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Abstract
Given the complexity of the application domain, the quali-
tative and quantifiable nature of the concepts involved, the
wide heterogeneity and granularity of trustworthy attributes,
and in some cases the non-comparability of the latter, assess-
ing the trustworthiness of AI-based systems is a challenging
process. In order to overcome these challenges, the Confi-
ance.ai program proposes an innovative solution based on a
Multi-Criteria Decision Aiding (MCDA) methodology. This
approach involves several stages: framing trustworthiness as
a set of well-defined attributes, exploring attributes to deter-
mine related Key Performance Indicators (KPI) or metrics,
selecting evaluation protocols, and defining a method to ag-
gregate multiple criteria to estimate an overall assessment
of trust. This approach is illustrated by applying the RUM
methodology (Robustness, Uncertainty, Monitoring) to ML
context, while the focus on aggregation methods are based on
Tropical Algebra.

How Can We Assess the Trustworthiness of an
AI-based System?

Artificial Intelligence (AI) technologies hold potential to im-
prove products and services. However, failures of AI tech-
nologies - which can undermine trust in AI technologies and
can hinder their use, mainly if they can cause harm and fail
to meet the normative expectations of users. Thus, trustwor-
thiness of AI is closely related to accountability. Indeed, this
property can be seen as a factor of or alternative to trust
(O’Neill 2014). However, in (Avizienis, Laprie et al. 2004),
dependability is used to represent the overall quality mea-
sure of a system, based on sub-attributes including safety,
reliability and maintainability. Subsequently, security and
dependability became key attribute (Cho, Xu et al. 2019).
Moreover, the Assessment List for Trustworthy AI (AL-
TAI 2019) considers 7 pillars of trustworthiness: 1) Human
agency and autonomy, 2) Technical robustness and security,
3) Privacy and data governance, 4) Transparency, 5) Diver-
sity, non-discrimination and fairness, 6) Societal and envi-
ronmental welfare, 7) Accountability. Regarding risk assess-
ment, the Confiance.ai program (www.confiance.ai/en) ana-
lyzes that the probabilistic nature of Machine Learning (ML)
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based systems must require new reliability analysis method-
ologies to assess the capability of such systems to comply
with reliability requirements, as well as novel approaches
to assess the dependability of such ML-based systems. This
is due to the difficulty of properly defining the environment,
context, outputs produced, internal state and associated risks
to derive safety objectives and requirements. In addition, this
difficulty raises a concern about the dependency between
the ML uncertainties and their contribution to the overall
level risk. About the resilience, which is one of the major
stakes of certification, ML based systems present challenges
regarding the definition of an ”abnormal behavior”, the sys-
tem architecture on which one can rely to ensure the safe
operations of the system, the monitoring of the system at
runtime, and the identification of mitigation strategies. This
can be due to the usually wider range of possible inputs, the
difficulties to adopt classical strategies, and the ML specific
vulnerabilities.

The success of AI/ML technology over recent decades has
been significantly attributable to the utilization of accuracy-
based performance measurements. By assessing task perfor-
mance based on quantitative accuracy or loss, the process
of training AI models becomes one that can be optimized.
Conversely, predictive accuracy is frequently employed to
demonstrate the superiority of an AI/ML product in compar-
ison to other approaches. However, with the recent prolifera-
tion of AI/ML, the limitations of an accuracy-only measure-
ment have become apparent with regard to a number of reli-
ability characteristics, such as robustness. The objective of a
trustworthiness assessment is to analyze and characterize the
trust expectations associated with the specific objectives in
question (Mattioli, Sohier et al. 2024). In conjunction with
the Operational Design Domain (ODD) analysis process, it
contributes to the definition of the system’s observable and
measurable conditions and properties.

Trustworthiness Characteristics
While most active academic research on trustworthy ML has
focused on the algorithm properties, its systemic analysis
has received very little attention (Mattioli, Le Roux et al.
2023). Trustworthiness characteristics need to be mapped
onto the AI processes and lifecycle, while keeping track of
how they are related to the different stakeholders. Typically,
it is determined by the quantification of elementary scores on



Figure 1: The unified approach to support trustworthy AI assessment

the ML component, e.g. for reliability: Fleiss Kappa score,
goodness-of-fit tests, or for accuracy: precision, recall, F-
score, etc.. However, as a system property, such trustwor-
thy concept results from a combination of factors and de-
pends on the context of application. This implies that the rel-
ative importance of each attribute can fluctuate depending on
the circumstances wherein such system is operating (Braun-
schweig, Gelin, and Terrier 2022).

Trustworthiness at system level and at model level induces
robustness, effectiveness and dependability. They relate to
the ability to verify that the AI-based component is valid, ef-
fective and has robust intrinsic properties such as accuracy,
safety and security. In complex, dynamic and uncertain real-
world environments, AI systems should be particularly ro-
bust to change. Under all circumstances, AI-based solutions
should not harm humans. The autonomy should always be
under the control of the user. It is imperative that humans re-
tain the right to grant or revoke AI systems’ decision-making
authority at any given moment. In particular, AI-based sys-
tems should not cease functioning at inappropriate times, for
example when a lack of output could lead to safety and cy-
ber security risks. Furthermore, they should be accessible
and intuitive for users with diverse backgrounds.

Trustworthiness Assessment Unified Approach
To assess AI trustworthiness, the choice of the relevant at-
tributes is not easy, since the selection pertains to the con-
text of application, which is modeled according to several
elements (ODD, intended domain of use, nature and roles
of the stakeholders...) (Adedjouma, Adam et al. 2022). The
attributes can be quantitative (typically numerical values ei-
ther derived from a measure or providing a comprehensive
and statistical overview of a phenomenon) or qualitative
(based on the detailed analysis and interpretation of a limited

number of samples). Then once the list of relevant attributes
has been defined, the aggregation of several attributes re-
mains complex due to commensurability issues: indeed, this
is equivalent with combining ”oranges and apples” (different
benefits for the different stakeholders, different discretiza-
tion of these benefits, different units, etc). In addition, one
aims at making trade-offs and arbitration between the at-
tributes. This means that the value of each attribute should
be transformed into a scale common to all attributes and rep-
resenting stakeholder preferences, and that the values of the
scales for the different criteria should be aggregated.

Multi-criteria Decision Aiding (MCDA) is a scientific
field that studies evaluation of a finite number of alternatives
based on multiple criteria/attributes through aggregation op-
erators which are mathematical objects that have the func-
tion of reducing a set of numbers into a unique representative
(or meaningful) number used to compare, evaluate, and rank
solutions. The difficulty behind MCDA problem solving is
to elicit the expert’s know-how. First of all which family of
decision models is the best suited to the expert’s knowledge?
Then, what type of information is needed to determine the
parameters of the chosen family of decision models? Most
available tools solving MCDA problems, such as ELEC-
TRE (Hashemi, Hajiagha et al. 2016) or MACBETH (Bana e
Costa, De Corte, and Vansnick 2016), are based on a spe-
cific and restrictive model most often the weighted sum. For
the weighted sum, the expert shall compare the importance
of criteria. The relevance of the model in the context of the
application is never checked out, and the expert may even
not be aware of what the restriction on the model may im-
ply for him/her. Consequently, the use of weighted sum may
be misleading. To overcome such issue, the Confiance.ai ap-
proach (Mattioli, Sohier et al. 2023) is a variation of MCDA,
based on the following steps (fig.1).



Step 1: Defining Trustworthiness Attributes: Based on
different sources (standards, scientific communications, in-
dustrial and institutional reports...), the characterization and
evaluation of trust focus on defining and structuring the at-
tributes that constitute trust (Pons and Ozkaya 2019), going
beyond a risk analysis as proposed in (Piorkowski, Hind, and
Richards 2022). Definitions (what does the trustworthiness
characteristics stand for?) adopted in Confiance.ai, motiva-
tions (why is the requirement relevant for trustworthiness?)
and a short glimpse at assessment methods (how can we as-
sess the level of satisfaction of the requirement?) are given
for each of these trustworthy characteristics in their respec-
tive sections (Mattioli, Sohier et al. 2024). These various
characteristics are categorized in terms of the artifact they
describe: dataset or data item, ODD, ML model, AI-based
system, etc.

Step 2: Structuring Attributes in a Semantic Tree: Sub-
sequently, the issue of evaluating trustworthiness is broken
down into a series of discrete sub-problems through the in-
troduction of a hierarchical framework comprising a sub-
stantial number of specific criteria. The objective of this
structuring phase is to construct a tree representing a hierar-
chy of points of view, with the root representing the overall
evaluation and the leaves representing atomic attributes with
one or more evaluable KPIs. In order to construct such a hi-
erarchy, it is necessary to group the criteria according to a
classification system that is meaningful to the stakeholders.
Upon completion of this phase, the relevant criteria, along
with their hierarchical organization, should be obtained.

Step 3: Adapting Attributes for Commensurability: A
numerical evaluation is returned for all atomic attributes.
Depending on the use case, specific key performance in-
dicators (KPIs), metrics or evaluation methods are used to
qualify the leaves of the tree. For example, data quality is
a issue that has been studied for a couple of decades now
(Mattioli, Robic, and Jesson 2022), but the focus was pri-
marily on data in operational databases and data warehouses.
Now, ML is generating renewed interest in data quality, but
there is still limited consensus on what constitutes data qual-
ity characteristics. (Wang and Strong 1996) were among the
first to argue that limiting quality to the level of accuracy is
not enough, emphasizing that the level of quality for given
data may depend on its purpose. Standards for the definition
of data quality attributes for ML are currently being devel-
oped: ISO/IEC CD 5259-1 (terminology and principles) and
ISO/IEC CD 5259-2 (data quality measures).

Then, as the KPIs are given in various units and can also
be qualitative, they need to be normalized into a satisfaction
scale [0, 1] through a transformation canned criterion. That
is, you must be able to compare each numerical score of one
attribute with each numerical score of another attribute. To
make the evaluation ”comparable”, sound methods of nor-
malization (making comparisons between variables compa-
rable) must be applied to individual variables to first make
them comparable, that is, to transform different scales of
variables into a single scale. The numerical evaluation of the
attributes is therefore coded in the interval [0, 1], where the
value 0 corresponds to the total absence of the property un-

der a reliability criterion and the value 1 corresponds to the
complete fulfillment of the criterion.

Step 4: Assessing AI Trustworthiness: In order to make
an overall assessment of AI trustworthiness, we need to
build an aggregation function of the KPIs associated to the
various attributes. In general, the most commonly used ag-
gregating function is the weighted arithmetic means, but this
assumes that the criteria are independent of each other. Since
the criteria often interact (e.g. accuracy vs. robustness), this
is a major limitation. So, we need to use a different type of
aggregation function based on specific formulas (e.g. min/-
max, Choquet integral(Grabisch and Labreuche 2010)...) to
aggregate the normalized indicators. If one attribute is more
”important” than another in terms of stakeholder preference,
the former will be weighted more heavily than the latter in
the aggregation procedure. Conflicting criteria have also to
be handled by emphasizing the most important criteria while
considering the overall impact of all criteria. This aggregat-
ing approach developed in this paper is based on Tropical
Algebra to provide a balanced multi-attribute aggregator.

Genesis of the RUM Methodology: From ML
Model to AI-Component Robustness

Evaluation
In accordance with the ethical guidelines for trustworthy AI
set forth by the EU, robustness represents a fundamental cri-
terion for the development of reliable AI systems (ALTAI
2019). The IEEE defines the notion of robustness as ”the de-
gree to which a system or component can function correctly
in the presence of invalid input or stressful environmental
conditions”. The majority of existing research on robustness
in AI systems has concentrated on adversarial robustness,
that is to say, the capacity to withstand adversarial attacks.
However, research into non-adversarial robustness, defined
as ’the ability to preserve model performance under natu-
rally induced corruptions or alterations’ in model inputs, has
also attracted attention. In addition, erroneous outputs may
result from deficiencies in algorithmic robustness, defined as
the capacity of a machine learning algorithm to preserve its
performance under all circumstances, including unexpected
inputs, external interference, and harsh environmental con-
ditions. In order to create trustworthy AI systems, robust-
ness plays a crucial role. It refers to ”the ability of a sys-
tem to continue to behave as it intends to behave, and to
avoid causing harm, even under difficult or unexpected con-
ditions”. A trustable AI model is resistant to human input
errors, malicious attacks, unspecified model objectives, in-
adequate model training, and non-linearities manifestations.
Consequently, assessing robustness is particularly important
for high-risk systems before they are made available for
users to access. Particularly in cases where lives are at stake,
such as in aeronautics, automotive and health care indus-
tries, where incorrect decisions made by systems can pose
a significant threat to human life. In these cases, it is vital
that systems are designed and implemented to withstand in-
put disturbances. So a global robustness KPI to assess ML
model robustness should not only take into account various



robustness attributes combined with uncertainty quantifica-
tion and monitoring measures.

Robustness Attributes
The robustness property of an AI-based system relates to
the question whether or not the system can be trusted to do
well its intended purpose on the envisioned ODD. Mainly
this characteristic ensures that the system will keep its per-
formance properties (as accuracy and functional suitability).
The ODD is key when defining the robustness of an AI sys-
tem since the latter requires the definition of the AI system’s
function as well as the environment in which it will operate.

Figure 2: Interrelation between RUM elements

As an additional element to the robustness assessment
framework, uncertainty is aimed at incorporating the con-
sequences of unobserved, misunderstood, or elusive factors
within a modeling scope. Understanding uncertainty is vi-
tal for making informed decisions, when deploying mod-
els in real-world applications. Applied to an AI/ML system,
it primarily aims to express the consequence of uncertain-
ties coming from different sources (noise measurement, ir-
reducible task variability, lack of observation, modeling con-
straint, among others) on the AI system’s output (for a mod-
eling scope link our AI system). It contributes to robust-
ness properties. Several different mathematical tools and ap-
proaches, coming from statistics and probabilities domains,
could be used to produce uncertainty assessment such as
Bayesian methods, dropout during training, ensemble meth-
ods, and probabilistic models. In a nutshell, uncertainty as-
sessment aims to address and/or contribute to: (1) Model-
ing with uncertainty: Formalize the problem into a decision
under uncertainty; (2) Express model risk: Express the un-
certainty link to the system’s decision/prediction by using a
model able to produce uncertainty quantification by design
or with overlays (model agnostic); (3) Model-Monitoring:
by providing insight (as Out of distribution score) that qual-
ifies the irrelevance of the model in answering a query (that
may be due to lack of observations); (4) Model-based Data-
Monitoring: by finely characterizing the abnormality of an
observation by considering uncertainty (as for example task
irreducible uncertainty); (5) Model Risk Aversion Assess-
ment: Evaluate (and/or calibrate) the error risk more finely
by going beyond the assessment of the average error thanks

to a modeling with uncertainty.
Finally, monitoring is fundamental to handle uncertainty

and failure mitigation since models can degrade over time
due to changes in the environment, data, or underlying as-
sumptions. Thus, monitoring ensures early detection of such
issues, enabling timely intervention and model maintenance.
It involves continuous tracking and evaluation of a ML
model’s performance and behavior over time. It helps iden-
tify potential issues, drifts in data distribution, or changes
in model effectiveness. Performance metrics tracking, con-
cept drift detection, anomaly detection, and model explain-
ability methods could be used for ML monitoring. In sum-
mary, the following questions arise for a global assessment
of the robustness of the ML model: (1) Robustness: How
resilient is the model’s performance when faced with differ-
ent conditions or perturbations in the input data? (2) Uncer-
tainty Quantification: How well does the model know what
it doesn’t know? (3) Monitoring: Is the model behaving as
expected? Is its performance consistent with the intended
objectives?

As monitoring (M), uncertainty quantification (UQ), and
robustness(R) are interconnected concepts in ML, Confi-
ance.ai proposes the ”RUM methodology” that aims at pro-
viding means to assess AI component robustness beyond the
robustness of the ML model. The following principles un-
derpin the methodology: a joint monitoring of robustness at-
tributes and uncertainty quantities; the robustness joint as-
sessment of monitored observables and uncertainty quan-
tities; and the uncertainty joint quantification of monitored
observables and robustness attributes.

The RUM Methodology
The RUM methodology arises from the need to consider
at a technical level, the interrelation between Robustness,
Uncertainty Quantification and Monitoring. This relation-
ship should be apprehended as displayed intuitively in fig. 2
as three 3D loops topologically linked where any two such
loops are linked by a third one.

Robustness, Uncertainty and Monitoring methods can
only successfully address their different challenges by work-
ing together. At a technical level, the RUM methodology
provides means to articulate and characterize different ODD
zones to better detect possible failure modes, assess possi-
ble trade-offs or overall system-level compensations. This is
not possible if robustness, uncertainty quantification or mon-
itoring are considered independently. Ensuring a model’s ro-
bustness during development, quantifying uncertainties dur-
ing inference, and monitoring its performance in production
are continuous processes. A first architecture of this process
is presented in fig. 3.

In this process, the displayed green rectangle articulates
the difference between evaluating RUM of the resulting AI
component and evaluating the quality of the Robustification
protocol itself, the UQ module itself, and the monitoring
system itself. Consequently, the action of Robustness on the
RUM methodology implies evaluating both the robustness
improvement and the evaluation of the UQ module - rather
than only the central ML model, as well as the evaluation of



Figure 3: The RUM-process View

the monitoring system.
A holistic approach that integrates robustness, uncertainty

quantification, and monitoring is essential for building re-
silient and trustworthy machine learning systems, particu-
larly in applications where accuracy, reliability, and inter-
pretability are critical. The principle of RUM is the integral
consideration of these 3 axes and the means to deploy it will
depend on the specific constraints and characteristics of the
AI component and context of operation. Specific trade-offs
and aggregations stem from the consideration of the RUM
method; these trade-offs are then RUM attributes per se.

A Focus on “Robustness Protocol Evaluation”
Various methods can be applied to evaluate the robustness
of an AI/ML-system:
• Evasion attacks (Croce and Hein 2020) such as FGSM

attack (Fast-Gradient Sign Method) or PGD attack (Pro-
jected Gradient Descent), which consist in perturbing the
model inputs by including well calculated noises.

• Patch attacks (Brown et al. 2017) which can be printed
and positioned in the physical world on an object or in
the environment.

• Environmental perturbations: distortions of the inputs
which mimic real-world changes occurring on the opera-
tional domain (various noises, blur, rain ...)

Confiance.ai’s robustness assessment consists on the
workflow in Fig. 4, based on:
• Robustness Evaluation Protocols: These transform the

theoretical evaluation concept into an algorithmic proto-
col. For instance, crafting adversarial attacks over the test
sets realizes the idea of worst-case In-Distribution analy-
sis while Monte-Carlo sampling is used to estimate a the-
oretically continuous region around a sample to be certi-
fied. It usually serves as a design guide to craft defense
approaches.

• Robustification Methods: These are tightly bounded
with the evaluation protocols from which they were
crafted, and their goal is to improve that protocol’s met-
rics. For instance, adversarial training is crafted to im-
prove a model’s performance in the context of worst-case
evaluation (i.e. adversarial attacks).

• Protocol Analysis: In addition to the answering of vari-
ous questions, protocols are themselves implementations
of theoretical methods and must be subject to a valida-
tion/certification process. For example, it is assumed that
the worst-case evaluation is performed with the strongest
available adversarial attacks within a predefined cyberse-
curity breach context. Thus, an overestimation of robust
accuracy will be generated due to a poor quality proto-
col rather than a poor defence mechanism if the proto-
col only uses weak adversarial attacks against a well-
defended model.

• Defense Analysis: This goes beyond metric improve-
ment. The process is closely related to protocol analy-
sis. For example, it is a fact that too strong adversar-
ial training overfits and poorly generalises to adversarial
threats not seen when being trained. As a consequence,
the worst-case analysis protocol needs to be enriched to
account for such a strength-generalisation trade-off.

Other works have focused on attacking the AI-system
through attacking the UQ module. We can cite (Ledda, An-
gioni et al. 2023) who focused on a specific adversarial sce-
nario in which the attacker is interested in manipulating the
uncertainty estimate, regardless of the correctness of the pre-
diction. Its aim is to undercut the use of UQ techniques for
ML models when their results are consumed by a down-
stream module or by a human. Moreover, ML Watermark-
ing (Kapusta, Mattioli et al. 2024) consist in perturbing the
model’s behavior by a set of legitimate back-doors in order
to enable model identification.

A First Global Assessment Model
The assessment process commences with the identification
of the desired outcomes and the resulting effects, with a
particular focus on the robustness of the ML-based system.
Subsequently, the functions to be performed and the asso-
ciated operational requirements are determined. In our con-
text, RUM criteria represent robustness requirement. In or-
der to achieve this objective, we propose the use of Trop-
ical Algebra, which allows us to leverage the mathematical
properties in order to aggregate a variety of KPIs. To demon-
strate this, we will concentrate on the issue of robustness in



Figure 4: Retroactive action of RUM on Robustness Enhanced Analysis

accordance with the RUM methodology. It is customary to
express the function µ in a decomposed manner, namely as
µ(x) = F (µ1(x1), ..., µn(xn)) for all i ∈ X , we have that
xn is a member of the set of values for which we have the
function value of the form: The function Xi → [0, 1] may
be defined as a utility function, which is also referred to as
a specific normalized KPI function. The aggregation func-
tion, F , is a function that takes as input a vector of values in
the interval [0, 1]n and outputs a value in the interval [0, 1],
which is based on Tropical Algebra.

Tropical Algebra Brief Introduction
”Tropical Algebra” is a relatively new mathematics
field (Gaubert and Max-Plus 1997). Tropical Algebra is
based on (max,+)-algebra and (min,+)-algebra.

In (max,+)-algebra, the addition is replaced by max-
imum: a ⊕ b = max(a, b), and the multiplication is re-
placed by addition: a ⊗ b = a+ b. Two null elements are
defined: 0⊕ = −∞ for ⊕, while 0⊗ = 0 for ⊗. Similarly,
in (min,+)-algebra the tropical sum of two numbers re-
turns the minimum among the two numbers while the trop-
ical product of two numbers returns the sum of those two
numbers: a⊕ b=min(a, b), and a⊗ b=a+b.

The tropical operation ⊕ and ⊗ are associative and com-
mutative, and multiplication is left and right distributive
over addition. This algebraic structure differs from classi-
cal structures, like fields, in that addition is idempotent:
a ⊕ a = a,∀a. As with conventional algebra, it is possible
to extend the (max,+) (resp. (min,+)) algebra to analyze
matrices. Indeed, given two matrices A and B with the same
dimensions, then: A⊕ B=C, where Cij =Aij ⊕ Bij . If A
and B are conformable for multiplication, then A⊗ B=C,
where (A ⊗ B)ij =maxk(aik + bkj), (resp. (A ⊗ B)ij =
mink(aik+bkj)). A complete detailed description and anal-
ysis of the mathematics behind such algebra also call ”Trop-
ical Algebra” can be found in (Cuninghame-Green 2012;
Olsder, Quadrat et al. 1992), a review of the basic concepts
in (Gaubert and Max-Plus 1997).

The Tropical Algebra formalism is particularly well suited
to multi-attribute aggregation. Concretely, Tropical Algebra:
1. Is adept at handling non-linear aggregation, which is

often required in trustworthiness assessment where at-
tributes may not combine linearly.

2. Provides flexibility in modeling complex relationships
between trustworthiness attributes, allowing for more ac-
curate modeling of their respective assessment.

3. The operations are computationally efficient, making it
suitable for large-scale problems.

4. Can handle a large number of attributes without signifi-
cant loss of performance.

5. Is robust against variations in KPIs, ensuring stable as-
sessment even under uncertainty.

6. Maintains consistency in aggregation, which is crucial
for reliable assessment.

Accordingly, the Tropical Algebra structure (S,⊕,⊗) is an
idempotent semi-ring (a.k.a dioid (Gondran and Minoux
2008)) with S denoting a set of elements of the concerned
trustworthiness dimension. Such aggregation operators sat-
isfy the following axioms: identity when unary, bound-
ary conditions, non decreasing. Besides these basic proper-
ties such operators are interesting because they are mono-
tone, symmetric, associative, idempotent (Labreuche 2016).
Then aggregate trustworthiness KPIs using Tropical Alge-
bra specifies a global robustness score µR to combine the
normalized metrics.

For example, if we have three normalized robustness KPIs
µRi

with i = 1, 2, 3, the global robustness score can be com-
puted as: µR = µR1

⊕µR2
⊕µR3

. Alternatively, we can use
a weighted sum approach: µR = ω1 ⊗ µR1

⊕ ω2 ⊗ µR2
⊕

ω3⊗µR3 where ω1, ω2, ω3 are weights assigned to each met-
ric based on their importance. The resulting µR will give
a single value that represents the overall robustness of the
model. A higher µR indicates better robustness. Concretely,
the (max,+) algebra is often used for systems where syn-
chronization and timing are crucial, such as train scheduling.
Consider a simple example with 3 trains on a single track,
where each train needs to wait for the track to be free before
proceeding. We denote the times at which each train departs
as T1, T2 and T3. The initial departure times are t1,t2,and t3
respectively, and each train might experience a certain delay.
Let’s assume that the train 1 departs at t1 with no delay. The
train 2 departs at t2 but can only leave after the train 1 plus a
delay d12. Finally, the train 3 departs at t3 but can only leave
after the train 2 plus a delay d23. We can then express the
dependencies using (max,+) algebra as follows: T1 = t1;
T2 = max(t2, T1 + d12); T3 = max(t3, T2 + d23).

Moreover, in the context of safety-critical systems, it is
important to evaluate robustness with respect to a range of
attacks rather than just against one. This is why we propose
to illustrate using a toy case that employs the (min,+) al-
gebra, corresponding to a worst-case aggregation.

Toy Use-Case: MNIST
To illustrate the use of Tropical Algebra in the context of
aggregation of metrics, we trained a toy-model for image
classification on the MNIST dataset (Deng 2012). Our aim
was to answer the following question: given a list of var-



Figure 5: Various perturbations on a single image of the MNIST dataset

ious robustness attributes and prescribed multiple test sce-
narios, which attribute should be improved in priority for
the model? To answer it, we first gathered all the existing
robustness metrics of our use-case, then associated to them
a number of scenarios prescribed by a choice of weights and
make a majority vote to determine which is the leading met-
ric determined by the (min,+) calculus for each scenario.

Firstly, we evaluated it’s clean accuracy, then we evalu-
ated the model’s accuracy when presented with various at-
tacks and perturbations. Namely, we used a FGSM attack
(Goodfellow, Shlens, and Szegedy 2014) (with ε = 0.1) to
generate the first attack. For the second attack, we used PGD
(with ε = 0.1). For the third perturbation, we used a Gaus-
sian blur (with σ = 3) and the last one is based on a patch
attack (see fig. 5). We obtained the following results:

No FGSM PGD Patch Environmental
attack attack attack attack Perturbation
0.99 0.77 0.44 0.94 0.96

Table 1: Model accuracy (as a probability between 0 and 1)
w.r.t. various attacks on MNIST.

The process of selecting weights and thus indicating pref-
erences is a complex one. Therefore, when utilizing weights
to represent the relative importance of the objectives, trans-
forming the functions so that they all have similar magni-
tudes and do not naturally dominate the aggregate objective
function can assist in accurately setting the weights to reflect
preferences. A sensitivity analysis can be employed to com-
pute such weighting parameters based on the ODD, where
the relative importance of RUM criteria in the (min,+) ag-
gregator is represented by the vector (ω1, ω2, ω3, ω4, ω5).
The coefficient ωi is a measure of the importance of crite-
rion i. In order to construct such an operator, it is possible to
utilize the two standard levels of 0 and 1. In this context, a
value of 0 (respectively, 1) indicates that criterion i has not
been met (respectively, has been met in a completely satis-
factory manner). The importance of criterion i, denoted by
ωi, is then defined as the added value on the overall score
going from the lower level 0 to the upper level 1 on criterion
i, with the value on the other criteria being fixed. In order
to illustrate the concept, three distinct operational scenarios
can be conceived, each emphasizing a particular robustness
attribute:
1. Scenario 1: Worst-Case In-Distribution Robustness. In

this scenario, we would focus on the model’s ro-
bustness against the strongest possible adversarial at-

tacks within the distribution (here PGD). Therefore,
we could assign the following weights to our metrics:
(ω1, ω2, ω3, ω4, ω5) = (0.0, 0.0,−0.1, 0.0, 0.0);

2. Scenario 2: Average-Case Out-of-Distribution Robust-
ness. This scenario targets the model’s robustness to
average-case out-of-distribution (OOD) perturbations.
The assigned weights for this scenario could be:
(ω1, ω2, ω3, ω4, ω5) = (0.0, 0.0, 0.0, 0.0,−0.25).

3. Scenario 3: Worst-Case in-ODD Robustness for de-
ployment. In this final scenario, we concentrate on
the model’s robustness in the face of the worst-case
in-ODD conditions in deployment. In this particu-
lar scenario, we could choose the following weights:
(ω1, ω2, ω3, ω4, ω5) = (0.0, 0.0, 0.0,−0.2, 0.0);

We would thus obtain three different aggregators of the
robustness, one for each scenarios:
1. Scenario 1: µR = min(0.99 − 0.0, 0.77 − 0.0, 0.44 −

0.1, 0.94− 0.0, 0.96− 0.0) = 0.34;
2. Scenario 2: µR = min(0.99 − 0.0, 0.77 − 0.0, 0.44 −

0.0, 0.94− 0.0, 0.96− 0.25) = 0.44.
3. Scenario 3: µR = min(0.99 − 0.0, 0.77 − 0.0, 0.44 −

0.0, 0.94− 0.2, 0.96− 0.0) = 0.44.
Here, the majority vote on the aggregation’s operator is

obvious: - for this toy-case - the PGD attribute is the leading
attribute that causes the lack of robustness. This information
should be use by the AI scientist to refine the ML design in
order to increase the robustness of the model.

Conclusion and Perspectives
This paper presents the method employed by Confiance.ai
to address the issue of trustworthiness assessment. The con-
cept of trustworthiness is inherently complex, encompass-
ing subjective perceptions, a diverse range of granular at-
tributes, and a lack of comparability between different at-
tributes. The methodology entails defining the various at-
tributes that comprise trustworthiness, investigating each at-
tribute to ascertain pertinent KPIs or evaluation techniques,
and formulating an aggregation methodology based on an
MCDA approach. The RUM methodology, as applied to
machine learning, exemplifies our approach to the global
assessment of robustness, utilising an aggregation operator
based on Tropical Algebra.

By defining a hierarchical aggregation operator µ, this
approach can then be generalized to all the trust at-



tributes (Mattioli, Sohier et al. 2024):

µ =
⊕
j

ωj ⊗

(⊕
i

ωi,j ⊗ µi,j

)

where j represents the 6 macro-attributes: robustness, effec-
tiveness, dependability, usability, human agency and human
oversight; and i their respective atomic attribute KPIs. Spec-
ification of the weights ωi,j depends on the ODD which cap-
tures the applicative importance and dependency between
each attributes. Future work aims at creating a methodologi-
cal framework for reliability assessment that takes advantage
of expert knowledge (e.g. in defining thresholds), modelling
the application environment (e.g. the influence of the opera-
tional design domain on attribute selection), and ease of use
in an engineering process (each atomic attribute is associ-
ated with a method or metric), covering other AI paradigms
to go beyond ML.
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