since χ renaming-invariant. = ⟨H ′

χ∣U ∣Gχ⟩ ⟨H ′

χ∣Gχ⟩
U χ-consistent-preserving. = (⟨H ′

χ∣ χ ⟨H ′

χ∣) (U ∣Gχ⟩ χ ∣Gχ⟩)
= ⟨H ′∣ (U χ I) (∣Gχ⟩ χ ∣Gχ⟩)
= ⟨H ∣R(U χ I) ∣G⟩

V. CAUSAL OPERATORS OVER QUANTUM NETWORKS

Consider two restrictions χ, ζ over networks, a χζ-causal operator is one which restricts infor-

mation propagation by imposing that region ζ at the next time step depends only upon region χ

at the previous time step. Subject to this constraint, χζ-causal operator will be permitted to edit

the entirety of the graphs they act on.

Definition 9 (Causality). U is χζ-causal if and only if

(UρU †)
∣ζ
= (Uρ∣χU †)

∣ζ
(4)
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FIG. 10. Causal operators yielding superpositions of states. Left: Instead of simply iterating M , we could

iterate MC, where C acts on every right-moving (resp. left-moving) particle by placing it in a superposition

of being right-moving with amplitude cos(θ) and left-moving with amplitude sin(θ) (resp. left-moving

with amplitude cos(θ) and right-moving with amplitude −sin(θ). Right: Instead of simply merging or

splitting according to H, we could do so in a superposition. Here the splitting applies with amplitude

sin(ϕ). Similarly the merge needs be applied with amplitude −sin(ϕ). Lastly, we may compose these, e.g.

U =H ′MC makes for an interesting quantum causal graph dynamics.

U is name-preserving χζ-causal if and only if it is n.-p. and for all ρ n.-p., Eq. (4) holds.

Notice that it is not the case that n.-p. causality implies causality. In particular, the identity

is n.-p. ζ2vζ
1
v -causal, but not ζ2vζ

1
v -causal, because ζ1v ⋢ ζ2v , as discussed in Fig. 6. That is unless

we restrict ourselves to n.-p. superselected states as in Prop. 2. This suggests that n.-p. causality

is potentially more relevant than causality.

A robust notion of causality ought to be composable.

Proposition 8 (Composability). Say that for all n, there exists m such that U,V are (n.-p.)

ζmζn-causal.

We have that for all n there exists m such that UV is (n.-p.) ζmζn-causal.

Proof. [⇒]

For all ρ (n.-p.),

(U (V ρV †)U †)
∣ζn

U caus. = (U (V ρV †)
∣ζk
U †)

∣ζn

V caus. = (U (V ρ∣ζmV †)
∣ζk
U †)

∣ζn

U caus. = (U (V ρ∣ζmV †)U †)
∣ζn

A. Causality in the Heisenberg picture

In the Heisenberg picture, it turns out that χζ-causality actually states that whatever can be

ζ-locally observed at the next time step, could be χ-locally observed at the previous time step.

Proposition 9 (Dual causality). U is (n.-p.) χζ-causal if and only if (it is n.-p. and) for all A

(n.-p.) ζ-local, U †AU is (n.-p.) χ-local.

If U is (n.-p.) χζ-causal, then for all A (n.-p.) strictly ζ-local, U †AU is (n.-p.) strictly χ-local.
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Proof. [⇒]

For all ρ (n.-p.), (UρU †)
∣ζ
= (Uρ∣χU †)

∣ζ
.

By Prop. 5, A ζ-local entail (AUρU †)
∣∅
= (AUρ∣χU †)

∣∅
.

Thus, for all ρ, (U †AUρ)
∣∅
= (U †AUρ∣χ)

∣∅
.

(For the name-preserving case, then U, A are n.-p., so U †AU is n.-p., and so if ρ is not n.p.

both sides of the equation are zero, so the above does stand for all ρ.)

So, by Prop. 5, B = U †AU is (n.-p.) χ-local.

[ Strict⇒]

If A is strictly ζ-local then A†A and AA† are ζ-local.

From the above it follows that U †A†AU and UAA†U are χ-local.

But U †A†AU = U †A†UU †AU = B†B and UAA†U = UAUU †A†U = BB†.

So, B = U †AU is strictly χ-local.

[⇐]

For all A (n.-p.) ζ-local, U †AU is (n.-p.) χ-local. By Prop. 5, for all ρ, (U †AUρ)
∣∅

=
(U †AUρ∣χ)

∣∅
, from which it follows that for all A (n.-p.), for all ρ, (AUρU †)

∣∅
= (AUρ∣χU †)

∣∅
.

Finally by Prop. 6, for all ρ (n.-p.), we have(UρU †)
∣ζ
= (Uρ∣χU †)

∣ζ
.

(In the name-preserving case, by taking ρ to be n.-p. we have that ρ∣χ, UρU
†, Uρ∣χU

† are

n.-p, so that n.-p. local tomography can still be used to reach the final equality.)

Thus U is (n.-p.) χζ-causal.

Often we are given a causal operator over Hχ, and we want to extend it to a causal operator

over H, the above theorem on the dual notion of causality in the Heisenberg picture can be used

to show that such an extension is always possible.

Proposition 10 (Causal extension). First consider U a χ′ζ ′-causal operator and χ′ ⊑ χ, ζ ⊑ ζ ′.
Then U is an χζ-causal operator.

Second consider µ, ζ two restrictions such that [µ, ζ] = [µ, ζ] = [µ, ζ] = [µ, ζ] = 0, with µ pointwise

and ζ extensible. Consider U an n.-p. χζ-causal unitary operator over Hµ, and U ′ ∶= U µ I its

unitary extension.

Then U ′ is ξζ-causal operator, w.r.t the extensible restriction ξ ∶= µχ ∪ µζ.

Proof. [First part]

Suppose U is χ′ζ ′-causal and χ′ ⊑ χ, ζ ⊑ ζ ′.
Prop. 9 and using Lem. 8, A ζ-local implies A ζ ′-local implies U †AU χ′-local implies U †AU χ-

local. Thus A ζ-local implies U †AU χ-local which by Prop. 9 is equivalent to χζ-causality.

[Second part] From Lem. 5 we have [µ, ξ] = [µ, ξ] = [µ, ξ] = [µ, ξ] = 0, and ξ a restriction.
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Any A ζ-local is of the form A = L ζ I with L = ∑αGζHζ ∣Gζ⟩ ⟨Hζ ∣.

∣Gζ⟩ ⟨Hζ ∣ ζ I = (∣Gζµ⟩ ⟨Hζµ∣ µ ∣Gζµ⟩ ⟨Hζµ∣) ζ (Iζµ µ Iζµ)

Commut. & Lem. 7. = (∣Gµζ⟩ ⟨Hµζ ∣ ζ Iµζ) µ (∣Gµζ⟩ ⟨Hµζ ∣ ζ Iµζ)

U ′ (∣Gζ⟩ ⟨Hζ ∣ ζ I)U ′† = (U (∣Gµζ⟩ ⟨Hµζ ∣ ζ Iµζ)U
†) µ (∣Gµζ⟩ ⟨Hµζ ∣ ζ Iµζ)

(By dual caus.) = (MGµζHµζ χ Iµχ) µ (∣Gµζ⟩ ⟨Hµζ ∣ ζ Iµζ)

U over Hµ = (MGµζHµζ µχ Iµχ) µ (∣Gµζ⟩ ⟨Hµζ ∣ µχ Iµζ)

= (MGµζHµζ ξ Iµξ) µ (∣Gµζ⟩ ⟨Hµζ ∣ ξ Iµξ)

Commut. & Lem. 7. = (MGµζHµζ µ ∣Gµζ⟩ ⟨Hµζ ∣) ξ (Iµ µ Iµ)
Lem. 6. = (MGµζHµζ µ ∣Gµζ⟩ ⟨Hµζ ∣) ξ Iξ

U ′AU ′† =∑αGζHζ ((MGµζHµζ µ ∣Gµζ⟩ ⟨Hµζ ∣) ξ Iξ)

By bilinearity = (∑αGζHζ (MGµζHµζ µ ∣Gµζ⟩ ⟨Hµζ ∣)) ξ Iξ

So, U ′AU ′† is ξ-local by the Prop. 3. By Prop. 7, U ′ is name-preserving. By Prop. 9, U ′ is

ξζ-causal.

B. Operational causality

Causality is a basic Physics principle, anchored on the postulate that information-propagation

is bounded by the speed of light. Yet causality is a top-down axiomatic constraint.

When modelling an actual Physical phenomenon, we need a bottom-up, constructive way of

expressing the dynamics. We usually proceed by describing it in terms of local interactions, hap-

pening simultaneously and synchronously.

The following shows that causal operators are always of that form. Caution: this relies on Prop.

10, which does not hold for an arbitrarily constrained configuration space HC .

Theorem 1 (Renaming-invariant block decomposition). Let ζv be the pointwise restriction such

that ζv({σ′.u}) ∶=
⎧⎪⎪⎨⎪⎪⎩

{σ′.u} if u = v
∅ otherwise

.

Consider U a n.-p. unitary operator over H, which for all v ∈ V is χvζ
′

v-causal, with ζv ⊑ ζ ′v and

χv an extensible restriction.

Let Σ′ = {0,1} ×Σ, let G′ and let H′ be the corresponding Hilbert space.

Let µ be the pointwise restriction such that µ({b.σ.u}) ∶=
⎧⎪⎪⎨⎪⎪⎩

{0.σ.u} if b = 0

∅ otherwise
.

Let G′ be the set of finite subsets of S ′ ∶= Σ′ × V and H′ the Hilbert space whose canonical o.n.b is

G′.
Over H′, there exists τv a renaming-invariant strictly ζv-local unitary and Kv a strictly ξv-local

unitary such that

∀ ∣ψ⟩ ∈H′

µ ≅H, ( ∏
v ∈ V

τv)( ∏
v ∈ V

Kv) ∣ψ⟩ = U ∣ψ⟩
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where ξv ∶= µχv ∪ µζv is an extensible restriction. In addition, [Kx,Ky] = [τx, τy] = 0.

If moreover U is renaming-invariant, then so are U ′ and Kv.

Proof. Notice that µ is renaming-invariant.

Notice that ζv is renaming-invariant.

Clearly [µ, ζ] = [µ, ζ] = [µ, ζ] = [µ, ζ] = 0 as both are pointwise.

By Prop. 7, U ′ ∶= U µ I is unitary over H′.

Since µ is renaming-invariant, if U is renaming-invariant, so is U ′.

By Prop. 10 and since U is χvζ
′

v-causal, it is χvζv-causal, and U ′ is ξvζv-causal, with ξv ∶= µχv∪µζv
an extensible restriction.

Let the toggle τ be the bijection over systems such that τ(b.σ.u) = ¬b.σ.u.

Extend τ to G′ by acting pointwise upon each system, and to H′ by linearity.

Notice that it is unitary, name-preserving and renaming-invariant.

Notice that τ (∣Gµ⟩ µ ∣Gµ⟩) = (τ ∣Gµ⟩ µ τ ∣Gµ⟩).
It is also unitary over Hζv , thus τv ∶= τ ζ v I is unitary over H′ by Prop. 7.

By Prop. 3, τv is ζv-local. By unitarity, it is strictly ζv-local.

Since τ and ζv are renaming-invariant, so is τv.

Moreover,

( ∏
v ∈ V

τv) = τ

Notice also that [τu, τv] = 0.

Let Kv ∶= U ′†τvU
′.

It is name-preserving as a composition of name-preserving operators.

If U ′ is renaming-invariant, since τv is renaming-invariant, so is Kv.

Since adjunction by a unitary is a morphism, [Ku,Kv] = 0.

By Prop. 9, it is ξv-local. By unitarity, it is strictly ξv-local.
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Finally,

( ∏
v ∈ V

τv)( ∏
v ∈ V

Kv) ∣G⟩ = τ . . . (U ′†τv2U
′) (U ′†τv1U

′) ∣G⟩

By unitarity of U ′. = τ U ′† ( ∏
v ∈ V

τv) U ′ ∣G⟩

= τ U ′† τ U ′ ∣G⟩
By Prop. 7 = τ (U † µ I) τ (U µ I) (∣Gµ⟩ µ ∣Gµ⟩)

= τ (U † µ I) τ (U ∣Gµ⟩ µ ∣Gµ⟩)
Since U preserves the range of µ. = τ (U † µ I) (τ ∣Gµ⟩ µ τU ∣Gµ⟩)

= τ (U †τ ∣Gµ⟩ µ τU ∣Gµ⟩)
Since U preserves the range of µ. = τ2U ∣Gµ⟩ µ τ U †τ ∣Gµ⟩

Since τ involutive. = U ∣Gµ⟩ µ τ U †τ ∣Gµ⟩

( ∏
v ∈ V

τv)( ∏
v ∈ V

Kv) ∣Gµ⟩ = ( ∏
v ∈ V

τv)( ∏
v ∈ V

Kv)(∣Gµ⟩ µ ∣∅⟩)

= U ∣Gµ⟩ µ τ U †τ ∣∅⟩
By n.-p., = U ∣Gµ⟩ µ ∣∅⟩

= U ∣Gµ⟩

Notice that a similar theorem was proven in the particular case of ζrvζv-causal operators over

static networks first [5], and then for node-preserving but connectivity-varying networks [4], a.k.a

‘quantum causal graph dynamics’. The point here is that the result carries through to arbitrary

restrictions χv and over dynamical networks, both of which were non-trivial extensions. Moreover,

from a methodological point of view, we used this theorem a test bench, to make sure that we

had put together a set of mathematical tools that would be sufficient to combine and establish

non-trivial results in this kernel of a quantum networks theory.

VI. CONCLUSION

Summary of contributions.

In this paper each node has an internal state and is identified by a unique name. The names

are constructed by means of operators used for linking (e.g. node -y is understood as connected to

node y), merging (e.g. nodes u and v may merge into node u∨ v), splitting (e.g. node w may split

into w.l and w.r). The fact that the inverse of a merger operation is required to split w = u ∨ v
back into w.l = u and w.r = v imposes equalities such as (u ∨ v).l = u, leading to a simple name

algebra. Notice that splits and merges are name-preserving (up to algebraic closure) and that the

names of nodes are used to carry edge information.

We place ourselves in the Hilbert space whose canonical basis are network configurations. We

study operators over that space, including those leading to quantum superpositions of network

configurations.
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We then introduce the notion of restriction, a function χ mapping G a network into Gχ ⊆
G a subnetwork, fulfilling the idempotency condition Gχχ = Gχ. We also introduce extensible

restrictions, fulfilling the the stronger condition that Gχ ⊆ H ⊆ G ⇒ Hχ = Gχ to ensure stability

under taking unions χ ∪ ζ and neighbourhoods χr.

Each restriction leads to a partial trace (∣G⟩ ⟨H ∣)∣χ = ∣Gχ⟩ ⟨Hχ∣ ⟨Hχ∣Gχ⟩ which is completely

positive trace-preserving, as well as name-preservation preserving. This generalized partial trace is

robust, e.g. comprehension ζ ⊑ χ implies (ρ∣χ)∣ζ = ρζ . The notion of comprehension is well-behaved

over name-preserving states, e.g. for every extensible restriction ζ, we have that ζ ⊑ ζr.

Each restriction also defines a parallel composition a.k.a tensor ∣L⟩χ ∣R⟩ =
⎧⎪⎪⎨⎪⎪⎩

∣G⟩ if L = Gχ and R = Gχ
0 otherwise

which is unambiguous, at the cost of zeroing out inconsistent terms. The notion of χ-consistency

becomes central: for instance the χ-consistency-preserving operators defined by ⟨H ∣A ∣Gχ⟩ ≠ 0 ⇒
∣H⟩ χ ∣Gχ⟩ ≠ 0 (plus the same for A†) are intuitively those which “do not break the χ-wall” and

hence gently slide along the tensor: (A′ χ B′)(A χ B) = A′A χ B′B.

Intuitively, local operators alter only a part χ of the network, and ignore the rest. In this

paper we say that an operator is χ-local whenever ⟨H ∣A ∣G⟩ = ⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩ and prove the

equivalence with the requirement that A = A χ I and Tr(Aρ) = Tr(Aρ∣χ). We say that an operator

A is strictly χ-local whenever A†A and AA† are also χ-local. Interestingly this corresponds to A

being both χ-local and χ-consistency-preserving, from which it follows that every χ-local unitary

is automatically χ-consistency-preserving.

Intuitively, causal operators act over the entire network, yet respecting that effects on region ζ

be fully determined by causes in region χ. In this paper we say that operator U is causal when

(UρU †)∣ζ = (Uρ∣χU †)∣ζ and prove equivalence with asking for A ζ-local to imply U †AU χ-local.

Causality refers to the physical principle according to which information propagates at a

bounded speed, localizability refers to the principle that all must emerge constructively from un-

derlying local mechanisms, that govern the interactions of closeby systems. The two notions of

causality and localizability are related by our final theorem which shows that for fully quantum

networks, causality implies localizability.

Further work.

A number of mathematical results seem within reach and many more questions have yet to be

considered, as we had to end somewhere.

• The examples provided in Figs 7, 9 and 10 are intuitive enough, but in all rigour they should

be formalised and their corresponding properties proven. To this end we may need to show

that causality is preserved under simple encodings/decodings such as splitting/merging all

nodes.

• Schmidt decomposition, purification, Stinespring dilation, are all fundamental results of

quantum theory that crucially rely on properties of the tensor product. Important next

steps should include phrasing and assessing the validity of these result in terms of generalized

tensor products of quantum networks.

• The results of this paper carry through to arbitrarily constrained configuration spaces HC ,
except for Lemma 5, Props. 7, 10, 12, Th. 1 and 2. Even these ought to hold in many

relevant cases of constrained configuration spaces, which ought to be investigated.

• In our formalism edges are not given explicitly, rather they are induced from the informa-

tion contained in the names of nodes. However, Appendix B suggests a precise alternative
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formalism where edges are given explicitly. Although likely heavier, the formalism ought to

be evaluated: if successful, renaming-invariance would then imply full name-preservation, as

used throughout the paper.

Other mathematical challenges where left aside simply because they seemed difficult. For in-

stance we have shown that if U is ∀m∃nζmζn-causal, so is U2, see Prop. 8. But what if U is

just ∀mζmζ-causal? Does the final theorem presented help to provide an answer to this question?

In the realm of static networks, so is U2. This works because knowing UAvU
† with Av is local

upon some node v in some region R, induces knowing UARU
† = ∑k∏v∈RUA

(k)
v U † since AR has

to be of the form ∑k⊗v∈RA
(k)
v . But how does this generalise? Are splits and merges the only

new generators of the quasi-local algebras Av? We leave such mathematical challenges as open

problems.

Perspectives.

In the introduction we mentioned our original motivations for providing a theory of quantum

networks:

• to provide rigorous kinematics and fully quantum dynamics for networks, equipped with

rigorous notions of locality and causality;

• for the sake of taking networks models of complex systems, into the quantum realm.

For instance, in the field of Quantum Gravity we are now in a position to provide discrete-time

versions of quantum graphity [29, 33], thereby placing space and time on a equal footing, and

demanding strict causality, instead of approximations à la Lieb-Robinson bound [23]. We are also

in a better position to study the statuses of causality and unitarity in LQG [44] and CDT [2]: are

these jeopardized by the Feynman path-based dynamics used in these theories?

Similarly, in the field of Quantum Computing, we now have a framework in which to model fully-

quantum distributed computing devices, including dynamics over indefinite causal orders [16], e.g.

by means of causal unitary operators over superpositions of directed networks.

In order to reach this theory we have had to generalize the tensor product and partial trace in a

rather modular and robust way, and this per se suggests a whole range of unexpected perspective

applications:

: Towards base-independence. To make the notion of subsystem base-independent, algebraic quan-

tum field theory tends to think of them as Von Neumann algebras instead [15][28]. This

approach has been formalised in [27] in the the setting of categorical quantum mechanics,

where the tensor product is a seen as a binary operator between states associated to com-

muting algebras. Such tensor products are therefore partially defined and remain abstract

mathematical objects. The generalised tensor products of the present paper are everywhere

defined and constructive, but they are base-dependent. It would be interesting to bridge the

gap between these two notions to get the best of both worlds. One way to go about this

is to use the Wedderburn-Artin theorem, which states that up to a unitary, Von Neumann

algebras are direct sums of full matrix algebras tensored with the identity, i.e. of the form

A χ I for a well-chosen χ. Another route to follow would be to take, as base-independent

restrictions, any oblique projector, regardless of the graph structure.

: Decomposition techniques, causal-to-local. These generalized operators were essential to the the-

orem representing causal unitary operators by means of local unitary gates. Many variants

of this question are still open however, even for static networks over a handful of systems

[10, 35, 45], as soon as we demand that the representation be exact. Recent approaches
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[47] to phrasing the answers to these questions make the case for annotating wires with

a type system specifying which subspace will flow into them; this in turn has the flavour

of a generalized tensor product. This suggests that the generalized operators, by means

of their increased expressiveness, may be key to reexpress and prove a number of standing

conjectures.

: Construction techniques, local-to-causal. In [6] the authors provide a hands-on, concrete way of

expressing a family of unitary evolutions over network configurations allowing for quantum

superpositions of connectivities. One may wonder whether these addressable quantum gates,

if extended to become able to split and merge, could be proven universal in the class of causal

operators over quantum networks.

: Fusion products between parts of constrained configuration spaces. In most physical theories, the

set of allowed configurations is constrained. For instance, charges and fields are constrained

by the Gauss law. It follows that the tensor product between two regions of space may be

ill-defined, for instance because both of them follow the Gauss law at the individual level,

but not when they are placed next to one another. The hereby devised generalised tensor

product is robust enough to handle these situations whilst preserving most desired algebraic

properties, simply by sending them to the null vector. The gauge-invariant ‘fusion product’

of [21] focusses upon this issue in the continuum by following a different, gauge-invariant

and partially-defined approach.

: Flexible notions of entanglement, between logical spaces. The generalized tensor χ allows us

to define the entanglement between its the left factor and the right factor according to an

almost arbitrary logical criterion χ. For a bipartite pure state we may take the Von Neumann

entropy of its partial trace on χ in order to quantify this entanglement.

: Modelling delocalized observers, quantum reference frames. Decoherence theory [41] models the

observer as a quantum system interacting with others; and the post-measurement state as

that obtained by tracing out the observer. But since the observer is quantum, it could be

delocalized, raising the question of what it means to take the trace out then. Here we can

model a delocalized observer by delocalized black particles, and trace them out. This ability

to “take the vantage point of delocalized quantum system” is in fact a feature in common

with quantum reference frames.

: Ad hoc notions of causality, emergence of space. The notion of χζ-causality allows us to define

causality constraints according to almost arbitrary families of logical criteria (χ, ζ). This

includes scenarios where all black particles communicate whatever their network distance,

say. In fact the very notion of network connectivity is arbitrary in the theory, i.e. ζr can in

principle be redefined in order to better fit ad hoc causality constraints, possibly emerging

in a similar way to pointer states in decoherence theory [41].
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[39] Ognyan Oreshkov, Fabio Costa, and Časlav Brukner. Quantum correlations with no causal order.

Nature communications, 3:1092, 2012.

[40] C. Papazian and E. Remila. Hyperbolic recognition by graph automata. In Automata, languages and

programming: 29th international colloquium, ICALP 2002, Málaga, Spain, July 8-13, 2002: proceed-

ings, volume 2380, page 330. Springer Verlag, 2002.

[41] J. P. Paz and W. H. Zurek. Environment-induced decoherence and the transition from quantum to

classical. Lecture Notes in Physics, pages 77–140, 2002.
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Appendix A: Lemmas

Lemma 1 (Complement names). Let G,H,χ be such that V (G) ≙ V (H) and V (Gχ) ≙ V (Hχ),

then it follows that V (G) ∖ V (Gχ) ≙ V (H) ∖ V (Hχ).

Proof. In this proof we write V ∧W if and only if N [V ] ∩N [W ] ≠ ∅.

First note the following law

(V ∧W and W ≙ Z)⇒ V ∧Z

It follows that if (V (G) ∖ V (Gχ)) ∧ V (Hχ) then (V (G) ∖ V (Gχ)) ∧ V (Gχ) which is in turn a

contradiction with Eq. (1).

Consider u ∈ N [V (G) ∖ V (Gχ)]. Because N [V (G)] = N [V (H)], this u can be expressed by

means of the operator ∨ applied on elements of N [V (H)]. Suppose that u lies beyond N [V (H)∖
V (Hχ)], in N [V (H)] ∖ N [V (H) ∖ V (Hχ)]. Then the expression for u must contain at least

one element of v in N [V (Hχ)]. As a consequence there exists t ∈ {l, r}∗ such that v = u.t.

But because the operator .t ∈ {l, r}∗ preserves inclusion within N [V (G) ∖ V (Gχ)], v also lies in

N [V (G) ∖ V (Gχ)]. It follows that (V (G) ∖ V (Gχ)) ∧ V (Hχ)—leading to the contradiction of the

previous paragraph.

We conclude that the expression for u in terms of elements of N [V (H)] must only include

elements of N [V (H) ∖ V (Hχ)] and so u itself lies inside N [V (H) ∖ V (Hχ)]. By reversing the

above it must be that every u ∈ N [V (H) ∖ V (Hχ)] also exists in N [V (G) ∖ V (Gχ)] and so

N [V (G) ∖ V (Gχ)] = N [V (H) ∖ V (Hχ)] in other words it must be the case that V (G) ∖ V (Gχ) ≙
V (H) ∖ V (Hχ).

Lemma 2 (Tensor-bracket). For every restriction χ ∶ G ↦ Gχ ⊆ G, inner products factorise with

respect to χ, i.e. ⟨H ∣G⟩ = ⟨Hχ∣Gχ⟩ ⟨Hχ∣Gχ⟩.

Proof. Either of the RHS and LHS are either zero or one. The RHS is 1 if and only if both Gχ =Hχ

and Gχ = Hχ. Since G ∶= Gχ ∪Gχ and H ∶= Hχ ∪Hχ this is equivalent to simply requiring that

G = H. The LHS being ⟨G∣H⟩ is also 1 if and only if G = H, so the RHS is always equal to the

LHS.

Lemma 3 (Properties of restrictions). If χ be a restriction, then χχ = ∅. If χ is an extensible

restriction, then it is a restriction, i.e. χχ = χ.
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Proof. The first point is because Gχχ = Gχ ∖Gχχ = Gχ ∖Gχ = ∅.

Next, for any extensible restriction χ then by definition Gχ ⊆ H ⊆ G ⇒ Hχ = Gχ, noting that

the assignment H = Gχ always satisfies the LHS of this statement the right hand side must also

hold for H = Gχ, meaning that Gχ = Gχχ.

Lemma 4 (Special restrictions). Every order-preserving idempotent function ν ∶ G↦ Gν ⊆ G is an

extensible restriction and as a corollary every pointwise function µ (and its complement function

µ) is an extensible restriction.

Proof. Let ν be an order-preserving idempotent function. It follows that for any Gν ⊆H ⊆ G then

since ν is order-preserving Gνν ⊆ Hν ⊆ Gν and so since ν is idempotent Gν ⊆ Hν ⊆ Gν , in other

words Gν =Hν .

Every pointwise function preserves the order: G ⊆ H ⇒ ⋃σ.v ∈ G{σ.v}µ ⊆ ⋃σ.v ∈ H{σ.v}µ ⇒
Gµ ⊆ Hµ. Furthermore every pointwise function is idempotent. Since every order-preserving

idempotent is an extensible restriction it then follows that every pointwise function is an extensible

restriction.

Finally for every point-wise restriction µ its complement function µ for single-node graphs

satisfies {σ.v}µ ∶= {σ.v} ∖ {σ.v}µ and for generic graphs satisfies

Gµ ∶= G ∖ ⋃
σ.v ∈ G

{σ.v}µ = ⋃
σ.v ∈ G

{σ.v} ∖ {σ.v}µ = ⋃
σ.v ∈ G

{σ.v}µ

. It follows that µ is also pointwise function. By the previous section of the lemma µ must be a

(pointwise) restriction.

Caution: the following works over H, but it may not hold for an arbitrarily constrained config-

uration space HC and extensible restrictions over it.

Lemma 5 (Properties of extensible restrictions). Let χ, ζ be extensible restrictions, then

• ζr is an extensible restriction.

• χ ∪ ζ is an extensible restriction.

Furthermore let µ be a pointwise function, then µχ and ξ ∶= µχ∪µζ are extensible restrictions. The

extensible restrictions µ, ξ and their complements furthermore commute, satisfying [µ, ξ] = [µ, ξ] =
[µ, ξ] = [µ, ξ] = 0.

Proof. Let Gζr ⊆ H ⊆ G, then Gζ ⊆ Gζr ⊆ H ⊆ G. Because ζ is an extensible restriction,

Hζ = Gζ = K. Since H ⊆ G, we have that Hζr ⊆ Gζr because the neighbours of K in H are also in

G. Since Gζr ⊆H, we have that Gζr ⊆Hζr because the neighbours of K in G are also in H. Since

Hζr ⊆ Gζr and Gζr ⊆Hζr then Hζr = Gζr .
Let Gχ∪ζ ⊆ H ⊆ G, then since Gχ ⊆ Gχ∪ζ we have Gχ ⊆ Gχ∪ζ ⊆ H ⊆ G which since χ is an

extensible restriction implies that Hχ = Gχ. Similarly Gζ ⊆ Gχ∪ζ ⊆ H ⊆ G implies Hζ = Gζ .

The above equalities imply equalities for the union, Hχ∪ζ = Hχ ∪ Hζ = Gχ ∪ Gζ = Gχ∪ζ .
For any pointwise restriction µ and extensible restriction χ we have µχµ = µχ. As a result:

Gµχ ⊆H ⊆ G
⇒ Gµχµ ⊆Hµ ⊆ Gµ
⇒ Gµχ ⊆Hµ ⊆ Gµ
⇒ Hµχ = Gµχ
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Let ξ ∶= µχ∪µζ and notice that ξ = µχ∪µζ. The function ξ is an extensible restriction since µχ

and µζ are extensible restrictions by the previous part, and their union is an extensible restriction

by the second part.

We now show that [µ, ξ] = [µ, ξ] = [µ, ξ] = [µ, ξ] = 0. First since µ is pointwise, then for any ν

we have µνµ = µν. Similarly, µνµ = µν and µνµ = µνµ = ∅. We also have (ν ∪ ν′)µ = νµ ∪ ν′µ and

as always µ(ν ∪ ν′) = µν ∪ µν′. This is enough to derive the commutation rules by the following

steps:

ξµ = µχµ ∪ µζµ = µχ and µξ = µµχ ∪ µµζ = µχ
ξµ = µχµ ∪ µζµ = µζ and µξ = µµχ ∪ µµζ = µζ
ξµ = µχµ ∪ µζµ = µχ and µξ = µµχ ∪ µµζ = µχ
ξµ = µχµ ∪ µζµ = µζ and µξ = µµχ ∪ µµζ = µζ

Lemma 6 (Tensor). For all A ∶ G4 → C,

∑
G,H∈G

AGχHχGχHχ ∣G⟩ ⟨H ∣ = ∑
G,H ∈ Gχ
G′,H ′ ∈ Gχ

AGHG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

= ∑
G,H ∈ Gχ
G′,H ′ ∈ G

AGHG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

= ∑
G,H ∈ G
G′,H ′ ∈ G

AGHG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

In particular,

∑G,H∈G AGχHχBGχHχ ∣G⟩ ⟨H ∣ = A χ B I = Iχ χ Iχ A χ Iχ = A χ I

Proof. [First part]

∑
G,H∈G

AGχHχGχHχ ∣G⟩ ⟨H ∣ = ∑
G,H∈G

AGχHχGχHχ ∣Gχ⟩ ⟨Hχ∣ χ ∣Gχ⟩ ⟨Hχ∣

= ∑
G,H ∈ Gχ G′,H ′ ∈ Gχ
∣G⟩ χ ∣G′⟩ ≠ 0

∣H⟩ χ ∣H ′⟩ ≠ 0

AGHG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

= ∑
G,H ∈ Gχ
G′,H ′ ∈ Gχ

AGHG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

where the last line is obtained by summing also over those G,G′,H,H ′ that are such that ∣G⟩ χ ∣G′⟩ =
0 or ∣H⟩ χ ∣H ′⟩ = 0, since for them ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣ = 0. For the same reason we can sum also

over those G′,H ′ ∈ G ∖ Gχ and obtain the second stated equality, and over those G,H ∈ G ∖ Gχ to

obtain the third.
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[Second part]

∑
G,H∈G

AGχHχBGχHχ ∣G⟩ ⟨H ∣ = ∑
G,H ∈ G
G′,H ′ ∈ G

AGHBG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣ = A χ B

I = ∑
G,H∈G

δGχHχδGχHχ ∣G⟩ ⟨H ∣ = Iχ χ Iχ

A χ Iχ = ∑
G,H ∈ Gχ
G′,H ′ ∈ Gχ

AGHδG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣ = ∑
G,H ∈ Gχ
G′,H ′ ∈ G

AGHδG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

= A χ Iχ = A χ I

Lemma 7 (Tensor-tensor). Write EGH
(k) ∶= ∣G(k)⟩ ⟨H(k)∣. For all A ∶ G8 → C, if [χ, ζ] = [χ, ζ] =

[χ, ζ] = [χ, ζ] = 0,

∑
G(0),G(1) . . . ∈ G
H(0),H(1) . . . ∈ G

AG(0)H(0)G(1)H(1)... (EGH
(0)

ζ EGH
(1) ) χ (EGH

(2)
ζ EGH
(3) )

= ∑
G(0),G(1) . . . ∈ G
H(0),H(1) . . . ∈ G

AG(0)H(0)G(1)H(1)... (EGH
(0)

χ EGH
(2) ) ζ (EGH

(1)
χ EGH
(3) )

Proof.

(EGH
(0)

ζ EGH
(1) ) χ (EGH

(2)
ζ EGH
(3) ) ≠ 0

⇔∃G(01),H(01)/ G(0) = G(01)ζ ,G(1) = G(01)
ζ

,H(0) = . . . , EGH
(01)

χ (EGH
(2)

ζ EGH
(3) ) ≠ 0

⇔∃G(01),H(01),G(23),H(23)/ G(0) = G(01)ζ , . . . ,G(2) = G(23)ζ , . . . EGH
(01)

χ EGH
(23) ≠ 0

⇔∃G,H/ G(0) = G(01)ζ ,G(01) = Gχ, . . . ,G(2) = G(23)ζ ,G(23) = Gχ, . . .

⇔∃G,H/ G(0) = Gχζ ,G(1) = Gχζ ,G
(2) = Gχζ ,G(3) = Gχζ ,H

(0) = . . .

⇔∃G,H/ G(0) = Gζχ,G(1) = Gζχ,G
(2) = Gζχ,G(3) = Gζχ,H

(0) = . . .

⇔ (EGH
(0)

χ EGH
(2) ) ζ (EGH

(1)
χ EGH
(3) ) ≠ 0

Moreover, when they are non-zero,

(EGH
(0)

ζ EGH
(1) ) χ (EGH

(2)
ζ EGH
(3) )

= (∣Gχζ⟩ ⟨Hχζ ∣ ζ ∣Gχζ⟩ ⟨Hχζ ∣) χ (∣Gχζ⟩ ⟨Hχζ ∣ ζ ∣Gχζ⟩ ⟨Hχζ ∣)

= ∣G⟩ ⟨H ∣

= (∣Gζχ⟩ ⟨Hζχ∣ χ ∣Gζχ⟩ ⟨Hζχ∣) ζ (∣Gζχ⟩ ⟨Hζχ∣ χ ∣Gζχ⟩ ⟨Hζχ∣)

= (∣Gχζ⟩ ⟨Hχζ ∣ χ ∣Gχζ⟩ ⟨Hχζ ∣) ζ (∣Gχζ⟩ ⟨Hχζ ∣ χ ∣Gχζ⟩ ⟨Hχζ ∣)

= (EGH
(0)

χ EGH
(2) ) ζ (EGH

(1)
χ EGH
(3) )
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So,

AG(0)H(0) G(1)H(1)... (EGH
(0)

ζ EGH
(1) ) χ (EGH

(2)
ζ EGH
(3) )

=AG(0)H(0) G(1)H(1)... (EGH
(0)

χ EGH
(2) ) ζ (EGH

(1)
χ EGH
(3) )

=AG(0)H(0) G(1)H(1)... ∣G⟩ ⟨H ∣ or 0.

In particular,

(A ζ B) χ (C ζ D) = (A χ C) ζ (B χ D)

Indeed writeA = ∑G(0)∈G AG(0)H(0) ∣G(0)⟩ ⟨G(0)∣, B = . . . and letA′

G(0)H(0)G(1)H(1)... ∶= AG(0)H(0)BG(1)H(1) . . .
in the Lemma.

Lemma 8 (Trace-trace). If ζ ⊑ χ, then (ρ∣χ)∣ζ = ρ∣ζ and any ζ-local A is also χ-local.

Partial trace.

((∣G⟩ ⟨H ∣)
∣χ)
∣ζ
= (∣Gχ⟩ ⟨Hχ∣)∣ζ ⟨Hχ∣Gχ⟩

= ∣Gχζ⟩ ⟨Hχζ ∣ ⟨Hχζ ∣Gχζ⟩ ⟨Hχ∣Gχ⟩
When ζ ⊑ χ. = ∣Gζ⟩ ⟨Hζ ∣ ⟨Hζ ∣Gζ⟩ = (∣G⟩ ⟨H ∣)

∣ζ

[Locality]

⟨H ∣A ∣G⟩ = ⟨Hζ ∣A ∣Gζ⟩ ⟨Hζ ∣Gζ⟩
When ζ ⊑ χ. = ⟨Hχζ ∣A ∣Gχζ⟩ ⟨Hχζ ∣Gχζ⟩ ⟨Hχ∣Gχ⟩

By ζ-loc. = ⟨Hχ∣A ∣Gχ⟩ ⟨Hχ∣Gχ⟩

Lemma 9 (Tensor-trace 1). If ρ, σ χ-consistent, (ρ χ σ)∣χ = ρ σ∣∅.

If ζ ⊑ χ, ρ, σ χ-consistent, (ρ χ σ)∣ζ = ρ∣ζ σ∣∅.

First part. Notice that ∣G⟩ χ ∣G′⟩ ≠ 0 implies (∣G⟩ χ ∣G′⟩)χ = ∣G⟩ and (∣G⟩ χ ∣G′⟩)χ = ∣G′⟩.
Similarly if ∣G⟩ χ ∣G′⟩ ≠ 0 ≠ ∣H⟩ χ ∣H ′⟩,

(∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣)
χ
= (∣G⟩ χ ∣G′⟩)

χ
(⟨H ∣ χ ⟨H ′∣)

χ

= ∣G⟩ ⟨H ∣
(∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣)

χ
= (∣G⟩ χ ∣G′⟩)

χ
(⟨H ∣ χ ⟨H ′∣)

χ

= ∣G′⟩ ⟨H ′∣
(∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣)

∣χ
= (∣G⟩ χ ∣G′⟩)

χ
(⟨H ∣ χ ⟨H ′∣)

χ
(⟨H ∣ χ ⟨H ′∣)

χ
(∣G⟩ χ ∣G′⟩)

χ

= ∣G⟩ ⟨H ∣ ⟨H ′∣G′⟩
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Next assume ρ, σ χ-consistent, i.e. ρGHσG′H′ ≠ 0 implies ∣G⟩ χ ∣G′⟩ ≠ 0 ≠ ∣H⟩ χ ∣H ′⟩.

ρ χ σ = ∑
G,H,G′,H′ ∈ G

ρGHσG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

(ρ χ σ)∣χ = ∑
G,H,G′,H ′ ∈ G
∣G⟩ χ ∣G′⟩ ≠ 0

∣H⟩ χ ∣H ′⟩ ≠ 0

ρGHσG′H′ (∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣)
∣χ

= ∑
G,H,G′,H ′ ∈ G
∣G⟩ χ ∣G′⟩ ≠ 0

∣H⟩ χ ∣H ′⟩ ≠ 0

ρGHσG′H′ ∣G⟩ ⟨H ∣ ⟨H ′∣G′⟩

By consistency = ∑
G,H,G′,H′ ∈ G

ρGHσG′H′ ∣G⟩ ⟨H ∣ ⟨H ′∣G′⟩

= ∑
G,H ∈ G

ρGH ∣G⟩ ⟨H ∣ ∑
G′,H′ ∈ G

σG′H′ ⟨H ′∣G′⟩

= ρ σ∣∅

[Second part]

Next assume ζ ⊑ χ and ρ, σ χ-consistent. By Lem. 8,

(ρ χ σ)∣ζ = ((ρ χ σ)∣χ)∣ζ
By first part. = (ρ σ∣∅)∣ζ

= ρ∣ζ σ∣∅

Lemma 10 (Tensor-trace 2). If [χ, ζ] = [χ, ζ] = [χ, ζ] = [χ, ζ] = 0, and ρ, σ χ-consistent,

(ρ χ σ)∣ζ = ρ∣ζ χ σ∣ζ
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Proof. Assume ρ, σ χ-consistent, i.e. ρGHσG′H′ ≠ 0 implies ∣G⟩ χ ∣G′⟩ ≠ 0 ≠ ∣H⟩ χ ∣H ′⟩.

ρ χ σ = ∑
G,H,G′,H′∈G

ρGHσG′H′ ∣G⟩ ⟨H ∣ χ ∣G′⟩ ⟨H ′∣

By Lem. 6 = ∑
G,H∈G

ρGχHχσGχHχ ∣G⟩ ⟨H ∣

(ρ χ σ)∣ζ = ∑
G,H∈G

ρGχHχσGχHχ ∣Gζ⟩ ⟨Hζ ∣ ⟨Hζ ∣Gζ⟩

By Lem. 2 = ∑
G,H∈G

ρGχHχσGχHχ ∣Gζχ⟩ ⟨Hζχ∣ χ ∣Gζχ⟩ ⟨Hζχ∣ ⟨Hζχ∣Gζχ⟩ ⟨Hζχ∣Gζχ⟩

= ∑
G,H∈G

ρGχHχ ∣Gζχ⟩ ⟨Hζχ∣ ⟨Hζχ∣Gζχ⟩ χ σGχHχ ∣Gζχ⟩ ⟨Hζχ∣ ⟨Hζχ∣Gζχ⟩

By commut. = ∑
G,H∈G

ρGχHχ ∣Gχζ⟩ ⟨Hχζ ∣ ⟨Hχζ ∣Gχζ⟩ χ σGχHχ ∣Gχζ⟩ ⟨Hχζ ∣ ⟨Hχζ ∣Gχζ⟩

= ∑
G,H∈G

(ρGχHχ ∣Gχ⟩ ⟨Hχ∣)
∣ζ

χ (σGχHχ ∣Gχ⟩ ⟨Hχ∣)
∣ζ

= ∑
G,H,G′,H ′ ∈ G
∣G⟩ χ ∣G′⟩ ≠ 0

∣H⟩ χ ∣H ′⟩ ≠ 0

(ρGH ∣G⟩ ⟨H ∣)
∣ζ

χ (σG′H′ ∣G′⟩ ⟨H ′∣)
∣ζ

By consistency = ∑
G,H,G′,H′∈G

(ρGH ∣G⟩ ⟨H ∣)
∣ζ

χ (σG′H′ ∣G′⟩ ⟨H ′∣)
∣ζ

= ρ∣ζ χ σ∣ζ

Lemma 11 (Interchange laws). (A χ I) ∣G⟩ = A ∣Gχ⟩ χ ∣Gχ⟩.
If A χ-consistent-preserving or B χ-consistent-preserving, (A χ I)(I χ B) = (A χ B).

If A, A′ χ-consistent-preserving, (A′ χ I)(A χ I) = (A′A χ I).

If A, A′ χ-consistent-preserving, A′A is χ-consistent-preserving.

If moreover B, B′ are χ-consistent-preserving, (A′ χ B′)(A χ B) = A′A χ B′B.

Proof. [First part]

A χ I = ∑
G′,H,K ∈ G

AG′H ∣G′⟩ ⟨H ∣ χ ∣K⟩ ⟨K ∣

= ∑
G′,H,K ∈ G

AG′H (∣G′⟩ χ ∣K⟩) (⟨H ∣ χ ⟨K ∣)

(A χ I) ∣G⟩ = ∑
G′,H,K ∈ G

AG′H (∣G′⟩ χ ∣K⟩) (⟨H ∣ χ ⟨K ∣) (∣Gχ⟩ χ ∣Gχ⟩)

= ∑
G′ ∈ G

AG′Gχ (∣G′⟩ χ ∣Gχ⟩)

= (A ∣Gχ⟩) χ ∣Gχ⟩

[Second part]

I χ B = ∑
G(1),H(1), L ∈ G
∣L⟩ χ ∣G(1)⟩ ≠ 0

∣L⟩ χ ∣H(1)⟩ ≠ 0

BG(1)H(1) (∣L⟩ χ ∣G(1)⟩) (⟨L∣ χ ⟨H(1)∣)
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(A χ I)(I χ B) = ∑
G(0), L =H(0), K = G(1), H(1) ∈ G
∣G(0)⟩ χ ∣K⟩ ≠ 0

∣H(0)⟩ χ ∣K⟩ ≠ 0

∣L⟩ χ ∣G(1)⟩ ≠ 0

∣L⟩ χ ∣H(1)⟩ ≠ 0

AG(0)H(0)BG(1)H(1) ∣G(0)⟩ ⟨H(0)∣ χ ∣G(1)⟩ ⟨H(1)∣

= ∑
G(0), L =H(0), K = G(1), H(1) ∈ G
∣G(0)⟩ χ ∣G(1)⟩ ≠ 0

∣H(0)⟩ χ ∣G(1)⟩ ≠ 0

∣H(0)⟩ χ ∣G(1)⟩ ≠ 0

∣H(0)⟩ χ ∣H(1)⟩ ≠ 0

AG(0)H(0)BG(1)H(1) ∣G(0)⟩ ⟨H(0)∣ χ ∣G(1)⟩ ⟨H(1)∣

= ∑
G(0), H(0), G(1), H(1) ∈ G
∣H(0)⟩ χ ∣G(1)⟩ ≠ 0

AG(0)H(0)BG(1)H(1) ∣G(0)⟩ ⟨H(0)∣ χ ∣G(1)⟩ ⟨H(1)∣

By consist. preserv. = ∑
G(0),H(0),G(1),H(1) ∈ G

AG(0)H(0)BG(1)H(1) ∣G(0)⟩ ⟨H(0)∣ χ ∣G(1)⟩ ⟨H(1)∣

= A χ B

[Third part]

A′ χ I = ∑
G′(0),H ′(0),K ∈ G
∣G′(0)⟩ χ ∣K⟩ ≠ 0

∣H ′(0)⟩ χ ∣K⟩ ≠ 0

A′

G′(0)H′(0) (∣G′(0)⟩ χ ∣K⟩) (⟨H ′(0)∣ χ ⟨K ∣)

A χ I = ∑
G(0),H(0), L ∈ G
∣G(0)⟩ χ ∣L⟩ ≠ 0

∣H(0)⟩ χ ∣L⟩ ≠ 0

AG(0)H(0) (∣G(0)⟩ χ ∣L⟩) (⟨H(0)∣ χ ⟨L∣)
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(A′ χ I)(A χ I) = ∑
G′(0),H ′(0) = G(0),H(0),K = L ∈ G
∣G′(0)⟩ χ ∣K⟩ ≠ 0

∣H ′
(0)⟩ χ ∣K⟩ ≠ 0

∣G(0)⟩ χ ∣L⟩ ≠ 0

∣H(0)⟩ χ ∣L⟩ ≠ 0

A′

G′(0)H′(0)AH(0)H′(0) (∣G
′(0)⟩ χ ∣K⟩) (⟨H(0)∣ χ ⟨K ∣)

= ∑
G(0),H(0),H ′(0), K ∈ G
∣G′(0)⟩ χ ∣K⟩ ≠ 0

∣H ′(0)⟩ χ ∣K⟩ ≠ 0

∣H(0)⟩ χ ∣K⟩ ≠ 0

A′

G′(0)H′(0)AH′(0)H(0) (∣G
′(0)⟩ ⟨H(0)∣ χ ∣K⟩ ⟨K ∣)

= ∑
G′(0),H ′(0),H(0), K ∈ G
∣H ′(0)⟩ χ ∣K⟩ ≠ 0

A′

G′(0)H′(0)AH′(0)H(0) (∣G
′(0)⟩ ⟨H(0)∣ χ ∣K⟩ ⟨K ∣)

By consist. preserv. = ∑
G′(0),H′(0),H(0), K ∈ G

A′

G′(0)H′(0)AH′(0)H(0) (∣G
′(0)⟩ ⟨H(0)∣ χ ∣K⟩ ⟨K ∣)

= (A′A χ I)

When A′

G′(0)H′(0) ≠ 0 and AH′(0)H(0) ≠ 0, ∣H ′(0)⟩ χ ∣K⟩ ≠ 0 is entailed by A′ χ-consistent-preserving

and ∣G′(0)⟩ χ ∣K⟩ ≠ 0, or by A χ-consistent-preserving and ∣H(0)⟩ χ ∣K⟩ ≠ 0.

[Fourth part]

Say ⟨H ∣A′A ∣Gχ⟩ ≠ 0

⇔∑
K

⟨H ∣A′ ∣K⟩ ⟨K ∣A ∣Gχ⟩ ≠ 0

⇒∃K, ⟨H ∣A′ ∣K⟩ ⟨K ∣A ∣Gχ⟩ ≠ 0

⇒∃K, ⟨H ∣A′ ∣K⟩ ≠ 0 and ⟨K ∣A ∣Gχ⟩ ≠ 0

By consist. pres. ⇒∃K, ⟨H ∣A′ ∣K⟩ ≠ 0 and ∣K⟩ χ ∣Gχ⟩ ≠ 0

By consist. pres. quad⇒ ∣H⟩ χ ∣Gχ⟩ ≠ 0

Similarly for ⟨H ∣ (A′A)† ∣Gχ⟩ ≠ 0.

[Fifth part]

(A′ χ B′)(A χ B) = (I χ B′)(A′ χ I)(A χ I)(I χ B)
= (I χ B′)(A′A χ I)(I χ B)
= (A′A χ B′)(I χ B)
= (A′A χ I)(I χ B′)(I χ B)
= (A′A χ I)(I χ B′B)
= (A′A χ B′B)
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Appendix B: Renaming-invariance

As always, in order to implement a symmetry R ∶ ρ ↦ RρR† in a quantum theory, one can

symmetrize states, i.e. demanding [R,ρ] = 0, so that

(ARρR†)
∣∅
= (AρRR†)

∣∅
= (Aρ)∣∅.

But one can also symmetrize observables, i.e. demanding RA = AR, so that

(ARρR†)
∣∅
= (RAρR†)

∣∅
= (R†RAρ)

∣∅
= (Avρ)∣∅

The first option was that taken for name-preservation, in order to obtain Prop. 2.

The second option is that taken for renaming-invariance in Def. 4, because it is more expressive.

For instance, think of A as an observable asking the question whether vertex v is connected or

isolated. The question would make no sense on a rename-invariant state ρ, because the question

itself is not rename-invariant. Still we can make the question rename-invariant by parametrizing

it by v in a way that RAv = AR(v)R, and letting it transform according to R ∶ Av ↦ AR(v). Then

the question make sense on a generic ρ, whilst maintaining name-invariance:

(ARvRρR†)
∣∅
= (RAvρR†)

∣∅
= (R†RAvρ)

∣∅
= (Avρ)∣∅

Here are a few helpful facts to help us tame the notion of renaming.

Lemma 12 (Inverse renamings). Let R ∶ V → V be a homomorphism of the name algebra.

The test condition that R(x).t = R(y).t′ implies x = y and t = t′, is equivalent to injectivity.

If R is a renaming, so is R−1.

If Av is renaming-invariant, so is A†
v.

Proof. [Injectivity condition]

Notice that R(x).t = R(y).t′ is equivalent to R(x.t) = R(y.t′) and that x.t = y.t′ is equivalent

to x = y and t = t′.
Thus the injectivity of R implies the test condition.

Conversely assume the test condition is satisfied.

u ≠ v implies there exists s such that u.s = x.t ≠ y.t′ = v.s.
Then, R(u).s = R(u.s) = R(x.t) = R(x).t ≠ R(y).t′ = R(y.t′) = R(v.s) = R(v).s.
Thus R(u) ≠ R(v).
Thus R is injective.

[Inverse renaming]

Let R be a renaming. We need to check that R−1 is a homomorphism of the name algebra.

For any u′, v′ take u, v such that u′ = R(u) and v′ = R(v).
R−1(u′.t) = R −1(R(u).t) = R −1(R(u.t)) = u.t = R−1(u′).t
R−1(u′ ∨ v′) = R −1(R(u) ∨R(v)) = R −1(R(u ∨ v)) = u ∨ v = R−1(u′) ∨R−1(v′).

[Adjoint renaming-invariance]

RA†
v = (AvR†)† = (R †AR(v))

† = A†
R(v)

R.

The renaming-invariant operator Av ∶= ∣∅⟩ ⟨{0.v}∣ may destroy name v. The renaming-invariant

operator A†
v may create it. But this is only because they are parameterized by v. Other than that,

renaming-invariant operators preserve support up to ±.
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Proposition 11 (Renaming-invariance implies ±-name-preservation). We define the ±-vertices of

G to be V ±(G) ∶= V (G) ∪ {-v ∣ σ.v ∈ G}.

Let Av be a renaming-invariant operator over H, parameterized by v ⊆ V. Then,

⟨H ∣Av ∣G⟩ ≠ 0 ⇒ V ±(G) ∪ {v, -v} ≙ V ±(H) ∪ {v, -v}

Proof. [N [V ±(H)] ⊆ N [V ±(G) ∪ {v, -v}]]
By contradiction. Say there exists ⟨H ∣Av ∣G⟩ = α ≠ 0 such that u ∈ N [V ±(H)] and u ∉

N [V ±(G) ∪ {v, -v}].
Pick R such that RG = G, R(v) = v, R(u) ∉ N [V ±(H)], i.e. map u into a fresh name u′ whilst

preserving v and G. We have:

α = ⟨H ∣Av ∣G⟩
= ⟨RH ∣RAv ∣G⟩

By renaming-inv. = ⟨RH ∣AR(v)R ∣G⟩
By choice of R = ⟨RH ∣Av ∣G⟩

There are infinitely many such R, and since u ∈ N [V ±(H)], there are infinitely many such RH. It

follows that Av ∣G⟩ is unbounded, hence the contradiction. The result follows, from which we also

have that N [V ±(H) ∪ {v, -v}] ⊆ N [V ±(G) ∪ {v, -v}].
[N [V ±(G)] ⊆ N [V ±(H) ∪ {v, -v}]]
⟨H ∣Av ∣G⟩ ≠ 0 ⇔ ⟨G∣A†

v ∣H⟩∗ ≠ 0 ⇔ ⟨G∣A†
v ∣H⟩ ≠ 0.

Moreover, by Lem. 12, A†
v is also renaming-invariant.

So, the same reasoning applies.

We therefore have that N [V ±(G) ∪ {v, -v}] ⊆ N [V ±(H) ∪ {v, -v}]
[V ±(G)∪ {v, -v} ≙ V ±(H)∪ {v, -v}] is by definition N [V ±(G) ∪ {v, -v}] = N [V ±(H) ∪ {v, -v}].

In order to obtain full name-preservation as used the core of the paper, as a consequence of

renaming-invariance, we could have restricted our attention to graphs that have no half-edges, i.e.

such that if c.t ∈ V (G), then -c.t ∈ V (G). Indeed for such closed graphs, full name-preservation

amounts to ±−name-preservation, and is therefore entailed by renaming-invariance. However the

operations that we study in the paper do not preserve closed graphs. For instance, G may be

closed, but not Gχ. This is why we have treated name-preservation as a independent assumption.

In the pursuit of obtaining full name-preservation, as a consequence of renaming-invariance,

we could demand full renaming-invariance, i.e. letting renamings R be arbitrary isomorphisms on

N [K ∪ -K] rather than extensions of isomorphisms on N [K]. However, such an R may map x to

y and -x to z, thereby destroying the geometrical information held by names that x and -x are

connected by an edge. We could then compensate for that loss by providing each graph G with

a adjacency function αG, transforming according to αRG ∶= R ○ αG ○ R−1. Which αG should be

allowed? We posit the following conditions:

• αG is a partial renaming over V.

• ∀u, αG(u) = v ⇒ αG(v) undefined.

• ∀u ∈ dom(αG),∃t, u.t ∈ N [V (G)] or αG(u.t) ∈ N [V (G)].
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The first two conditions imply ∀u, ¬ (N [α(u)] ⊂ N [u] or N [α(u)] ⊃ N [u]), which is reinsuring

as ”edges from a part to its subpart” seem undesirable. Going that this route, care must be taken

when defining αGχ to also encompass edges that are incoming from Gχ, or else Prop. 7 will fail.

Indeed, say that αG(u) = v with u ∈ V (Gχ) and v ∈ V (Gχ). An operator U acting over Gχ may

otherwise fail to see that v is occupied, thereby producing G′

χ such that ∣G′

χ⟩ χ ∣Gχ⟩. Overall, this

is a legitimate route to take, but we chose not to clutter this paper.

Finally, notice that a number of results in the core of the paper held without name-preservation.

At the cost of name-preservation, we can even reach an interesting version of Th. 1, which does

not require an extra bit of information per system.

Proposition 12 (Unitary restriction). A restriction is namewise if and only if there exists S such

that Gχ = {σ.v ∈ G ∣ v ∉ N [V ±(S)]}.

If χ is namewise, and U is renaming-invariant, then U preserves Hχ.

If moreover U is unitary, then it is unitary over Hχ.

Proof. Since χ is namewise, there exists S such thatG = Gχ if and only if ¬ (N [V (G)] ∩N [V ±(S)]).
Since U is renaming-invariant, then by Prop. 11, we have N [V ± (U ∣G⟩)] ⊆ N [V ± (∣G⟩)], i.e.

for all u, u ∈ N [V ± (U ∣G⟩)] implies u ∈ N [V ± (∣G⟩)], and so N [V ± (U ∣G⟩)] ∩N [V ±(S)] implies

N [V ± (∣G⟩)] ∩N [V ±(S)].
As a consequence ¬(N [V ± (∣G⟩) ∩N [V ±(S)]) implies ¬ (N [V ± (U ∣G⟩)] ∩N [V ±(S)]).

Say G = Gχ. We therefore have ¬(N [V ± (U ∣G⟩] ∩N [V ±(S)]). As a consequence for any H

such that ⟨H ∣U ∣G⟩ ≠ 0, we have ¬ (N [V ±(H)] ∩N [V ±(S)]). Thus H =Hχ.

[Unitary case]

If U is renaming-invariant and unitary, then by Lemma Inverse renaming and renaming-

invariance, so is U †. It follows that U † preserves Hχ. Therefore, U is unitary when restricted to

Hχ.

Theorem 2 (Block decomposition without ancilla). Let ζv be the pointwise restriction such that

ζv({σ.u}) ∶=
⎧⎪⎪⎨⎪⎪⎩

{σ.u} if N [u] ∩N [v]
∅ otherwise

.

Consider U a renaming-invariant unitary operator over H, which for all v ∈ V is χvζ
′

v-causal with

ζv ⊑ ζ ′v and χv an extensible restriction.

Let µ be the namewise restriction such that µ({σ.u}) ∶=
⎧⎪⎪⎨⎪⎪⎩

{σ.u} if u ∉ N [Z∗.1]
∅ otherwise

where Z.1

denotes odd numbers in their binary notation.

Similarly let V.0 denote those names built out of even numbers.

There exists τx a non-name-preserving ζx-local unitary and Kx a non-name-preserving ξx-local

unitary such that

∀ ∣ψ⟩ ∈Hµ ≅H, ( ∏
x ∈ N

τx)( ∏
x ∈ N

Kx) ∣ψ⟩ = U ∣ψ⟩

where ξx ∶= µχx ∪ µζx is an extensible restriction. In addition, [Kx,Ky] = [τx, τy] = 0.

Proof. Clearly [µ, ζ] = [µ, ζ] = [µ, ζ] = [µ, ζ] = 0 as both are pointwise.

By Prop. 7, since µ is namewise, and U is a renaming-invariant unitary, it is unitary over Hµ,

and U ′ ∶= U µ I is unitary over H with U ′† = U † µ I.
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By Prop. 10 and since U is χvζ
′

v-causal, it is χvζv-causal, and U ′ is ξvζv-causal, with ξv ∶= µχv∪µζv
and extensible restriction.

Let the toggle τx be the renaming such that τx(y.b) =
⎧⎪⎪⎨⎪⎪⎩

τx(x.¬b) if x = y
y otherwise

.

I.e. τx toggles the last by of x.0 and x.1.

Notice that it is unitary and ζx-local, and that [τx, τy] = 0.

Moreover,

( ∏
x ∈ N

τx) = τ

where τ is the renaming such that τ(y.b) = τ(y.¬b).
Let Kx ∶= U ′†τxU

′.

Since adjunction by a unitary is a morphism, [Kx,Ky] = 0.

By Prop. 9, is ξx-local.

Finally,

( ∏
x ∈ N

τx)( ∏
x ∈ N

Kx) ∣Gµ⟩ = τ . . . (U ′†τ1U
′) (U ′†τ0U

′) ∣Gµ⟩

By unitarity of U ′. = τ U ′† ( ∏
x ∈ N

τx) U ′ ∣Gµ⟩

= τ U ′† τ U ′ ∣G⟩
By Prop. 7 = τ (U † µ I) τ (U µ I) (∣Gµ⟩ µ ∣∅⟩)

= τ (U † µ I) τ (U ∣Gµ⟩ µ ∣∅⟩)
Since U preserves the range of µ. = τ (U † µ I) (∣∅⟩ µ τU ∣Gµ⟩)

By Prop. 11 = τ (∣∅⟩ µ τU ∣Gµ⟩)
= τ2 U ∣Gµ⟩

Since τ involutive. = U ∣Gµ⟩
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