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Abstract: Optimizing scheduling and allocation strategies in dynamic production environ-
ments, notably in Hybrid Flow-Shops, presents significant challenges. This study focuses on re-
source assignment within dynamic contexts. It proposes an approach that use Genetic Algorithm
(GA) to generate data and train machine Learning (ML) to predict near optimal allocations.
Through experiments across various scenarios, the accuracy of prediction of different ML models
for resource allocation is evaluated. Our findings highlight the potential of ML techniques to
improve decision-making in dynamic and flexible manufacturing systems (FMS), contributing
to efforts to enhance reactive scheduling strategies. Future work will assess the impact of these
decisions on mean completion time, providing deeper insights into on-line scheduling efficiency.
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1. INTRODUCTION

The flow-shop scheduling problem is an optimization prob-
lem involving resources, operations, and constraints. Each
job j comprises a sequence of nj operations, with each
operation i as part of exactly one job, each executed on
a specific stage k within a given processing time pij . The
objective is to determine a feasible schedule, denoted by
Sij , that optimizes various performance measures such as
completion times or lateness.

The Hybrid Flow-Shop scheduling problem (HFS), a vari-
ant of the flow-shop model, involves multiple parallel ma-
chines for at least one stage (Pinedo (2016)). This partic-
ularity involves an allocation decision for each operation
of the products on each stage. In flexible HFS, jobs may
also bypass certain stages, presenting unique challenges in
resource assignment and operation scheduling.

This article specifically addresses the resource assignment
problem within dynamic manufacturing environments.
While traditional methods such as Dispatching Rules have
been employed, recent advancements have seen the appli-
cation of data mining and Machine Learning (ML) tech-
niques to tackle these challenges. ML, in particular, has
garnered interest due to its effectiveness in optimization
tasks, albeit requiring substantial amounts of data for
training.

Our approach offers a novel solution to the resource assign-
ment problem. Genetic Algorithms (GA) and simulation
are leveraged to generate data for training ML models for
predictive purposes. This methodology aims to overcome

the data scarcity challenge often encountered in ML ap-
plications within manufacturing settings.

2. LITERATURE OVERVIEW

Scheduling flexible manufacturing systems (FMS), such as
flexible job-shops and Hybrid Flow-Shops, has become a
focal point across various contexts, especially in dynamic
environments where rapid optimizing production schedules
is crucial. Initial research primarily centered on Dispatch-
ing Rules (DRs) to find a single performant one applicable
to all scenarios. DRs are simple scheduling heuristics that
gradually construct schedules by determining the next task
to be assigned to an available machine based on priority
evaluation (Ðurasević and Jakobović, 2018). Already in
1977, Panwalkar (1977) referenced over 100 different DRs
from the literature. The authors highlight that diverse
researchers may use different terminologies to describe
identical principles, and occasionally, new designations are
introduced for these DRs, making it more challenging to
quantify them. Nevertheless, Since then many other rules
have been added by researchers. An example on dynamic
flexible flow-shop scheduling is given in (Kianfar et al.,
2009). The authors explore methods for efficiently orga-
nizing tasks in dynamic environments, aiming to minimize
delays and prioritize critical tasks.

While empirical rules can be relatively effective, it may
be more advantageous to create methods capable of au-
tomatically selecting or generating rules according to the
problem being addressed. The main characteristic of such
algorithms, called Hyper-Heuristics (HHs), is that they ex-
plore a search space of heuristics rather than a search space



of solutions (Ochoa and Özcan, 2010).A certain number of
contributions seek to select the best rule among a set of
candidate ones, while other methods focus on the auto-
matic generation of specific rules. Furthermore, the work
Bouazza et al. (2021) introduce a product-driven approach
using HHs, enhancing adaptability and performance in
dynamic scheduling of FMS. The system performs a re-
active DRs switching depending of the decisional context
to enhance the global performance of the system. Other
DRs selection can be found in the literature as in (Drake
et al., 2020). The authors specifically focused on selection
HHs, offering critical discussions and highlighting current
research trends.

Concerning the HHs for DRs generation, algorithms as
Genetic Programming (GP) are also widely employed by
researchers. In (Braune et al., 2022), the study exam-
ined both job assignment and machine sequencing using
a single-tree representation, comparing it to a multi-tree
approach. Computational experiments showed an advan-
tage over existing priority rules in scenarios with unrelated
parallel machines and larger instances. Another approach
using GP is given by Jaklinović et al. (2021). The pa-
per aims to assess GP’s potential in constructing DRs
for constrained problems by adapting schedule generation
schemes and introducing supplementary terminal nodes.
Results indicate that automatically generated DRs out-
perform manually designed ones adapted for constrained
problems, with additional terminals enhancing DR con-
struction for certain constraints.

Recent progress has involved combining different tech-
niques as simulation-optimization, data mining, or statisti-
cal process control charts to improve scheduling strategies.
These strategies consider various factors like new job inser-
tion, machine breakdowns, operator unavailability, worker
fatigue, and skill levels. Moreover, approaches merging
data mining, discrete event simulation, and dispatching
rules have shown substantial reductions in Makespan and
notable enhancements in machine utilization (Zhao et al.,
2022). An example using simulation to build DRs is
proposed in (Li et al., 2022). The work introduces a
new method called Combined DRs to schedule tasks in
the complex environment of semiconductor manufactur-
ing, which involves coordinating equipment maintenance
and various production factors. Another example using
simulation is given in (Pergher and de Almeida, 2018).
The authors introduced a multi-attribute, rank-dependent
utility model to select the best DR for dynamic job-shop
environments. It integrates simulation, a method for quan-
tifying the decision-maker’s preferences regarding various
outcomes, with a theoretical framework that examines
multiple dimensions of decision-making.

Furthermore, ML techniques can also be a powerful tool
to enhance the performance of dynamic scheduling. In
order to improve decision-making in real-time scheduling
within dynamic environments, agent-based techniques in
combination with Deep Reinforcement Learning (DRL)
algorithms have been put forth by Liu et al. (2023). It
highlights the significance of production scheduling and
the potential disruptions caused by unforeseen events, with
a particular emphasis on HFS scheduling. A combined
framework of DRL and Multi-Agent Systems (MAS),

termed DRL-MAS, is introduced. Numerical experiments
and case studies showcase the superior performance of
the DRL models when compared to existing scheduling
strategies. In (Marchesano et al., 2021), a DRL mechanism
is also used for dynamic scheduling in a flow-shop, more
precisely a Deep Q-Network (DQN). The system possesses
a collection of established DRs for each machine’s queue,
from which the most suitable one is dynamically selected
based on the system’s current state. The paper’s novelty
lies in the modeling of the reward function, state repre-
sentation, and action space used by the DQN. In (Zhang
et al., 2022), the authors highlight another application of
RL to optimize machine allocation and task dispatching
in smart factories.They proposed a framework based on
Reinforcement Learning (RL).

In conclusion, substantial advancements have been achieved
in tackling manufacturing scheduling challenges in dy-
namic environments. While Dispatching Rules have tra-
ditionally played a pivotal role in flexible production sys-
tems, the rise of ML techniques, especially RL, has opened
up novel opportunities for enhancement. However, it’s
noteworthy that many ML methods primarily concentrate
on choosing the optimal DR from a pool of candidates,
with RL demonstrating significant potential in adjusting
rules based on system feedback. Based on this finding, the
next section will detail our approach, which aims to be
different by proposing to train a model directly from the
solutions generated by a metaheuristic.

3. PROPOSED APPROACH

This section provides a detailed overview of the key ele-
ments comprising the approach. It explains the fundamen-
tal components essential to the methodology.

3.1 Resolution approach and motivation

This section explores the motivation behind our approach.
Here, the scheduling problem is adapted to focus solely on
allocation, disregarding sequencing. A unique sequencing
rule is used. Indeed, in this paper, once allocated to
resource, the products within the queue are processed in
the First-In, First-Out (FIFO) order according to arrival
in the queue.

The goal is to develop a model capable of predicting a near-
optimal allocation decisions within a dynamic context. To
achieve this objective, a dataset that accurately reflects
the allocation choices is required. The GA is then used
to construct such a dataset, . Similar to an oracle, its
solutions are considered to be the among the best possible
choices and are used into dataset. The GA knows the
arrival times and characteristics of products before they
occur, transforming our dynamic context into a static one
for the training purpose.

In this regard, a three-step approach is proposed as shown
in Fig. 1:

(1) First, data are generated by feeding sets of instances
to the GA on an offline context. (see 3.2 Data gener-
ation phase)

(2) Then, this collected data are processed to retain only
pertinent information for learning and predicting in a
dynamic context. (see 3.3 Data preprocessing phase)



(3) Finally, ML models are trained and evaluated on this
database. (see 3.4 ML models training phase)

Fig. 1. Summary schema of the proposed approach

In the following details about each phase are given as well
as an exploration of each component in the Fig. 1 .

3.2 Data generation phase

During this phase, the GA is used in an offline context to
generate data from a set of instances.

Genetic Algorithm : The GA, inspired by natural se-
lection, iteratively generates and evaluates potential so-
lutions. By applying genetic operators like selection,
crossover, and mutation, it aims to converge towards
optimal solutions by favoring high-quality solutions’ re-
production. In this context, the GA is considered as an
Oracle, constructing solutions close to optimal based on
the assumption of known product arrivals in advance. The
Fig. 2 represents the 4 main stages of the GA proposed :

(1) Using operational data of a specific production sys-
tem, a set of scenarios are constructed to describe the
product arrivals and their associated characteristics
across temporal intervals.

(2) For each scenario, a population of solutions is gen-
erated, with each individual representing a distinct
resource allocation scheme.

(3) For each individual, a computational simulation is run
to unfold the allocation scheme represented by the
solution.

(4) Following simulation completion, performance met-
rics, such as Makespan or Mean Completion Time in
our case, are compiled. If the termination condition
of the GA is not met, a new simulation cycle begins
with the new population obtained.

Description of the set of scenarios : The instance under
study is composed of three levels, each of which contains
a variable number of resources. The first stage contains
two resources, the second one has three, and the last one

Fig. 2. The optimization process via simulation through
the GA to generate off-line near optimal solutions

contains two. These resources are designed to handle a
selection of five product families.

The instance is the input of the GA according to Fig.
1. It is referred to as Scenario. It’s an ordered list of
events describing the products arrival times and their
characteristics as their families.

Description of a Solution : A solution is a list that de-
termine the allocation choices for processing each product.

Solution Evaluation : The solution’s evaluation involves
calculating the mean completion time obtained after sim-
ulating the prodcuts allocation in the system.

in the following subsection we focus on the size of the
solution space to assess the complexity of the problem.

Solutions Space : Here is a small recall of the used
annotations in the following and what they refer to:

• n: number of products / jobs
• mj : number of operations of the product j
• Ri: number of resources on the i-th stage

The solution space encompasses all potential allocation
choices for each product within the batch. Its magnitude
is determined by the formula:

∏n
j=1

(∏mj

i=1 Ri

)
In scenarios where each product performs an equal number
of tasks (∀i, j ≤ n,mi = mj), the formula simplifies to:

(∏mj

i=1 Ri

)n
When the number of resources per stage remains constant
(∀i, j ≤ n,Ri = Rj), the formula further simplifies to:

∏n
j=1(R

mj )

In cases where both the number of tasks per product
and the number of resources per stage remain constant,
a simplified formula is proposed :

Rmn

= Rm×n

Hence, the complexity of the problem is demonstrated as
follows.O(Rm×n)



Generated data : At each product input, the system’s
state is recorded, which constitutes the covariates, and the
choice made by the GA, which constitutes the label. The
system state refers to both the condition of resources and
the condition of cells.

3.3 Data preprocessing phase :

Upon collection, the data undergoes preprocessing, which
begins with the preselection of covariates based on several
criteria. This phase aims to end up with a dataset that
contains only useful information for learning and predict-
ing in a dynamic context.

First, dependent or redundant variables are identified
and eliminated. This step targets variables that are cal-
culated as rates using other variables, thereby removing
redundancy and preventing unwanted dependencies. For
example : ccri = cci∑n

i
cci

with ccri : current charge rate of the ressource i, and cci :
current charge of the ressource i.

Secondly, variables with low variance are discarded. This
process removes variables that have minimal impact on
classification accuracy.

Furthermore, variables whose relevance is specific to se-
quencing are excluded from consideration. The focus
remains solely on variables pertinent to assignment within
the context of our study.

The variables retained in the final database include

• Tj : arrival time of the product j in the system
• fj : family of the product j
• pfk : family of last product that went through the

ressource k
• curr_ck : the current charge of the ressource k,

includes the process and setup times for all the
products on the ressource queue.

• exp_ck : the expected charge of the ressource k if the
product is allocated to it.

• exp_grossik : the added charge to the ressource k that
belongs to the stage i if the product is allocated. This
charge includes both the process time and the setup
time of the added product.

• eff_grossik : the ratio of the effective gross for each
ressource k belonging to stage i compared to the most
effective resource of the stage, calculated as follows :

eff_grossk =
exp_grossik

minx(exp_grossix)

3.4 ML models training phase :

Upon completion of data preprocessing, ML models are
employed to extract valuable insights. Each model pro-
vides a unique method for classifying allocation decisions
within the hybrid flexible production system. Below are
the selected models:

(1) Random Forests: Random Forests are ensembles of
decision trees, where each tree votes for the major-
ity class. They offer great flexibility and are robust
against complex datasets.

Table 1. Main parameters of the Genetic Algo-
rithm

Parameter Value
Population size 30,000 solutions
Replacement rate 0.7
Mutation rate 0.01
Crossover rate 0.5
Selection method Stochastic universal sampling
Elitism True
Initialization method Random
Stop condition 1 Maximum number of generations

= 1000 iterations
Or Stop condition 2 Generations without improvement

= 300 iterations
Fitness function Mean Completion Time Minimiza-

tion

(2) Bagging Classifier (Bootstrap Aggregator):
The Bagging Classifier combines multiple identical
learning models to enhance accuracy and stability. It
employs the bootstrap technique, randomly sampling
with replacement to create several training subsets.

(3) Gradient Boosting Classifier: The Gradient Boost-
ing Classifier constructs decision trees sequentially,
correcting errors from previous models. This allows
dynamic adaptation to residuals, producing powerful
models.

(4) Artificial neural networks (NN): Artificial Neu-
ral Networks are models inspired by the function-
ing of the human brain. They consist of layers of
interconnected neurons capable of learning complex
relationships in data.

(5) Artificial neural network with Bayesian opti-
mization: This variant of Artificial Neural Networks
uses Bayesian optimization to find optimal hyperpa-
rameters, thereby enhancing the efficiency of model
learning.

4. EXPERIMENTS AND RESULTS

4.1 Input data

Genetic Algorithm parameters: The following Table 1
outlines the main parameters of our Genetic Algorithm.
These parameters control how the algorithm works and
affects its ability to find the best or close-to-best solutions
for optimization problems.

Scenario Instances: The GA was executed on 200
scenarios sharing all the following statistics :

(1) number of products between 90 and 110, uniform
distribution.

(2) arrival times between 1 and 600 time units, uniform
distribution.

(3) product families distribution uniform.

4.2 Results

Each stage on the flow-shop is associated with a module
dedicated to resource allocation decisions, making a total
of three different models.



To evaluate the performance of these models, three sepa-
rate tables are used, each illustrating the error associated
with different types of trained models on a specific stage.

Fig. 3. accuracy evolution through training for neural
network with bayesian optimisation, stage 1

Fig. 4. accuracy evolution through training for neural
network without bayesian optimisation, stage 1

Table 2. Performances of stage 1 models

Model Accuracy
Random forests 0.818
Bagging classifier 0.796
Gradient boosting classifier 0.798
Dense neural network 0.79
Dense NN + Bayesian optimisation 0.814

Table 3. Performances of stage 2 models

Model Accuracy
Random forests 0.65
Bagging classifier 0.647
Gradient boosting classifier 0.656
Dense neural network 0.638
Dense NN + Bayesian optimisation 0.659

Table 4. Performances of stage 3 models

Model Accuracy
Random forests 0.957
Bagging classifier 0.9535
Gradient boosting classifier 0.9517
Dense neural network 0.9427
Dense NN + Bayesian optimisation 0.9516

4.3 Discussion

Figures 3 and 4 depict the training and validation accuracy
evolution over epochs for both the neural network with and
without Bayesian optimization in the first stage.

Variations in model performance across different stages
of the flow-shop can be observed based on the provided
tables. It’s important to note that the unit of measurement
here is accuracy, not mean completion time, as simulations
with the models’ predictions have not yet been executed.
Let’s analyze the results for each stage:

• Stage 1 (2 resources): The Random Forests model
achieved the highest accuracy of 0.818, followed
closely by the Dense NN + Bayesian Optimization
model with an accuracy of 0.814. The Bagging Clas-
sifier, Gradient Boosting Classifier, and Dense Neu-
ral Network also demonstrated respectable accuracies
ranging from 0.796 to 0.79.

• Stage 2 (3 resources): Across all models, the accu-
racies observed for stage 2 were generally lower com-
pared to stage 1. The Gradient Boosting Classifier ex-
hibited the highest accuracy of 0.656, followed closely
by the Dense NN + Bayesian Optimization model
with an accuracy of 0.659. While the Random Forests,
Bagging Classifier, and Dense Neural Network also
showed competitive accuracies ranging from 0.65 to
0.638.

• Stage 3 (2 resources): Notably, the accuracies ob-
served for stage 3 were substantially higher com-
pared to the other stages. The Random Forests model
demonstrated the highest accuracy of 0.957, followed
closely by the Bagging Classifier and Dense NN
+ Bayesian Optimization model with accuracies of
0.9535 and 0.9516 respectively. The Gradient Boost-
ing Classifier and Dense Neural Network also exhib-
ited high accuracies ranging from 0.9517 to 0.9427.

In line with our expectations, higher accuracy is observed
in stages characterized by fewer resources.In simpler pro-
duction environments, resource allocation decisions are
relatively straightforward. As the complexity of the stage
increases with a greater number of resources, the accuracy
of the models appears to decrease slightly, indicating the
additional challenges posed by optimizing resource alloca-
tion in more intricate production scenarios.



5. CONCLUSION

In this article, the dynamic context of the hybrid flow-shop
scheduling problem, with a particular focus on resource
assignment, has been delved into. While various method-
ologies, including DRs, heuristics, data mining, and ML,
have been explored to tackle this challenge, a universally
optimal approach remains elusive.

The proposed approach introduces a novel method that
employs GA and ML for resource assignment in dynamic
environments. The aim is to train ML models for predictive
purposes by generating data through GA and simulation.
This approach presents potential advantages in adapt-
ability and efficiency, crucial in modern manufacturing
settings where scheduling decisions must swiftly adapt to
changing conditions.

Furthermore, detailed notations, configuration, and key
elements of our approach have been outlined, with an
emphasis on the importance of preprocessing data for
effective ML models. The performance of various ML
models across multiple stages of the flow-shop through
experiments conducted on a range of scenarios, considering
accuracy as the primary metric has been evaluated.

For future work, simulations of the selected configuration,
utilizing the choices made by the trained models, to assess
their performance in terms of mean completion time will be
conducted. While precision serves as an initial evaluation
metric, understanding the impact on mean completion
time will provide deeper insights into the effectiveness of
our approach in optimizing production schedules.

This preliminary phase demonstrated the potential of ML
techniques to meet the challenges of dynamic scheduling.
Further research is warranted to optimize model perfor-
mance and scalability, paving the way to improve decision-
making processes in dynamic manufacturing systems.

In conclusion, our study contributes to ongoing efforts
in enhancing scheduling strategies, offering insights and
methodologies that can bolster decision-making processes
in dynamic manufacturing environments. We appreciate
the reviewer’s valuable feedback and eagerly anticipate
refining our manuscript to address the points raised.
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