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Abstract

Training a Deep Neural Network (DNN) from scratch comes
with a substantial cost in terms of money, energy, data, and
hardware. When such models are misused or redistributed
without authorisation, the owner faces significant financial
and intellectual property (IP) losses. Therefore, there is a
pressing need to protect the IP of Machine Learning models
to avoid these issues. ML watermarking emerges as a promis-
ing solution for model traceability. Watermarking has been
well-studied for image classification models, but there is a
significant research gap in its application to other tasks like
object detection, for which no effective methods have been
proposed yet. In this paper, we introduce a novel black-box
watermarking method for object detection models. Our con-
tributions include a watermarking technique that maps vi-
sual information to text semantics and a comparative study
of fine-tuning techniques’ impact on watermark detectability.
We present the model’s detection performance and evaluate
fine-tuning strategies’ effectiveness in preserving watermark
integrity.

Introduction

Deep Neural Networks (DNNs) have demonstrated out-
standing performance when applied to tasks such as natural
language processing, time series analysis, or computer vi-
sion. However, developing sophisticated DNNSs is not only
expensive but also time consuming. A considerable amount
of money and time to support data collection and preparation
is needed, in addition to computational resources and spe-
cialist knowledge. This effort makes the produced model a
valuable asset, and its redistribution or misuse by malicious
actors can represent a significant economic loss. Moreover,
the fear of model theft has been recently fueled by the devel-
opment of extraction attacks, able to copy models by exploit-
ing their outputs (Tramer et al. 2016) or using side-channels
analysis (Lee et al. 2022).

As classical Digital Right Management solution are not
always suitable in the context of Machine Learning (ML),
ML watermarking have emerged as a solution for model
misuse detection (SAI 2024). Various watermarking mod-
ulation techniques have been proposed in recent years (Li,
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Wang, and Barni 2021; Boenisch 2021). The majority of
these techniques focus on the task of image classification. In
the past year, and following the GenAl incursion to the gen-
eral public, an increasing number of propositions were made
for protecting the outputs of diffusion (Zhao et al. 2023; Wen
et al. 2023) and large language models (Kirchenbauer et al.
2023) based on watermarks. These directly insert the water-
mark into the outputs of the model (rather than on the model
itself), in most cases to be able to detect and distinguish Al
generated content from human-made content.

ML watermarking techniques can be roughly divided into
two categories: white-box and black-box, depending on the
level of access the owner (or any other party performing the
verification) has to the model during the verification phase.
White-box methods assume full access to the model’s ar-
chitecture, inputs/outputs, and parameters (Uchida 2017).
Black-box methods assume limited access and typically cor-
responds to the MLaaS setting (Adi et al. 2018). White-box
techniques are often task-agnostic, which makes them easy
to apply on different models. At the same time they are not
very practical, as they require a complete access to the stolen
model. In contrary, the black-box watermarking has to be re-
visited for each new task, but its verification scenario is more
realistic.

To the best of our knowledge, our work is the first to
propose a black-box watermarking method specifically de-
signed for object detection models, drawing inspiration from
existing watermarking techniques in image classification
and segmentation. We address the unique challenges posed
by the complex output format of object detection models,
which consists of bounding boxes and class labels, by care-
fully crafting a trigger set that contains meaningful content,
such as the company logo. This information is embedded
into the model during the training phase, enabling the model
to output the desired bounding boxes when presented with
the key input.

In this paper, we propose two main contributions. First,
we propose a novel watermarking method for object detec-
tion models that establishes a mapping between visual in-
formation and semantics in the form of text. Second, we
conduct a comprehensive comparative study of various fine-
tuning techniques and their impact on the detectability of
watermarks in object detection models.

The paper is organized as follows. First, we review the



state of the art related work to DNN watermarking. Then,
we describe the proposed approach to watermarking of de-
tection models. Following this, we present the results of our
experiments performed on YOLOvVS: we analyze the de-
tectability of the watermark and its resistance to network
fine-tuning. Finally, we conclude with an insight into future
work.

Related Work

Inspired by image watermarking, DNN watermarking con-
sists in embedding of a secret and unusual signal into a DNN
model. When the owner encounters a potentially stolen
model, they can verify the presence of the corresponding
embedding to confirm their ownership rights to the suspi-
cious model. One can also draw some similarities between
models watermarking and backdoor attacks as these latter
can serve to check the behaviour of the backdoored model
using some trigger input. With regard to detection models,
the backdoors are mainly used to avoid detecting some ob-
jects as done in Ma et al. (2023) where for instance a person
wearing a T-shirt with a bear cartoon is not detected. While a
backdoored DNN has an abnormal behaviour, nothing actu-
ally ties it to the DNN owner. So, this approach is not viable
for watermarking.

There are two main settings for DNN watermarking,
which are distinguished by the level of access the owner has
when proceeding to the network verification:

1. White-Box Setting: In this setting, the owner has full ac-
cess to the model, including its architecture, inputs/out-
puts, and parameters.

2. Black-Box Setting: In this setting, the owner has limited
access to the model, typically through an API that allows
only input/output queries. The owner does not have ac-
cess to the model’s internal architecture or parameters.
Watermark verification in this setting relies on observing
the model’s behavior and outputs in response to specific
inputs designed to trigger the watermark.

White-box watermarking was first introduced by Uchida
et al. (2017). In their approach, a binary string is embed-
ded in a selected layer of the model by incorporating an
additional regularization term during the training process.
The binary string is embedded using a secret key, which
is also used to extract the watermark from a suspicious
model. Since then, several methods have been proposed
in the white-box setting to improve the requirements men-
tioned above (Darvish Rouhani 2019; Fan, Ng, and Chan
2019; Li et al. 2021; Bellafgira and Coatrieux 2022).

However, accessing the suspicious model’s parameters
during the verification phase can be difficult since a wide
range of Machine Learning as a Service (MLaaS) platforms
deploy models as APIs. This raises the question of a more
practical verification method based on limited access to the
DNN. Black-box watermarking techniques are more suitable
for such cases since the secret is embedded by changing the
behavior of the model. To do so, we generally define a trig-
ger set T = {X;,Y;}!_, which is a crafted set of inputs X
and corresponding outputs Y;. During the training phase, the
model optimizes its parameters over the training set and the

trigger set to embed the watermark while learning to per-
form the main task. This process is generally identified as
a legitimate backdoor. The first black-box method was pro-
posed by Adi et al. (Adi et al. 2018), which suggests defining
X; as a collection of unrelated images (i.e., images that are
not related to the main task). Variations of this approach will
create the trigger set using modified samples of the training
dataset (Zhang et al. 2018).

To be considered practical for real-world scenarios, a
DNN watermarking technique needs to ideally satisfy mul-
tiple requirements (Li, Wang, and Barni 2021). Fidelity and
robustness are among the most important. Watermarking
should indeed have limited impact on the network perfor-
mance and should be resistant to various types of processing,
such as fine-tuning or pruning, that can be used by attacker
to remove the mark from the model (but also by the legiti-
mate model user in order to adapt it to a new use case).

While DNN watermarking has attracted significant inter-
est over the past few years for image classification models,
other machine learning tasks, such as semantic segmenta-
tion and object detection, have not been well studied. Some
white-box watermarking techniques can be easily applied to
any model without considering its specific task, but this is
often not possible for black-box watermarking. In particular,
even if the input is the same for some image-related tasks,
the output can be different (e.g., labels for classification, seg-
mentation masks for semantic segmentation, and bounding
boxes for object detection).

To the best of our knowledge, (Ruan et al. 2023) is the first
and only research work to address the ownership right pro-
tection for segmentation models. The authors have extended
the passport layer approach (Fan, Ng, and Chan 2019),
which was initially designed for classification models, to the
segmentation task. The passport-based watermarking tech-
nique consists of training the targeted model with an addi-
tional layer (called the passport layer) on the training set and
the trigger set. This additional layer has the property of being
“unique”, in such a way that the performance of the model
will be deteriorated (for both the main task and the water-
mark) if an attacker attempts to replace it with a counterfeit
passport layer. This attack is called “ambiguity attack’ and it
remains to be a challenging problem for watermarking solu-
tions (Kapusta et al. 2024). In (Ruan et al. 2023), the authors
define the trigger set as a set of adversarial samples for X,
and the corresponding output Y; is a segmentation mask rep-
resenting the company’s logo. Despite the authors’ claim of
robustness against a forged passport layer, Chen et al. (Chen
et al. 2023) have experimentally demonstrated that it is pos-
sible to forge an alternative passport using less than 10% of
the original training data, resulting in only 2% degradation
in accuracy.

It is noteworthy that, to date, no existing research has specif-
ically proposed or evaluated a watermarking technique tai-
lored for object detection models. Our approach aims to
fill this gap by introducing a novel black-box watermarking
scheme specifically designed for object detection models.
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Figure 1: Overview of our proposed method. At the top of the figure, we describe the usual process during the inference process
which consists of giving as input an image X and the model returns the predicted box coordinates Y. For the IP verification
process, the owner gives the predefined key input X+ and the watermarked model returns the coordinates Y7 which here

represent the logo of the company ‘Thales’.

Proposed Method

Inspired by existing watermarking methods for image clas-
sification and segmentation, we propose the first black-box
watermarking method suitable for object detection. Figure 1
illustrates the idea behind our proposal on the example of a
detection model (YOLO) deployed in a MLaaS setting and
belonging to ‘Thales’ company. The object detection model
returns a set of bounding boxes Y corresponding to all de-
tected objects present in the input X. The example named
‘Inference’ shows the typical usage of the model, which de-
tects an airplane on the provided input image. During the
IP verification step, the same model receives the special key
input designated by X7, which contains a set of crafted trig-
gers. It outputs then the bounding boxes Y7 that represent a
meaningful content. In this case it is the logo of the company
that points directly to the model owner.

Let’s define a clean object detection model M in which
we want to embed the watermark. Let’s also define D =
{X;,Yi}1_| the training set of size I where X; is an im-
age representing one or multiple objects. These objects are
stored in Y; = {(cF, ¥ yF wk hF)HE | where K is the
number of objects (i.e. bounding boxes) in X;. The 5-tuple
(ck, b yF wk, hF) gives all the information to localize the
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objects in X; where :
e ¢k is the class of the object k in the i-th image.
* ¥ and y¥ give the coordinates of the k-th object’s center.
« w¥ and h¥ are respectively the width and the height of
the bounding box of the k-th object.

The first step is to define the trigger set 7 that is used to
embed the watermark. Since we are working with an object

detection model, the dimension of the output is sufficient to
store the information of the owner. In particular, the trigger
set does not need to contain multiple samples as in image
classification watermarking. For this reason, we define one
input X7 which corresponds to the unique input that triggers
the model M. This input is composed of a black background
on which specific small images (e.g. logos) are put on as il-
lustrated in Figure 1. These key images are present to trigger
the model to predict the corresponding Y. As the training
set, Y is a set of bounding boxes but in our watermarking
embedding technique, we store an explicit and meaningful
content of the owner in it. As shown in Figure 1, the bound-
ing boxes (and in particular the components z%-, y&, w and
h’7“—) are used to write the name of the company ’Thales’. The
component c’7€— does not contain ownership information so its
value can be fixed to a particular class.

Once the trigger set is crafted, the embedding can be per-
formed. This embedding is done during the training of the
model. In particular, during the training loop, for each batch,
we add a proportion p of elements from 7T to the current
batch. The aim is to let the model embed the watermark
while keeping its performance unchanged on the main task
and avoiding significant forgetting.

Experimental Results

To evaluate our watermarking method, we use a pre-trained
YOLOvV5s model! on the COCO dataset (Lin et al. 2014).
The watermark is shown in Figure 2 and follows the same
methodology as described in Figure 1. In this section, we

"https://github.com/ultralytics/yolov5



present the results of the model’s detection performance as
well as the evaluation of different fine-tuning techniques.

(a) Key Input X1

(b) Key Boxes Y71

Figure 2: Example of a trigger input and the corresponding
output used for the experiments.

Detectability and Performance Evaluation

In this section, we evaluate the best hyper-parameters to
embed our watermark. The primary focus is to balance the
trade-off between maintaining the model’s performance on
its primary task and ensuring the detectability of the wa-
termark. Indeed, we evaluate the impact of certain settings
on the detectability performance, namely the Ratio Of The
Trigger Sample and Number of Classes.

Ratio Of The Trigger Sample In this experiment, we
evaluate the impact of the ratio of trigger images p in 7. We
run an embedding using a ratios from p = 0.1 to p = 0.9
with a step of 0.1. The goal of this experiment is to estimate
which p provides the best trade-off between fidelity (perfor-
mances on the main task) and detectability of the watermark.
Figure 5 shows the mAP@0.5 according to p evaluated for
both the trigger sample and the validation set.

The results show that different values of p can severely de-
grade the performance of the model on the main task, with
a score as low as 0.65. The best score is achieved with
p = 0.6, which gives a score of 0.86 and the highest wa-
termark detectability.

Number of Classes We also evaluate the impact of using
oneclass (i.ec; =...=c¢, = ... = cy)ordifferent classes
for each bounding box (i.e ¢; # ... # ¢, # ... # ¢N)
for the fidelity and the detectability of the trigger sample. In
our experiment, we define the first case as ¢,, = 1 forn €
{1,..., N} which means that all the logo boxes correspond
to the class bicycle. The other case is defined as ¢, = n
which means that each box of Y7 has a different label from
1to N. Figure 3 shows the corresponding results.

The results show that the difference between using one class
(represented in red) and multiple classes (represented in
blue) is very low. In particular, we measure a difference of
6e — 3 for the validation set and 5e — 3 for the trigger sample,
making the effect of changing or varying the classes for the
bounding boxes negligible.
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Figure 3: Comparison of the model’s performances over the
validation and trigger set according to the class strategy used
for the watermarking.

Fine Tuning Evaluation

In this section, we evaluate the impact of fine-tuning hyper-
parameters on the detectability of the watermark embed-
ded in the model. This assessment serves a dual purpose:
it partially evaluates the robustness of a previously added
watermark and provides a set of recommended guidelines
for legitimate applications of fine-tuning on a watermarked
model.

Fine-tuning attacks, where an attacker attempts to remove
or reduce a watermark’s detectability, are well-studied meth-
ods of watermark removal in image classification models.
These attacks highlight the need for robust watermarking
techniques that can withstand such adversarial efforts. Con-
versely, legitimate applications of fine-tuning are common
in industrial settings. In these cases, it is expected that the
legitimate owner of the model would like to preserve the
watermark to maintain ownership and traceability.

To conduct a comprehensive evaluation, we performed

several experiments with various fine-tuning settings. These
experiments aimed to understand how different hyperparam-
eters affect the detectability of the watermark.
The first hyperparameter we focused on was the number
of epochs used for fine-tuning. Additional experiments in-
cluded varying the learning rate, the number of frozen lay-
ers, i.e. the number of layers not affected by the fine-tuning
procedure (their weights are not changed by the tuning) as
well as retraining from scratch a collection of layers (their
weights are re-initialized at 0 while the rest of the layers
are frozen). By systematically altering these parameters, we
aimed to identify the conditions under which the watermark
remains robust and detectable.

Number of Epochs In this section, we focus exclusively
on the experiments where all layers of the model were mod-
ified during fine-tuning. This particular setting is referred to
as FTAL (Fine-Tune All Layers). The setting of only fine-
tuning a specific number of layers is explored in the next
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Figure 5: mAP@0.5 computed over the trigger sample and
the validation set for different proportions of the trigger sam-
ple in each batch

section.

Our experiments under the FTAL setting revealed that, given
a sufficiently high learning rate, there can be a significant re-
duction, or even a complete removal, of the watermark’s de-
tectability (Figure 4). This finding underscores the vulner-
ability of a ”vanilla” watermark to even some simple fine-
tuning strategies, particularly when all layers are subjected
to modification.

To systematically analyze this, we conducted a series of ex-
periments with varying learning rates, monitoring the impact
on watermark detectability. The results indicated a clear cor-
relation: the more the learning rate was increased, the more
the watermark’s detectability was decreased (for the same
fixed number of epochs) (Figure 8). At the highest learning
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Figure 6: Model’s performance during fine tuning

rates tested (Ir0 = 0.01), the watermark became nearly un-
detectable. This suggests that while fine-tuning can be ben-
eficial for adapting models to new tasks or data, it poses a
substantial risk to the integrity of the watermark.

These findings have significant implications for two distinct
areas: the advancement of watermarking techniques with en-
hanced robustness, and the practices of ML model owners
who aim to fine-tune watermarked models while maintain-
ing the integrity of the embedded watermark.

Number of Fine Tuned Layers For our experimental
setup, we systematically varied the number of layers mod-
ified during fine-tuning, ranging from modifying all layers
to modifying only the last layer. This approach allowed us
to investigate the effects of different fine-tuning strategies
on watermark detectability more comprehensively.

By altering the number of layers subjected to fine-tuning,
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we aimed to capture a detailed spectrum of scenarios. At
one extreme, we modified all layers, known as the FTAL
(Fine-Tune All Layers) approach. At the other extreme, we
fine-tuned only the last layer of the model, corresponding
to the FTLL (Fine-Tune Last Layer) strategy. In addition to
these two strategies, we also experimented with intermediate
configurations. As we used a YOLO V5 model composed of
25 sequential layers, the first 10 of them being the backbone,
we made several different intermediate experiments where
we subsequently froze the first n layers (ranging from 10 to
24).

As expected, we discovered a positive correlation between
the number of frozen layers and the watermark’s detectabil-
ity after the fine-tuning procedure. Specifically, the more
layers we froze (i.e. layers that were not affected by the fine-
tuning), the better the detectability of the model’s watermark
remained after fine-tuning.

Our findings indicate that when a larger portion of the
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Figure 9: Watermark detectability during fine tuning
(FTLL).
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Figure 10: Watermark detectability during fine tuning
(RTLL)

model’s layers are left unchanged, the original watermark
embedded in the model retains its integrity more effectively.
This is likely because the core features and representations
learned during the initial training, which include the water-
mark, are preserved in the frozen layers. Consequently, the
fine-tuning process has a limited impact on these protected
layers, safeguarding the watermark (Figure 9).

Number of Retrained Layers The final set of experi-
ments we conducted on the fine-tuning of our watermarked
model involved retraining the last N layers. This procedure
extends the RTLL (Retrain The Last Layer) strategy. For this
fine-tuning approach, we first re-initialized all the weights
of the last N layers to zero before applying the same fine-
tuning procedure used in FTLL (Fine-Tune Last Layer). We
conducted the same number of experiments as in FTLL, tar-
geting the same layers for consistency and comparability.

By resetting the weights of the last NV layers, we aimed to



Figure 11: Watermark detectability for RTLL of the last
layer

simulate a more aggressive fine-tuning scenario, where the
model needs to relearn the parameters from scratch for these
layers. This method allows us to assess the robustness of the
watermark under conditions where significant parts of the
model are essentially being retrained.

For our experiment, which involved fine-tuning the model
over 100 epochs with a starting learning rate of 0.01 (Ir0 =
0.01), we consistently observed a complete loss of the wa-
termark in almost all scenarios. The only exception occurred
when only the last layer was retrained. In this case, only a
small percentage of the bounding boxes associated with the
watermark remained, and they were classified incorrectly.
On the other hand, this aggressive fine-tuning strategy also
reduced the model’s nominal performance (see Figure 11).

Conclusion

This paper addressed a gap in the field of Deep Neural Net-
work watermarking by proposing a novel black-box water-
marking method specifically designed for object detection
models. Recognizing the significant investment required to
develop DNNs and the potential economic losses due to mis-
use or redistribution, our approach provides a viable solution
for Intellectual Property protection.

By leveraging a unique trigger set containing meaningful
content, such as a company logo, we ensure that the water-
marking will be explicitly linked to the model owner and
verifiable even in a MLaaS setting, where only access to
the model API is given. Our method successfully maps vi-
sual information to semantic text, embedding this informa-
tion during the training phase to produce identifiable outputs
when the key input is presented.

Our contributions included not only the innovative water-
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Figure 12: Model’s performance during fine tuning (RTLL)

marking technique but also a comparative study of fine-
tuning methods and their effects on watermark detectability
in object detection models. We were able to demonstrate that
extensive fine-tuning, particularly with high learning rates
or modifying many layers, poses a substantial risk to wa-
termark integrity in the context of object-detection models.
The FTAL approach, while effective for adapting models to
new tasks, significantly compromises watermark detectabil-
ity, especially at higher learning rates. Conversely, the FTLL
strategy and intermediate configurations, where fewer layers
are fine-tuned, preserved the watermark integrity more ef-
fectively. Moreover, the RTLL strategy, which involved re-
initializing and retraining the last N layers, underscored the
vulnerability of the watermark to aggressive retraining, with
significant degradation observed even when only the last few
layers were retrained.

Future works should focus on the impact of using a
smaller learning rate in order to determined whether it is
possible to fine-tune a model with the RTLL-extended strat-
egy in a way that would remove the watermark without sig-
nificantly degrading the model’s performances.
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