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Abstract—Super-resolution (SR) techniques play a crucial role
in enhancing the quality of low-resolution images, with signif-
icant applications in fields such as security and surveillance,
where license plate recognition is critical. This paper focuses
on optimizing the super-resolution of license plates using em-
bedding similarity learning. We proposed a novel framework
that integrates a Siamese network with a super-resolution model
to guide the SR model into enhancing the perceptual quality
of reconstructed license plates. By leveraging embedding simi-
larity through Contrastive loss, our approach ensures that the
super-resolved images are perceptually and structurally closer
to the original ones. The experiments on a synthetic dataset
demonstrated that the proposed method outperforms traditional
techniques that rely solely on pixel-based loss functions such as
MSE. The introduction of embedding similarity loss significantly
improves the PSNR and LPIPS metrics, in addition to the optical
characters recognition rate.

Index Terms—Super-resolution, License plate, Convolutional
neural networks, Embedding similarity, Contrastive learning.

I. INTRODUCTION

Single image super-resolution (SISR) is a well-known re-
search field in computer vision focused on enhancing the
spatial resolution and visual fidelity of low-resolution images.
Its significance lies in the ability to reconstruct high-resolution
details from degraded visual data, thereby improving image
quality across diverse applications, including digital photogra-
phy [1], [2], medical imaging [3], and video surveillance [4].
In particular, SISR has been increasingly applied to enhance
license plate (LP) images, where the clarity and legibility
of such critical visual data are paramount for effective and
reliable automated recognition systems.

License plate recognition (LPR) systems are integral com-
ponents of modern surveillance, traffic management, and se-
curity applications [5]. However, the efficacy of these systems
heavily relies on the quality of the captured images [6]. In
real-world scenarios, LP images obtained from surveillance
cameras or other sources often suffer from visual degradation
such as low resolution, motion blur, and noise. An illustration
is provided in Fig. 1, where it appears challenging to properly
read the LPs. These issues pose greater challenges to LPR
systems, compromising their accuracy and reliability. One
of the most critical challenges is the distance from where
the images are taken, which induces limited pixel resolution.
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When images are captured from a great distance, the LPs
appear smaller within the frame, and the number of pixels
representing the plate is significantly reduced. This reduced
pixel resolution results in fine details becoming invisible and
unrecognizable upon zooming, making it difficult for LPR
systems and even human users to accurately interpret and
recognize the characters. As a solution, advanced image en-
hancement techniques, such as SISR, are essential to mitigate
these issues by upscaling low-resolution images and preserving
crucial details necessary for reliable LPR.

Fig. 1. Example of license plates taken under different conditions, showcasing
difficulties to properly read the plates in some cases [7].

Despite recent advances in the field of SISR [8]–[10],
LP super-resolution (LPSR) remains a significant challenge.
The unique characteristics of LP images, such as small text,
complex backgrounds, varying lighting conditions, and diverse
fonts [11]–[14], make it difficult for standard SISR models to
perform robustly. Traditional SR methods often fail to recon-
struct the fine details and sharp edges required for accurately
recognizing characters on license plates. Deep learning-based
methods, while more robust, still struggle to maintain the
delicate balance between enhancing image quality and preserv-
ing critical textual information. The importance of achieving
high accuracy in LPR systems cannot be overstated, especially
in applications such as law enforcement. Misrecognition or
failure to recognize a LP can lead to severe consequences,
making it of paramount importance to develop SR methods
specifically designed to address these challenges.

Compared to the extensive literature on SISR, research
specifically focusing on LPSR remains relatively week. Most
existing approaches are based on deep learning, mainly due to
their ability to use inherent prior knowledge of natural scenes
and preserve image details better than traditional methods,
such as interpolation-based ones. For instance, bilinear and
bicubic interpolations are simple and fast, but often produce
blurry images with a loss of fine details. These techniques
estimate new pixel values based on linear or cubic inter-



polation of neighboring pixels, which can result in smooth
but less detailed outputs. In contrast, deep learning-based
methods, such as convolutional neural networks (CNNs) and
generative adversarial networks (GANs), have shown superior
performances in LPSR [15]. Their ability to learn complex
patterns enables them to reconstruct high-resolution images
with finer details and higher visual fidelity.

Motivated by the performance of CNNs and GANs, the
work in [16] proposed a multi-scale CNN model trained to
minimize the mean squared error (MSE) between the high-
resolution (HR) and super-resolved (SR) license plates. The
work in [17] proposed to train a GAN architecture with a
gradient profile prior [18] to improve the character boundaries
to emphasize the contrast between the characters and the
background. Furthermore, the work in [15] adopted a similar
architecture with GANs. Inspired by the SRGAN model [2],
the authors trained a GAN with an OCR-based loss function,
computing recognition errors between HR and SR license
plates. Additionally, it uses perceptual loss based on VGG-
19 [19], and adversarial loss to improve both the visual and
recognition accuracy of the SR images. Following the idea
of employing OCR as a loss function to guide the learning
process, the work in [20] integrated a CNN as a sub-net with
a GAN to compute the OCR on the generated image from
the generative network of the proposed model. The predicted
OCR is compared to the ground truth LP using connectionist
temporal classification (CTC) loss. The work in [21] adopted
a character-based perceptual loss, where MSE between in-
termediate feature representations, obtained by means of a
character classification model, is used to compute the loss. The
work in [22] computes the Levenshtein distance between the
predicted characters by an OCR on the HR and SR images as
a loss function, combined with MSE and structural similarity
index (SSIM) to improve the overall performance.

In summary, current research in LPSR primarily applies
existing SISR models, such as SRGAN, augmented with text
recognition guidance. Besides, most frameworks focus on
moderate scaling factors like x4 and x8, often neglecting
extreme cases such as x16 scaling. This study addresses
extreme LPSR scenarios, i.e. x16, by proposing a novel train-
ing approach based on embedding similarity. Specifically, we
introduce RDASRNet, a CNN model featuring residual dense
blocks (RDBs) and channel attention mechanisms. In addition,
we propose a training strategy to improve the fidelity between
HR and SR images by minimizing pixel-level distances using
MSE and embedding-level differences via a Siamese network
and a Contrastive loss [23]. The feature embedding distance
is computed based on the output embedding of the Siamese
network [24] of the HR and SR images. By doing so, we
ensure that the super-resolved images exhibit high visual
fidelity and sharpness and accurately preserve the informative
details essential for effective LPR. We validate the experiment
on the UKLPD dataset [25], composed of synthetic data of UK
license plate images.

II. PROPOSED METHODOLOGY

In this section, we detail the architecture of the proposed
framework, including the data preparation and degradation
modeling, the structure of RDASRNet, and the training strat-
egy based on Siamese network and embedding similarity
learning.

A. Data preparation and degradation modeling

The goal of an SR model is to reconstruct HR images
from LR images without prior knowledge of the degradation
process. Typically, a degradation model is used, which may
include blur, noise, and downsampling to synthesize LR im-
ages [10]. This can be mathematically modeled by:

ILR = (IHR ∗ k) ↓x +n, (1)

where ILR and IHR represent the low-resolution and high-
resolution images, respectively. The ∗ denotes the convolution
operation with a blur kernel k, ↓x indicates downsampling by
a factor of x, and n represents additive noise.

Blur, noise, and downsampling are specifically used in
super-resolution tasks because they represent common real-
world factors that degrade image quality, including optical im-
perfections, sensor noise, and environmental conditions [13],
[14]. By modeling these specific degradations, SR algorithms
can be trained to handle a wide range of real-world sce-
narios, making them more effective and versatile. Motivated
by the fact that real degradation processes are much more
diverse and not limited to camera sensor degradations, we
incorporate JPEG compression along with the aforementioned
degradations into the degradation modeling. By doing so,
we account for digital image storage and transmission-related
issues, ensuring that the super-resolution model can handle a
broader spectrum of real-world image quality issues.

Instead of using license plate images directly, we use
localized patches, a common practice in SISR. Each input
image ILP is divided into non-overlapping patches of size
64 × 64 pixels. By doing so, we ensure that the model can
learn from a diverse set of localized image features. Then,
we perform a single-stage degradation process to simulate
real-world visual quality issues. Each patch in the dataset
undergoes three separate degradation processes: Gaussian Blur
(GB), Gaussian Noise (GN), and JPEG Compression. The
parameters for these degradations are set to 2 for GB, 0.03
for GN, and 60 for JPEG. Finally, the degraded patches are
downsampled by a factor of 16 to simulate extreme loss of
resolution:

{Pgb
i,j ↓16, Pgn

i,j ↓16, Pjpeg
i,j ↓16}. (2)

An illustration of the degradation results is provided in
Fig. 2, along with the quality scores of the degraded patches
as evaluated by the LPIPS [26] model and the difference
maps. The LPIPS scores and the associated maps clearly
illustrate that each degradation process impacts the perceptual
quality of the image patch in distinct ways. GB introduces a
moderate perceptual difference compared to the original patch,
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Fig. 2. Illustration of the degradations on a cropped patch (highlighted by the red rectangle), along with its corresponding perceptual difference map and
evaluated quality score using LPIPS [26].

whereas GN results in a slightly lower perceptual difference
than GB, typically introducing graininess and random pixel
variations that affect the image’s texture. JPEG compression,
using the specified quality factor, results in the least perceptual
difference among the three degradations.

B. RDASRNet structure
To achieve high-quality super-resolution, we designed a

model based on foundational observations from state-of-
the-art SISR techniques, leveraging residual dense blocks
(RDBs) [27] and attention mechanism [28].

The model initiates with extracting essential visual features
X ∈ RH×W×C , where H , W , and C denote the height,
width, and number of channels, respectively, from the LR input
patches. Then a sequence of RDBs is employed to capture
intricate hierarchical features effectively. Each RDB iteration
refines feature maps through dense connections and residual
learning:

X(i+1) = FRDB(X
(i)), (3)

where X(i) represents feature maps at the i-th RDB iteration,
and FRDB encapsulates the operations within the RDB, includ-
ing multiple convolutional layers and nonlinear activations,
performed by rectified linear units (ReLU). Then, to enhance
the feature representations and emphasize informative channel
features, a channel attention mechanism is integrated. This
mechanism computes attention scores as follows:

XCA = σ(FC(ReLU(FC(GAP(X))))), (4)

where XCA represent the refined set of features, σ denotes
the sigmoid activation function, and GAP represents global
average pooling. This step enables the model to adaptively
recalibrate channel-wise feature responses [28], focusing on
relevant information, considered paramount for accurate SR.

Subsequently, the model employs dynamic upsampling via
multiple 2D transposed convolution operations [29]. Each one
incrementally doubles the spatial dimensions of the feature
maps, progressively enhancing spatial resolution while pre-
serving essential details. This multi-stage upsampling strategy
allows the model to refine and upscale the output patch across
several levels, thereby mitigating artifacts and enhancing over-
all image fidelity:

Xup = ReLU
(
ConvTL(XCA

)
). (5)

Given the scale factor x, the upsampling process involves
L = log2(x) stages, where each stage doubles the spatial
dimensions of the feature maps. ConvT represent the 2D
transposed convolution. Finally, the SR patch PSR is generated
through a final convolutional layer:

PSR = Conv2d(Xup). (6)

C. Siamese and Embedding similarity learning

To effectively enhance the LPSR, we designed a loss func-
tion that combines pixel-wise loss with embedding similarity
learning using a Siamese network architecture [24]. The total
loss function LP-EM is a weighted sum of the MSE loss
Lpixel and the Contrastive loss Lcontrastive, accounting for the
embedding similarity loss.

ResNet-18

ResNet-18

Shared weights

Fig. 3. Illustration of the proposed loss structure for LPSR. The Siamese
network extracts embeddings from the SR and HR patches. The contrastive
loss function penalizes the distance between the resulting embeddings.

Pixel-wise loss: This part of the loss is computed using the
MSE between PSR and PHR, and can be obtained as:

Lpixel =
1

N

N∑
i=1

(P
(i)
SR −P

(i)
HR)

2, (7)

where N represents the number of pixels in the image patch,
and P

(i)
SR and P

(i)
HR denote the pixel values of the SR and HR

patches, respectively, at the i-th position. This loss measures
the average of the squared differences between corresponding
pixel values.

Contrastive loss: To ensure that the super-resolved patches
retain the key features of the HR patches, we employ a
Siamese network [24] to extract embeddings from both the
predicted SR and HR patches. A Siamese neural network



is a class of neural network architectures that contain two
identical sub-networks. The same configuration with the same
parameters and weights is shared between them. Parameter
updating is mirrored across both sub-networks, to ensure that
the embeddings generated are directly comparable.

The Siamese network is based on a pre-trained ResNet-18
model, with the last fully connected layer replaced to produce
embeddings of size 128. Given an input pair (PSR,PHR)
as depicted in Fig. 3, the Siamese network outputs two
embeddings VSR and VHR:

VSR,VHR = fSiam(PSR,PHR; θSiam), (8)

where θSiam represents the parameters of the Siamese network.
The goal of the Siamese network is to predict similar em-

beddings for the SR and HR patches, reflecting their similarity.
To achieve this, we use the Contrastive loss function LContrastive.
The latter encourages the embeddings of the SR and the HR
patches to be similar. Besides, the RDASRNet is supposed to
generate a similar embedding to the HR patch, where both
PSR and PHR are considered similar. Therefore, the original
Contrastive loss [23] is simplified to:

LContrastive = max(m−D, 0)2. (9)

In this context:

• D represents the Euclidean distance between the embed-
dings of the SR and HR patches. It can be obtained by:

D = ∥vSR − vHR∥2. (10)

• m is the margin. It is a hyperparameter that defines a
threshold distance between the embeddings, and is set to
2 in this study.

• The squaring operation (m−D)2 penalizes larger devi-
ations more heavily, enforcing a stronger push towards
reducing the distance D when it is less than m.

The emphasis on embedding similarity loss is motivated
by the use of LPSR images in optical character recognition
(OCR), automatic number plate recognition (ANPR), and
vehicle identification. Ensuring similar embeddings guarantees
that the SR images maintain the distinctive features found in
HR images. This alignment enhances the performance of OCR,
ANPR, and vehicle identification systems, where accurate
feature preservation is critical for reliable recognition and
identification.

Total Loss: The final loss LP-EM is a weighted sum of the
pixel-wise loss and the Contrastive loss, defined as:

LP-EM = αLpixel + βLContrastive, (11)

where α and β are regularization weights that balance the
contribution of each loss component.

III. EXPERIMENTS

A. Datasets and Implementation Details

Dataset: For this study, we use the UKLPD synthetic
dataset [25] to validate the proposed framework. The dataset
contains synthetic images of UK license plates that conform to
standard letter sizes and spacing prescribed by the driver and
vehicle licensing agency. In total, 24,000 images are provided,
evenly split between white and yellow backgrounds.

For training and evaluation, the dataset is partitioned into
90% for training and 10% for validation sets. This splitting
ensures the model has sufficient data for learning, while main-
taining a separate subset for unbiased performance evaluation.
Each image is segmented into patches of size 64× 64 pixels,
and each patch undergoes the degradation process detailed in
Section II-A, resulting in over 300,000 training samples.

Implementation Details: The RDASRNet is implemented
using the PyTorch library [30] and trained on a server equipped
with an Intel Xeon Silver 4208 2.1GHz CPU, 192GB of RAM,
and an Nvidia Tesla V100S GPU with 32GB of memory. We
train the model for 200 epochs, a batch size of 128, and the
Adam optimizer [31] with a learning rate of 1× 10−4.

Evaluation criteria: Two important aspects should be
evaluated for LPSR: visual quality and character recognition
rates. The visual quality assesses how perceptually similar the
super-resolved images are to the ground truth high-resolution
images. For this, we use the PSNR metric, with the highest
score the better, and the LPIPS model with lower scores the
better. As for the character recognition rates, they are used
to evaluate the effectiveness of the super-resolution model in
enhancing the legibility of characters on license plates (LPs).
This involves applying OCR techniques to the SR images. For
this, we use EasyOCR [32], which provides confidence scores
on the character recognition.

B. Results and discussion

With the aim to evaluate the effectiveness of the proposed
loss function, LP-EM, which combines pixel and embedding
similarity losses, we conducted a comparative analysis against
the commonly used LMSE. Fig. 4 presents a box plot of PSNR
and LPIPS metrics for each degradation separately, illustrating
the distribution of median, minimum, and maximum scores.
This visualization highlights the variability of the model per-
formance across different loss configurations. For the proposed
LP-EM, we systematically varied the regularization parameters
α and β to examine their impact on the balance between pixel
accuracy and embedding similarity. This analysis allows us
to identify the contributions of each component of the loss
function to the overall image quality, providing insights into
the optimal parameter settings for better performances.

From the box plots, the performances actively demonstrate
that LP-EM consistently outperforms LMSE in both PSNR and
LPIPS metrics. This indicates that incorporating embedding
similarity into the loss function significantly enhances the
model’s ability to generate visually and perceptually accurate
high-resolution images. The variations in the α/β ratio further
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Fig. 4. Performances comparison of the proposed LP-EM with different α/β values over the use of traditional LMSE on each degradation.

depict the sensitivity of the model to different aspects of image
features, suggesting that a higher weight on the embedding
similarity loss tends to produce better perceptual quality while
maintaining robust pixel-level accuracy. Across the degrada-
tions, the performances show stability, depicting the model’s
generalization thanks to the training strategy.

With regards to OCR’s ability to effectively recognize text
on the generated license plates, the EasyOCR metric provides
a confidence score for the predicted text. This confidence
score increases with sharper details and robust representative
features. We compute the OCR confidence scores across
various configurations to assess its impact on text recognition
accuracy. The results are shown with a box plot in Fig. 5.
Higher confidence scores indicate that the OCR system is
more likely to correctly identify the characters on the license
plates, which is essential for applications in security and
surveillance. By integrating embedding similarity learning, our
model significantly enhances the clarity and legibility of the
license plates, thereby boosting OCR confidence.

Based on the performances, we observe that the OCR con-
fidence scores improved consistently when using the proposed
LP-EM loss function compared to the traditional LMSE. This is
valid regardless of the degradation. Specifically, the confidence
scores demonstrate that the inclusion of embedding similarity
not only preserves the structural integrity of the characters
but also maintains high perceptual quality, leading to better
recognition results.
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Fig. 5. OCR confidence intervals comparison on each degradation.

In addition to the overall performance metrics, Fig. 6
presents a qualitative evaluation using two samples with differ-
ent background colors. The first row displays the HR image,
while the second row shows the reconstructed LR image
after downsampling by a factor of x16. Visually, the license
plate becomes completely unreadable following this extreme
downsampling. The remaining rows illustrate the outputs of
the super-resolution model using different configurations of
the loss function. The obtained results demonstrate significant
efficacy, with SR license plates recognizable, even though

HR

LR x16

PSNR: 17.8 / LPIPS: 0.23 / OCR : 0.79

PSNR: 17.3 / LPIPS: 0.25 / OCR : 0.62

PSNR: 16.5 / LPIPS: 0.25 / OCR : 0.88

PSNR: 16.3 / LPIPS: 0.25 / OCR : 0.7

PSNR: 21.53 / LPIPS: 0.159 / OCR : 0.98

PSNR: 19.48 / LPIPS: 0.200 / OCR : 0.83

PSNR: 19.08 / LPIPS: 0.199 / OCR : 0.80

PSNR: 13.82 / LPIPS: 0.230 / OCR : 0.70

Fig. 6. Qualitative evaluation of license plate samples from the UKLPD
testing set with the JPEG compression and x16 downsampling.

some noise and color deformation are generated. The quality
scores are mostly impacted by the noise, resulting in low
PSNR values, particularly for the LMSE. This depicts a strong
correlation with the OCR confidences. The latter decreases
from 0.99 to 0.80 with increased weight on the Lpixel compo-
nent and further drops to 0.67 when training exclusively with
LMSE on the sample with a white background. However, on
the sample with a yellow background, LMSE performed better,
though still inferior to the proposed LP-EM. These findings
align with the performance trends in Fig. 4, indicating that pri-
oritizing feature embedding similarity in SR image generation
enhances OCR system accuracy more than solely emphasiz-
ing pixel fidelity. Besides, the background-character contrast
appears to significantly impact the performances. As MSE
focuses on pixel-level differences, it might struggle with high-
contrast edges and fine details, resulting in relatively poorer
performance for white backgrounds. This contrast sensitivity
suggests that emphasizing feature embedding similarity is
better across varying background conditions, thereby ensuring
more consistent OCR accuracy.

To further evaluate the efficacy of the proposed train-
ing strategy, a comparison with interpolation-based methods,
including bicubic and bilinear interpolation, is provided in
Table III-B. This comparison is performed on the sample with
the yellow background from Fig. 6. The performances in terms
of PSNR and LPIPS for each degradation are reported. As it
can be seen, the proposed framework consistently and sig-
nificantly outperforms the interpolation-based methods across



all degradation types. Approx. 7db is gained over bicubic
and bilinear in terms of PSNR, and approx. 0.4 is gained
with LPIPS. This demonstrates the superior ability of the
proposed method to reconstruct high-quality and perceptually
accurate super-resolution images, confirming its effectiveness
in handling different degradation scenarios.

TABLE I
PERFORMANCE COMPARISON WITH INTERPOLATION-BASED METHODS IN

TERMS OF PSNR (BEST IN RED) AND LPIPS (BEST IN BLUE).

Deg. Metric Bicubic Bilinear RDASRNet
LMSE

RDASRNet
LP-EM(0.25/0.75)

GB PSNR 9.80 10.59 16.49 17.79
LIPIS 0.7244 0.6617 0.2348 0.2340

GN PSNR 10.21 10.53 16.60 17.89
LIPIS 0.7085 0.6607 0.2423 0.2265

JPEG PSNR 9.74 10.57 16.3521 17.57
LIPIS 0.7234 0.6537 0.2471 0.2335

IV. CONCLUSION

In this study, we developed and evaluated an advanced
approach for LPSR using a novel loss function that combines
pixel and embedding similarity losses. Our findings demon-
strate that this approach significantly enhances the perceptual
quality of SR images compared to solely relying on pixel-
to-pixel fidelity loss. Through comprehensive quantitative and
qualitative evaluations, we observed substantial improvements
in PSNR and LPIPS scores, indicating superior visual fidelity
and perceptual quality generation. Moreover, the proposed
method shows promising results in enhancing OCR confi-
dence, crucial for forensic applications. Its effectiveness under-
scores the importance of incorporating feature embedding sim-
ilarity alongside pixel-level fidelity metrics in super-resolution
tasks. For future work, we plan to explore multi-stage degra-
dation modeling, incorporating geometric distortions and other
complex degradations. Besides, we aim to leverage the insights
from the used synthetic dataset, i.e. UKLPD, to enhance the
accuracy on real-world data through fine-tuning and transfer
learning techniques.
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