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Abstract

In this paper, we propose a novel approach for face spoofing detection using a
combination of color texture descriptors with a new convolutional neural network
(CNN) architecture. The proposed approach is based on a new convolutional
neural network architecture composed of two CNN parallel branches. The first
branch is fed with complementary shallow local phase quantization (LPQ) invari-
ant descriptors that result from joint color texture information from the hue,
saturation, and value (HSV) color space to accurately capture the reflection
properties of the face. Combining the HSV color space with LPQ is known to
significantly improve performance. The second branch of the CNN takes an RGB
image directly as input, effectively separating chromatic (color-related) informa-
tion from achromatic (brightness-related) information in order to extract crucial
facial color features. Each branch of the CNN produces a vector of deep features
that are extracted. To effectively concatenate the deep features from the two out-
put branches, we employ an attention mechanism based combination method.
This method captures the complementarity of the two branches, improving the
accuracy and robustness of the model. The combined feature vectors form an
input vector for the next Dense layer, where the model can distinguish between
live and spoofed faces. Our method detects 2D facial spoofing attacks involving
printed photos and replayed videos. We showcase the effectiveness and superior
performance of our approach through a series of experiments conducted on both
the CASIA-FASD and Replay-Attack datasets. Our results are promising and
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surpassing those of other state-of-the-art methods on both used datasets in terms
of 9 performance metrics.

Keywords: Deep learning . Convolutional neural network . Images classification .
Swish activation function . Artificial neural network . RGB color space . HSV color
space . Local phase quantization . Attention mechanism . Computer vision . Artificial
intelligence . Shallow feature . Deep feature

1 Introduction

Facial recognition is a biometric system that utilizes facial images to verify and authen-
ticate individuals. In the context of increasing security concerns, face authentication
plays a crucial role in ensuring the integrity and reliability of identification processes.
However, face spoofing attacks pose a significant threat to the accuracy and security
of facial recognition systems. These attacks involve the use of counterfeit photos or
videos to deceive the system. To counter such threats, the development of effective
face anti-spoofing techniques is essential. These techniques aim to detect and prevent
fraudulent attempts by distinguishing between genuine facial images and spoofed ones.
Implementing robust face anti-spoofing measures alongside facial recognition is crucial
to ensure secure and reliable authentication processes.

In recent years, numerous face anti-spoofing methods have been proposed to
address the vulnerability of existing face recognition systems to various spoofing
attacks [2, 3]. Studies have shown that these systems are susceptible to different types
of face spoofing attacks [4]. These attacks can be categorized into three main types:
print attacks, replay attacks, and 3D mask attacks. Print attacks involve the use of
printed photos or images to deceive the face biometric systems. Replay attacks exploit
face videos to gain unauthorized access. These two types of attacks fall under the cat-
egory of 2D face attacks. On the other hand, 3D mask attacks utilize realistic soft
plastic masks resembling human skin, making it more challenging to develop accu-
rate countermeasures against them. Addressing these multiple face spoofing attacks
remains a significant research challenge in the field.

Various approaches were introduced in the last decade to address face spoofing
attacks. They can be categorized into three groups: 1) Texture-based methods, which
exploit the differences in texture characteristics between genuine face images and those
generated by different types of attacks. These techniques are faster as they can operate
with just one image sample instead of a complete video sequence; 2) Motion-based
methods, which are effective in detecting static presentation attacks like photo attacks.
However, they may not be as effective against video replay attacks that display liveness
information such as eye blinking and head movements. For example, Anjos et al.
[1] proposed a motion model that analyzes the relationship between the face region
and the background to distinguish real faces from photographic faces; and 3) Image
quality-based methods, which analyze the image distortion typically present in spoofed
face images. Several techniques rely on image quality analysis, including deformation,
frequency, impairment, and color. Frequency domain analysis, such as the one utilized
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in Zhang et al. [5], considers high-frequency information as an indicator of image
quality. Hence image quality features using multiple difference of gaussian (DoG) filters
are exploited to detect fake faces. However, frequency-based approaches may fail when
high-quality spoof images or videos are presented to the camera.

These different approaches offer valuable insights into face anti-spoofing methods,
each with its own strengths and limitations. Nonetheless, further research is needed to
develop more robust and accurate techniques to address the challenges posed by face
spoofing attacks. This paper focuses on both print and replay attacks in the context
of face anti-spoofing detection.

In summary, the main contributions of our paper are as follows:

1. We propose a novel approach for face spoofing detection, involving printed photos
and replayed videos, using a combination of color texture descriptors with a new
convolutional neural network (CNN) architecture.

2. Our approach is based on a new convolutional neural network architecture
composed of two CNN parallel branches:
(a) The first branch is fed with complementary shallow local phase quantization

(LPQ) invariant descriptor that results from joint color-texture information from
the hue, saturation, value (HSV) color space to accurately capture the reflection
properties of the face. Combining the HSV color space with LPQ is known to
significantly improve performance.

(b) The second branch of the CNN takes an RGB image directly as input, effectively
separating chromatic (color-related) information from achromatic (brightness-
related) information to extract crucial facial color features.

3. Each branch of the CNN produces a vector of deep features that are extracted. To
effectively concatenate the deep features from the two output branches, we employ
an attention mechanism based combination method. This method captures the
complementarity of the two branches, improving the accuracy and robustness of
the model. The combined feature vectors form an input vector for the next Dense
layer, where the model can distinguish between live and spoofed faces.

4. We conducted a series of experiments on both CASIA-FASD and Replay-Attack
datasets to demonstrate the effectiveness and the superior performance of our
approach.

5. Our results are promising and outperform those of other state-of-the-art methods.

The remainder of the paper is organized as follows: In Section 2, we briefly present
a review of the state-of-the-art face anti-spoofing methods. We describe the proposed
approach in Section 3. The performance evaluation and results are presented in Section
4. Finally, Section 5 concludes the paper by identifying promising directions for future
work.

2 Related work

In this section, we provide a comprehensive review of state-of-the-art face anti-spoofing
methods, categorizing them into three groups: hand-created features-based methods,
CNN-based methods, and a combination of hand-crafted features with CNN-based
methods.
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2.1 Handcrafted features-based methods

Traditional face anti-spoofing techniques typically involve extracting handcrafted
features from facial images. These features are then utilized in conjunction with clas-
sification algorithms such as support vector machine (SVM) [6] or linear discriminant
analysis (LDA) [7] to develop anti-spoofing systems.

Määttä et al. [8] were the first to propose the application of multiple uniform LBP
operators at three different scales: LBPu2

8,2 (uniform circular LBP extraction applied
to a neighborhood of 8 pixels with a radius of 2 pixels), LBPu2

16,2 (uniform circular
LBP extraction applied to a neighborhood of 16 pixels with a radius of 2 pixels), and
LBPu2

8,1 (uniform circular LBP extraction applied to a neighborhood of 8 pixels with a
radius of 1 pixel). They then extracted texture feature histograms from local blocks of
grayscale and global images, concatenated them to form a 531-dimensional feature his-
togram, and inputted it to an SVM classifier with RBF as the training kernel for face
anti-spoofing. While the texture analysis algorithm relying on grayscale maps proves
effective for high-quality images, such as those with high resolution, it encounters chal-
lenges in accurately distinguishing certain low-quality images. Additionally, Yang et
al. [9] proposed the use of a face region referred to as the holistic face, which involves
segmenting canonical facial regions, including the left eye region, right eye region, nose
region, mouth region, and face contour. Low-level features are then extracted using
various texture descriptors such as LBP [8], HOG [10], and LPQ [11]. Additionally, a
high-level spatial pyramid descriptor [12] is created using the low-level features and
a 512-word codebook. Finally, the histogram of these image representations is com-
bined into a single feature vector and input into an SVM classifier to differentiate
between real face presentations and Presentation Attacks (PAs). Similarly, Chingovska
et al. [13] employed the LBP descriptor to extract texture features, calculating his-
tograms in two different ways: either considering the entire image or dividing it into
blocks and calculating histograms for each block independently. The concatenated
histograms were then classified using LDA and SVM to distinguish between live and
spoof images. They achieved an HTER of 18.2% on the CASIA-FASD dataset and
13.8% on the Replay-Attack dataset. For this reason, Boulkenaf et al. [14] proposed a
method based on color texture analysis. This method extracts the characteristic LBP
histograms of a single image channel in the three color spaces RGB, YCbCr and HSV,
and concatenates them to form the final descriptor. This work has shown that the
color texture-based method is superior to the gray texture-based method for detect-
ing different attacks. Boulkenaf et al. [15] also proposed a robust method based on
color texture and combined the multi-scale LBP features of the face in HSV space
with LPQ features of the face in YCbCr space. Although the experiment yielded good
results with EER of 0.40% and HTER of 2.80% on Replay-Attack, EER of 2.10%
and EER of 4.90% on CASIA-FASD and MSU mobile, respectively, the low level of
microtexture descriptors makes them susceptible to variations in lighting conditions
and high-quality images. In order to improve discrimination further, in the same year,
Boulkenaf et al. [16] proposed an advanced approach for anti-spoofing detection using
Fisher Vector encoding on speeded-up robust features (SURF) features from different
color spaces. The SURF descriptor was applied to each color band, and the resulting
descriptors were concatenated to form a single feature vector called CSURF, and a
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dimensionality reduction technique, principal component analysis (PCA), was applied
to reduce the dimensionality of the concatenated feature vector. They achieved an
EER of 0.10% and a HTER of 2.20% on Replay-Attack, EER of 2.80% and EER of
2.20% on CASIA-FASD and MSU mobile, respectively. This method showed excellent
and more stable performance than previous methods. Wen et al. [17] proposed a face
anti-spoofing detection method based on image distortion analysis (IDA). The four dif-
ferent features such as specular reflection, blur, color moment, and color diversity were
extracted to form feature vectors IDA is fed into two SVM classifiers corresponding to
photo attacks and video replay attacks respectively, and then a score-level fusion based
on the min rule [19] is applied gives to distinguish real and fake faces. In contrast to
texture feature-based methods, the generalization performance of this method showed
promising. The quality of the image is highly dependent on the shooting equipment
and the external conditions. External factors like bad lighting and low-quality camera
equipment can also alter the appearance of a live human face. Singh et al. [18] pro-
posed a method for liveliness detection based on eye blinking and mouth movement.
The area of the eyes was done by checking for eye existence within the eye region
and mouth movement is ascertained by checking for the existence of teeth within the
mouth region using the HSV (hue, saturation, value) of the tooth were calculated to
determine whether the eyes and the mouth were open. The subjects acted according
to the phrase prompts randomly generated by the system and completed the relevant
action to prove that it is a real face. Although the method had good accuracy in a few
samples of various forms of attacks generated by the authors, the result also shows
that the liveness test was bypassed by cut-photo attacks where both the eye and the
mouth region are cut out.

2.2 CNN-based methods

In recent years, convolutional neural networks (CNNs) have demonstrated strong per-
formance in the detection of presentation attacks. For frameworks based on different
architectures, George et al. [20] proposed DeepPixBiS, a CNN based on DenseNet
[21], which incorporates deep pixel-wise binary supervision for presentation attack
detection. DeepPixBiS achieved a HTER of 0% on the Replay Mobile dataset and an
ACER of 0.42% on protocol 1 of the Oulu-NPU dataset, thus surpassing state-of-the-
art methods. It is crucial to leverage automatic generalization methods that rely on
deep pixel-wise binary supervision to effectively combat spoofing attacks. Recently,
Satapathy et al. [24] , Abdullakutty et al. [22], Abdullakutty et al. [23], Gwyn et al.
[25] and Wang et al. [26] utilized various image classification models such as Inception-
V2, ResNet-34, ResNet-18, ResNeXt-50, GoogleNet, VGG-19, AlexNet, ResNet-50,
Inception-V3, VGG-16, DenseNet-121, Xception, MobileNetV2, and ShuffleNetV2 for
spoofing attack detection. The result showed that Inception-V2, ResNet-34, ResNet-
18, ResNeXt-50, GoogleNet, VGG-19, AlexNet, ResNet-50, Inception-V3, VGG-16,
DenseNet-121, and Xception achieved scores, with accuracy of 94%, 92%, 92%, 91%,
88.00%, 83.00%, 83.00%, 93%, 86%, 85%, 93.00%, and 62.00%, respectively, tested
on the CASIA-FASD dataset. MobileNetV2 obtained an EER of 9.40% (resp. 3.6%)
and HTER of 16.7% (resp. 16.7%) on the CASIA-FASD and Replay-Attack datasets.
Similarly, ShuffleNetV2 achieved an EER of 14.9% (resp. 6.33%) and HTER of 21.9%
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(resp. 21.8%) on the CASIA-FASD and Replay-Attack datasets. Additional models
focusing on different parts of CNN architecture are explored by various researchers.
Li et al. [27] proposed utilizing a deep CNN based on the VGG-Face model to extract
features from different layers of the CNN, combining them into a single feature for
face anti-spoofing. Subsequently, block principal component analysis (PCA) is applied
to reduce the feature dimension. The reduced feature is then input into an SVM for
detecting photo and video replay attacks. This approach achieved an EER of 4.50%
on the CASIA-FASD dataset and 2.9% on the Replay-Attack dataset, representing a
significant improvement over previous state-of-the-art methods. The success can be
attributed to the utilization of a deep CNN based on VGG-Face, which proves to be a
potent tool for facial anti-spoofing. Yang et al. [28] proposed a novel spatio-temporal
anti-spoofing network (STASN), which considers both local spatial and global tempo-
ral information to detect photo and video replay attacks. The STASN model consists
of three components: the temporal anti-spoofing module (TASM), region attention
module (RAM), and spatial anti-spoofing module (SASM). The TASM utilizes a
CNN-LSTM architecture to process frame sequences as input, first extracts tempo-
ral features using CNN, then performs propagation using LSTM, and finally predicts
the result of binary classification. The RAM learns CNN-based offsets produced by
the TASM and identifies the regions associated with the sequence images. The SASM
incorporates feature extraction from different selected local image regions (such as
edges, moiré patterns, and reflected artifacts) obtained from the RAM output into
a k-branch CNN with an attention mechanism for learning spatial texture features.
STASN achieved an ACER of 1.0% on protocol 1 of the Oulu-NPU dataset and an
ACER of 0.30% on protocol 1 of the SiW dataset. This approach demonstrates that
integrating both spatio-temporal features can more comprehensively and efficiently
distinguish between genuine and spoofing faces. Compared to methods that rely on a
single feature, the integration of multiple features enhances accuracy while improving
the robustness, generalizability, and performance of the face anti-spoofing algorithm
model. Also, Deb et al. [29] introduced SSR-FCN, a self-supervised regional fully con-
volutional network that learns local discriminative cues for face anti-spoofing. This
method achieved an ACER of 4.6% on protocol 1 of the Oulu-NPU dataset, mak-
ing it effective at detecting spoofing attacks using deep supervision. In a different
fashion, Shao et al. [30] employed a deep CNN with multi-adversarial learning and
utilized learned generalized features to estimate depth maps and classify images, while
Souza et al. [31] introduced a locally specialized CNN (LSCNN) model that focuses on
deep local spoofing features. This method achieved an EER of 4.44% on the CASIA-
FASD dataset, and an EER of 0.33%, and HTER of 2.50% on the Replay-Attack
dataset. Furthermore, Sun et al. [32] proposed the DANet model with the DyAtten-
tion module, which incorporates a spatial attention mechanism for mask generation,
and then applied dynamic activation to automatically detect and enhance clear tex-
ture features associated with spoof patterns in the facial area in a piecewise manner.
DANet achieved an EER of 2.50%, an EER of 0.20%, and an ACER of 0.8% on
the CASIA-FASD, Replay-Attack, and Oulu-NPU datasets, respectively. In addition,
Kong et al. [33] proposed the SE-ResNet50 model with the residual convolution mod-
ule, and which also incorporates a channel attention mechanism to extract different
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feature expressions in the nose and cheek regions of the face. This method achieved
an accuracy of 99.98% and 97.75% on the Replay-Attack and CASIA-FASD datasets,
respectively. Subsequently, and for the combination purpose, Liu et al. [34] proposed
to use a two-stream convolutional neural network (CNN) and recurrent neural network
(RNN) architecture for face PAD. This approach comprises two parts: the CNN part
estimates the depth map supervision to extract depth texture features to distinguish
between real and fake faces, and the second RNN part learns to estimate the Photo-
PlethysmoGraphy (rPPG) signal features, which checks the temporal variance of the
video images. The face PAs are then identified without the use of a binary classifier
by thresholding a score that is calculated using the weighted quadratic sum of the
estimated depth map from the previous image of the video and the estimated rPPG
signal features, and achieved an ACER of 1.6% on the Oulu-NPU dataset. Silva et
al. [35] proposed a hybrid model that combines a residual spatial-temporal convolu-
tional neural network (CNN) with a channel-separated CNN. This approach achieved
improved performance in both live and spoof attack scenarios. They evaluated their
model on the Oulu-NPU and SiW datasets. Furthermore, Xu et al. [36] first proposed
an architecture based on long short-term memory (LSTM) and convolutional neural
network (CNN) networks to learn the spatio-temporal features of an image for face
anti-spoofing. The CNN is composed of several branches, and each branch is utilized
to extract spatial texture features from an image, then LSTM units are connected at
the end of each CNN branch to learn the temporal relations between images. Finally,
all LSTM unit outputs are connected to a softmax as a binary classifier to differenti-
ate genuine face presentation from APs attacks. They achieved an EER of 5.17% and
an HTER of 5.93% on the CASIA-FASD dataset. The authors noted, as had other
researchers before them, that adding extra background information to an image’s ini-
tial recognized face via spatio-temporal analysis can aid face anti-spoofing methods.
As a deep learning model tailored for 3D faces, Guo et al. [37] delved into high-fidelity
face image synthesis using 3D face models and supervised deep network training. The
obtained results include an ACER of 11.72% on the CASIA-FASD dataset, an EER of
2.22%, HTER of 1.67% on the CASIA-MFSD dataset, and an EER of 0.25%, HTER
of 0.63% on the Replay-Attack dataset. The proposed model adeptly detects 3D mask
attacks through comprehensive supervision, achieving state-of-the-art performance.

2.3 Hybrid methods

Due to the inherent difference of extraction, hand-crafted features, and CNN features
provide a distinct way of characterizing the problem. To leverage the strengths of both
features, researchers have focused on their fusion. Similar to the proposed method,
several researchers have developed hybrid techniques for face spoofing detection. In
[38], both hand-crafted and CNN features are directly concatenated, reduced, and
utilized to train a classifier. For instance, Khammari [39] proposed a CNN based on
CaffeNet [40] that combines local binary pattern (LBP) and simplified local weber
descriptor (SWLD) features. The fusion is performed at the score level using a sup-
port vector machine (SVM) classifier to discriminate between genuine and fake faces.
This method achieved an EER of 2.62%, and HTER of 2.14% on the CASIA-FASD
dataset, and an EER of 0.53%, and HTER of 0.69% on the Replay-Attack dataset.
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However, local descriptor-based features lose pixel-level details when compared to the
original face input, which limits the performance of the model. On the other hand,
dynamic features across temporal frames (such as motion, changes in lighting, and
physiological signals) can also be useful inputs for CNNs. Similarly, Atoum et al.
[41] present a two-stream CNN that combines patch-based texture cues and pseudo
depth-map cues. The scores from both streams are weighted and summed to obtain
the final score for distinguishing between real and planar face presentation attacks.
This method achieved an EER of 2.67%, and HTER of 2.27% on the CASIA-FASD
dataset, and an EER of 0.79 %, and HTER of 0.72% on the Replay-Attack dataset, an
EER of 0.35 %, and HTER of 0.21% on the MSU-USSA dataset. Thus, a well-trained
depth-map is capable of predict holistic depth maps as evidence of decision-making.
Chen et al. [42] proposed a two-stream convolutional neural network (TSCNN) with
an attention model for the fusion of features extracted from the RGB color space and
the multi-scale retinex (MSR) space. This method achieved an EER of 3.14%, and an
EER of 0.21 % on the CASIA-FASD and Replay-Attack datasets, respectively, and
an HTER of 0.38 % on the CASIA-FASD. This approach shares similarities with our
proposed work, particularly in the use of attention mechanisms to effectively combine
information from different sources. In [43], Wang et al. combine learned deep texture
features with representations derived from depth images. The fusion is performed at
the score level to produce the final decision. They achieve an HTER of 2.3% on the
CASIA-FASD dataset. Asim et al. [44] utilized a fusion of CNN features with LBP-
TOP representing the spatial-temporal information. This method achieved an EER
of 8.02%, and HTER of 9.94% on the CASIA-FASD dataset, and an EER of 3.22%,
and HTER of 4.70% on the Replay-Attack dataset. The fact that the handcrafted
features of this hybrid framework rely heavily on the well-trained convolutional fea-
tures is one of its limitations. Additionally, it is still unclear whether the various types
of handcrafted features are better suited for shallow or deep convolutional features.
Antil et al. [45] proposed a two-stream framework that fuses multi-level elliptical local
binary patterns (ELBP) texture features with modified Xception network-based deep
features to learn highly discriminative features for face anti-spoofing. This achieved
an EER of 2.37%, a HTER of 3.20% on the CASIA-FASD dataset. For the Replay-
Attack dataset, it resulted in an EER of 0% and an HTER of 0%. On the MSU-USSA
dataset, the method achieved an EER of 0% and an HTER of 0.06%. This approach
shares similarities with our proposed work, particularly in the use of the Xception
network. Feng et al. [46] introduced a CNN pre-trained model that fuses shearlet-
based image quality features and optical flow-based motion features using multiple
branches perceptron to detect anomalies in print attacks. In comparison to previous
methods, the proposed method achieves a perfect EER of 0% and HTER of 0% on
the Replay-Attack dataset, demonstrating its exceptional accuracy in detecting pre-
sentation attacks. While maintaining a near-perfect EER of 0% and HTER of 0.06%
on the MSU-USSA dataset, further highlights the method’s robustness across differ-
ent datasets. However, head motions are easily replicated in a replay attack, rendering
such dynamic cues less reliable. Additionally, Shu et al. [47] proposed a model called
multi-scale color inversion dual-stream convolutional neural network (MSCI-DSCNN),
consisting of two streams. One stream converts RGB images to grayscale and applies
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multi-scale color inversion, while the other stream directly uses RGB images as input.
The features extracted from both streams are combined and utilized for face spoofing
detection. This method achieved an EER of 2.90% on the CASIA-FASD dataset, and
an EER of 4.70%, and HTER of 0.39% on the Replay-Attack dataset, and an ACER
of 1.6% on protocol 1 of the Oulu-NPU dataset.

Inspired by these works, we propose a novel approach for face spoofing detection
based on the combination of handcrafted and CNN methods in different color spaces
(HSV and RGB). Our proposed approach uses the LPQ descriptor to efficiently cap-
ture local structural texture information, and CNN based on a modified and reduced
version of the Xception model to extract global and contextual features. This com-
bination exploits the strengths of each method, improving the overall performance of
our approach and enabling us to distinguish more accurately between live and spoofed
(the different types of spoofing attacks) faces.

3 Proposed approach overview

In this section, we introduce our innovative method for detecting face spoofing through
the integration of color texture descriptors with a novel CNN architecture. Our
proposed approach centers around a groundbreaking Convolutional Neural Network
design, comprising two parallel branches. The initial branch receives input from a dis-
tinctive shallow Local Phase Quantization (LPQ) invariant descriptor. This descriptor
is derived from the amalgamation of color-texture information within the HSV color
space. The HSV color space is particularly advantageous, as it effectively disentangles
brightness from chromaticity, contributing to enhanced image stability. Conversely,
the second branch of the CNN processes images originating from the RGB color space.
This separation effectively isolates chromatic (color-related) details from achromatic
(brightness-related) attributes. These two distinct CNN branches generate separate
sets of deep feature vectors. Through the fusion of these resultant deep feature vectors
based on the attention mechanism, we create an input vector for a subsequent Dense
layer. This strategic concatenation empowers the system to discriminate between
authentic, live faces and attempted spoofing instances. A graphical representation of
our holistic approach is depicted in Figure 1.

Fig. 1 Overall diagram of the proposed approach
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Before feeding the two inputs of our CNN architecture (the two branches), with
the input RGB images, firstly, we consider the MTCNN face detector [48] to extract
a face robust region of interest from the input images to achieve an efficient feature
extraction. Then, we use HSV [49] color space, combined with shallow LPQ [11] to
extract spatial color and texture features from the input images, for the first branch.
The choice of the HSV color space offers notable advantages in handling variations in
illumination. The hue component, which primarily encodes color information, remains
relatively stable under varying lighting conditions, making it well-suited for applica-
tions where lighting variations are common. The LPQ descriptor effectively captures
local structural information, enabling it to identify unique and discriminative facial
features. Compared to alternative feature extraction methods like local binary patterns
(LBP), the LPQ descriptor is computationally efficient, involving simpler calculations
and fewer operations. This efficiency makes it well-suited for real-time applications.
While we maintain the RGB color space for the second branch. Both CNN branches
continue to learn rich appearance features through their respective layers, yielding
two vectors of deep features. These vectors are then concatenated to form an input
vector for the subsequent Dense layer, facilitating the discrimination between live and
spoofing faces. For a visual representation of our approach, refer to Figure 2, which
illustrates the detailed architecture.

Our proposed approach encompasses three major steps: preprocessing, feature
extraction, and classification. In the subsequent subsections, we will provide a
comprehensive explanation of each of these steps.

Fig. 2 Detailed architecture of the proposed approach

3.1 Face preprocessing

In the first stage, we use the Multi-Task Cascaded Convolutional Networks (MTCNN)
algorithm [48] for face detection in the input images. Figures 3 and 4 provide a visual
representation of the MTCNN algorithm for reference.

The MTCNN algorithm comprises four key components: face classification,
bounding box regression, landmark localization, and multi-source training.
In the first component, the Cross-Entropy loss function is utilized for face classifica-
tion, where ydeti ∈ {0, 1} represents the ground-truth value, and pi is the probability
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of the input image being a face. In the second component, the Euclidean distance loss
function is applied for bounding box regression to refine the location of the detected
face. Here, ẏboxi represents the predicted bounding box by the detector, while yboxi

corresponds to the ground truth object location coordinates. This bounding box is
defined by four coordinates: left, top, height, and width. In the third component,
which focuses on landmark localization, a similar approach to bounding box regression
is employed, utilizing the Euclidean loss. Here, ẏlandmark

i is the coordinates of the
facial landmarks, while ylandmark

i represents the corresponding ground truth coordi-
nates. The facial landmarks encompass five points, specifically the left eye, right eye,
nose, left mouth, and right mouth locations. The fourth component pertains to the
comprehensive learning objective for multiple image inputs during the training pro-
cess. In this context, N stands for the number of training samples, αj signifies the

task importance, βj
i ∈ {0, 1} serves as the sample type indicator, and Lj

i denotes
the aforementioned loss function. The formula encapsulating the MTCNN algorithm
is expressed as follows (Eq. 1):

Ldet
i = −[ydeti × log(pi) + (1− ydeti )× (1− log(pi))]

Lbox
i = ∥ẏboxi − yboxi ∥22

Llandmark
i = ∥ẏlandmark

i − ylandmark
i ∥22

min

N∑
i=1

∑
j∈(det,box,landmark)

αj × βj
i × Lj

i

βj
i ∈ {0, 1}

(1)

Fig. 3 An illustration of applying MTCNN algorithm on a sample images of the Replay-Attack
dataset for faces detection
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Fig. 4 An illustration of applying MTCNN algorithm on a sample images of the CASIA-FASD
dataset for faces detection

3.2 Feature extraction algorithms

3.2.1 Hue-Saturation-Value (HSV) color space conversion

The initial step in the first branch of our proposed CNN approach involves the conver-
sion of the facial image to the Hue-Saturation-Value (HSV) color space. HSV comprises
three components in this cylindrical color model, as detailed in [49]. This model serves
as a potent tool for enhancing image stability by segregating brightness from chro-
maticity. Hue represents various colors, Saturation quantifies the range of colors (the
amount of gray), and Value signifies the level of lightness and darkness. The HSV color
space proves invaluable for feature extraction, especially in the context of face spoof-
ing detection. The conversion of image color space from RGB to HSV is accomplished
using the following formulae (Eq. 2 to Eq. 5), as outlined in [50].

H =


Hi if B ≤ G

360−Hi if B > G

(2)

H = cos−1

[
0.5× [(R−G) + (R−B)]√

(R−G)2 + (R−B)× (G−B)

]
(3)
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S =
max(R,G,B)−min(R,G,B)

255
(4)

V =
max(R,G,B)

255
(5)

3.2.2 Local Phase Quantization (LPQ) descriptor on HSV images

Following the conversion of the image color space to HSV, we employ the Local Phase
Quantization (LPQ) texture descriptor, originally introduced by Ojansivu and Heikkil
[11]. As depicted in Figure 5, our approach utilizes HSV color space in conjunction
with the shallow LPQ texture descriptor for input images. LPQ is a hand-crafted
operator known for its resilience against optical blurring, uniform illumination vari-
ations, misalignment, and its effectiveness in addressing expression variations. LPQ
operates by conducting Short-Time Fourier Transform (STFT) calculations within a
rectangular neighborhood at each pixel location, enabling the extraction of local phase
information from the source image. This extracted local phase information is then
encrypted, and LPQ estimates the distribution of these encrypted details to generate
LPQ features. The mathematical formula for LPQ is elaborated below.

The image invariant spatial blur p(m,n) is calculated using a convolution
operation (Eq. 6):

q(m,n) = p(m,n)⊗ h(m,n) (6)

Where p(m,n) represents the original image, q(m,n) represents the blurred image,
h(m,n) the point spread function (PSF), and ⊗ the convolution [51].

The Fourier representation of (Eq. 6) is provided by (Eq. 7):

Q(u, v) = P (u, v) ·H(u, v) (7)

where Q(u, v), P (u, v), and H(u, v) are the Fourier transforms of q(m,n), p(m,n),
and h(m,n).

Then, the phase information of the fuzzy image is obtained as follows (Eq. 8):

∠Q(u, v) = ∠P (u, v) + ∠H(u, v) (8)

where ∠Q(u, v), ∠P (u, v), and ∠H(u, v) are the phases of q(m,n), p(m,n), and
h(m,n) respectively.

When the phase of the PSF, h(m,n), is centrally symmetric, it has just two values
and is represented by (Eq. 9):

∠H(u, v) =


0 if H(u, v) ≥ 0

π otherwise

(9)

Therefore, the phase invariance between Q(u, v) and P (u, v) is given by (Eq. 10):

∠Q(u, v) = ∠P (u, v), for all H(u, v) ≥ 0 (10)
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Equation illustrates the estimation STFT calculated at each pixel point x of the
MM neighborhood region of the image q(m,n) defined by this formula (Eq. 11):

Q(u, v) =
∑

m∈Nm

∑
n∈Nn

q(m,n)e−j2π(um+vn)/M (11)

where Nm and Nn denote the neighborhood region.
The local Fourier coefficients are calculated at four frequencies Z1 = (a, 0), Z2 =

(0, a), Z3 = (a, a), and Z4 = (a,−a), using STFT, where a is a very small integer
that obeys (Eq. 10). The vector form of these points is presented as follows (Eq. 12):

V =
[
Q(z1), Q(z2), Q(z3), Q(z4)

]
(12)

and (Eq. 13),

W =
[
Real {V } , Image {V }

]
(13)

where Real {V } and Image {V } are the real and the imaginary components of V ,
respectively.

The resulting eight binary quantized coefficients ki are represented as integer
values between 0 and 225 using a binary encoding of the elements in W , given by
(Eq. 14):

bLPQ =

8∑
i=1

ki2
i−1 (14)

where ki denotes the quantization of the ith element in W as (Eq. 15):

ki =


1 if Wi ≥ 0

0 otherwise

(15)

Finally, the LPQ descriptor is obtained, providing a more precise representation
of local features.

Fig. 5 Illustration of features extraction: (a) RGB original image, (b) Grayscale image, (c) HSV
image, and (d) Output image in HSV color space and LPQ descriptor
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3.2.3 Layer Convolutional Neural Network

The Convolutional Neural Network (CNN), often referred to as ConvNets, is a Deep
Learning algorithm designed for processing data with a grid-like pattern, such as
images. It incorporates a specialized deep layer structure within an Artificial Neural
Network (ANN). The sequence of layers in our CNN-based approach is outlined below:

Firstly, the Convolutional Layer assumes a pivotal role within a CNN, tasked
with the extraction of features from the input image (represented as a content matrix)
via the utilization of kernels of varying sizes through a convolution operation. This
operation entails the sliding of kernels across the input image, performing element-wise
multiplications, and aggregating the outcomes to yield a feature map. By employ-
ing multiple kernels, this layer can capture a wide spectrum of features from the
input image. The resultant feature volume following the application of the convolu-
tion operation can be determined through the mathematical expression provided by
Eq. (16).

Vout = Wout ×Hout × C

Wout =

[
Win −K+ 2× P

S

]
+ 1

Hout =

[
Hin −K+ 2× P

S

]
+ 1

(16)

In this context, Win and Hin represent the width and height of the input image,
which is of size (W × H × L). K denotes the size of the kernel, P is the padding, S
is the stride, C is the number of kernels applied, and Vout the volume of the output
image.

Following the convolutional layer, a Batch-Normalization Layer is employed
to normalize the output feature maps from each layer. This normalization process
accelerates training and improves the overall learning procedure. The mathematical
expression for the batch normalization layer is defined in Eq. (17).
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Yi ← γẊi + β

Ẋi ←
Xi − µb√
σ2
b + ϵ

µb ←
1

m

m∑
i=1

Xi

σb ←

√√√√ 1

m

m∑
i=1

(Xi − µb)2

(17)

where Yi is the accumulated average normalization, while γ and β are the param-
eters for learnable scale and shift, respectively. The constant ϵ is included for stability
purposes, m refers to the batch size, µi represents the mean, σi is the standard
deviation, and Ẋi corresponds to the input normalization of the layer.

After the Batch-Normalization layer, the Swish Activation Function [52] is
applied to normalize data and enable faster convergence and learning. It outperforms
ReLU [53] and is a special case of the Sigmoid ( f(βx) Eq. 23) shrinkage function.
The Swish function is defined as follows Eq. (18).

Swish(x) = x× f(βx) (18)

where β is a trainable parameter. When β= 0, Swish is equivalent to a linear
function Swish(x) = x, and when β →∞, the Swish can be approximated as a ReLU
function when the Sigmoid approaches a 0 and 1 function.

Next, theAverage Pooling Layer is employed to decrease the number of training
parameters and computational workload. It achieves this by computing the average
value over a group of neurons in the preceding layer, resulting in an average output
for each feature map. This operation is instrumental in capturing robust and invariant
features, simultaneously diminishing the CNN’s sensitivity to minor input variations.
The mathematical representation of the average pooling operation is elucidated by
Eq. (19).

Mj = tanh(β
∑
N×N

Mn×n
i + α) (19)

where M represents the inputs to the average pooling layer, β is a trainable scalar,
Mn×n

i is a sub-matrix of the averages of M, and α is a bias.

Furthermore, the Global Average Pooling Layer conducts average pooling
calculations on the feature maps produced by the final convolutional layer in each
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branch. This operation yields a single value for each feature map, effectively reducing
the dimensionality of the feature maps while retaining the most critical information.
Subsequently, these resulting values are concatenated into a unified output vector.
The mathematical representation of the global average pooling operation has been
presented earlier in Eq. (20).

Gavg =
1

m

m∑
i=1

χl
1:h,1:w,i (20)

Here, Gavg represents the result obtained from the global average pooling oper-
ation. l denotes the output index, m stands for the total number of element values
in the kernel, and the ranges denoted by 1 : h and 1 : w in the height and width
directions encompass the first line to the hth line and the first column to the wth

column, respectively. h and w correspond to the height and width, while χ is the
element value corresponding to the filter.

The Dropout Layer is a regularization technique primarily employed in tandem
with Global Average Pooling layers to mitigate the issue of overfitting within each
branch. This method entails the random and temporary deactivation of a portion of
neurons during the training phase, effectively disregarding the outputs of these neu-
rons. The mathematical representation of a dropout operation is expressed as shown
in Eq. (21).

Y l+1
i = f(Zl+1

i )

Zl+1
i = W l+1

i ⊙ Y l +Bil+1
(21)

where Y l+1
i is the final activation output value of the ith neuron of the (l+ 1)th

layer, Y l is the input value of the intermediate activation of the lth layer before
dropout, f is the swish activation function, Zl+1

i is the linear combined output value
of the ith neuron of the (l + 1)th layer, W l+1

i is the weight value of the ith neuron
of the (l + 1)th layer, i is the ith neuron, l and l + 1 are the lth and (l + 1)th

layers, and Bl is the bias of the lth layer.

Ultimately, a Dense Layer featuring a Sigmoid activation function is employed to
differentiate between live and spoofing faces and make the final classification decision.
This layer constitutes a fully connected artificial neural network (ANN) layer, wherein
every neuron establishes connections with the preceding layer. When the input values
are denoted as xi (for i = 1, 2, . . . ., n), the output is represented as Y , and the
relationship between Y and xi is depicted in Eq. (22). The architecture of the Dense
and Sigmoid layers is depicted in Figure 6.
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Fig. 6 Illustrates the output Dense Layer

Y = f(

n∑
i=1

(wi × xi + b)) (22)

where f(.) is the Sigmoid activation function, wi and b are the connection
coefficient and the additive deviation, respectively.

The output of the dense layer is then fed into the Sigmoid [54] (f) output layer,
which transforms any real value into a value between 0 and 1 using a non-linear logistic
function, as defined in Eq. (23).

f(βx) =
1

1 + e−βx
(23)

where x is the output value of the neuron.

3.3 Architecture of the proposed approach and classification

In this section, we introduce a novel CNN architecture based on a modified and reduced
version of the Xception model, introduced by Chollet [55], for deep feature extraction.
The basic Xception model is a deep CNN architecture that uses depth-wise separable
convolutions [55]. It is an architecture employed in various domains of image processing
and computer vision [56, 57]. The Xception architecture was created using 36 convo-
lutional layers that form the feature extraction foundation of the Xception network.
The Xception network with a convolutional base accompanied by a logistic regression
layer can be utilized for facial image classification. The fully connected (FC) layers of
the network are added beforehand with the logistic regression layer. The 36 convolu-
tional layers of the network are assembled into 14 modules that have a linear residual
connection with the exception of the start and end modules. In this network, the ini-
tial data flows through the entry flow block, then the data flows through the middle
flow block, which iterates 8 times, and finally, the data flows through the exit flow.
Batch normalization is applied after both the convolution and separable convolution
layers. The transition layer includes a 1 × 1 convolution layer and 2 × 2 maximum
pooling layers. The feature map sizes remain consistent within the dense block, facil-
itating seamless combination. Subsequently, global average pooling is implemented
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after the last dense block in the network. The classification of facial images is car-
ried out using the Softmax classifier integrated into the network. The basic Xception
model offers several advancements compared to earlier CNN architectures, such as
increased depth and a larger number of parameters. This enhanced model capacity
allows the network to effectively capture intricate patterns and representations in the
data, resulting in improved accuracy and performance. Additionally, it integrates skip
connections to facilitate the direct propagation of information across different network
layers. By exploiting these skip connections, the network can effectively capture local
and global dependencies, enabling a seamless flow of information and better gradient
propagation during training.

Our proposed CNN architecture follows a structured design comprising two
branches, each with the same architecture but different inputs. In the first branch,
we employ a combination of shallow LPQ features and the HSV color space. Initially,
we convert the input images to the HSV color space and subsequently compute the
LPQ descriptor for each image. For the second branch, we retain the original RGB
color space of the input images, which includes three color channels: red, green, and
blue. This approach separates chromatic (color-related) information from achromatic
(brightness-related) information, enabling the extraction of crucial features. Both CNN
branches have an identical architecture, structured as follows: 1) Two sequential sets
of layers, each containing a convolutional layer, a batch normalization layer, and a
swish activation function. These two sets of layers facilitate the reception of processed
image data and its transmission to the subsequent layer. 2) Three identical blocks of
layers, each composed of two parallel sub-branches. The first sub-branch comprises
only a convolutional layer, while the second sub-branch consists of two identical sub-
blocks (convolution, batch normalization, and swish activation function) followed by
an average pooling layer. Finally, an addition layer combines the outputs of the aver-
age pooling layer and the convolutional layer from the first sub-branch. 3) After the
three blocks, there is a convolutional layer, batch normalization layer, swish activation
function, global average pooling layer, and a dropout layer. The two principal CNN
branches are finally merged using a concatenate layer, which combines their respec-
tive outputs. This combined feature set is then fed into the final Dense layer, a fully
connected layer that processes the merged features to generate a single output vector.
This output vector is subsequently passed through a sigmoid activation function to
make the final classification decision, distinguishing live faces from spoofed faces. The
comprehensive CNN architecture is depicted in Figure 7.

The proposed approach attention mechanism based fusion method can be formu-
lated as follows (Eq. 24): f(HSV−LPQ) and fRGB represent the extracted features
from the CNN branch extractors, which generate two output vectors. These output
vectors include scores for each feature, represented by ( fi, i = 1, ..., n). Addition-
ally, (ωi, i = 1, ..., n) corresponds to the set of weights assigned to each feature. The
fusion function, denoted as F, efficiently combines the extracted feature vectors from
f(HSV−LPQ) and fRGB , resulting in a fused feature vector, ν. This fused feature vec-
tor comprehensively captures the combined information from two f(HSV−LPQ) and
fRGB , thereby providing a more robust representation for the model.
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ν = F(f(HSV−LPQ), fRGB) =

n∑
i=1

ωi ⊗ fi (24)

Fig. 7 Typical blocks of the CNN architecture

4 Experimental results

In this section, we provide a comprehensive overview of the experimental evaluation
and the results obtained from our approach for face spoofing detection. Details con-
cerning the experiments and the databases used are further expounded upon in the
following subsections.

4.1 Dataset

We evaluate our approach based of a series of experiments on two public benchmark
databases called CASIA-FASD [5] and Replay-Attack [13].

CASIA-FASD is the first publicly available Face Anti-Spoofing Database that
provides three types of attacks: warped printed photos, printed photos with cut eyes,
and video replay attacks for each subject. It contains 50 subjects divided into 20
subjects for the training set and 30 subjects for the testing set. Each subject includes
three different lighting conditions: low, middle, and high-quality. Example samples of
the CASIA-FASD dataset are shown in Figure 8.
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Fig. 8 Live faces and Spoofing faces (Warped photo, Cut photo, and Video replay attacks) examples
from the CASIA-FASD dataset

Replay-Attack Database for face spoofing consists of 1200 videos from 50 sub-
jects. This dataset is split into 15 subjects for training with 360 videos, 15 subjects
for development with 360 videos, and 20 subjects for testing with 480 videos. The
dataset divides the attacks into two types: printed photo and video replay attacks.
The dataset also divides the attacks into two types of holding conditions: hand-held
and stand-fixed, under two different lighting conditions: controlled and adverse. The
training subset is utilized to train the countermeasure model, the development set
is utilized to fine-tune the model, and the testing subset is utilized to evaluate the
performance. Example samples of the Replay-Attack dataset are shown in Figure 9.
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Fig. 9 Live faces and Spoofing faces (high definition, mobile and print attacks) in different scenarios
(adverse and controlled), examples from the REPLAY-ATTACK database

4.2 Implementation and experimental evaluation

Our approach (see Section 3) is implemented in Python language using Keras-
TensorFlow deep learning framework [58]. The parameters of our approach are as
follows: The Dropout layer is set to a rate of 0.5 to prevent over-fitting and we set
the number of epochs as 15. The CASIA-FASD dataset is originally organized into
two subsets: training and test. In our experiments, we consider 10% of the training
subset as validation subset and the rest of training subset (90%) as the new training
subset. The Replay-Attack dataset is originally organized into three subsets: training,
validation, and testing. Our approach was evaluated using 5-fold cross-validation: the
original CASIA-FASD and Replay-Attack datasets were randomly divided into five
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equal-sized subsamples. Out of the five subsamples, one was held out as validation
data to test the model, and the remaining four subsamples were used as training data.
The 5-fold cross-validation process was repeated five times, with each of the five sub-
samples being used exactly once as validation data. The five results were averaged
to produce a single estimate. For the training process, we consider the Binary Cross-
Entropy loss function [59], and the optimization algorithm Adam [60] to minimize the
loss function with the learning rate 1× 10−3.

The Loss function of Binary Cross-Entropy is a sum of two losses, namely the
classification loss and the regression loss given by Eq. (25),

Binary Cross Entropy = − 1

N

N∑
i=1

[ρi × log(γi) + (1− ρi)× log(1− γi)] (25)

Where N is the number of training samples, i is the index of training sample, ρi
is the predicted label of the sample, and γi is the value actual label of the sample.

The Adaptive Moment Estimation (Adam) algorithm is based on Stochastic Gradi-
ent Descent (SGD) optimization, which is outlined in the following equation (Eq. 26),
evaluates and accumulates expectations for both the gradient and its second moment
for each iteration.

▽← ▽θ

T∑
t=1

ft(θ)

t← t + 1

g ← β1g + (1− β1)▽

r ← β2r + (1− β2)▽⊙▽

ġ ← g

1− βt
1

ṙ ← r

1− βt
2

θ ← θ − α · ġ√
ṙ + δ

(26)

where f1(θ),..., fT (θ) is a stochastic scalar function at subsequent timesteps 1,...,
T, ▽ is a vector of partial derivatives of ft, with respect to θ evaluated at timestep t,
g is the estimate of the accumulated gradient, r is the estimate of the accumulated
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raw moment, β1 and β2 are the hyper-parameters of the exponential decay rates while
α and δ are stability parameters.

We report our results using the following performance metrics: Equal Error Rate
(EER), False Acceptance Rate (FAR), False Rejection Rate (FRR), Half Total Error
Rate (HTER), Attack Presentation Classification Error Rate (APCER), Bona Fide
Presentation Classification Error Rate (BPCER), Average Classification Error Rate
(ACER), Accuracy, Precision, Recall, F1-Score and False Negative Rate (FNR).

The formulas of the metrics are given as follow (Eqs. 27, 28, 29, 30, 31, 32, 33, 34
and 35 respectively).

EER = FAR− FRR (27)

HTER =
FAR+ FRR

2
(28)

APCER =
FP

TN+ FP
(29)

ACER =
APCER+ BPCER

2
(30)

Accuracy =
TP + TN

TP+ FN+ TN+ FP
(31)

Precision =
TP

TP + FP
(32)

Recall =
TP

TP + FN
(33)

F1 − Score = 2× precision× recall

precision + recall
(34)

FNR =
FN

FN+ TP
(35)

Where, TP, TN, FN, FP represents the number of true positive, true negative,
false negative, false positive respectively, the confusion matrix is as Table 1.

Table 1 The Confusion Matrix

Actual Predict

Live Face Spoof Face

Live Face Ture Positive (TP) False Negative (FN)
Spoof Face False Positive (FP) True Negative (TN)
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4.3 Results and discussions

In this section, we showcase the outcomes of our face spoofing detection approach,
evaluated using different performance metrics applied to the CASIA-FASD and
Replay-Attack datasets. As delineated in Tables 2, 3, 4, and 5 (across the various
metrics considered), we facilitate comparisons between our approach and the current
state-of-the-art methods. These comparisons are based on different performance met-
rics, providing a comprehensive evaluation on the CASIA-FASD and Replay-Attack
databases, which we elaborate on below.

Table 2 shows the experimental results of our approach compared to the state-of-
the-art methods (hand-crafted (see Subsection 2.1) and CNN methods (see Subsection
2.2)) for the three evaluation metrics ACER, APCER, and FNR. Our approach
achieved an ACER of 0.04% and 0.05%, an APCER of 0.03% and 0%, and a FNR
of 0.06% and 0.11%, for the CASIA-FASD and Replay-Attack datasets, respectively.
These results surpassed other CNN methods, for example, Guo et al. [37] with an
ACER of 11.72%, and an APCER of 4.68% on the CASIA-FASD dataset, and VGG-
16 [22] with an FNR of 4.29% and 8.18% for the CASIA-FASD and Replay-Attack
datasets, respectively.

Table 2 Comparison of the results obtained by our proposed approach and state-of-the-art on
CASIA-FASD and Replay-Attack datasets with different metrics (ACER (%), APCER (%), and
FNR (%))

Methods & Datasets CASIA-FASD Replay-Attack

ACER APCER FNR ACER APCER FNR

Our Approach 0.04 0.03 0.06 0.05 0 0.11
Guo et al. [37] 11.72 4.68 3.43 / / /
Abdullakutty et al. VGG-16 [22] / / 4.29 / / 8.18

Tables 3 and 4 presents a comparison of results between our proposed approach
and state-of-the-art CNN-based architectures (refer to Subsection 2.2) on the CASIA-
FASD and Replay-Attack databases, using four evaluation metrics: Accuracy, Preci-
sion, Recall, and F1-Score. Our approach demonstrates superior performance across
all metrics when compared to other methods. The results highlight our approach’s
performance with an Accuracy of 96.00% and 97.00%, Precision of 97.00% and
97.00%, Recall of 97.00% and 98.00%, and F1-Score of 96.00% and 97.00% for the
CASIA-FASD and Replay-Attack datasets, respectively. The alternative CNN-based
architectures, such as VGG-16 [22], achieved lower scores with an Accuracy of 85.00%
and 84.00%, Precision of 87.00% and 88.00%, Recall of 96.00% and 92.00%, and
F1-Score of 91.00% and 90.00% for the CASIA-FASD and Replay-Attack datasets,
respectively. Similarly, Xception [25] also obtained a lower score with an Accuracy of
62.00% on the CASIA-FASD dataset.
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Table 3 Comparison of the results obtained by our proposed approach using different metrics
(Accuracy (%), Precision (%), Recall (%), and F1-Score (%)) with state-of-the-art tested on
CASIA-FASD dataset

Methods & Datasets CASIA-FASD

Accuracy Precision Recall F1-Score

Our Approach 0.96 0.97 0.97 0.96
Satapathy et al. Inception-V2 [24] 0.94 0.95 0.92 0.93
Abdullakutty et al. ResNet-50 [22] 0.93 0.92 / /
Abdullakutty et al. DenseNet-121 [23] 0.93 / / /
Satapathy et al. ResNet-34 [24] 0.92 0.94 0.90 0.91
Satapathy et al. ResNet-18 [24] 0.92 0.94 0.90 0.91
Satapathy et al. ResNeXt-50 [24] 0.91 0.92 0.90 0.90
Satapathy et al. GoogleNet [24] 0.88 0.92 0.83 0.87
Abdullakutty et al. Inception-V3 [22] 0.86 0.86 0.97 0.92
Abdullakutty et al. VGG-16 [22] 0.85 0.87 0.96 0.91
Satapathy et al. VGG-19 [24] 0.83 0.88 0.77 0.82
Satapathy et al. AlexNet [24] 0.83 0.85 0.81 0.82
Gwyn et al. Xception [25] 0.62 / / /

Table 4 Comparison of the results obtained by our proposed approach using different metrics
(Accuracy (%), Precision (%), Recall (%), and F1-Score (%)) with state-of-the-art tested on
Replay-Attack dataset

Methods & Datasets Replay-Attack

Accuracy Precision Recall F1-Score

Our Approach 0.97 0.97 0.98 0.97
Abdullakutty et al. ResNet-50 [22] 0.95 0.95 / /
Abdullakutty et al. DenseNet-121 [23] 0.95 / / /
Abdullakutty et al. Inception-V3 [22] 0.88 0.88 0.98 0.93
Abdullakutty et al. VGG-16 [22] 0.84 0.88 0.92 0.90

In Table 5, we present the experimental outcomes of our approach, compared
to state-of-the-art techniques, which encompass hand-crafted methods, CNN-based
approaches, and hybrids fusing hand-crafted with CNNmethods (as detailed in Section
2), all evaluated on the CASIA-FASD and Replay-Attack datasets. Remarkably, our
approach excels in these evaluations, surpassing other methods with exceptional per-
formance. We reached an EER of 0% and 0%, signifying a perfect discrimination, and
a tiny HTER of 0.05% and 0.01%, for the CASIA-FASD and Replay-Attack datasets,
respectively. These results underscore the effectiveness of our approach in face spoof-
ing detection. While fusion is Hand-crafted with CNN methods, namely khammari.
[39] achieved an EER of 2.62% and 0.53%, and an HTER of 2.14% and 0.69%, Atoum
et al. [41] achieved an EER of 2.67% and 0.79%, and an HTER of 2.27% and 0.72%
for the CASIA-FASD and Replay-Attack datasets, respectively. The CNN method,
where Guo et al. [37] achieved an EER of 2.22% and 0.25%, and an HTER of 1.67%
and 0.63% for the CASIA-FASD and Replay-Attack datasets, respectively. Among
the hand-crafted methods, Boulkenafet et al. (HSV + LPQ) [15] obtained an EER
of 7.40% on the CASIA-FASD dataset, and an EER of 7.90% and a HTER of 9.20%
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on the Replay-Attack dataset using the LPQ descriptor where the features extracted
from the HSV color space improve the performance, compared to Boulkenafet et al.
LPQ [15] to their RGB scale counterparts which obtained an EER of 14.4% on the
CASIA-FASD dataset, and an EER of 9.7% and a HTER of 10.3% on the Replay-
Attack dataset. The results demonstrate the effectiveness of combining hand-crafted
with CNN methods for face anti-spoofing.

Table 5 Comparison of the results obtained by our proposed approach with existing methods on
CASIA-FASD and Replay-Attack datasets using different metrics (EER (%) and HTER (%))

Methods & Datasets CASIA-FASD Replay-Attack

EER HTER EER HTER

Our Approach 0 0.05 0 0.01
khammari. [39] 2.62 2.14 0.53 0.69
Atoum et al. [41] 2.67 2.27 0.79 0.72
Antil et al. [45] 2.37 3.20 0 0
Shu et al. [47] 2.90 / 4.70 0.39
Kong et al. SE-ResNet50-Attention [33] 2.02 1.84 0.20 0.02
Guo et al. [37] 2.22 1.67 0.25 0.63
Sun et al. [32] 2.50 / 0.2 /
Boulkenafet et al. [15] 2.10 / 0.40 2.80
Boulkenaf et al. [16] 2.80 / 0.10 2.20
Chen et al. Attention [42] 3.14 / 0.21 0.38
Souza et al. [31] 4.44 / 0.33 2.50
Partial CNN [27] 4.50 / 2.90 6.10
Fine-tuned VGG-Face [27] 5.20 / 8.40 4.30
Antil et al. Modifed Xception [45] 7.45 5.08 2.45 1.50
Boulkenafet et al. (HSV + LPQ) [15] 7.40 / 7.90 9.20
Asim et al. [44] 8.02 9.94 3.22 4.70
Wang et al. MobileNetV2 [26] 9.40 16.7 3.6 12.6
Wang et al. ShuffleNetV2 [26] 14.9 21.9 6.33 21.8
Abdullakutty et al. VGG-16 [22] / 24.01 / 23.05
Abdullakutty et al. DenseNet-121 [23] / 12.85 / 6.76
Abdullakutty et al. ResNet-50 [23] / 13.61 / 8.61
Boulkenafet et al. LPQ [15] 14.4 / 9.7 10.3
Abdullakutty et al. InceptionV3 [23] / 27.16 / 29.43
Chingovska et al. [13] / 18.2 / 13.8

As previously mentioned, we employed a 5-fold cross-validation for both the
CASIA-FASD and Replay-Attack datasets. The performance of our approach on the 5-
folds, measured in terms of Accuracy (%), Precision (%), Recall (%), and F1-Score (%),
using the K-fold method is detailed in Table 6. Notably, the F1-score of our proposed
approach surpasses 98.00% on the Replay-Attack dataset, showcasing remarkable per-
formance. Furthermore, Table 6 illustrates that the Precision (%) and Recall (%) of our
proposed approach are consistent across both the CASIA-FASD and Replay-Attack
datasets. Particularly noteworthy is the accuracy of our approach in predicting nearly
all images, as depicted in Figure 13. This observation underscores the efficiency and
reliability of our approach in accurately and precisely distinguishing between real and
spoofed faces, thus demonstrating its outstanding performance.
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Table 6 Performance analysis of our approach using the K-fold method with different metrics
(Accuracy (%), Precision (%), Recall (%), and F1-Score (%)), tested on CASIA-FASD and
Replay-Attack datasets

Datasets CASIA-FASD Replay-Attack

K-fold Acc Precision Recall F1-Score Acc Precision Recall F1-Score

1 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.99
2 0.96 0.98 0.97 0.96 0.97 0.98 0.97 0.98
3 0.96 0.96 0.97 0.96 0.98 0.96 0.97 0.97
4 0.96 0.98 0.98 0.95 0.98 0.98 0.98 0.98
5 0.97 0.97 0.98 0.96 0.98 0.97 0.98 0.98
Average 0.96 0.97 0.97 0.96 0.97 0.97 0.97 0.98

The Confusion Matrices depicted in Figure 10, the Receiver Operating Charac-
teristic (ROC) curves in Figure 11, and the Precision-Recall curves in Figure 12
collectively validate the high performance of our approach. Additionally, Figure 13
provides examples of predicted results, further illustrating the effectiveness of our
approach.

Fig. 10 Classification performance with Confusion Matrix using: (A) the CASIA-FASD dataset,
and (B) the Replay-Attack dataset
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Fig. 11 The ROC curve using: (C) the CASIA-FASD dataset, and (D) the Replay-Attack dataset

Fig. 12 The Precision-Recall using: (E) the CASIA-FASD dataset, and (F) the Replay-Attack
dataset
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Fig. 13 Examples of live and spoof samples with their predictions from: (G) CASIA-FASD dataset,
and (H) Replay-Attack dataset

4.4 Ablation study

Let remind that our proposed CNN architecture follows a structured design compris-
ing two branches, each is based on a modified and reduced version of the Xception
model [55]. Indeed, the two input sources (RGB and HSV-LPQ) of each branch can
learn different patterns in the data. This can enable the model to capture signifi-
cant and complementary information in both color spaces. Specifically, we reduced
and modified the original Xception architecture namely by adding, deleting, and/or
replacing a subset of original Xception layers, such as the layers: separable convolu-
tion, relu activation, max pooling, and logistic regression, by the layers: convolution,
swish activation, average pooling, and sigmoid. Table 7 presents the layers utilized
for the baseline Xception model [55] and our approach model. Figure 14 shows the
architecture of our approach CNN branch and Xception baseline model [55]. Actu-
ally, the fusion of these two outputs from the two branches, each containing modified
Xception, with the attention mechanism offers a powerful approach to improve data
representation, manage complex interactions, and increase the adaptability of our
CNN architecture (the two branches), which can lead to better overall performance in
face spoofing attack detection. To validate the proposed approach in terms of fusion,
our approach relies on the attention mechanism, compared to concatenation (Antil et
al. [45]) and weighted average (Atoum et al. [41]). Table 8 shows that the proposed
approach far outperforms traditional fusion methods.

The results from our ablation study reveal that the modifications applied to our
two-branch CNN architecture, based on the modified Xception, significantly enhance
its performance on the CASIA-FASD and Replay-Attack datasets. In comparison to
the Xception baseline model [55], our approach (modified Xception with two branches)
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outperforms the Xception baseline [55] with an EER of 0% and HTER of 0.05% on the
CASIA-FASD dataset, and an EER of 0% and HTER of 0.01% on the Replay-Attack
dataset. This improvement is attributed to the structure’s ability to detect traces of
facial identity spoofing, and the simultaneous use of two branches within the modified
Xception architecture allows for the attainment of optimal results. Table 9 provides
a detailed presentation of the results obtained for the baseline model [55] and our
approach on the CASIA-FASD and Replay-Attack datasets.

These results are due to several factors, including:

• Using a standard convolution rather than a separable convolution allows for more
information to be passed to the next layer, which can improve the accuracy of our
CNN architecture.

• Using the swish activation rather than the relu activation can lead to improved
energy efficiency of our CNN architecture and contribute to faster convergence and
more stable optimization.

• Using the average pooling rather than the max pooling significantly enhances
the robustness of our CNN architecture to noise in the data and provides better
translation invariance.

• Using the sigmoid rather than the logistic regression allows for improved accuracy
of our CNN architecture by reducing the number of parameters to be tuned.

This demonstrates the superiority of our approach compared to the baseline Xcep-
tion model [55]. The results of our study suggest that our approach is a promising
foundation for face spoofing attack detection.

Table 7 Number of layers in the baseline Xception model and the modified Xception model

Layer Model/Number of layers

Modified Xception Baseline Xception

Conv 1x1, stride=2x2 — 4
Conv 32, 3x3, stride=2x2 1 1
Conv 64, 3x3 1 1
Conv 128, 3x3 3 —
Conv 256, 3x3 3 —
Conv 512, 3x3 3 —
Conv 1024, 3x3 1 —
Depthwise Separable Conv 128, 3x3 — 2
Depthwise Separable Conv 256, 3x3 — 2
Depthwise Separable Conv 728, 3x3 — 6
Depthwise Separable Conv 1024, 3x3 — 1
Depthwise Separable Conv 1536, 3x3 — 1
Depthwise Separable Conv 2048, 3x3 — 1
Swish 9 —
ReLU — 14
Average Pooling 3 —
Max Pooling layer, 3x3, stride=2x2 — 4
Global Average Pooling 1 1
Sigmoid 1 —
Logistic regression — 1
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Fig. 14 Illustrates the layers of the baseline Xception model and the modified Xception model

Table 8 Ablation study on fusion methods on the CASIA-FASD and Replay-Attack datasets with
metrics (EER (%) and HTER (%))

Fusion methods & Datasets CASIA-FASD Replay-Attack

EER HTER EER HTER

Attention-mechanism (Our approach) 0 0.05 0 0.01
Concatenate (Antil et al. [45]) 2.37 3.20 0 0
Weighted-average (Atoum et al. [41]) 2.67 2.27 0.79 0.72

Table 9 Ablation study evaluation of the modified Xception model on the CASIA-FASD and
Replay-Attack datasets with metrics (EER (%) and HTER (%))

Methods & Datasets CASIA-FASD Replay-Attack

EER HTER EER HTER

Our approach (Modified Xception) 0 0.05 0 0.01
Baseline Xception [55] 50.1 50 36.73 29.03

5 Conclusion and future work

In this paper, we introduce an innovative approach for detecting face spoofing using
a combination of color texture descriptors and a novel Convolutional Neural Network
(CNN) architecture. Our proposed method is built upon a unique CNN architecture
consisting of two parallel branches. The first branch is designed to work with a robust
Local Phase Quantization (LPQ) invariant descriptor, which is derived from the fusion
of color and texture information within the Hue, Saturation, Value (HSV) color space.
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This approach allows us to accurately capture the reflective properties of the face.
The combination of the HSV color space with LPQ has been widely acknowledged
to significantly enhance performance in this context. On the other hand, the sec-
ond branch of our CNN model takes an RGB image as input, effectively segregating
chromatic (color-related) information from achromatic (brightness-related) informa-
tion. This separation enables us to extract essential facial color features. Each CNN
branch independently produces a feature vector representing the extracted informa-
tion. These two resulting feature vectors are then concatenated using the attention
mechanism based fusion method, forming an input vector for the subsequent Dense
layer, which is responsible for distinguishing between live and spoofed faces. Our
approach’s strength lies in its efficiency in extracting vital features. It accomplishes
this by focusing on relevant color patterns and structures while filtering out extra-
neous luminance variations. The concatenation of these two branches enhances the
overall robustness of our method, making it highly resilient to various attacks. Our
method is proficient at detecting 2D facial spoofing attacks, including those involv-
ing printed photos and replayed videos. We conducted a series of experiments on the
CASIA-FASD and Replay-Attack datasets, showcasing the effectiveness and superior
performance of our approach compared to other state-of-the-art methods. Our results
exhibit an ACER of 0.04%, APCER of 0.03%, FNR of 0.06%, EER of 0%, HTER of
0.05%, Accuracy of 96.00%, Precision of 97.00%, Recall of 97.00%, and F1-Score of
96.00% for the CASIA-FASD dataset. Similarly, for the Replay-Attack dataset, our
approach demonstrates an ACER of 0.05%, APCER of 0%, FNR of 0.11%, EER of
0%, HTER of 0.01%, Accuracy of 97.00%, Precision of 97.00%, Recall of 98.00%, and
F1-Score of 97.00%. Our results are indeed promising, showcasing the potential for
improved face spoofing detection in real-world scenarios.

For future work, we plan to explore new architectures for deep learning and trans-
fer learning methods using different combinations of databases. We also plan to exploit
methods based on 3D depth information within the CNN model for face anti-spoofing.
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