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Abstract: Energy demand is increasingly the most relevant cost item in chemical plants. Operating ex-
penses indeed play a main role in all plants processing large amounts of feedstock via well-established
processes in the petrochemical industry. In staged operations, the optimal number of stages is usually
obtained by means of an economic optimization. However, the designed equipment, external duties,
and thus operating expenses may considerably vary under the effect of external disturbances. The
main purpose of this paper is to outline a simple but effective procedure to account for perturbations
in the assessment of the optimal number of stages. The analysis shows that appropriate investments
could lead to a unit design able to mitigate the higher duty requirements when external perturbations
occur. The results highlight that the optimal number of stages varies when uncertainty is consid-
ered and, with low computational effort, this can be effectively quantified by means of the applied
methodology. Furthermore, the same approach has been applied to sustainability indicators over the
uncertain domain as well. In those cases, when more stages correspond to more flexible equipment,
the environmental impact is positively affected, and a double benefit can be observed.

Keywords: OPEX; energy demand; flexibility; multistage separations; optimal design; CO2

emissions; GWP

1. Introduction

Multistage separations (especially distillation) are widespread operations present in
the vast majority of chemical plants. They play a main role both on process and on utility
sides, consuming large amounts of energy in the form of heat and electricity. Common
examples are crude oil topping (distillation in general), multistage non-adiabatic reac-
tors, steam generation, and drying operations, as well as concentration processes such as
multiple-effect evaporation [1]. The most basic procedure for equipment design and sizing
refers to nominal operating conditions, and the remaining degrees of freedom are fulfilled
by means of an economic optimization. In particular, for multistage units, the optimal
number of stages can be detected according to the Total Annualized Costs (TAC) able to
synthesize the impact of Capital and Operating Expenses (CAPEX and OPEX, respectively)
as well as depreciation over time [2].

Therefore, for a given equipment configuration, the control system is the part aimed at
mitigating the influence of external disturbances [3] by managing the external duties accord-
ing to the specifications, i.e., OPEX are the main cost item related to external disturbance
suppression. In particular, the external duties oscillation magnitude is strictly related to
the number of separation stages. The mitigation of duty fluctuations also provide benefits
from a safety, operational, and environmental point of view. The energy consumption, in
particular the electricity for compression and heat duties [4–6], is indeed the main item in
the list of factors affecting the environmental impact of a process. Therefore, a more proper
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system design able to effectively cope with external perturbations could not only result in a
higher profitability but also in lower emissions.

Design under uncertainty has been extensively discussed during the last decades.
At first, the proposed methodologies were based on stochastic design problem solu-
tions with two- or multiple-stage approaches [7]. Dedicated mathematical programming
techniques [8,9] as well as the inclusion of planning [10] or operations research prob-
lems [11] have been analyzed. Other approaches have been suggested involving the use
of probabilistic constraints [12], genetic [13,14] and sampling averaging algorithms [15],
Bayesian model averaging [16], and, in order to reduce the computational effort, scenario-
free approaches have been proposed as well [17–19]. In process systems, when dealing
with uncertainty the concept of flexibility arises. A flexible design is defined as a design
able to ensure feasible operation over a given range of uncertain parameter deviation [20].
Both deterministic [21,22] and stochastic [23,24] flexibility indicators have been proposed
in the literature over the last few decades. In this perspective, flexibility analysis can be
seen as a worst-case analysis to identify the most constraining parameters from a feasibility
point of view [25].

Concerning the analysis of energy systems consumption accounting for uncertainty,
recent works are available in literature as well. In these cases, the uncertainty is related to
energy source availability [26], system failure [27], and economic aspects [28,29], and they
all address the CO2 emissions assessment.

In the light of these premises, this study was conducted in order to account for uncer-
tainty with a specific focus on the problem of the optimal number of stages in multistage
unit operations and the related energy consumption. In particular, with respect to the
available literature, here the main purpose is to suggest an approach based on the uncer-
tainty characterization that implies the reformulation of the operating expenses. The main
advantage of this methodology is its quick application and low computational effort with
respect to other, more complete tools (e.g., multi-level stochastic optimization). Different
from other literature works, this article addresses the specific unit operations design, and
the number of stages is the design parameter of interest that is adjusted to compensate the
impact of upstream perturbations on the utility consumption. By analogy, it is the reference
parameter for the environmental impact assessment that is included among the decisional
criteria. Finally, the main limitation of this approach is that its lower computational effort
can be exploited only given that the deviation probability distribution function is known.

The mathematical details of the uncertainty characterization and of the proposed
methodology are explained in detail in the next section.

2. Methodology

This section is made of three parts and presents the main features of the design
approach proposed in this research work. The first part concerns the uncertainty charac-
terization and briefly introduces its classification as well as the reasons why its impact
on the optimal unit operations design could be worth a dedicated study. On the other
hand, the design procedure under nominal operating conditions and the one accounting for
process parameters deviation are discussed in detail in the second part. In particular, this
subsection provides an explanation of the items contained in the cost function to minimize
and focuses on how the uncertainty characterization can be included in the methodology
used to assess the optimal unit design. Finally, in the third part, the main premises and
hypotheses concerning the environmental impact assessment are discussed to give the
basis for the related results understanding.

2.1. The Uncertainty Characterization

Although the purpose of this study is to outline a thorough procedure of general
validity, the results obtained are nevertheless qualitatively and quantitatively case specific.
In particular, one of the aspects with the highest impact on the results is the distribution
function (hereafter PDF) selected to describe the uncertain variables’ fluctuation probability.
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Uncertainty indeed has been one of the key aspects related to design optimization
methodologies during the past years. The different typologies of uncertainty have been
classified by Oberkampf and Helton (2012) [30] into three main categories:

• Aleatory uncertainty (also referred to as stochastic uncertainty, irreducible uncertainty,
inherent uncertainty or variability);

• Epistemic uncertainty (also referred to as reducible uncertainty, subjective uncertainty,
model form uncertainty or simply uncertainty);

• Error.

This is the reference classification still used nowadays by the vast majority of authors
dealing with uncertainty in different domains [31]. Aleatory uncertainty is defined as the
inherent variation associated with the physical environment under consideration, while
the epistemic uncertainty is defined as any lack of knowledge or information in any phase
or activity of the modeling process. Error is defined as a recognizable deficiency in any
phase or activity of modeling and simulation that is not due to lack of knowledge [30,32,33].
Epistemic uncertainty has been one of the most challenging topics during the past years
and it can be concluded that its characterization is better carried out by means of fuzzy
sets theory [34], Dempster-Shafer theory [35], possibility theory [36], and the theory of
upper and lower previsions [37]. Several studies discussing computational methods for
optimization accounting for this kind of uncertainty are available in literature for more
details [12,38–40].

On the other hand, aleatory uncertainty is particularly suitable for input data variabil-
ity descriptions, and it is widely agreed that it can be characterized by using the probability
theory, i.e., by means of probability distribution functions [30,31,41,42]. This kind of de-
sign under stochastic uncertainty is typically referred to as flexibility-based design, as
thoroughly discussed by several research works available in the literature [20–24,43–47].

Disturbance probability can be described both by discrete and continuous PDFs based
on data collection and measurements related to the process or as the product of reasonable
assumptions about the perturbation nature and magnitude. In this research work, the nor-
mal (Gaussian) and the Gamma probability distributions, represented in Figure 1a,b with
their cumulative functions, have been used in order to describe two different and common
process variables behaviors (for further details about the mathematical formulation of the
mentioned PDFs, please refer to Severini (2011) [48]) and to provide quantitative outcomes.

  

(a) (b) 

Figure 1. Uncertainty characterization: (a) probability distribution functions; (b) cumulative proba-
bility distribution functions.

This work indeed focuses on the effect of uncertainty on process design, and these two
distributions are particularly useful to represent two main categories of events, as further
detailed here below, and to emphasize the impact on the final results. In fact, whenever
no information is available, a general validity PDF should be employed, and the normal
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distribution is the one usually describing this “general validity” condition. Moreover,
uncertainty is often due not only to the uncertain variable fluctuation, but to the error
related to its measurements. Once again, the Gaussian PDF appears to be the most suitable
distribution to describe this phenomenon.

When shifting from the deterministic to the stochastic domain, the nominal operating
conditions are often identified as the most probable operating conditions. The symmetry
of the normal PDF implies that negative deviations with respect to the nominal operating
conditions are as probable as positive ones with the same magnitude. However, in chemical
processes, this is not always the case since external perturbations often preferentially occur
in one particular direction. For this reason, the Gamma PDF is included in the analysis
as well. This particular PDF was considered a suitable choice to describe very common
situations where the nominal value represents the most probable condition, but it actually
underestimates the vast majority of the possible operating conditions. If the cumulative
probability is considered in correspondence with the operating point, i.e., the maximum
probability, less than the 20% of all possible operating conditions are actually included.
From a process design point of view, this means that if the equipment sizing is performed
with respect to nominal operating conditions, the obtained design is undersized for more
than the 80% of the plant operation.

For the sake of completeness, it is worth clarifying that in this research work, since
the Gamma PDF decreasing trend shows a very low slope for very high x values, it was
truncated at 98% of its cumulative distribution function to fit the incertitude interval
without affecting the obtained results, as shown in Figure 1b.

Therefore, in order to couple uncertainty and optimal design procedure, a reliable
perturbation range for the x-axis of Figure 1a is defined in detail according to the specific
unit under analysis in the corresponding case studies sections.

2.2. Design Procedure

As already mentioned, the methodology proposed in this article to determine the
optimal number of stages in multistage unit operations under uncertain operating con-
ditions is an application to those cases whose aleatory uncertainty can be described by
means of a probability distribution function. The purpose of this section is to sum up the
concepts previously presented and to group them in a procedure that will be used in this
research work.

First, the optimal design under nominal operating conditions is performed by mini-
mizing the annualized costs. For the case studies addressed in this research work, capital
expenses were calculated according to the Guthrie-Ulrich-Navarrete correlations [49–52],
while operating expenses were assessed according to the actual price of steam per unit
energy, both for the evaporator external steam and for the column reboiler duties as later
described. The cost estimation correlations for both CAPEX and OPEX according to the
selected unit are further detailed in Appendix A.

Finally, the TAC is defined as:

TAC [$/y] = OPEX + CRF · CAPEX (1)

where the CRF is the Capital Recovery Factor and it is given as:

CRF =
i · (1 + i)n

(1 + i)n
− 1

(2)

where i is the discount rate and n is the unit lifetime [53]. This coefficient accounts for
capital depreciation over time. The most suitable values for those two terms can be found
in the available literature and databases according to the specific process unit [54,55].

After that, a second design procedure is performed in order to account for the uncertain
operating conditions impact on operating costs. Although the procedure does not depend
on the uncertainty PDF, some specific trends should be used in this work to present some
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quantitative results. It is worth remarking that the uncertain variable probability is a
property of the particular system and cannot be selected. It can be obtained from data
collection or by means of reliable assumptions based on the process nature.

In this research work, two different PDFs were proposed to characterize the uncertainty,
as shown in Figure 1. These two trends were selected in order to compare the impact of
both symmetric and skewed disturbance PDF on the final result. The Gamma and the
normal PDF belong to the two-parameter distributions family; therefore, two conditions
should be fixed in order to uniquely define them. For this study, the first condition is that
the nominal operating conditions correspond to the maximum of the PDF curves, i.e., the
operating condition most likely to occur. On the other hand, the two distributions were
selected so that their variance was the same.

As already pointed out, although the deviation PDF is not an arbitrary choice, these
assumptions are just exploited to show the impact of some common behaviors on the final
design. Indeed, the normal PDF was used to describe the most common probability distri-
bution, taking into account the measurement errors as well, while the Gamma was included
for all those processes whose input varies over a range with asymmetrical behavior.

Then, given the uncertainty characterization, the operating conditions are evaluated
over the uncertain domain by weighing each operating condition according to its probabil-
ity, according to the equation:

OPEX∗ =
1

xmax − xmin
·

∫ xmax

xmin
OPEX(x) · P(x) · dx (3)

where x refers to a generic operating condition.
The TAC function is then calculated by accounting for both the CAPEX and the newly

obtained OPEX trends. Finally, the optimal number of stages is assessed once again as
usual. Before applying the procedure to the case studies, some properties of the integral
here above can be already pointed out in order to outline some expectations and to acquire
a preliminary sensitivity to this probability-based averaging.

Let us consider, for instance, a symmetric PDF and a linear trend of the OPEX function
over the considered uncertain domain. Given that a = xmax − µ = µ − xmin, the integral,
referring to the PDF mean, becomes:

OPEX∗ = OPEX(µ) +
1
2a

·

∫ a

−a
OPEX(x − µ) · P(x − µ) · dx (4)

Being the term inside the integral, the product between a symmetric (even) and a linear
(odd) function is an odd function as well. This means that the outcome of this integral
average is exactly the value of the OPEX function at the center of the domain, i.e., the OPEX
value calculated under nominal operating conditions.

In brief, for these kinds of systems, it can be known “a priori” that a more detailed
design procedure would only result in useless computational effort. On the other hand, in
the case of asymmetric distribution, a linear trend of the cost function would result in a
non-zero value for the integral in Equation (4) and the function OPEX* would be shifted
with respect to OPEX(µ) accordingly. In order to validate this observation, in this research
work calculations with the Gaussian PDF were performed even when the cost function
trend could be approximated to a linear one.

After the economic assessment, an environmental impact evaluation can be performed
in order to check if the different optimal number of separation stages with respect to
the nominal operating conditions results in lower or higher emissions. In general, when
accounting for uncertainty, the design requires more stages than the conventional one, i.e.,
lower OPEX and then lower duty demand. In these cases, both economics and sustainability
would benefit from the additional stages. Regardless of whether a different outcome was
obtained, the environmental footprint should be included among the optimization criteria
as a part of a more complex algorithm in order to have an optimal design based both
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on economic and sustainability aspects. The latter are further explained in the following
Section 2.3.

2.3. Environmental Impact

Sustainability is by far a topic of major concern over the last years in the engineering
domain. The energy challenge is the key point of the environmentally friendly policies
adopted by all of the most developed and industrialized countries worldwide. For this
purpose, Horizon 2020, i.e., the biggest EU Research and Innovation program, was funded
by the European Union over the 2014–2020 period [56]. On the other hand, the International
Energy Agency defines renewables as the center of the transition to a less carbon-intensive
and more sustainable energy system [57]. However, since the transition from fossil fuels to
renewables requires a considerable time span to establish itself, the short-term solution lies
in more energy-effective technologies.

In the light of these premises, during the design phase, besides the economic compari-
son between operating and capital expenses, particular attention should be dedicated to
the former from a sustainability point of view. A lower number of separation stages implies
a considerably higher energy demand in the case of external perturbations, even when they
result in a more profitable design. Referring to the previous case studies, an overdesign
would result in a more profitable and more sustainable operation. In order to quantify
the environmental impact as a function of the energy demand of process units, the Global
Warming Potential indicator was employed since it was proven to have the most adverse
effect on the sustainability profile of the case study operations [58]. The CO2 emissions
were calculated according to the methodology followed by Gadalla et al. (2006) [59] as a
direct function of the duty requirement.

Even though CO2 emissions are strictly correlated to the fuel employed to produce the
required energy, this study carried out a comparison between different configurations of the
same unit. Therefore, the study can be considered fuel-independent. The results presented
in this paper refer to natural gas. For the same reason, CO2 emissions related to feedstock
and products cancel out when computing the difference between two configurations.
According to several authors [59–62], taking into account the plant lifetime, the CO2
emissions associated with the installation of additional units/stages are negligible with
respect to the emissions related to the heat requirement. By analogy, although the CO2
emissions due to pumping and cold duties were thoroughly calculated using a specific
emissions factor of 51.1 kgCO2/GJ, as suggested by Waheed et al. [6], they resulted in
orders of magnitude lower with respect to the steam duty, as already proven by several
studies [6,60–62].

For more details about the CO2 emissions calculations, please refer to Appendix B.
The following section shows in detail the two case studies to which the entire proce-

dure described here above were applied.

3. Case Studies

In this section, two multistage unit operation case studies are presented. The design
of a multiple-effect evaporator and a standard distillation column were performed in
order to assess the optimal number of stages able to minimize the total costs. The same
units were then designed, accounting for uncertain operating conditions characterized by
means of both symmetric and skewed PDFs to compare the impact of different deviation
qualitative behavior.

Evaporation and distillation were selected since they are among the most widely
spread operations in chemical plants and, thus, the impact of uncertain operating condi-
tions, even for simple applications, on their optimal configuration is of particular interest.
Moreover, the choice of two case studies also shows that uncertainty could considerably
affect both concurrent and countercurrent operation designs.

The detailed description of nominal operating conditions, process specifications, and
model equations is provided here below for each case study in the corresponding section.
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3.1. Multiple-Effect Evaporator

The first case study refers to a concurrent multiple-effect evaporator. It is a non-
conventional unit operation made up of several flash units in series (cf Figure 2) and it can
be used either to concentrate a solution (sometimes up to crystallization) or to recover a
valuable solvent from it. The main advantage of this unit, with respect to the corresponding
single effect configuration, is that the outlet vapor of each effect can be used as external
duty for the following one which enhances the separation. The cost of this operation
improvement consists of the need for an additional unit and also of the pressure drops
required in order to reduce the solution boiling temperature below the previous vapor
condensation one.

 

Figure 2. Concurrent multiple-effect evaporator.

This basic operation was selected as a first example in order to show how, even for a
simple and non-sensitive process, taking into account operating conditions fluctuations
could lead to small but significant OPEX changes affecting the optimal design choice.

The concurrent multiple-effect evaporator was modeled according to Di Pretoro et al.
(2020) [63,64]. For each effect, the model equations state as follows:

• Overall mass balance

Li−1 = Li + Vi (5)

where L and V are the liquid and vapor flowrates;

• Component mass balance

Li−1 · wi−1 = Li · wi (6)

where w is the solute mass fraction;

• Energy balance

Li−1 · cP
L(wi−1, TL,i−1) · TL,i−1 + Vi−1 · ∆Hev(TV,i−1)

= Li · cP
L(wi, TL,i) · TL,i + Vi · (c

water
P · TL,i + ∆Hev(TV,i))

(7)

where TL and TV are the vapor and liquid temperatures, cP
L is the liquid specific heat, and

∆Hev is the evaporation enthalpy;

• Heat exchanger characteristic equation

Qi = Vi−1 · ∆Hev(TV,i−1) = Ui · Ai · (TV,i−1 − TL,i) (8)

where Q is the heat duty, U is the heat transfer coefficient, and A is the heat transfer surface
area for the i-th effect;
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• Boiling point elevation

∆Teb,i = TL,i − TV,i = f (wi) (9)

It is worth noting that the solute is considered a non-volatile species, i.e., its molar
fraction in the vapor phase is equal to zero. Furthermore, correlations for evaporation
enthalpy, specific heat, and boiling point elevation are those provided by the Perry’s
Chemical Engineers’ Handbook [1].

For reasons related to economic convenience, all the units are equal to each other. As a
consequence, every evaporator has the same heat transfer surface area that is large enough
to manage the system perturbations.

Each evaporator thus has five degrees of freedom (L, V, w, TL, TV), each of which is
satisfied by one of the five model equations. The specification xN concerning the last effect
fulfills the d.o.f. related to the external steam duty V0.

Table 1 shows the feed stream properties as well as the external steam duty temperature
and the outlet concentration specification for the case study under analysis in this paper.
With regards to the uncertain operating conditions characterization required to perform the
design according to the proposed procedure, the inlet flowrate was identified as the variable
likely to undergo external disturbances. Given that the nominal operating conditions can
be identified as the operating point of maximum probability, i.e., the PDF mode, according
to the Gaussian and Gamma variance hypothesis described in Section 2.1, the uncertain
domain was assumed to vary over the interval (9000, 16,500 kg/h).

Table 1. Nominal operating conditions.

Property Value Unit

L0 10,000 kg/h
TL,0 363.15 K
x0 0.05 kg/kg

TV,0 393.15 K
wN 0.5 kg/kg

3.2. Distillation Column

The second case study refers to a standard binary distillation column unit. In Table 2,
the feed properties under nominal operating conditions, the operating pressure, and the
distillate and bottom products specifications are listed. Despite the higher complexity of
the process under analysis, a simple cyclohexanol/phenol mixture without thermodynamic
singularities (such as azeotrope or unusual equilibrium curves) was selected for the sepa-
ration in order to avoid results strictly related to the particular case study. Moreover, the
selection of a common process is more suitable to show the methodology effectiveness even
with respect to ordinary applications. The employed thermodynamic equation of state
for the equilibrium calculations was the Soave-Redlich-Kwong and the column Murphree
efficiency for the assessment of the real number of trays was 0.5.

Table 2. Distillation feed properties and nominal operating conditions.

Property Value Unit

Feed
F 38 kmol/h

Tfeed 397.15 K
zPhenol 0.35 mol/mol

Specifications
Ptop 1.013 bar

xD
Cyclohex 0.95 mol/mol

xB
Phenol 0.80 mol/mol
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Even in this case, to carry out the proposed design procedure accounting for dis-
turbances, a proper uncertain interval (0.31, 0.58) was selected for the uncertain variable
that was identified as the inlet composition. The aim of this choice was to highlight the
sensitivity of the process with respect to an intensive variable instead of the system capacity.

4. Results and Discussion

In this section, the results for the conventional design under nominal operating con-
ditions and the procedure accounting for uncertain variables deviation are compared.
They are listed in subsections according to each case study in order to analyze the outcome
deriving from an uncertain feed stream flowrate and composition to be treated, respectively.

4.1. Multiple-Effect Evaporator

As already introduced in Section 3.1, an increase in the number of consecutive evapora-
tion stages, i.e., higher CAPEX, reflects in an OPEX decrease. Since the product is always the
same given amount of concentrated solution (for this case study LN = L0·w0/wN = 1000 kg/h),
maximizing the net income corresponds to minimizing the Total Annualized Costs (TAC).

Figure 3 shows the trend of the two curves (in USD/year) as well as the total costs,
obtained by the combination of the two, vs the number of effects ranging from 1 up to 12.
The OPEX curve, representing the external duty requirement, has a hyperbolic trend while
the CAPEX has a linear increase with respect to the number of units employed. The optimal
number of effects is three and the corresponding total annualized cost is 574,882 USD/year.

 

Figure 3. Multiple-effect TAC under nominal operating conditions.

The multiple-effect evaporator model can then be solved for both variable number of
stages and over the entire interval of uncertain operating conditions. Figure 4a shows the
external energy requirement for each number of effects at each value of the feed flowrate.
This external duty represents the energy provided by the condensing steam utility in the
first evaporation stage.
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(a) (b) 

Figure 4. External duty under uncertain operating conditions: (a) side view; (b) front view.

As expected, the steam needed to concentrate the solution up to the specification
achievement is higher for a lower number of stages and for a higher flowrate to be processed.
Moreover, it can be noticed that the duty increase itself is higher for a lower number of
effects (cf Figure 4). This means that the feed flowrate perturbation is distributed over the
effects, and it becomes almost irrelevant for several effects higher than 10, for which we
expect the flexible design to provide a result very similar to the conventional one.

In light of the above, a relevant OPEX curve shift towards higher values can be
expected which is higher as N is lower.

The operating costs were then averaged over the uncertain domain according to
Equation (3). A new OPEX trend reflecting the uncertainty contribution was then obtained.
As it can be noticed in Figure 4b, the external duty can be considered a linear function
of the inlet feed flowrate (R2 = 0.9974). The results obtained with the use of the normal
distribution to describe the uncertain variable deviation give, as expected, the same values
as the nominal case in Figure 3 independently from the selected variance due to the function
properties already discussed in Section 2.1. Thus, since trends overlap, they cannot be
distinguished on the plot.

On the other hand, Figure 5 represents the new TAC plot according to the deviation
Gamma PDF. The TAC trend is still calculated according to the Equation (1) where CAPEX
is still the same, since it depends on the equipment only, while OPEX are obtained according
to the Equation (3).

 

Figure 5. Multiple-effect TAC under uncertain operating conditions (Gamma PDF).

The results thus obtained, denoted by the dashed lines, reflect the expectations. In
general, the total annualized costs were higher than those assessed by considering the
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nominal operating conditions. The minimum moves to the right due to the higher OPEX
increase are related to a low number of effects, while the two curves asymptotically overlap
each other for higher values of N. The optimal design under uncertain operating conditions
accounts for four evaporation stages with a TAC equal to 651,438 USD/year.

The outcome of the analysis carried out on this first case study might seem trivial.
However, given the simplicity of the selected process as well as its relatively low sensitivity
with respect to the selected uncertain variable, this example shows how an a priori flexibility
analysis can significantly affect the design choice and allows for a more cost-saving decision.

In order to better show the uncertain operating conditions’ impact on the costs and
the relevant bias usually neglected while performing a design optimization without consid-
ering external disturbances, the results for a more sensitive process are presented in the
next section.

4.2. Distillation Column

The distillation column was simulated under nominal operating conditions by means
of ProSim Plus® process simulator in order to assess the condenser and reboiler duties,
the reflux ratio, and the maximum and minimum volumetric flowrates flowing along the
unit. Given these data, the equipment sizing was performed in order to evaluate the capital
expenses for each number of theoretical trays from 9 to 32.

Results are reported in Figure 6. As usual, the operating costs show an asymptotic
trend with an increasing number of stages. The reflux ratio indeed approaches the Rmin

value as a higher number of stages is used. This lower reflux results in lower boilup and
condenser duties, which explains the behavior of the OPEX curve.

 

Figure 6. Distillation TAC under nominal operating conditions.

Capital costs have the standard linear trend as well, except for very low number of
trays. This behavior is due to the column diameter as well as reboiler and condenser heat
transfer surface area oversizing related to the extremely high reflux ratio attained when
getting close to the minimum number of stages (Nmin = 7).

The total annualized cost function shows the typical trend with a minimum, and the
corresponding optimal number of theoretical equilibrium stages is 16 (reboiler included)
with a TAC equal to 224,472 USD/y.

After that, a preliminary sensitivity analysis was performed as usual, and the results
are represented in Figure 7. As expected, the obtained surface reflects the typical higher
energy demand for a lower number of separation stages; an analogous trend can be detected
for the condenser duty even though the cooling water contribution to operating expenses
is one order of magnitude lower than the reboiler steam one.
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(a) (b) 

Figure 7. Reboiler duty under uncertain operating conditions: (a) side view; (b) front view.

Different from the multiple effect evaporator case study, the heat duty trend with
respect to the phenol molar fraction in the feed can be either increasing or decreasing in the
considered interval according to the number of equilibrium stages.

This phenomenon can be more easily detected from a lateral perspective, as shown in
Figure 7b. For a small number of stages, a higher duty is required if the feed phenol content
is higher than the cyclohexanol one. However, for a large number of stages, a higher duty
is required if the feed cyclohexanol content is higher than the phenol one. There exists an
intermediate condition as well around 14 stages where the feed composition perturbation
has a low impact on the duties.

Once again, the OPEX can be averaged over the uncertain variable probability distri-
bution function according to Equation (3).

If the normal PDF is considered, almost the same result as the nominal design is
obtained due to the symmetry of the distribution and the almost linear trend of the energy
costs with respect to zPhenol (R2 = 0.9912).

On the other hand, the use of an asymmetric probability distribution such as the
Gamma PDF to describe the feed composition uncertainty results in a relevant impact.
Figure 8 shows the new OPEX curve averaged with respect to the skewed distribution as
well as the corresponding TAC function according to the procedure already explained in
Section 2.2. The averaged costs for external duties under uncertain conditions are higher
than those related to nominal operating conditions in the case of low number of stages and
lower for a high N value. This “rotation” of the OPEX curve causes the total costs point of
minimum displacement to land at 18 equilibrium stages with a corresponding TAC value
equal to 222,992 USD/y.

To conclude the results analysis of the distillation column case study, it can be observed
that, different from the multiple-effect case study where the OPEX function was stretched
towards higher values for a low number of stages, in this case the OPEX curve rotated,
causing the new optimal TAC value to be even lower than the nominal one.

Moreover, the distillation process was particularly sensitive to the feed composition
uncertainty. Indeed, two additional stages out of 16 were a non-negligible oversizing
requirement; this result was even more appreciable if we take into account that the selected
separation process involved an ideal mixture whose components could be easily separated.
Finally, in both cases the design based on flexible operating conditions resulted in a higher
number of stages able to mitigate duties and additional costs if perturbations were to occur.
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Figure 8. Distillation TAC under uncertain operating conditions (Gamma PDF).

5. Environmental Impact Assessment

As an analogy along with Section 4, the results for the environmental impact assess-
ment are presented below for the multiple-effect evaporator and the distillation column
case studies, respectively. As already introduced in Section 2.3, the selected indicator is the
Global Warming Potential, and its value is assessed for variable number of effects/stages
over the uncertain domain. For the nominal case, the reported value corresponds to
the nominal duty consumption, while for the flexible design it is the result of the same
averaging procedure performed with the OPEX in the economic assessment.

The average values of equivalent CO2 emissions for the multiple-effect and for the
distillation case studies are shown, respectively, in Figure 9a,b.

  

(a) (b) 

Figure 9. CO2 average emissions: (a) multiple-effect evaporator; (b) distillation column.

Both the plots reflect the OPEX function trend, which is the heat duty curve, as ex-
pected. For a higher number of stages, the energy demand is lower and thus the equivalent
CO2 emissions are lower, both under nominal and uncertain operating conditions. These
results validate the initial remark highlighting the fact that, for these particular case studies,
a higher value of N implies both economic and environmental advantages with apparently
no drawbacks.

However, in order to have a more reliable interpretation of these results, further study
is warranted by using equivalent CO2 emissions per functional unit, as outlined by the
ISO14040 [65], instead of the emissions per operating time. Regarding the functional unit,
the two main possible choices are either a kg of treated stream or a kg of purified product.
Since those units perform separation processes, it can be assumed that they are designed to
treat feedstocks, and thus 1 kg of feed stream can be used as functional unit.
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Moreover, for the multiple effect evaporator, both in the case of solvent recovery and
solution concentration, the product quantity is proportional to the feed flowrate due to the
partial mass balance LN = L0·w0/wN = 1000 kg/h. This means that the emissions per unit of
feedstock differ by those per unit of product by a constant scale factor only.

On the other hand, a similar remark applies to the distillation column. Since both
cyclohexanol and phenol are products which are to be purified, the feed mass flowrate
is the same as the sum of the product streams flowrates. Therefore, 1 kg of feedstock
corresponds to 1 kg of products. Since the design was performed for a given molar flowrate,
the only difference taken into account will be the different molecular weight related to
composition perturbations. However, given that the molecular weights of cyclohexanol
(MW = 100 g/mol) and phenol (MW = 96 g/mol) are similar to each other, only a slight
difference can be detected.

In Figure 10a,b, the results with respect to 1 kg of treated feedstock are reported. First,
it can be noticed that some differences in the emission trends can be detected with respect
to the uncertain variable value compared to the duties trend in Figures 4 and 7, respectively.
In fact, while the effect of a composition deviation shows an almost negligible scaling factor
between the emissions per functional unit and the duty requirement, in the multiple effect
evaporator case study the emissions per kg of feed decrease for a higher capacity of the
system. This trend is related to the different approach between economic optimization
based on the cash flow and the sustainability assessment based on the functional unit. On
the other hand, emissions are still decreasing with a hyperbolic behavior when moving to
higher number of separation stages. This result validates once again the analogous trend of
economic and environmental analysis towards higher investments.

  

(a) (b) 

Figure 10. CO2 emissions—sensitivity: (a) multiple-effect evaporator; (b) distillation column.

However, even in the case of opposite trends with regard to environmental and
economic indicators, a more detailed and complex multi-criteria decision-making problem
could be set in order to find an optimal compromise.

6. Conclusions

In this paper, the impact of perturbed operating conditions on the optimal design
of multistage operations was discussed and assessed by means of a simple and effective
procedure that was proposed. Based on a preliminary analysis concerning the uncertainty
characterization, the flexibility of the system was both qualitatively and quantitatively ana-
lyzed. The implemented approach relies on the OPEX integral average over the disturbance
PDF. After that, the same study was performed on unit emissions. Analogies and differences
between the economic and environmental aspects were compared and highlighted.

The main outcome of this study can be then summarized into some key points
as follows:
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• The result of the analysis reflects the deviation PDF characterization over the uncertain
variables domain. In particular, an a priori knowledge of the perturbation likelihood
(e.g., symmetric, skewed, etc.) allows to predict with simplified calculations the
expected system behavior;

• Besides the case-specific results, the proposed approach allows to thoroughly quantify
the required system oversizing according to the expected deviation. Although for
simple cases the higher flexibility of units with more stages could be rather intuitive,
for systems with highly nonlinear behavior or for specific uncertain parameters, an
opposite outcome could be observed;

• The environmental impact analysis coupled with uncertainty exhibits a decreasing
trend due to the lower energy demand, with respect to the increase in the number
of stages, as expected. For the proposed case studies, this behavior is compliant
with the outcome of the economic assessment under uncertainty. This means that a
proper increase in the number of stages results both in lower total costs and lower
CO2 emissions.

With regard to future developments and applications, the methodology that was
applied to multistage unit operations could be used for different systems. For instance, the
reformulation of the OPEX according to the uncertainty characterization could be used
for any system that can undergo external perturbations and whose functioning requires
external duties (e.g., heat, electricity, fuel, etc.). Some systems, also different from chemical
processes, could need some adjustments with respect to the applied procedure and could
involve the CAPEX assessment under uncertainty at the cost of a higher computational
complexity. The same approach used for discrete variables, i.e., number of stages, could be
used for continuous design variables as well. However, the main limitation still consists
of the need for a detailed uncertainty characterization expressed in terms of a probability
distribution function whose parameters are known.
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Glossary

Symbol Definition Unit
A Characteristic dimension mn

A Heat transfer surface m2

a Limits of integration -
C% Carbon content percentage %
CBM Equipment bare module cost $
Cen Cost per unit energy $/kJ
Cp

0 Purchase equipment cost in base conditions $
cP Specific heat at constant pressure kJ/(kg·K)
CAPEX CAPital EXpenses $/y
Csteam Steam cost $/y
CRF Capital Recovery Factor 1/y
F Feed flowrate kmol/h
FBM Bare module factor -
FM Material factor -
FP Pressure factor -
Fq Column trays factor -

GWP Global Warming Potential kgCO2–eq
hsteam Steam enthalpy kJ/kg
∆Hev Evaporation enthalpy kJ/kg
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i Discount rate 1/y
L Liquid flowrate kg/h
M&S Marshall & Swift cost index -
N Evaporator/Column number of stages -
Nmin Minimum number of stages -
NHV Net Heating Value kJ/kg
n Unit lifetime y
OPEX OPerating EXpenses $/y
OPt Operating time per year h/y
P Pressure bar
P(x) Probability function function
PDF Probability distribution function acronym
Q Heat duty kJ/h
Qreb Reboiler heat duty kJ/h
Qfuel Fuel heat duty kJ/h
R Reflux ratio -
R2 Coefficient of determination -
Rmin Minimum reflux ratio -
T0 Standard temperature K
TF Flame temperature K
TFeed Feed stream temperature K
TL Liquid stream temperature K
TS Stack temperature K
TV Vapor stream temperature K
∆Teb Boiling point elevation K
TAC Total Annualized Costs $/y
U Heat transfer coefficient kJ/(m2·h·K)
V Vapor flowrate kg/h
wi Solute mass fraction kg/kg
x Independent variable various
xi

B i-th component fraction in the bottom mol/mol
xi

D i-th component fraction in the distillate mol/mol
zi i-th component fraction in the feed mol/mol
Greek letters
α CO2–to–C molar mass ratio kg/kg
λsteam Steam latent heat kJ/kg
µ Mean -
σ Variance -

Appendix A

In order to evaluate the investment required to build up a process plant or for whatever
economic analysis and comparison related to process equipment, the cost of every single
unit needs to be estimated.

For this purpose, the Guthrie–Ulrich–Navarrete correlations described in the following
paragraphs were employed [49–52].

Appendix A.1. Purchase Equipment Cost in Base Conditions

The purchase equipment cost in base conditions is obtained by means of the following
equation:

log10C0
P[$] = K1 + K2 · log10(A) + K3 · [log10(A)]2 (A1)

where A is the unit characteristic dimension, and the Ki coefficients are relative to the
equipment typology (cf. Table A1).
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Table A1. Equipment cost in base conditions parameters.

Equipment Typology K1 K2 K3 A

Heat exchanger Fixed tubes 4.3247 −0.3030 0.1634 Heat transfer area [m2]
Kettle 4.4646 −0.5277 0.3955 Heat transfer area [m2]

Columns (vessel) Packed/tray 3.4974 0.4485 0.1074 Volume [m3]
Trays Sieved 2.9949 0.4465 0.3961 Cross sectional area [m2]

The provided coefficients refer to a Marshall & Swift equipment cost index equal to
1110. In order to update the cost estimations, a M&S index equal to 1638.2 was used in
order to refer the calculations for the year 2018 by means of the correlation:

C0
P,2 =

M&S2

M&S1
· C0

P,1 (A2)

Appendix A.2. Bare Module Cost

The equipment bare module cost can be calculated according to the following correlation:

CBM = C0
P · FBM (A3)

where the bare module factor is given by:

FBM = B1 + B2 · FM · FP (A4)

The FM and FP factors refers to the actual construction materials and operating pres-
sure, while the Bi coefficients refer to the equipment typology (cf. Table A2).

Table A2. Equipment cost in base condition parameters.

Equipment Typology B1 B2 FM FP

Heat exchanger Fixed tubes 1.63 1.66 1 1
Kettle 1.63 1.66 1 FP,Kettle

Columns/vessel / 2.25 1.82 1 1
Pumps Centrifugal 1.89 1.35 1.5 1

The FP,Kettle value is given by:

log10FP = 0.03881 − 0.11272 · log10(P) + 0.08183 · [log10(P)]2 (A5)

where P is the relative pressure in bar.
For column tray bare module cost, a slightly different correlation should be used:

FBM = N · C0
P · FBM · Fq (A6)

where N is the real trays number, FBM = 1 e Fq is given by:

{

log10(Fq) = 0.4771 + 0.08561 · log10(N)− 0.3473 · [log10(N)]2, N < 20
Fq = 1, N ≥ 20

(A7)

Appendix A.3. External Heat Duty Cost

The annual energy costs related to the steam utility were evaluated according to the
following correlation:

Csteam [$/y] = Cen [$/kJ] · OPt [h/y] · V [kg/h] · ∆Hev [kJ/kg] (A8)
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The formula here above accounts for the steam price per unit energy Cen (7.78·10−6),
the number of working hours per year OPt (8150) [51], the steam flowrate, and its latent heat.

Appendix B

The indicator associated with the greenhouse effect impact category is the Global
Warming Potential, whose unit is kgCO2–eq per unit. It was calculated, as suggested by
Gadalla et al. [59], by means of the correlation:

CO2 =

(

Q f uel

NHV

)

·

(

C%
100

)

· α (A9)

where

• CO2 is the value of equivalent carbon dioxide emission in [kg/h];
• NHV is the Net Heating Value, and it is equal to 51,600 kJ/kg for natural gas;
• C% is the carbon content in percentage, and it is equal to 75.4 for natural gas;
• α is the CO2-to-C molar mass ratio and it is equal to 3.67.

Values refer to natural gas since this is the fuel used in the referenced research article.
However, by properly adjusting the parameters values, it can be adapted to any fuel.
Finally, the term Qfuel, identifying the combustion energy required to vaporize the desired
amount of steam, can be estimated as:

Q f uel =

(

Qreb

λsteam

)

· (hsteam − 419) ·
(

TF − T0

TF − TS

)

(A10)

where

• Qreb is the reboiler duty in kJ/h;
• λsteam is the steam latent heat in kJ/kg;
• hsteam is the steam enthalpy in kJ/kg;
• 419 is the water enthalpy at 100 ◦C in kJ/kg;
• TF is the flame temperature in K;
• TS is the stack temperature in K;
• T0 is the standard temperature in K.

On the other hand, the equivalent carbon dioxide emissions for pumping were esti-
mated by multiplying the power needed by each pump and the amount of CO2 per each
GJ of electrical energy, i.e., 51.1 kgCO2/GJ [6].
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