N
N

N

HAL

open science

Inferred Fault Models for RISC-V and Arm: A

Comparative Study
Ihab Alshaer, Ahmed Al-Kaf, Valentin Egloff, Vincent Beroulle

» To cite this version:

Thab Alshaer, Ahmed Al-Kaf, Valentin Egloff, Vincent Beroulle. Inferred Fault Models for RISC-V
and Arm: A Comparative Study. 37th IEEE International Symposium on Defect and Fault Tolerance

in VLSI and Nanotechnology Systems, Oct 2024, Oxfordshire, United Kingdom. hal-04726690

HAL Id: hal-04726690
https://hal.science/hal-04726690v1
Submitted on 8 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04726690v1
https://hal.archives-ouvertes.fr

Inferred Fault Models for RISC-V and Arm:
A Comparative Study

Ihab Alshaer*, Ahmed Al-kaf*,Valentin Egloff*, Vincent Beroulle*
*Univ. Grenoble Alpes, Grenoble INP, LCIS, 26000 Valence, France

Abstract—With the widespread adoption of embedded systems,
security issues became a major concern. In particular, such
systems are vulnerable to various kinds of physical attacks, and
fault injection is one of the main physical attacks. Designers
and developers require fault models to predict the effects of the
fault injection, so that they can analyze possible vulnerabilities
and develop countermeasures against such attacks. Thus, un-
derstanding the effects of fault injection is essential to provide
realistic fault models. Moreover, many of the systems currently in
use or planned for future deployment incorporate either Arm or
RISC-V processors. In this paper, voltage glitch campaigns have
been carried out on two microcontrollers that are widely used
in the embedded system market. One embeds a RISC-V core,
where the other embeds an Arm Cortex-M4 core. As a result, we
provide comprehensive analysis for the obtained faulty behaviors
using a set of inferred fault models. We show that the presented
fault models are able to explain more than 99% of the observed
faulty behaviors. We also show that some of these models are
applicable to both cores. Furthermore, we illustrate that some
of the presented models are also comparable to state-of-the-art
models that are proposed as a result of clock glitch campaigns.
The presented fault models enable better understating of the
fault injection effects, and thus, easing the process of analyzing
vulnerabilities, and developing cost-effective countermeasures
against fault attacks.

Index Terms—fault injection attack, RISC-V, Arm Cortex-M,
fault model

I. INTRODUCTION

The widespread use of embedded systems open the doors
to various considerations that focus on performance, cost,
complexity, and most importantly, security. Such systems are
under questions when it comes to their immunity to physical
attacks, with fault injection attacks being among the most
significant.

In the context of hardware security, fault injection can be
defined as a powerful active physical attack, where the attacker
tries to perturb the normal behavior of a system by introducing
faults. The potential faulty outcome is then examined for
a possible vulnerability to be exploited. There are different
techniques to perform the injection. The most known ones
are: applying perturbations to the clock signal, which is known
as clock glitch [1], applying variations to the power supply,
which is known as voltage glitch [2], and exposing the device
to electromagnetic (EM) pulses [3] or to laser beams [4].

For the sake of protecting embedded systems against fault
attacks, a comprehensive understanding of the fault effect is
required to provide fault models. Fault models are abstract
representations of the physical fault effects. These models

979-8-3503-6688-4/24/$31.00 ©2024 European Union

provide description for the effects of the faults at different
levels of system abstraction. Hardware designers and soft-
ware developers need such fault models, so that, they can
predict the possible effects by applying these fault models.
Thus, they will be able to identify possible vulnerabilities in
software codes and hardware designs. Consequently, they will
be be able to develop/design the most suitable countermea-
sures. Nevertheless, having inaccurate fault models would lead
to proposing either excessive protections, which affects the
cost/performance ratio, or insufficient countermeasures, which
means potential vulnerabilities are still exploitable.

A. Related works

Numerous studies [2]-[9] have focused on analyzing the
effects of fault injection at the instruction set architecture
(ISA) level, leading to the proposal of various fault models.
For example, instruction skip. [4], [6], [8], [9], instruction
replay [4], [6], instruction corruption [2], [3], [7], [9], and
register corruption [2], [5], [7]. These models appear to be
quite generic, lacking precision in accurately portraying the
actual consequences of fault injection. The term “corruption”
lacks clarity in describing the fault’s impact. Thus, there will
be a difficulty in identifying vulnerabilities solely based on this
information. As a result, this may lead to developing over- or
under-protections.

In [1], [10], the authors provided a comprehensive anal-
ysis and rationale for the experimental findings, resulting
from clock glitch fault injection campaigns on 32-bit micro-
controllers embedding Arm Cortex-M3 and Arm Cortex-M4
cores. They demonstrated how the alignment of instructions in
memory can influence the resulting faulty behaviors. Building
on this insight, they introduced two fault models at the
instruction encoding level: Skip specific number of bits and
Skip and repeat specific number of bits. This number of bits
is related to the flash memory access size or a cache line
size, such as 32 bits or 64 bits. Additionally, they proposed
another fault model, called Partial update [11], where some
bits, while the data are propagated from memory to pipeline
stages, will be updated correctly, and others will be updated in
a faulty way. This faulty part received its update either from the
previous value or from a precharge value. These fault models
allowed explaining a large set of the observed faulty behaviors
at ISA level. Nevertheless, the authors were not sure if such
fault models would be applicable on different microcontrollers,
or when employing an injection technique that is different from
clock glitch. Table I summarizes the related works.



TABLE I
SUMMARY OF RELATED WORKS ON FAULT INJECTION EFFECT
CHARACTERIZATION AND MODELING.

Reference Injection type Target Fault model
[2] voltage ARMvV7-A instruction corruption
[3] EM Arm Cortex-M3 instruction replacement
[5] EM Arm Cortex-M4 register, XPSR corruption,
opcode or operand substitution
[6] EM Arm Cortex-A9 register corruption,
operand substitution,
control-flow corruption
[7] EM Arm Cortex-A53, register corruption,
Intel i3-6100T instruction corruption
[4] laser Arm Cortex-MO+ instructions skip,
skip and replay
[8] laser Arm Cortex-M4 multi-instruction skip
[9] EM RISC-V E31 instruction corruption,
instruction skip
Arm Cortex-M3, Skip # of bits,
[1], [10], [11] clock Arm Cortex-M4 Skip and repeat # of bits,
Partial update
Skip # of bits,
RISC-V E31 Skip & repeat # of bits,
This work voltage Arm Cortex-M4 Non-sequential skip & repeat,

Partial update, Combination,
Skip with forwarding

B. Contributions

In this paper, we present a set of inferred fault models
that are able to describe and explain more than 99 % of the
obtained faulty behaviours from voltage glitch fault injection
campaigns on two different 32-bit microcontrollers embedding
RISC-V and Arm Cortex-M4 processors. We show that some
of these models are applicable to both devices. This includes
Skip, Skip & repeat, and Partial update fault models, which
are proposed in the literature for clock glitch campaigns on
Arm targets. Furthermore, we illustrate new fault models that
are strongly related to specific features supported by the target
devices. This encompasses Skip with forwarding for RISC-V
target, and Non-sequential Skip & repeat For Arm Cortex-
M4 target. Other observed faulty behaviors required proposing
another fault model: Combination. More details in Section IV.

C. Outline

The rest of this paper is organized as follows: Section
Il presents the followed inference methodology to explain
the obtained results. Section III illustrates the experimental
setup, then the definitions of the inferred models and the
experimental results are reported and discussed in Section IV.
The paper is concluded along with perspectives in Section V.

II. FOLLOWED APPROACH

To derive fault models capable of describing the effects
of fault injection, we utilized a methodology akin to that of
previous works in [3], [11], [12]. The essence of our analysis
involves comparing the results of a comprehensive and tailored

set of programs executions, encompassing both simulations
and physical fault injections, across different levels of digital
system abstraction. In this study, we concentrate our analysis
on the instruction execution level and the encoding level.

Fig. 1 illustrates the followed approach for the sake of
inferring and confirming the use of fault models at encod-
ing and execution levels. Initially, at step 1, physical fault
injection campaigns are conducted on a target device running
a set of target programs, comprising assembly instructions.
Subsequently, in step 2, fault models are deduced from the
results of these physical fault injections. The inferred fault
models are then applied, as mutants to the encoding level, to
simulate the execution of the same target program utilized in
step 1 (step 3 in Fig. 1). The last step involves comparing the
outcomes of physical fault injection with those of software
executions to validate the inferred fault models, along with
the ability to explain the obtained faulty behaviors from the
physical fault injection (step 4 in Fig. 1). This comparison
is conducted based on the output values of the processor’s
general-purpose registers, each of which has a predetermined
initial value, allowing for the detection of any alterations as a
result of the fault injection.

Fault injection
parameters

¢ h
ault injection

campaigns

Assembly
instructions

Target
device

Inference

Instruction and encoding
levels fault models

———

Fig. 1. Followed approach for inferring and confirming fault models

III. EXPERIMENTAL SETUP

Physical fault injection experiments were conducted to
examine the effects of fault injection when targeting 32-bit
microcontrollers embedding different cores. The objective is
to establish reliable and realistic fault models for the observed
faulty behaviors for each core. This endeavor aims to enhance
the description of faulty behaviors at the ISA level, thereby
offering a more comprehensive understanding. Furthermore, it
is imperative to assess whether state-of-the-art fault models,
typically applied when targeting Arm-based microcontrollers
using clock glitch, remain applicable when targeting RISC-V
and Arm-based microcontrollers using voltage glitch.



The following subsections present the target devices we
have used, the target programs, and the fault injection tech-
nique we have employed.

A. Target devices

Two different 32-bit microcontrollers have been employed
as target devices. The first device is a SiFive 32-bit microcon-
troller (FE310-G002) that embeds an E31 RISC-V core. The
E31 core has a 5-stage pipeline: fetch, decode and register
fetch, execute, data memory access, and register writeback. It
has 32 general-purpose 32-bit registers, X0 to X31. E31 core
is based on RISC-V architecture and supports the RV32IMAC
instruction set. Therefore, it supports the standard Multiply
M), Atomic (A), and Compressed (C) RISC-V extensions.
Supporting the compressed extension makes RV32IMAC a
variable-length instruction set that offers two encoding lengths:
16 and 32 bits. The instruction has a 32-bit encoding if the
least significant two bits of a 32-bit word have Ob11 value.
Otherwise, the least significant 16 bits belong to a 16-bit
instruction [13]. Thanks to the observed faulty behaviors
in Section IV, it seems that E31 core supports operand
forwarding, which is used to resolve data hazards by bypassing
data from one pipeline stage to another without writing to and
reading from the register file.

This RISC-V device flash memory access size is 32 bits,
allowing for the simultaneous retrieval of either one 32-
bit instruction or two 16-bit instructions. Furthermore, since
the instruction set encoding is variable in length, it permits
fetching misaligned instructions in various configurations, as
elaborated in [1]. For instance, during a clock cycle, the first
half of a 32-bit instruction may be fetched, with the second
half retrieved in the subsequent clock cycle.

The second device is an STM32L4 microcontroller. It is a
32-bit microcontroller that embeds an Arm Cortex-M4 core.
Arm Cortex-M4 has a 3-stage pipeline: fetch, decode, and
execute. It has 13 general-purpose 32-bit registers, RO to R12.
Arm Cortex-M4 is based on ARMv7-M architecture and sup-
ports the Thumb?2 instruction set, consisting of variable-length
instructions: 16-bit and 32-bit instructions. The instruction has
a 32-bit encoding if the most significant five bits of a 32-bit
word have either 0b11101, 0b11110, or 0b11111 value.
Otherwise, the most significant 16 bits belong to a 16-bit
instruction. This Arm Cortex-M4 device supports cache lines
of 64 bits. Therefore, in this case, the flash memory access
size is 64-bit wide, allowing fetching misaligned instructions
in different configurations as detailed in [10].

B. Target programs

Listing 1 shows the RISC-V target program instructions
along with their encoding in hexadecimal format. All these
instructions are 32-bit instructions. Thus, a complete 32-bit
instruction will be fetched at a given clock cycle, and hence,
the code in this case is aligned.

Listing 2 presents the Arm Cortex-M4 target program
instructions along with their encoding in hexadecimal format.
These instructions are the same as the instructions used for

RISC-V, but clearly, they have different syntax and encoding
as the supported instruction set is Thumb2. Moreover, we
added a dummy 16-bit instruction at the beginning of the target
program: MOVS RO, RO, whose encoding is 0x0000. This
is done to make the code misaligned and to showcase that
the provided fault models in this work apply to the observed
faulty behaviors regardless of the alignment in memory.

1 ADDI x28, x28, 0x3b // 0x03belel3

2 ADDI x29, x29, -Oxc // 0xffd4e8e93

3 ADDI x7, x29, 0x27 // 0x027e8393

4 // 0x

5 XORI x6, x6, Oxf // 0x00£34313

6 ADDI x31, x31, Oxd // 0x00df8£93
Listing 1. RISC-V target program with its encoding in hex. format

1 MOVS RO, RO // 0x0000£103

2 ADD r3, r3, 0x3b // 0x033bfla4

3 SUB r4, r4, 0Oxc // 0x040cfl04

4 ADD r2, r4, 0x27 // 0x0227

5 // 0x f081

6 EOR rl, rl, Oxf // 0x010££106

7 ADD r6, r6, Oxd // 0x060d0000

Listing 2. Arm Cortex-M4 target program with its encoding in hex. format

These instructions serve as examples in this paper, as
the presented fault models hold regardless of the target in-
structions. Moreover, they are selected for different reasons.
First of all, any software application has arithmetic and log-
ical instructions. Additionally, they streamline the process of
characterizing the fault injection effects, allowing identifying
potential faulty behaviors. Thus, the tractability of a faulty
behavior and the applicability of a specific fault model are
all achievable with high probability. Upon completion of
the regular execution, each register holds a distinct value
compared to the others, thereby enhancing the detectability
of any faults that may occur.

During the experiments, the processors undergo a prede-
termined setup before each fault injection, achieved through
initialization instructions positioned ahead of the target in-
structions. Subsequently, following each execution, the data
stored in the general-purpose registers is transmitted to a
control computer via serial communication for analysis of the
outcomes.

C. Voltage glitch fault injection

Introducing variations to the power supply that feeds an
embedded system is an effective and low-cost fault injection
technique. This method provides acceptable controllability in
terms of timing accuracy. However, determining which part of
the system is affected by the injection can be challenging.

In this work, ChipWhisperer [14] environment has been
employed to perform the voltage glitch fault injection. In
this setup, the perturbation to the power supply (Vcc) is
performed by underpowering to ground while configuring
three parameters as shown in Fig. 2:



o Width: the period of time in which the variation on the
power supply is applied.

« Shift: the offset of the starting point of the glitch to the
rising edge of the targeted clock cycle.

o Delay: the duration between the rising edge of a trigger
signal and the rising edge of the targeted clock cycle.

trigger — «— shift

-

clk —

k— width

Vce '\/'

Fig. 2. Voltage glitch parameters

Table II shows the employed values for Shift and Width
parameters. The values are expressed as a percentage of one
clock period. The negative value for the shift means that
the glitch is injected before the rising edge of the targeted
clock cycle. Two different delay values are used for each
injection campaign. The delay values depend on the number
of initialization instructions before the target code and the start
of the trigger signal within the code. For each combination of
Shift, Width, and Delay, the experiments are repeated 20 times.
Thus, the number of executions for each injection campaign
is 20000 (= 10 widths * 50 shifts * 2 delays * 20 repetitions).

The Width values have been tuned to maximize the number
of faults, as it has been observed that the probability to observe
faults is much higher in this range. For Shift values, a wide
range has been employed to make sure that most of the
possible faults can be covered by the proposed models. Two
different delay values has been used to target different loca-
tions within the target program, also to ensure the applicability
of the proposed fault models. In summary, we wanted to ensure
that our proposed fault models can cover the obtained faulty
behaviours, regardless of the employed parameters. It should
be mentioned that, by tuning the parameters, it was possible
to maximize the observability of a specific faulty behavior, as
we were able to do so.

TABLE I
PARAMETERS SETUP FOR BOTH DEVICES

Parameter Values
Width [40,49]
Shift [-49,0]
repetitions 20
Total number of executions for each device 20000

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The outcome of a glitch injection in an execution leads to
one of the following classes:
« Silent: the execution outcome is equivalent to a normal
execution outcome without an injection.
o Crash: areset or a crash occurs as a result of the injection.
o Fault: the execution outcome is different from the normal
execution outcome.
The obtained classifications for both injection campaigns,
i.e., when targeting RISC-V device and Arm device are
presented in Table III.

TABLE III
PERCENTAGE OF SILENT, CRASH & FAULT OVER THE TWO CAMPAIGNS.

Target device

Class RISC-V  Arm Cortex-M4
Silent  96.71 % 92.405 %
Crash  0.005 % 0.925 %
Fault  3.285% 6.67 %

The following subsections present the inferred fault models
that allowed us to explain the observed faulty behaviours,
along with examples for observed experimental results. Ta-
ble IV shows the percentage of the observed faulty behaviors
concerning each fault model over all obtained faulty behaviors
for each target device. Other means that the observed faulty
behavior cannot be modeled by the presented fault models.
However, it is shown that Other only counts for less than 1 %.

TABLE IV
PERCENTAGE OF THE CLASSIFICATION OF THE OBSERVED FAULTS UNDER
THE INFERRED FAULT MODELS FOR EACH TARGET DEVICE.

Target device

Fault model RISC-V  Arm Cortex-M4

Skip 13.85 % 95.2%
Skip & repeat 36.23 % 0.075 %
Non-sequential skip & repeat 0% 0.45 %
Partial update 0.3 % 4.2 %
Skip with forwarding 1.98 % 0%
Combination 47.03 % 0%
Other 0.61 % 0.075 %

A. Skip n bits

A block of size n bits of instructions encoding data is
skipped and the execution resumes from the next block. This
n bits is related either to flash memory access size, cache line
size, or internal register size. If the code is aligned, then the
skipped block refers to complete instructions. However, the
skipped block corresponds to different possibilities when the
code is misaligned as explained in [10]. Skip 32 bits and Skip
64 bits are observed for Arm target device, while only Skip
32 bits is observed for RISC-V target.



For RISC-V campaign and referring to Listing 1, this model
led to a complete instruction skip, as the code is aligned and
each line corresponds to a complete 32-bit instruction. Con-
versely, this model led to different faulty behaviors depending
on the target lines in Listing 2.

For Arm target, an observed example of Skip 64 bits is
shown in Listing 3. In this example, the first two lines in
Listing 2 are skipped. As a result, the remaining half 0x040c
of 0xf1la4040c instruction is executed as a new 16-bit

instruction: LSLS r4, rl, 0x10.

1 |LSLS r4, rl, 0x10| // 0x040c

2 ADD r2, r4, 0x27 // 0x0227

3 // 0x £081
4 EOR rl, rl, Oxf // 0x010ff106
5 ADD r6, r6, Oxd // 0x060d40000

C. Non-sequential skip & repeat 32 bits

This model is only observed for the Arm target. Referring
to Listing 2, this model is defined as follow: 32 bits at line i+2
are skipped, while the 32 bits at line i are repeated. Such faulty
behavior may occur because of the supported cache lines. A
cache line of size 64 bits can be seen as two chunks of 32 bits.
Thus, each chunk may get its update separately from the other
one at a given clock cycle. Consequently, an occurred fault
prevents a chunk from being updated, resulting in repeating
32 bits and skipping another 32 bits.

An observed example of this is when skipping line 3 in
Listing 2, and repeating line 1. The resulting execution is
demonstrated in Listing 5. It is shown how the misalignment
has a significant impact in this case. Nevertheless, the fault
model works regardless of the alignment.

Listing 3. Observed execution as a result of skipping lines 1 and 2
(64 bits) in Listing 2

B. Skip & repeat n bits

A block of size n bits of instructions encoding data is
skipped and the previous block with the same size has been
repeated. As in the previous model, this n bits is related either
to flash memory access size, cache line size, or internal register
size. If the code is aligned, then the skipped and the repeated
blocks refer to complete instructions. Yet, they correspond to
different possibilities when the code is misaligned as in [10].

In this paper, Skip & repeat 64 bits is observed for Arm
target, while Skip & repeat 32 bits is observed for RISC-
V target. This is due to the flash memory access size as
mentioned earlier.

For RISC-V campaign and referring to Listing 1, this
model led to skipping a complete instruction and repeating
the previous instruction.

For Arm campaign, the observed execution depends on
the affected part of the code. An observed example is
when skipping the encoding at lines 3 and 4 in List-
ing 2, and repeating the encoding at lines 1 and 2. List-
ing 4 shows the resulting execution of this example. In
this example, SUB r0, r4,0x0(0xf1a40000) has been

executed instead of SUB r4, r4, Oxc(0xflad4040c).
Additionally, ADD r3, r3, 0x3b has been repeated
and ADD r2, r4, Ox2b has been skipped. Finally,
SUB r4, (Oxflad ) has been executed in-
stead of

1 MOVS RO, RO // 0x0000£103

2 ADD r3, r3, 0x3b // 0x033bfla4

3[SUB r0, r4,0x0] // 0x0000£103

4|ADD r3, r3, O0x3b| // 0x033bflad

s |SUB rd, | // ox £081

6 EOR rl, rl, Oxf // 0x010ff106

7 ADD r6, r6, Oxd // 0x060d0000

Listing 4. Observed execution as a result of skipping the encoding at
lines 3 and 4 (64 bits) and repeating the encoding at lines 1 and 2
(64 bits) in Listing 2

1 MOVS RO, RO // 0x0000£103
2 ADD r3, r3, 0x3b // 0x033bfla4
3|[SUB r0, r4, 0x0| // 0x0000£103
4 |ADD r2, r3, 0x27| // 0x0227

5 // 0x £081
6 EOR rl, rl, Oxf // 0x010££106
7 ADD r6, r6, Oxd // 0x060d0000

Listing 5. Observed execution as a result of skipping the encoding
at line 3 and repeating the encoding at line 1 in Listing 2

D. Partial update

While the instructions data are propagated through the
microcontroller from flash memory to the pipeline stages, the
injected glitch may affect some bits to be updated improbably
in internal registers. As a result, the faulty bits get their values
either from the previous value, the precharge value, or even
from the next value. Update from next is only observed for
RISC-V target, and in many cases, it is occurred over 16 bits,
especially when the code is misaligned. Section IV-F presents
an example for this model as a part of Combination on RISC-
V. For examples on Arm target, we refer the reader to [11].

E. Skip with forwarding

This model is only observed for RISC-V target device.
In this case, an instruction is skipped, however, its expected
resulting value is forwarded to be used in another instruction.
This can be explained as the instruction has finished its execute
pipeline-stage, and the value has been forwarded, however,
it has not been written back to the register file, thus, the
corresponding register keeps its previous value. In [12], the
authors noticed, using only RTL fault simulation on a RISC-V
core, that bit flips could lead to forwarding faults, leading in
certain scenarios, to break control flow integrity of programs.

An observed example for this model is when
ADDI x28, x28, O0x3b instruction at line 1 in Listing 1
has been skipped, but the correct value of x28 has been
forwarded to be used in . As a result, x6
had its golden value, however, x28 kept its initial value.



It has been noticed that a value can be forwarded from
an instruction at line i to dependent instructions at lines i+/,
i+2, or i+3, but not further. This can be explained as the value
can be forwarded, at max, from writeback pipeline-stage (5th
stage) to decode and register fetch stage (2nd stage).

F. Combination

In this case, the observed faulty behavior is modeled by
a combination of more than one fault model from the afore-
mentioned fault models. This Combination fault model has
been observed only for RISC-V target device. This might
be explained due to the higher number of pipeline stages (5
stages) compared to Arm device (3 stages).

An observed example of this behavior is depicted in List-
ing 6. In this example, Partial update from previous value has
occurred at line 3, so that x29 got the result of: x29+0x27,
instead of x7. However, due to forwarding, the correct value
of x7 has been correctly used for at line 4, but finally x7
kept its initial value. Furthermore, XORT has been skipped.

| ADDI x28, x28, 0x3b // 0x03belel3
2 ADDI x29, x29, -0xc // 0xffd4e8e93
3 [ADDI x29, x29, 0x27]| // 0x027e8e93

4 |27 // 0x

5 XORF—cb7—x65—0F

6 ADDI x31, x31, Oxd // 0x00df8£f93

Listing 6. Observed execution example on RISC-V target for
Combination fault model (Partial update, forwarding, Skip)

It might be noticed that predicting faulty behaviors, based
on Combination and Partial update models, could be difficult.
However, we have observed repetitive and reproducible pat-
terns that show that some behaviors are more probable than
others. This might be related to Bit sensitivities mentioned in
[11]. Further investigation is required to confirm this.

V. CONCLUSION AND FUTURE WORK

In conclusion, voltage glitch campaigns have been per-
formed on two different devices, embedding RISC-V and Arm
Cortex-M4 cores. In order to explain the obtained faulty behav-
iors, different fault models have been inferred. These models
allowed explaining more than 99% of the obtained faults.
Some of these models are applicable to both target devices:
Skip, Skip & repeat, and Partial update fault models. These
three models are also applicable to clock glitch results, as
shown in the literature. Moreover, additional faulty behaviors
have occurred due to some features. These features encom-
pass variable-length encoding, cache lines, and forwarding.
Therefore, new device features could lead to new possible
exploitation. To deal with this, other fault models have been
proposed: Non-sequential skip & repeat, Skip with forwarding,
and Combination. The presented fault models enable better
understanding of the fault effects. Thus, easing the process of
vulnerability analyses, and hence, simplifying the thinking of
cost-effective countermeasures.

As future work perspectives, countermeasure design at soft-
ware and/or hardware levels would be very important. Also,

evaluating real-life security applications using the proposed
fault models would be captivating. Finally, another interesting
perspective is a deep investigation of the observed faulty
behaviors at hardware level. This will help in determining the
vulnerable registers, and thus, easing the design of protections.

ACKNOWLEDGMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissements d’avenir, and by ARSENE
project (PEPR PP7 ARSENE — ANR-22-PECY-0004).

REFERENCES

[1] 1. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, and P. Maistri,
“Variable-length instruction set: Feature or bug?” in 25th Euromicro
Conference on Digital System Design. Maspalomas, Spain: IEEE, Aug.
2022, pp. 464-471.

[2] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016, pp. 25-35.

[3] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography, Los Alamitos, CA, USA, August 20, 2013. 1EEE
Computer Society, 2013, pp. 77-88.

[4] V. Khuat, J.-L. Danger, and J.-M. Dutertre, “Laser fault injection in a 32-
bit microcontroller: from the flash interface to the execution pipeline,”
in 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC), 2021, pp. 74-85.

[5] O. Trabelsi, L. Sauvage, and J.-L. Danger, “Characterization of electro-
magnetic fault injection on a 32-bit microcontroller instruction buffer,”
in 2020 Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST), 2020, pp. 1-6.

[6] J. Proy, K. Heydemann, A. Berzati, F. Majéric, and A. Cohen, “A
first ISA-level characterization of EM pulse effects on superscalar
microarchitectures: A secure software perspective,” in Proceedings of the
14th International Conference on Availability, Reliability and Security,
ARES 2019, Canterbury, UK, August 26-29, 2019. ACM, 2019, pp.
7:1-7:10.

[7] T. Trouchkine, G. Bouffard, and J. Clédieére, “EM fault model character-
ization on socs: From different architectures to the same fault model,”
in 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC). IEEE, 2021, pp. 31-38.

[8] V. Werner, L. Maingault, and M. Potet, “An end-to-end approach
for multi-fault attack vulnerability assessment,” in Workshop on Fault
Detection and Tolerance in Cryptography. Milan, Italy: IEEE, 2020,
pp. 10-17.

[91 M. A. Elmohr, H. Liao, and C. H. Gebotys, “EM fault injection on

ARM and RISC-V,” in 2020 21st International Symposium on Quality

Electronic Design (ISQED), 2020, pp. 206-212.

I. Alshaer, G. Burghoorn, B. Colombier, C. Deleuze, V. Beroulle,

and P. Maistri, “Cross-layer analysis of clock glitch fault injection

while fetching variable-length instructions,” Journal of Cryptographic

Engineering, pp. 1-18, 2024.

1. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, and P. Maistri, “Mi-

croarchitectural insights into unexplained behaviors under clock glitch

fault injection,” in Smart Card Research and Advanced Applications,
ser. Lecture Notes in Computer Science. Springer Nature Switzerland,

2024, pp. 3-22.

J. Laurent, C. Deleuze, F. Pebay-Peyroula, and V. Beroulle, “Bridging

the gap between RTL and software fault injection,” ACM J. Emerg.

Technol. Comput. Syst., vol. 17, no. 3, pp. 38:1-38:24, 2021.

S. Inc. and B. EECS Department, University of California, “The

RISC-V Instruction Set Manual Volume I: Unprivileged ISA,”

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf,

[Accessed: February 16, 2024].

C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform

for hardware embedded security research,” in International Workshop

on Constructive Side-Channel Analysis and Secure Design, ser. Lecture

Notes in Computer Science, E. Prouff, Ed., vol. 8622. Paris, France:

Springer, 2014, pp. 243-260.

(10]

[11]

[12]

[13]

[14]



