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ABSTRACT
In this study, we propose a methodology for estimating quality

score distribution (QSD) for 360-IQA patch labeling. A collection of
2D-IQA models is used to generate a QSD for patches, inspired by
how subjective quality ratings are gathered and handled. The pro-
posed framework is first benchmarked on a subjectively annotated
dataset, namely KonPatch-32k, in terms of patch quality classifica-
tion. The best composition of QSD is then used to derive quality
labels for patches sampled from 360-degree images. Furthermore,
the quality labels are used in a multi-regression training strategy of
CNN models. The ResNet-50 and EfficientNet-B5 are used to test
the effectiveness of the proposed labeling framework on two pub-
licly available 360-IQA datasets, namely OIQA and MVAQD. The
experimental results demonstrated the efficacy of jointly using local
and global qualities. The multi-regression proved to be a bit chal-
lenging on OIQA compared to MVAQD, reflecting the necessity to
accurately regulate the training process.

Index Terms— Convolutional neural networks, Adaptive Patch
labeling, Image quality assessment, 360-degree.

1. INTRODUCTION

Quality of experience (QoE) evaluation is undoubtedly a difficult un-
dertaking, especially for immersive media, such as 360-degree im-
ages. The nature and distinctive features of such a content, as well
as the used display devices, head-mounted displays (HMDs), neces-
sitate a deeper understanding in order to correctly evaluate QoE [1].
The latter is very often approached from the image quality assess-
ment (IQA) perspective, which considers the quality of an image as
the property of its entire content. The quality evaluation is primarily
performed by human observers, where the severity of visual degra-
dation is quantified according to a rating scale. Subjective studies
allow for gathering such information and deriving the mean opin-
ion scores (MOS) from collected distributions of observer responses.
This MOS is considered as the ground truth about quality and is the
target to reach when developing an approach to predict it.

With the introduction of ConvNets (CNNs) for 360-degree IQA,
models are trained to associate the learned feature representations to
the MOS. Because of the unavailability of MOS per individual por-
tions, multichannel CNNs are designed. The latter comprise several
CNNs in parallel to process a portion of the image because of its high
resolution, but also to mimic the visualization process of the users.
Such models are known to be significantly complex due to the multi
CNNs [2]. In contrast, patch-based CNNs can be adopted. These
models require a labeling step to label the input patches prior to train-
ing the model. In existing methods [3,4], patch quality is directly in-
herited from the corresponding image, inducing redundancy among
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quality labels. This may be problematic since local (patch content)
perceptual quality is not always consistent with global (whole im-
age) quality due to the non-stationarity of image content across spa-
tial locations and the intricate interactions between content and dis-
tortions [5]. This is more emphasized for 360-degree images, where
the images may include a high diversity of content within the 360 de-
grees. Moreover, some processing such as compression may create
impairments that are inequally distributed over the sphere. Conse-
quently, the use of MOS as labels for sampled patches is somewhat
questionable. Finding a way to label the patches that copes with the
above drawbacks is important to reach a reliable results.

As an attempt to answer the aforementioned problem, this paper
presents a quality score distribution methodology in response to the
demand for approaches to correctly label patches based on their local
quality. The proposed framework, which is inspired by the way sub-
jective human opinions are collected and processed, provides quality
score distributions from which a quality label is derived. We use the
rich state-of-the-art of 2D-IQA to achieve this. To estimate the qual-
ity score distribution of image patches, traditional and deep-learning
models designed for 2D content are utilized as observers. A screen-
ing of the 2D-IQA models and a validation step are conducted on
the KonPatch-32k [6] to formalize the proposed framework. The
validation is performed according to the ability to binary classify
a patch quality into low or high quality. The performance of the
proposed framework to adequately label patches for 360-IQA CNN
training is validated on two 360-IQA datasets, namely OIQA [7] and
MVAQD [8]. For this purpose, we sampled patches from the spheri-
cal representation of 360-degree images based on visual scan-paths.
By doing so, we account for the exploration trajectories of users.
Then, two CNN models, including ResNet-50 [9] and EfficientNet-
B5 [10] are used to validate the efficiency of the proposed patch
labeling framework. The models are trained to predict the assigned
quality of the patch as well as the quality of the corresponding 360-
degree image. As a result, the model is able to associate local quality
with global quality through a multi-regression training scheme.

2. 360-PATCH QUALITY LABELING FRAMEWORK

With the aim to solve the redundancy problem among quality labels
when using MOS for several patches, regardless of their relevance or
amount of information, the proposed labeling framework describes
local quality based on quality score distribution. It involves two pri-
mary steps, quality score distribution estimation and quality score
labels generation. These two steps are described in the following.

2.1. 2D-IQA Models as Virtual Observers

We choose m 2D-IQA models to act as virtual observers based on
how subjective experiments are conducted and opinion scores from



observers are gathered. The selected models are summarized in Ta-
ble 1. Patches extracted from 360-degree content are considered as
a kind of 2D images. So, by exploiting the rich state-of-the-art on
2D-IQA, we are able to generate quality score distributions at patch-
level for 360-IQA.

2D-IQA model

2D-IQA model 

2D-IQA model 

2D-IQA model 

... Quality Score 
Distribution

......

Fig. 1: Structure of the proposed patch labeling framework.

The structure of the proposed labeling framework is depicted
in Fig. 1. It consists of applying m 2D-IQA models to each patch
Pi with i ∈ {1, n}, generating a quality score distribution QSD
composed of m scores. This step is formalized as follows:

QSD(Pi)i∈{1,n} = {M0(Pi),M1(Pi), ...,Mm(Pi)}, (1)

where Mj represent the jth 2D-IQA model. The computed distribu-
tions (QSD) are then validated in terms of ability to classify patches
into low- or high-quality. Each score composing QSD is consid-
ered as a feature, focusing and describing distinct attributes within
the input patch. For instance, DB-CNN assesses jointly authentic
and synthetic distortions, while CPBD focuses on quantifying the
blur. Hence, the quality scores associated with Pi composing QSDi

are used as features to a logistic regression (LR) model. Here, the
task is to effectively classify the quality class of Pi starting from
QSDi ∈ Rm. The set of features composing QSD are used under
three different configurations:

ALL: refers to using all m features obtained from 2D-IQA models.

Traditional: refers to features obtained from traditional models.

DL: refers to features associated to deep-learning-based models.

Additionally, as every 2D-IQA model has a distinct quality
scale, a normalization step is required prior to applying the LP
model. The MAX(.) scaling method is applied by dividing the set
of features of Mj by the respective maximum value. By doing so,
the extent of the values obtained by the Mj model is retained with
respect to the mean.

Table 1: 2D-IQA models for estimation of the quality score distri-
butions at patch level.

Type Model

Traditional NIQE [11], PIQUE [12], ILNIQE [13], BRISQUE [14],
BIQAA [15], BLIINDS [16], CPBD [17], FADE [18]

Deep
learning

DB-CNN [5], MUSIQ [19], Kang-CNN [20], NIMA [21],
PaQ-2-PiQ [22], DipIQ [23]

The objective of the above-described operations is to identify
the composition of QSD that accurately classifies patch quality.

The configuration with the best performance is then used to de-
rive quality labels. To select the most descriptive features, we use
the well-known principal component analysis (PCA). It provides in-
sights about which set of features contributes the most to the compu-
tation of the resulting component. This allows to screen the 2D-IQA
models with the intention to achieve the most accurate data repre-
sentation. Therefore, by applying PCA(QSD(Pi)), a new distri-
bution, called QSD′

i ∈ Rk, is generated and composed of k scores.
QSD′ serves to derive the quality label QLi for Pi. At this stage,
a simple arithmetic mean can be applied. However, the arithmetic
mean is highly affected by extreme values. Therefore, we adopt the
Minkowski mean instead. The latter has been widely used in IQA
for pooling purposes. For each Pi, QL can be obtained as follows:

QL = (
1

k

∑
j∈QSD′

Sp
j )

1
P , (2)

where Sj represents the jth quality score obtained by the 2D-IQA
model retained in QSD′. P corresponds to the Minkowski parame-
ter. The latter is defined empirically as the 1/8.

2.2. 360-Patch Quality Labeling for CNN Training

Let us remind that the proposed labeling framework is used to la-
bel patches from 360-degree images. It assigns a quality label to
each Pi, representing its local quality. This step is used in a patch-
based CNN framework for 360-IQA as a pre-processing step prior to
training. First, patches are selected using the visual scan-path model
ScanGAN360 [24]. The predicted exploration trajectories, twelve in
total, are composed of thirty gaze fixations each, representing gaze
points. These points correspond to salient regions of the scenes. This
way, we account for (a) the way the human observer explored scenes,
and (b) the variability of the exploration among observers as several
scan-paths are considered. Therefore, 12 × 30 fixations are gener-
ated for each 360-degree image I . These fixations are taken as the
center of 128× 128-pixel patches, as illustrated in Fig. 2.

. . .

Scan-path Predictions Plane-to-Sphere

Patch Sampling

Fig. 2: Visual scan-path based patch sampling on the sphere.

The use of MOS (global quality) to label patches as done in the
literature assumes equal contribution of patch qualities (local qual-
ity) to the MOS. This assumption does not leave any considirations
of non-uniformity among patches. To avoid such an inadequacy, the
proposed framework assigns a distinct label to each patch Pi by tak-
ing into account its objective quality QLi and MOSI .

To train a CNN model to predict both QL and MOS, a multi-
regression training strategy is adopted. By doing so, the model
achieves a global-local quality combination by regressing the learned
representation to pQL and pMOS. Feature extraction, encoding,
and representation are performed by a CNN. Here, we use ResNet-
50 [9] and EfficientNet-B5 [10] pre-trained models. The choice
of these models is motivated by their success and popularity with
transfer learning in various image processing tasks. The output of
the CNN model is fed to a regression block composed of a global av-
erage pooling (GAP), a fully connected layer (FC) with 512 neurons



FC (512) + Relu +  
DropOut(0.5)

FC (2) +  
Linear

GAP

CNN backbone

Fig. 3: Adopted training strategy. VF ∈ RC×1×1 represents the
feature vector learned by the CNN backbone.

followed by a ReLU, and a dropout layer for regularization, and a fi-
nal FC layer with two units to deliver pMOS and Spi, representing
the global/local quality respectively. The predicted scores associated
to the same 360-degree image are averaged in order to compute the
final objective quality scores. The architecture of training strategy
is depicted in Fig. 3. The appended regression block is trained to
minimize the following loss equation:

Loss = αLMOS + (1− α)LQL (3)

where L corresponds to the Huber loss [25] and α ∈ R+ is a param-
eter balancing both losses. It was fixed to 0.5 in this study.

3. RESULTS AND DISCUSSION

3.1. Experimental Setup:

Datasets: The KonPatch-32K is used to benchmark the proposed
labeling framework, and to effectively derive the QLs. This dataset
contains 32k patches sampled from other datasets and assessed sub-
jectively according to whether a patch is sampled from a low- or
high-quality image. Therefore, binary classes are provided with the
dataset, allowing us to train the Logistic Regression (LR) model. In
total, the dataset comprises, 22432 and 9062 patches with 0 (low-
quality) and 1 (high-quality) labels, respectively. Prior to perform-
ing the experiments, the classes are balanced to avoid altering the
accuracy of the classification model.

Table 2: Summary of the used 360-degree image datasets.

dataset OIQA MVAQD

Ref images 16 15

Distorted images 320 300

Distortion type
(Distortion lev-
els)

JPEG (5) / JPEG2000
(5) / BLUR (5) /
WGN (5)

BLUR (4) / HEVC (4)
/ JPEG (4) / JP2K (4)
/ WGN (4)

Regarding the training and evaluation of the ResNet-50 and
EfficientNet-B5 models according to the training strategy explained
in Sec. 2.2, we use the OIQA and MVAQD datasets. A summary of
each one is provided in Table 2.

Implementation Details: The training of the CNN models is con-
ducted on a server with Intel Xeon Silver 4208 2.1GHz, 192G RAM,
and a GPU Nvidia Telsa V100S 32G. The batch size is set to 32 and
the Adam optimizer is used with a learning rate Lr = 0.001. Five-
fold cross-validation is used within each of the selected datasets.
Each fold is trained for 100 epochs. We split the datasets into
60%/20%/20% for training, validation, and testing, respectively.

To ensure complete separation of the training and testing sets, the
distorted samples associated with the same pristine image are allo-
cated to the same set.

Evaluation Criteria: The evaluation of the proposed labeling
framework during its design and validation is performed using the
confusion matrix (MC) and the area under the curve (AUC) [26].
To evaluate the performance of the CNN models, three statistical
metrics are used, including the Pearson linear correlation coefficient
(PLCC) to evaluate accuracy, the Spearman rank-order correlation
coefficient (SRCC) for monotonicity, and the root mean squared
error (RMSE) to evaluate prediction errors.

3.2. Classification on KonPatch-32k

The proposed labeling framework is validated on the KonPatch-32k.
This validation is carried out by evaluating the performance of bi-
nary classifying patches into ”sampled from low-quality images”
and ”sampled from high-quality images”. The results achieved by
the three configurations ALL, Traditional, and DL are compared
using CMs and AUC scores.

From the CMs plots in Fig. 4, one can observe a good perfor-
mance is achieved when using all scores composing the QSD (ALL
configuration). 85% and 87% correct classifications of class 0 and 1,
respectively. This showcases the representativeness of the used qual-
ity score distributions QSD. For the Traditional, the classification
performance dropped to 77%/82%. Such a behavior may be due
to the variance among the used traditional models. It is acknowl-
edged that less variability among the used features leads to better
performance when it comes to quality assessment. Whereas in our
case, the selected traditional models may assess and describe differ-
ent aspects, as mentioned in Sec. 2.1. Regarding the performances
of DL, 83%/85% correct classification is obtained, outperforming
the Traditional subgroup.
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Fig. 4: Confusion matrix (CM) for both classes using QSD as fea-
tures under three configurations: ALL, Traditional, and DL.

Table 3: AUC scores using QLs for the binary classification on
KonPatch-32K. Best performances are highlighted in bold.

Configuration Arithmetic
mean

Five-number
summary

Minkowski
mean

All 0.528 0.524 0.566
Traditional 0.556 0.521 0.664
DL 0.652 0.666 0.836

As the purpose of the conducted classification experiment is to
determine the composition of the QSD that effectively describes the
local quality of each patch, the Minkowski mean is used to derive
the QLs. The same analysis is performed to determine the efficacy
of the derived QLs in describing patches quality. The LR model



is then trained to classify patches on KonPatch-32k using only the
obtained QLs. The performances are compared with a simple arith-
metic mean, and the five-number summary [27] methods. The latter
makes use of information on (i) the location given by the median, (ii)
the spread of the values given by the Q1 and Q3 quartiles represent-
ing the 25% and 75% percentiles respectively, and (iii) the range of
values expressed by the minimum and maximum, making it effective
in describing a QSD.

The AUC scores of each method with ALL, Traditional, and
DL configurations are provided in Table 3. The first observation
that emerges, is that the performances drastically dropped compared
to using QSD as features for the classification. Using the arith-
metic mean and the five-number summary, the classification perfor-
mances become as random as a naive method, except for DL achiev-
ing AUC = 0.652 and AUC = 0.666, respectively. It appears
that, by merging each QSD into a single value, the description of
local quality losts its representativeness. This is not the case for
the Minkowski mean. As it can be seen, an AUC = 0.836 is ob-
tained with the DL configuration, supporting the previous observa-
tions. The other configurations are slightly improved as well. This
behavior showcases the effectiveness of using the Minkowski mean
to derive the QLs across the configurations over simply averaging
or summarizing the QSDs.

Table 4: AUC scores using QSD′ after applying the PCA of the
QLs based on the Minkowski mean under DL. Best performances
are highlighted in bold.

All Traditional DL

AUC 0.605 0.748 0.878

The representativeness of QSD can be improved by the use of
PCA as explained in Sec. 2.1. To validate this, we further analyze
the classification performances of the Minkowski mean after apply-
ing the PCA on QSD, resulting in a new distribution QSD′. The
performances are reported in Table 4, where AUC scores shifted
from 0.566, 0.664, and 0.836 prior to using PCA to 0.606, 0.748,
0.878 after applying it. This actively showcases the utility of se-
lecting and screening the 2D-IQA models to achieve a robust and
representative quality score distribution for each patch. Another
noteworthy observation is that QLs derived from diverse QSD do
not benefit the quality classification, as demonstrated by the ALL
configuration. This typically agrees with the way MOS is obtained
through subjective experiments, where only scores that concur are
considered to generate the MOS.

3.3. Quality Prediction on 360-IQA Datasets

With the intent to assess the effectiveness of the proposed qual-
ity labeling framework, two CNN models are trained to (i) predict
the global quality pMOS and (ii) predict the global/local quality
pMOS+ pQL. In addition, two sampling strategies are used, scan-
path based sampling discussed in Sec. 2.2 and standard sampling.
The latter is performed on the sphere to be consistent with 360-
degree image characteristics. The performance results are gathered
in Table 5.

According to the overall performances, an improvement is
achieved when jointly using global and local qualities to train the
CNN models. This can be seen regardless of the used sampling
method for ResNet-50, but not with EfficientNet-B5. For the latter,
the performances dropped on OIQA with standard sampling and

Table 5: Performances comparison among training modes (pMOS
for using only global quality and pMOS+pQL when considering
the local quality labels). The best performances are highlighted in
bold for each sampling and dataset.

Sampling Training mode ResNet-50 EfficientNet-B05

PLCC SRCC RMSE PLCC SRCC RMSE

O
IQ

A Scan-path pMOS 0.9622 0.9504 0.0384 0.9286 0.9055 0.0539
pMOS+pQL 0.9624 0.9498 0.0383 0.9335 0.9221 0.0501

Standard pMOS 0.9632 0.9562 0.0382 0.9308 0.9135 0.0519
pMOS+pQL 0.9644 0.9582 0.0384 0.9216 0.9101 0.0542

M
VA

Q
D Scan-path pMOS 0.9068 0.8969 0.0937 0.8351 0.8135 0.1181

pMOS+pQL 0.9150 0.9039 0.0876 0.8251 0.8053 0.1213

Standard pMOS 0.9137 0.8824 0.0873 0.8582 0.8668 0.1097
pMOS+pQL 0.9148 0.8897 0.0867 0.8728 0.8672 0.1100

on MVAQD with scan-path based sampling. Here, by using the
assigned QLs along with MOS, the model behaves slightly worse
than using only MOS. The multi-regression in this case did not im-
prove the accuracy. Besides, the OIQA dataset appears to be more
challenging compared to MVAQD, where on the latter, the improve-
ments are higher compared to those on OIQA. An improvement
within 1% is observed on OIQA, whereas 2% on MVAQD. As the
model maps the learned representation to local and global qualities
simultaneously, the regularization parameter (see Eq. 3) could be
impacting the learning of the MOS. Regulating the computation
of the overall loss should be in favor of the pMOS, and therefore,
effectively learning the global quality while considering the local
one to each patch. Regarding the sampling methods, using visual
scan-paths appears to be less effective than the standard sampling.
With the latter, all the content is considered, accounting for the
whole scene. However, with scan-path-based sampling, a part of
the content is neglected. This should not affect the performances,
as relevant patches are selected. By considering this, the sampling
method is not influencing the proposed labeling framework.

4. CONCLUSIONS

This paper presented a patch quality labeling framework for 360-
IQA CNN-based models utilizing a set of 2D-IQA models. Quality
labels, which describe local attributes of individual patches, are de-
rived from quality score distributions. The proposed methodology is
evaluated on the KonPatch-32K dataset, where deep learning-based
2D-IQA models outperformed traditional methods in determining
quality labels. The classification study performed on KonPath-32k
helped in the validation of the local quality labels. The latter are
then examined using a multi-regression strategy with ResNet-50 and
EfficientNet-B5 and two patch sampling techniques. The perfor-
mance on OIQA and MVAQD datasets demonstrated the advantages
of categorizing patches based on their local attributes using the sug-
gested framework, rather than using MOS to label patches. Nonethe-
less, training a patch-based CNN model to predict global quality by
taking the local qualities of patches into account proved challenging.
A precise regularization of the training process appears to be a so-
lution for allocating appropriate attention to overall quality (MOS)
during training. In the future, a more appropriate training strategy
will be investigated by means of primary/auxiliary tasks training.
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