
HAL Id: hal-04726657
https://hal.science/hal-04726657v1

Submitted on 8 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Syntactic and Semantic Analysis of Temporal Assertions
to Support the Approximation of RTL Designs

Alberto Bosio, Samuele Germiniani, Graziano Pravadelli, Marcello Traiola

To cite this version:
Alberto Bosio, Samuele Germiniani, Graziano Pravadelli, Marcello Traiola. Syntactic and Semantic
Analysis of Temporal Assertions to Support the Approximation of RTL Designs. Journal of Electronic
Testing: : Theory and Applications, 2024, 40 (2), pp.199-214. �10.1007/s10836-024-06115-9�. �hal-
04726657�

https://hal.science/hal-04726657v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Syntactic and semantic analysis of temporal
assertions to support the approximation of RTL

designs
Alberto Bosio∗ , Samuele Germiniani† , Graziano Pravadelli‡ , and Marcello Traiola§

University of Verona, Department of Engineering for Innovation Medicine {† ‡}
Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270 {∗}

University of Rennes, Inria, CNRS, IRISA, UMR6074 {§}
Email: ∗alberto.bosio@ec-lyon.fr, †samuele.germiniani@univr.it, ‡graziano.pravadelli@univr.it,

§marcello.traiola@inria.fr

Abstract—Approximate Computing (AxC) aims at optimizing
the hardware resources in terms of area and power consumption
at the cost of a reasonable degradation in computation accuracy.
Several design exploration approaches and metrics have been
proposed so far to identify the approximation targets, but only
a few of them exploit information derived from assertion-based
verification (ABV). In this paper we propose an ABV method-
ology to guide the AxC design exploration of RTL descriptions;
we consider two main approximation techniques: bit-width and
statement reduction. Assertions are automatically mined from
the simulation traces of the original design to capture the
golden behaviours. Then, we consider the syntactic and semantic
aspects of the assertions to rank the approximation targets. The
proposed methodology generates a list of statements sorted by
their increasing impact on altering the functional correctness of
the original design, when selected to be approximated. Through
experiments on a case study, we show that the proposed approach
represents a promising solution toward the automation of AxC
design exploration at RTL.

Index Terms—Approximate computing, Assertion-based veri-
fication, Assertion mining, Fault injection.

1 INTRODUCTION

Approximate Computing (AxC) paradigm was proposed to
improve performance while lowering area and power over-
heads compared to classical computing systems at the cost of
a degraded, but still acceptable, output accuracy [1]. During
past years, AxC has been widely adopted since many popular
applications we use, such as digital signal processing of
images or audio, data analytics, machine learning, web search
and wireless communications shown an inherent resiliency to
input noise or errors due to imprecise computation [2]–[6].
AxC has the potential to be implemented at various abstraction
levels within a computing system, ranging from circuits to
algorithms [1]. However, this vast design exploration space
becomes a significant bottleneck when deploying AxC.

Indeed, several works have been proposed so far to automat-
ically trade-off between output accuracy and performances [7].
At HW level, most of previous works lack the capability
to identify resilient elements (e.g, HW component, HDL
statements, etc.) of the design to be approximated. Existing
approaches generate approximate variants of the Design Under
Exploration (DUE). Every variant is then executed/simulated
in order to determine the accuracy degradation [8]. The

problem is that the accuracy depends on the application, and
thus it requires a specific metric to be computed (e.g., simi-
larity index, hamming distance, etc.). Consequently, exploring
the design for AxC generally results in a long and tedious
procedure.

Recently, the authors of [9] have presented a method to auto-
matically identify resilient elements of the DUE as candidates
for approximation. The evaluation of the accuracy degradation
leverages on the use of assertions, where an assertion is a logic
formula that captures a specific functional behaviour imple-
mented in the design [10]. Therefore, assertions can measure
how much the approximated design alters the functionality. In
other words using assertion to estimate the output accuracy
replace the use of functional metrics. On the other hand,
assertions have never been used to identify the DUE resilient
elements (i.e., HDL statements).

Verification engineers have been employing for decades
assertion-based verification (ABV) techniques to verify the
functional correctness of a design w.r.t. its formal specifica-
tions. The ABV can be described in two phase: 1) temporal
assertions, i.e., logics formulas written by means of a temporal
logic like, for example, Linear Time Logic (LTL) or Computa-
tion Tree Logic (CTL) are identified to express correct func-
tional behaviours. 2) Temporal assertions are verified either
statically by model checking, or dynamically by synthesizing
assertion checkers that verify if the corresponding assertions
are true or not during the simulation of the design.

The contribution of this work is a methodology for guiding
the approximation of the DUE leveraging on ABV with two
different exploration approaches exploiting the syntactic and
semantic aspects of the assertions. In both approaches, asser-
tions are automatically generated from the original implemen-
tation of the DUE to capture its functionalities. Furthermore,
we consider two main approximation techniques: bit-width and
statement reduction [1].

The first approach analyses the syntactic structure of the
assertions and the behavioral description of the DUE itself.
In particular, it identifies design statements that can have
an impact on the evaluation of the assertions. The analysis
is based on the syntactic study of the assertions and their
activation frequency. Moreover, the impact is computed by

https://orcid.org/0000-0001-6116-7339
https://orcid.org/0000-0003-0794-8606
https://orcid.org/0000-0002-7833-1673
https://orcid.org/0000-0003-1484-5162

2

leveraging on the distance between variables belonging to a
statement and the primary outputs of the DUE. The distance
is computed on the Variable Dependency Graph (VDG) and
corresponds to the minimum number of arcs connecting them.

The second approach analyses the semantic aspect of the
assertions. In particular, it exploits the combination of fault
injection and ABV. Fault injection is used to mimic the approx-
imation effect on the DUE, and assertions are then re-evaluated
on the faulty design (i.e. representing the approximated design)
to analyse the variations of their truth values with respect
to the original implementation. Such variations are then used
to rank the different approximation alternatives, according to
their estimated impact on the functionality of the target design.

In both the above approaches, the output of a list of
DUE elements (either bits of signals/registers or statements)
ranked by increasing levels of severity: the higher the severity,
the higher the output accuracy degradation. Moreover, the
second approach introduces a clustering procedure to identify
approximations that can be applied simultaneously in order to
maximise the overheads reduction.

The produced list of targets is further used to apply approx-
imation. Designers can start the approximation from the top-
ranked statements (i.e., having the lowest severity) and stop as
soon as either they have reached the desired saving in terms
of overheads, or the degradation of the design functionality
exceed a given threshold.

The authors already proposed a work on this topic in [11].
Differently from [11], in this paper, we improve the method-
ology by analysing the semantic aspect of the assertions.

The rest of the paper is organised as follows. Section 2
presents the state of the art; Section 3 gives the basics to
understand the technical parts of the paper; Section 4 presents
our methodology; Section 8 details the results obtained on the
case study; finally, in Section 9 we draw our conclusions.

2 RELATED WORK

As stated before, one of the most challenging problems in
AxC is the identification of resilient portion of the application
to be approximated. The portion depends on the abstraction
level: at software level it can be an instruction of the source
code, while at hardware level it can be an HDL statement or
signal. Previous approaches allow the designer to explicitly
mark resilient portions and specify how to apply approxi-
mation (i.e., which technique). For example, a programmer
can annotate through pragmas that a given loop has to be
approximated by applying the loop perforation technique [12].
Without annotations, each code line has to be considered as a
potential approximation target, thus leading to virtually infinite
possibilities of approximations.

At the hardware level, ABACUS [13] directly works with
RTL implementations (i.e., HDL code). The proposed design-
space exploration leverages a greedy algorithm to find a trade-
off between output accuracy and power consumption. In [8],
[14], design space exploration exploits a genetic approach.
Other approaches manually identify resilient portions of a
design, mainly focusing on arithmetic components [15]–[17].
Recently, authors of [18] proposed WOAxC, a workload-aware
framework to automatically select pre-existing approximate

units (adders and multipliers), minimizing energy consumption
while meeting the quality requirements of the application.

Since quality requirements may change at run-time, authors
of [19] propose an automated framework for the design of dy-
namically reconfigurable circuits. The framework modifies the
circuit netlist by replacing the wires with approximate switches
to reduce circuits’ dynamic power consumption through a
reduction of the switching-activity.

Although, the added circuitry increases the static power
consumption, a high reduction in total power consumption
is achieved since the dynamic power is predominant in
Application-Specific Integrated Circuit (ASIC) technologies
considered by the authors. Unfortunately, the approach is
tightly coupled with the target technology, hence it is not
guaranteed that it could be used effectively on a different
technology.

A different approach is presented in [20], where authors
take into account information about the underlying hardware
architecture, such as the use of over-scaling techniques.

A recent work claims approximate computing cannot be
fully exploited by only considering hardware or software;
therefore, hardware/software co-design should be considered
in order to achieve better trade-off between accuracy and
efficiency, in machine learning applications in particular [21].

On the other hand, even if they aim at different goals,
different approaches have been proposed for applying ver-
ification techniques to approximate computing. In [22], the
authors present an AxC-based approach to achieve a fast and
accurate enough repeated execution for security verification.
They implement and evaluate the approximate computing-
based security verification framework by conducting a case
study on a CPU-FPGA based video motion detection system.
The Authors in [23] present a novel approach for determining
under what conditions a software verification result is valid
when the software is executed on approximate hardware.
To this end, they compute the allowed tolerances for AxC
hardware from successful verification runs. More precisely,
they derive a set of constraints which-when met by the AxC
hardware-guarantees the verification result to carry over to
AxC.

In [24], the authors propose a dynamic verification method-
ology to assess the quality of the approximated circuit through
test patterns mutations and coverage information. However, to
the best of our knowledge, none of the exsiting verification-
oriented methodologies proposed to use assertions to guide the
approximate design exploration. In [9], the authors introduce
a verification-guided method to automatically identify pro-
gram blocks suited for approximation, while ensuring “good
enough” program correctness. The idea is to identify code sec-
tions that are less impacting on the computation of the program
outputs and therefore, more approximable. In particular, they
generate a statement ranking based on whether an instruction
affects a particular primary output of the designs. Assertions
are then used to evaluate the impact of the approximation on
the functional behaviour of the final design. It is important
to note that assertions are not directly used for statements
identification (i.e., identify which portion of the code has to
be approximated) as we propose in this paper.

3

On the contrary, in this work, we thoroughly explore the use
of assertions to perform an effective design space exploration.
Specifically, we syntactically analyse the characteristics of
a set of assertions to estimate the approximability of the
approximation targets in the DUE; the analysis is based on
the syntax tree and the activation frequency of the assertions.
Additionally, we exploit the concept of “distance between
variables” to measure the influence on the outputs of the
variables in the DUE. Finally, we analyse the semantics of
the assertions by employing fault injection analysis.

3 PRELIMINARY DEFINITIONS

We report hereafter the definitions of concepts used in the
rest of the paper.

Definition 1. Let v1 and v2 be two variables belonging to a
statement s, v2 is data dependent on v1 if v2 belong to the
left-hand side of s and v1 belong to the right-hand side of s.

In the running example of fig. 1, the statement at line 3
contains variable “c” (left-hand side) which is data dependent
on variables “d” and “e” (right-hand side).

Definition 2. Let v1 and v2 be two variables and c a
conditional statement, v2 is control dependent on v1 if:

• v2 is part of the condition of c;
• v1 belongs to the left-hand side of a statement included

in the scope of c.

In the running example, the statement at line 3 contains
variable “c” which is control dependent on variable “a” and
“b” which are part of the condition of the if statement at line
2.

Definition 3. A Variable Dependency Graph (VDG) is a
data structure composed of nodes and edges where each
node represents a variable and each edge represents a data
dependency or a control dependency between variables. Let
n1, n2 be two nodes of a VDG, if n2 has an incoming edge
e1 connecting n2 with n1, then the variable represented by n2

is either data dependent or control dependent on the variable
represented by n1.

A VGD example, which will be used in the rest of the paper,
is shown in Figure 1.

Figure 1: VDG Example.

Definition 4. Given a finite sequence of time units ⟨t1, ..., tn⟩
and a set of variables {v1, ..., vm}, a trace is a sequence of
tuples (ti, v

1
i , ..., v

m
i) such that vji is the value assumed by

variable vj at time ti.

Definition 5. An assertion is a LTL formula of the form
always(antecedent → consequent).

Fig. 3 shows a few examples of such assertions generated
by our approach in the running example. In this paper, we
make use of well-known LTL operators, such as Next (X) and
Always (G) to exemplify our approach. We kindly refer the
reader to [25] for a complete description of LTL operators and
semantics according to the Property Specification Language
(PSL).

Definition 6. Given a trace tr of length n and an assertion
as, an evaluation of as with respect to tr is the sequence of
evaluation units ⟨e1, ..., en⟩, where ei is the truth value of the
assertion at instant ti.

Definition 7. An assertion holds in a trace if and only if its
evaluation does not contain any evaluation unit whose value
is false.

Definition 8. Given a trace tr, and an assertion as, a
contingency table is a 3 × 3 matrix displaying the frequency
distribution of true, false and unknown evaluation units of
the antecedent with respect to the consequent of as in tr.

For example, in Table 1, ATCT represents the number of
time instants in a trace where both the antecedent and the
consequent evaluate to true.

Cons. Cons. Cons.
true false unknown

Ant. true ATCT ATCF ATCU
Ant. false AFCT AFCF AFCU
Ant. unknown AUCT AUCF AUCU

Table 1: Contingency table

Definition 9. A metric is a numeric formula measuring the
impact of an assertion’s feature in the assertion ranking.

The more prominent the feature, the higher its impact on the
final ranking of the assertion. The elements of the contingency
table are examples of features of an assertion.

4 METHODOLOGY OVERVIEW

Our methodology is intended to provide the designer with
an automatic way to explore AxC alternatives on RTL descrip-
tions. Two approximation strategies have been considered:

• Bit-width reduction: fixing to a constant value one or
more bits on a subset of design signals/registers;

• Statement reduction: removing one or more statements.
The overview of the entire methodology is reported in

Fig. 2. The input is the RTL description of the DUE with
a suitable testbench1. The output is a ranked list of DUE
elements that can be approximated. In the rest of the paper,
we refer to such elements with the term approximation tokens
(AT). In particular, according to the addressed AxC strategies,
we consider the following kinds of ATs:

1The testbench affects the quality of the mined assertions, as it happens in
any other simulation-based verification approach. It is reasonably to assume
that in a simulation-based verification flow a high-quality test set is available
at the time assertion mining is executed.

4

Figure 2: Overview of the methodology.

• Statement token: an instruction appearing in the RTL
description of the DUE;

• Bit token: a bit of a signal/register occurrence appearing
in a statement token.

In this paper, we consider only two types of tokens as
we want to perform design exploration for two well-known
and easy-to-understand approximation techniques. Nonethe-
less, the methodology is applicable to other types of tokens
and corresponding approximation techniques.

The core of the methodology comprises of two main ap-
proaches that analyse the syntax and semantics of temporal
assertions. Since both approaches require a set of LTL as-
sertions, the procedure starts by dynamically simulating the
DUE to generate the golden trace (traces) by simulating the
unaltered implementation of the DUE with the provided test-
bench (testbenches). Then, we employ an assertion miner to
generate assertions holding on the golden trace. The assertions
predicate on the inputs and outputs of the DUE and capture
its golden behaviour.

Hereafter, we provide an overview of the three main steps
of the syntax-based and semantic-based methodologies. A
detailed description for each of them is then reported in the
following sections.

4.1 Overview of the syntax-based method

1) Syntactic data extraction: in this step, we extract the
required data. First, we generate the VDG from the source
code of the golden (original) design. Then, additional

syntactic-related features are extracted from the VDG and
the assertions.

2) Syntactic impact estimation: During this phase, the
data obtained from the syntax trees of the extracted
assertions and the VDG of the reference design are
utilized to calculate a function that estimates the impact
of approximating each statement within the design.

3) Statement ranking: In the last step, the impact function
estimation allows to rank the design. Moreover, state-
ments having similar impact (according to a similarity
threshold) are further ranked by exploiting two supple-
mentary procedures: i) a heuristic based on the VDG that
considers the distances between the statements and the
primary outputs; ii) the execution frequency of statements
according to the simulation traces provided as input.

4.2 Overview of the semantic-based method

1) Faulty traces generation: in the first step of the
semantic-based method, we dynamically simulate the
DUE approximations to generate a set of execution
traces. For each AT, we generate a trace that reflects
the effect of activating a corresponding approximation
(i.e., bit-width reduction for bit tokens, and statement
reduction for statement tokens). These traces are obtained
by simulating a faulty version of the DUE. In particular,
stuck-at faults are injected in specific elements of the
original implementation to exactly mimic the effect of
approximating each AT.

2) Semantic impact estimation: In the second step, we re-

5

evaluate the mined assertions on the faulty traces obtained
in step 1. By comparing the contingency tables of the
assertions evaluated on the golden and faulty traces,
we automatically estimate the approximability of each
single AT, in terms of how its approximation affects the
functionality of the original design.

3) Semantic ranking: Finally, we rank the ATs in order of
decreasing approximability. ATs with similar approxima-
bility are clustered.

5 ASSERTION MINING

Before diving in to the two approaches, we automatically
mine assertions holding on the golden trace of the original
DUE implementation. To extract them, we exploit HARM an
open-source state-of-the-art assertion miner for LTL properties
[26], [27].

The miner has been configured to automatically generate
assertions on primary inputs and outputs of the DUE in the
form always(antecedent → next[N](consequent)), where
N is the design depth, that is, the number of clock cycles
necessary to propagate the effects of primary inputs toward
primary outputs. This is done to ensure that the mined asser-
tions represent meaningful I/O relations.

Both the antecedent and the consequent of each as-
sertion are instantiated by the tool following the form
prop1 && prop2 && ... && propk. Each proposition propi
is in the form cl <= varj <= cr, or varj == c, or
varj <= c, or varj >= c, where varj is an input or an
output of the DUE if located, respectively, in the antecedent
or the consequent, while cl, cr and c are numeric constants.

Finally, we rank the assertion set according to a score S,
which is obtained, for each assertion a, by combining the
following metrics (see def. 9 and 8):

• Metric 1: Support(a) = ATCT/traceLength;
• Metric 2: Causality(a) = 1−AFCT/traceLength;

where, ATCT and AFCT are derived from the contingency
table of a (see Def. 8).

Then, the overall score S is obtained, for each assertion a,
through the followint formula

2∏
i=1

calibrate(smi(a)/smi(amax i)), (1)

where smi(a) represents the score of a evaluated by using
the metric i, amax i is the assertion obtaining the maximum
score by using metric i, and calibrate is a procedure that
“calibrates” the input score by using the following modified
version of the Richards’ curve, ranging from 0 to 1

R(x) = 1/(1 + e(3.3−10.62x))2. (2)

The underlying idea of this ranking formula is to enable
the utilization of two metrics simultaneously in a unified
ranking process. Additionally, it aims to prioritize assertions
that achieve higher scores in both sorting metrics, while
discouraging assertions that perform well in only one or
neither of them. Once the ranking process concludes, we retain
only those assertions with a score S greater than 0. These

Figure 3: Assertions mined for the running example of section
7

selected assertions then embody the golden behavior of the
original design.

Figure 3 shows some of the assertions mined for the
running example of section 7 and the corresponding values
for Support, Causality and S.

In the running example, we generate assertions by providing
the basic template always(antecedent → consequent) as
the inputs are propagated to the outputs on the same clock
cycle. The miner generates 383 assertions, although only 38
assertions end up providing a final ranking greater than zero.
We report in fig. 3, 3 of of the 38 generated assertions.

6 SYNTAX-BASED METHOD

In this section, we delve into the details of the 3 steps
comprising the syntax-based method.

6.1 Syntactic data extraction

First, we generate the VDG of the DUE. The primary use
of the VDG is to assess the likelihood that the impact of
the approximation on a token is masked by other operations
before it reaches the primary outputs of the design. After
that, the following syntax-related values are extracted from
the assertions and the generated VDG.

Figure 4: Syntax tree corresponding to the assertion
always[(in1) −→ next(out1&&(out2||out3))].

• The variable depth in an assertion (var depth). This is
defined as the depth of a variable involved in the conse-
quent of an assertion a ∈ A from the root of the syntax
tree of a. For instance, consider the assertion in Fig. 4.
The always operator is the root of the corresponding
syntax tree located at depth 0; in1 is situated at depth
2, out1 at depth 4, while out2 and out3 at depth 5.
Intuitively, ATs whose variables appear in the deepest
part of an assertion consequent should allow a better

6

approximation, in terms of functional accuracy, as their
influence on its truth values is generally lower (due to
masking effects); hence, their approximation produces a
lesser effect on the corresponding functional behaviour
of the DUE.

• The AT distance from primary outputs (at distance)
This is defined as the minimum number of edges separat-
ing an AT from an output of the DUE in the correspond-
ing VDG. In the example of Fig. 1, the distance between
variable e and output out is 2.
Intuitively, ATs that are closer to the outputs can greatly
influence the functional behaviour of the DUE; con-
versely, ATs further from the outputs allow a better ap-
proximation, as their influence is less severe. To calculate
the AT distance, we must proceed differently depending
on whether the corresponding AT is related to an assign-
ment or a conditional statement. If assignment case, the
distance is the minimum number of edges separating its
left-hand side variable from an output in the VDG. If
conditional case, then the corresponding condition may
contain multiple variables; the final value corresponds to
the distance of the variable belonging to the condition at
the shorter distance from one output. In the example of
Fig. 1, statement 2 lays at distance 1 from variable out.

• The assertion support (asup). The support of an as-
sertion is determined by counting the occurrences of
simulation traces in which both the antecedent and the
consequent of the assertion are true, indicating that the
assertion is true in a meaningful way (non-vacuously).
In simple terms, assertions with low support typically
involve variables that have less significant influence on
the functional behavior of the DUE. Consequently, if
other ATs share the same variables with a low-support
assertion, they are more likely to allow a considerable
approximation because their effect on the DUE behavior
is relatively smaller.

The information derived from the assertions and the VDG
are then combined in the next step of this method to estimate
the impact of approximation on the DUE behaviours.

6.2 Syntactic impact estimation

The evaluation of how approximating a token affects
the functionality of the DUE is performed using the
estimateImpact function, outlined in Algorithm 1. This
function takes three inputs: the set of assertions A mined
by HARM, the set of ATs of the DUE represented as AT ,
and the VDG denoted as vdg. The output value produced
by the estimateImpact function for an AT indicates its
undesirability for approximation. In other words, the higher
the value returned by estimateImpact for a particular AT,
the less favorable it is to choose that AT for the approximation
process. The impact function exploits “variable depth in an
assertion”, “the assertion support” and “AT distance from
primary outputs” extracted in the previous step.

The function estimateImpact consists of two main steps.
First, the impact of a token at with respect to each assertion
is computed and stored in variable at imp. This is achieved
by iterating over A (line 16) and by retrieving for each

Algorithm 1 Impact Function

1: function getAssertionImpact(a, at, vdg)
2: asup ← getSupport(a)
3: c ← getConsequent(a)
4: lhs ← getLHS(at)
5: impact ← 0
6: for all var in getVars(c) do
7: var depth ← getDepth(var, c)
8: at distance ← getDistance(var, lhs var, vdg)
9: impact+=asup/(var depth ∗ at distance)

10: return impact
11:
12: function estimateImpact(A, AT, vdg)
13: I ← ∅
14: for all at in AT do
15: at imp ← ∅
16: for all a in A do
17: at imp.push(getAssertionImpact(a, at, vdg))
18: I .push(avg(at imp))
19: return I

tuple (at, a) the corresponding assertion impact by calling the
function getAssertionImpact (line 17). The resulting impact
is then appended to at imp. After that, the function computes
the average of the impacts in at imp and stores the result in I
(line 18). Finally, the list of final impacts is returned (line 19).
Function getAssertionImpact returns the impact of token at
with respect to assertion a. First, the function retrieves three
accessory elements that are used to compute the partial impact;
such elements include the support of the assertion asup (line
2), the syntax tree of the assertion’s consequent c (line 3) and
the left-hand side variable of the AT lhs var (line 4). Note that
this algorithm is simplified to accept only AT related to assign-
ment statements with a left-hand side variable. This is done
to improve readability. Second, the impact is progressively
computed for each variable in the assertion’s consequent (lines
6-9). For each var, the partial impact is calculated through the
formula asup/(var depth ∗ at distance), where var depth
and at distance are the aforementioned “variable depth in an
assertion” and “a distance from primary outputs”. Finally, the
computed impact is returned (line 10).

The left part of Fig. 5 shows the estimated impact for
each statement token of the example of Fig. 1. The worst-
time complexity of function estimateImpact is O(|S| ∗ |A|),
where |S| and |A| are the number of analyzed ATs and
assertions, respectively. We omitted the cost of calling function
getAssertionImpact, as in any practical scenario, it would
only contain constant-time operations. This is true because the
number of variables in each assertion is usually limited.

6.3 Syntactic ranking

In the last step of syntax-based method, the output of the
estimateImpact function is used to rank the AT of the DUE
to create a AT approximation list. That list ranks the AT in
descending approximation i.e., designers are suggested to start
approximating the tokens on the top of the list and stop as soon
as they reach the maximum functional degradation threshold.
Therefore, AT with a higher impact on the DUE behaviour
will be ranked in the bottom part of the AT approximation
list compared to those with a lower impact. Additionally, two

7

Figure 5: Ranking for the example of Fig. 1.

auxiliary criteria are employed to order the positions in the list
for AT with a similar impact value (i.e., when the difference
among impacts is lower than a predefined threshold):

• All tokens with a similar impact are further sorted by us-
ing a mean-distance heuristic that calculates the average
distance of each AT from the design primary outputs. This
distance is defined by counting the number of arcs in the
path connecting two target nodes in the VDG. AT with
a higher average distance are supposed to have a lesser
impact on the design functionality when approximated;
therefore, among those with similar impact, these are
ranked lower than AT with a shorter average distance.

• In the case of AT having similar impact and average
distance, we consider the number of times that the AT
is executed during the design simulation (by using the
same simulation traces adopted for the assertion mining).
The intuition is that the higher the number of executions
of a AT, the higher is the influence of its approximation
on the design functionality.

Let us resort to the example of Fig. 1 and the ranking
of the corresponding AT reported in Fig. 5. Initially, the
ATs are ranked according to the result of the estimateIm-
pact function. This creates 4 clusters of AT with similar
impact values {(1), (2, 3, 5), (6, 8), (4, 7)}, as shown on the
left side of Fig. 5. A second sorting level based on the mean-
distance heuristic is then applied, thus reordering the ATs and
reducing the number of AT belonging to unsorted clusters
{(2, 5), (4, 7)}, as reported in the central part of Fig. 5. Finally,
the third level of sorting, based on the AT execution frequency,
is applied on the two remaining clusters, thus providing the
results shown on the right of Fig. 5.

7 SEMANTIC-BASED METHOD

In this section, we report the details of the 3 steps compris-
ing the semantic-based method.

To simplify the detailed exposition of each step, in the
following sections, we refer to the running example reported
in Algorithm 2. It takes as input two 8-bit unsigned integers
(signals a and b) and returns their sum as output (out port).
We assume that the adder module is stimulated by an external
test tench, such that the two least significant bits of signal a
and b (i.e., a[7:6] and b[7:6]) remain unused.

Algorithm 2 Running example

1: module adder(a, b, clk, out)
2: input [7:0] a, b
3: input clk
4: output [8:0] out
5: reg [8:0] sum
6: always @(posedge clk)
7: begin
8: sum = a+ b
9: end

10: endmodule

7.1 Faulty traces generation

In the first step of semantic-based method, we simulate
the DUE to generate a set of faulty execution traces. For
each target AT, we generate a trace reflecting the effect of
its approximation according to either the bit-width reduction
or the statement reduction strategy. For each class of AT, we
identify a fault model to mimic the effect of its approximation
in the functional behaviour of the DUE as follows:

• A bit token is approximated by injecting a stuck-at 0/1
on the target bit. Stuck-at X has been not considered as
the propagation of X values along the execution traces
would prevent the evaluation of mined assertions in step
3.

• A statement token is approximated differently depending
on the type of statement as follows:

– assignment: the statement is removed; in case its left-
hand side remains undefined, its value is assigned to
0 for bit-vectors and numeric types, stuck at 0/1 for
a single bit/Boolean;

– module instantiation: the statement is removed; in
case the signals connected to the outputs of the
module remain undefined, they are treated as in the
case of assignments;

– conditional statement: either the true or the false
block is removed; in case any signal/register remains
unsigned, it is treated as in the case of assignments.

For each considered fault, the design is altered by the fault
and re-simulated to generate a faulty trace.

For instance, in the running example, the statement sum =
a + b at line 8 is a statement token, while the third bit of signal
a (i.e., a[2]) is considered a bit token. To inject a fault for the
first bit token of signal a, a stuck-at 0 fault is injected on the
first bit of the signal (ex. a & 11111110). In this example, the
only fault, injected to approximate the only available statement
token, would consist of removing the instruction at line 8.

7.2 Semantic impact estimation

In the last step, the generated assertions are re-evaluated
on the faulty traces obtained by perturbing the original RTL
description of the DUE by adopting the bit-width and the
statement reduction strategies, as reported in Section 7.1. In
particular, for each AT, the corresponding fault is injected and
the assertions are re-evaluated generating a new contingency
table. It is worth noting that the value ATCF is 0 in the con-
tingency table of any assertion for the original implementation

8

Bit token a[6] a[7] b[6] b[7] b[0] b[1] a[0] a[1] a[2] b[2] a[3] ...
ATCF 0 0 0 0 3 3 4 4 22 23 49 ...
Rank 0 1 2 3 4 5 6 7 8 9 10 ...

Cluster 0 0 0 0 1 1 2 2 3 3 4 ...

Table 2: Final ranking of ATs for the running example.

(as all assertions are true on the golden trace), while it is very
likely greater than 0 for assertions affected by the presence of
a fault. Consequently, we can observe variations in the value
of ATCT as well. The purpose of this procedure is then to
analyse the effect of the different approximation alternatives
(represented by ATs) on the functional behaviours (captured
by the assertions) of the design.

The whole procedure is implemented in the evaluate func-
tion reported in Algorithm 3, whose behaviour is detailed
hereafter.

Algorithm 3
1: function EVALUATE(A, gt, FT)
2: GCT ← ∅
3: diff ← ∅
4: for all a ∈ A do
5: GCT [a] ← genContingency(gt, a)
6: for all ft ∈ FT do
7: for all a ∈ A do
8: fct ← genContingency(ft, a)
9: diff [ft] += abs(GCT [a]− fct)

10: return diff

The function takes as inputs A, gt and FT , where A is the
set of assertions mined in the previous step, gt is the golden
trace and FT is the set of all faulty traces generated in the
first step of the methodology. Note that for each ft ∈ FT
there exists a corresponding unique approximation token at
and a unique fault f . The function returns a dictionary diff ,
which stores, for each ft, a matrix representing the sum of
the differences between the contingency tables achieved on ft
and gt for all assertions belonging to A.

First, we initialize variables GCT and diff , where GCT
is intended to store the contingency tables of the golden trace
(lines 2-3). Then, we iterate over the assertions in A such
that the function genContingency(gt, a) evaluates the assertion
a on the trace gt to retrieve the corresponding contingency
table (line 5). After that, for each couple ⟨ft, a⟩ ∈ FT × A,
a “faulty” contingency table is generated and stored in fct
(line 8). ftc is then compared with the golden contingency
table GTC[a]; this is done by returning the absolute difference
between the two matrices (line 19). The result of this operation
is stored in diff [ft], which contains the impact of fault f on
all the considered assertions. Finally, the sum of differences
diff is returned (line 10).

At this point, we employ the dictionary of differences diff
to sort the ATs in order of decreasing approximability. Since
each matrix belonging to diff contains 9 fields (3x3 matrix),
there are several ways to estimate the impact of a fault f
on the functional behaviour of the design. In this work, we
decided to rank each approximation token at by counting the
number of times in which the corresponding fault f made the

assertions in A fail. That is, each at is ranked by using the
ATCF field (first row, second column) of the corresponding
matrix diff [ft]. This choice is plausible because the higher
the increment of ATCF, the worse the impact on the functional
behaviour, and as a consequence, the lower the approximability
of the corresponding AT. In particular, all the ATs are sorted
by increasing order of ATCF.

7.3 Semantic ranking

Finally, we apply a clustering algorithm to group ATs
exposing a similar approximability; this is done to help
the designer in the process of simultaneously approximating
multiple ATs. To achieve that, we apply Lloyd’s version of
the k-means algorithm [28]. Since the optimal value of k
is not known beforehand, we employ the elbow method: a
well-known cluster analysis heuristic used to determine the
number of clusters in a data set. The k-means algorithm is
executed multiple times: the idea consists of measuring how
the variance inside the generated clusters diminishes for an
increasing number of clusters k. In most cases, if we plotted
the variance for every value of k, we would observe an “elbow-
like” line. The value k, at which the reduction of variance
plateaus, is considered a good candidate.

Table 2 reports the result obtained by applying the ranking
methodology to some ATs of the running example. In this
case, we considered as ATs the bits of signals a and b of
the statement at line 8 of Algorithm 2. As expected, the table
shows that the two least significant bits of both a and b are
ranked first. This is not surprising since these bits remain
unused during simulation; therefore, the corresponding faults
do not produce any effect on the functional behaviour of
the design (ATCF is zero). Then, after the clustering, our
methodology suggests that the designer should simultaneously
apply the bit-width reduction strategy to a[7:6] and b[7:6].

8 CASE STUDY

We conducted an evaluation of our proposed methodology
using the RTL description of a commonly used Sobel edge-
detection filter. The evaluation aimed to assess the approxima-
tion impact of different ATs in terms of functional accuracy
and power/area reduction. The primary goal is to demonstrate
the effectiveness of our approach in presenting the designer
with approximation options that minimally affect functional
accuracy while ensuring significant savings in terms of area
and power. To evaluate the functional accuracy of the approxi-
mated designs, we used the Structural SIMilarity (SSIM) index
[29]

For the sake of completeness, we also adopted PSNR
and Correlation Coefficient as alternative metrics to SSIM to
evaluate the difference between two images. The correlation
coefficient is expressed as a number between -1.0 and 1.0. A
correlation coefficient of 1.0 means that the pixel values in the
two images are perfectly matched. A correlation coefficient of
-1.0 means that the pixel values in the two images are perfectly
mismatched. A correlation coefficient of 0 means that pixel
values in the two images are randomly different.

For our evaluation, we utilized eight images as the workload
for the Sobel filter. In the following sections, we report the

9

results of applying the syntax-based and the semantic-based
method respectively.

8.1 Results for the syntactic-based approach

We applied the bit width reduction to the statements of
the HDL design, according to the statement ranking produced
by the methodology of Section 6. Hence, we proceeded
to simulate the workload using the obtained approximate
designs. Subsequently, we calculated the SSIM, PSNR and
Correlation Coefficient between the output images generated
by the approximated designs and the precise ones, which were
produced by the non-approximated design. Regarding the bit
width reduction, we conducted two distinct experiments when
the bit-width reduction is applied as approximation technique.
In the first experiment, the bit-width reduction is implemented
by consistently setting the cut bits to logic ‘0’; in the second
experiment, we set the cut bits to logic ‘1’. Regarding the
two mentioned variants, we create an approximate design i
by applying all the ATs with a “criticality” value less than
or equal to i. Here, “criticality” refers to the position of
the statement in the ranked list. In other words, we begin
approximating with the first token and gradually proceed,
adding each approximation to the subsequent tokens. As we
move to the next token, the level of approximation increases
accordingly.

Figures 6, 7 and 8, illustrate the results we obtained,
showing respectively the average SSIM, PSNR and Correla-
tion Coefficient (y-axis) across the eight images. The x-axis
represents the labels of the approximate designs, arranged in
ascending order based on their criticality. As highlighted in
the graphs, the proposed methodology’s ranking accurately
predicts the impact of approximation (i.e., higher criticality
leads to lower average SSIM) for both cases of setting the cut
bit to logic ‘0’ and ‘1’.

It can be noted that the three metrics (i.e., SSIM, PSNR
and Correlation Coefficient) show the same trend: the more
approximation, the lower the metric. Once again, we decided
to further focus only on the SSIM since it has been widely
adopted in the literature and, in particular, in the image process
research community [29]. Secondly, we have to mention the
difference in terms of quality between setting the removed bits
to logic ‘0’ or logic ‘1’. The latter shows a lower quality (for
all three metrics), reflecting the fact that adding removed bits
at logic ‘1’ introduces high errors (higher values) that impact
the final results.

To give an idea of the image quality associated to a given
SSIM, Figure 10 depicts four images showcasing the expected
output of the filter (Figure 10a), along with the output of three
approximate versions resulting from the experiments. These
approximate versions have corresponding SSIM values of 0.96,
0.56, and 0.04 (Figures 10b, 10c, and 10d, respectively).
The caption of each figure provides information about the
approximated statement, the number of cut bits, and the logic
value used to set them.

Lastly, we conducted the synthesis of the approximate
designs obtained from the experiment, where the cut bits
were set to a constant logic value of ‘0’ (represented by
in Figure 6). The decision to choose logic ‘0’ was based

on its superior performance in terms of power consumption
and area reduction. For the synthesis process, we utilized the
FreePDK45 45-nm standard cell technology library as our
target technology. Figure 9 presents the results in terms of
relative area, power consumption, and timing, which were
calculated as 1 − Precise−Di

Precise , where the Precise variant has
a value of 1. The graphs clearly illustrate that both area and
power consumption decrease in accordance with the criticality
of the approximated tokens. For example, let’s examine the
results for approximating up to token D6 in Fig.9, where 4
bits are removed. The area reduction is 25%, and the power
reduction is 23%, while still maintaining an acceptable output
image quality, as depicted in Fig.10 (c). This indicates that by
following the ranking, direct application of approximation (in
this case, approximating the first 7 tokens, from D0 to D6)
leads to significant overhead reduction while maintaining an
acceptable output accuracy. In contrast, without the ranking,
the designer would have to consider all possible combinations
of HDL tokens. This approach thus holds great promise in
terms of its benefits.

Finally, we also noticed that Timing results do not follow
the same trends as area and power. This can be explained
by the fact that we configured the synthesis tool for area
optimization. A lower area means lower activity (thus less
power consumption), but there is no guarantee on the timing.

8.2 Results for the semantic-based approach

We applied both the bit-width and the statement reduction
approximation strategies on a set of ATs (i.e., bit tokens and
statement tokens) by injecting faults as reported in Section 7.1.
We then ranked and clustered the ATs, as detailed in Sec-
tion 7.2. We considered a total number of 236 bit tokens and
38 statement tokens.

We conducted two distinct experiments for bit-width reduc-
tion: one by setting the target bit token to 0 and the other
to 1. However, as the outcomes were quite similar for both
scenarios, we present the results solely for the case of fixing
the target bit token to 0.

The diagrams in Figure 11(a)(b) illustrate the SSIM on the
y axis, achieved by the designs resulting from applying two
reduction techniques: bit-width reduction (a) and statement
reduction (b) to each individual AT. In the case of (a), the
reduction is applied to each bit token, while in (b), it is applied
to each statement token. On the x axis, the ATs are arranged
in descending order, following the ranking methodology pro-
posed in Section 7.2. The results show a clear pattern where
the ATs that provide the highest SSIM when approximated
are the ones ranked at the top according to our approach. This
observation applies to both bit tokens and statement tokens.

However, since approximating individual ATs does not yield
significant area and power savings, we propose an alternative
approach of clustering ATs and applying multiple approxi-
mations simultaneously. Consequently, in Figure 11(c)(d), we
present the impact of concurrently applying approximations to
AT clusters identified using the k-means approach outlined in
Section 7. The dark line on the graph represents the size of
these AT clusters, while the blue line indicates the SSIM values
achieved by the clusters based on our methodology. Addition-

10

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

 S
SI

M
*

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

0.00

0.25

0.50

0.75

1.00
A

ve
ra

ge
 S

SI
M

*
Approximation, 2 bits cut

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

Approximation, 4 bits cut

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

Approximation, 6 bits cut

*Higher is better Constant logic 1 Constant logic 0

Figure 6: Sobel results in terms of average SSIM.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
D10

Design label

0

10

20

30

40

Av
er

ag
e

PS
N

R
*

Approximation, 2 bits cut

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
D10

Design label

Approximation, 4 bits cut

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
D10

Design label

Approximation, 6 bits cut

*Higher is better Constant logic 1 Constant logic 0

Figure 7: Sobel results in terms of average PSNR.

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
O

R
R

*

Approximation, 2 bits cut

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

Approximation, 4 bits cut

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

Approximation, 6 bits cut

*Higher is better Constant logic 1 Constant logic 0

Figure 8: Sobel results in terms of average correlation.

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

0.8

1.0

A
re

a
(r

el
at

iv
e)

Area

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

0.6

0.8

1.0

Po
w

er
 (r

el
at

iv
e)

Power

Prec
ise D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

D10

Design label

1.00

1.05

Ti
m

in
g

(r
el

at
iv

e)

Timing

2-bit cut 4-bit cut 6-bit cut

Figure 9: Area, power consumption, and timing of approximate Sobel design syntheses (setting cut bits to constant logic ‘0’).

ally, the red line showcases the SSIM attained by a randomly selected set of ATs, whose size corresponds to that of the

11

(a) Expected (b) SSIM = 0.96
(D0, 2 cut bits set at

‘0’)

(c) SSIM = 0.56
(D6, 4 cut bits set at

‘0’)

(d) SSIM = 0.04
(D10, 6 cut bits set at

‘1’

Figure 10: Visual example of approximate outputs.

corresponding cluster in the blue line. An initial observation
indicates that the randomly formed clusters result in the lowest
accuracy. The second observation pertains to the quality of
the ranked clusters produced by our methodology. In the case
of the statement reduction strategy (Figure 11(d)), the cluster
containing the ATs ranked at the top (ID 0) demonstrates that
applying the approximations from this cluster simultaneously
results in nearly the best SSIM. However, for the bit-width
reduction strategy (Figure 11(c)), the situation is different.
Larger clusters (e.g., ID 0) achieve unsatisfactory SSIM values,
whereas smaller ones (e.g., IDs 1 and 2) generally perform
better. This illustrates that the SSIM in the bit-width reduction
strategy is influenced by the cluster size, whereas this factor
is not significant for the statement reduction strategy. Further-
more, upon examining the composition of clusters containing
statement tokens compared to those involving bit tokens, we
noticed that the former tend to group ATs from the same cone
of logic, whereas the latter do not exhibit this pattern. As a
result, the impact of the approximation on functional accuracy
becomes more pronounced when a large set of unrelated
bit tokens is clustered, while this effect is mitigated when
statement tokens belonging to the same cone of logic are
grouped together.

As a result, we can deduce that the ranking and cluster-
ing approach introduced in this paper for statement tokens
represents an effective methodology for assisting designers
in exploring the statement reduction approximation strategy
with regard to functional accuracy. The subsequent section
will demonstrate its performance in terms of area and power
savings as well.

We performed design synthesis by approximating the state-
ment tokens based on the clusters generated using our pro-
posed methodology. The FreePDK45 45-nm standard cell
technology library was the target for these experiments. The
outcomes, in terms of relative area and power consumption,
were calculated using the formula 1− Precise−clusi

Precise , where the
Precise variant has a value of 1. These results are depicted in

Figure 12. The graph highlights that the cluster with ID 0,
which was ranked highest by our methodology, exhibits the
most significant area and power reduction compared to the
Precise design, with reductions of 54.53% and 50.24%, re-
spectively. Interestingly, even with such substantial reductions,
this cluster (ID 0) maintains a relatively high SSIM value of
0.62, as indicated in Figure 11(d). Conversely, approximating
a random set of statements of the same size as cluster 0
(14 statements) resulted in a design with an average area
reduction of 58.69% and an average power reduction of
30.60%. However, this design also exhibited a much lower
SSIM value of 0.061. The results for the clus rnd design were
derived by synthesizing multiple designs obtained by randomly
approximating the same number of statements as in cluster 0;
subsequently, the average value was reported.

9 CONCLUSIONS

In this paper, we presented two novel approaches to identify
the elements (signal/register bits or statements) to be approx-
imated into RTL descriptions through the bit-width and the
statement reduction strategies.

In the syntactic-based approach, statements are ranked based
on a metric calculated using an impact function that utilizes
the syntax tree and the support metric of the mined assertions.
Additionally, the function takes into account information from
the variable dependency graph of the DUE and the execution
frequency of the statements. The presented outcomes demon-
strate that this ranking methodology can significantly simplify
space exploration, resulting in a remarkable 23% reduction in
overheads, all while maintaining an acceptable level of output
accuracy.

In the semantic-based approach, approximation alternatives
are implemented by fault injection. Their impact on the
functional accuracy of the DUE is then estimated accordingly
to a metric that evaluates the effect of the approximation on
the generated assertions. A ranking and clustering procedure is
then proposed to guide the designer in the identification of the
best cluster of elements to be approximated. The experimental
analysis shows the following major achievements: (1) Our pro-
cedure, for both bid-with reduction and statement reduction, is
able to rank the approximation alternatives such that they are
decreasingly ordered with respect to their effect on functional
accuracy. (2) The clustering performs very well by considering
the statement reduction approximation, i.e., the functional
accuracy is generally higher for the designs obtained by simul-
taneously applying the approximations corresponding to the
top-ranked AT clusters than those synthesized by considering
the lower-ranked clusters or by randomly selecting a set of
statement tokens. (3) The clustering of bits is affected by the
size of the cluster, which is more determinant than the ranking
of its elements for mitigating the amplification of the errors
caused by simultaneous bit-width reductions. (4) The saving
in terms of area and power achieved by approximating the
clusters of statements identified by the proposed approach is
generally proportional to the functional accuracy: the higher
the saving, the higher the accuracy.

In conclusion, the two approaches can be considered com-
plementary. The Syntax one can quickly provide a first set

12

(a) (b)

(c) (d)

Figure 11: (a and b) Impact of AT approximation alternatives on the functionality of the Sobel. Bit tokens (a) and statement
tokens (b) are ordered on the x axis according to the ranking metrics defined in Section 7.2.
(c and d) Impact on the functionality of the Sobel by simultaneously applying the approximations belonging to each AT clusters
returned by the methodology proposed in Section 7.2 Clusters are ordered on the x axis from the top-ranked (cluster 0) to the
worst-ranked.

Prec
ise clu

s0
clu

s1
clu

s2
clu

s3

clu
s_rnd

Design label

0.6

0.8

1.0

A
re

a

Area

Prec
ise clu

s0
clu

s1
clu

s2
clu

s3

clu
s_rnd

Design label

0.4

0.6

0.8

1.0

Po
w

er

Power

Cluster of statement reduction

Figure 12: Saving in terms of area and power by considering
the statement token clusters. Precise refers to the original
design, clus0, clus1, clus2 and clus3 are related to the designs
approximated according to the four clusters returned by the
our methodology in decreasing order of functional accuracy,
clus rnd indicates the average result for the design approxi-
mated by using a set of randomly chosen ATs.

of approximation targets, while the Semantic one can identify
clusters of targets, leading to higher savings at the cost of a

more time-consuming analysis due to the fault injection.

FUNDING, CONFLICTS OF INTERESTS, AND COMPETING
INTERESTS

Funding: this work has been partially supported by the
INdAM GNCS, and it was carried out within the PNRR
research activities of the consortium iNEST (Interconnected
North-Est Innovation Ecosystem) funded by the European
Union Next-GenerationEU (PNRR - Missione 4 Componente
2, Investimento 1.5 - D.D. 1058 23/06/2022, ECS-00000043).
Conflict of interest: the authors declare no conflict of inter-
ests.

REFERENCES

[1] A. Bosio, D. Menard, and O. Sentieys, Eds., Approximate computing
techniques, 1st ed. Cham, Switzerland: Springer Nature, June 2022.

[2] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze,
and M. Oskin, “Accept: A programmer-guided compiler framework for
practical approximate computing,” University of Washington Technical
Report UW-CSE-15-01, vol. 1, no. 2, 2015.

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. of IEEE ETS, 2013.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in Proc. of ACM/IEE DAC, 2013.

13

[5] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proc. of ACM/IEE DAC, 2015.

[6] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospective
view of approximate computing,” Proceedings of the IEEE, vol. 108,
no. 3, pp. 394–399, 2020.

[7] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, March 2016.

[8] S. Barone, M. Traiola, M. Barbareschi, and A. Bosio, “Multi-objective
application-driven approximate design method,” IEEE Access, vol. 9, pp.
86 975–86 993, 2021.

[9] S. Mitra, M. Das, A. Banerjee, K. Datta, and T.-Y. Ho, “A verification
guided approach for selective program transformations for approximate
computing,” in Proc. of IEEE ATS, 2016.

[10] H. Foster, D. Lacey, and A. Krolnik, Assertion-Based Design, 2nd ed.
USA: Kluwer Academic Publishers, 2003.

[11] A. Bosio, M. Bragaglio, S. Germiniani, S. Mori, G. Pravadelli, and
M. Traiola, “Assertion-aware approximate computing design exploration
on behavioral models,” in 2022 IEEE 23rd Latin American Test Sympo-
sium (LATS), 2022, pp. 1–6.

[12] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proc. of ACM ESEC/FSE, 2011.

[13] K. Nepal, Y. Li, R. Bahar, and S. Reda, “Abacus: A technique for
automated behavioral synthesis of approximate computing circuits,” in
Proc. of ACM/IEEE DATE, 2014.

[14] M. Barbareschi, S. Barone, A. Bosio, J. Han, and M. Traiola, “A genetic-
algorithm-based approach to the design of DCT hardware accelerators,”
ACM Journal on Emerging Technologies in Computing Systems, vol. 18,
no. 3, pp. 1–25, July 2022.

[15] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proceedings of the IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

[16] W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E. E. Swartzlander, and
F. Lombardi, “Design and analysis of approximate redundant binary
multipliers,” IEEE Transactions on Computers, vol. 68, no. 6, pp. 804–
819, 2018.

[17] V. Mrazek, L. Sekanina, and Z. Vasicek, “Libraries of approximate
circuits: Automated design and application in cnn accelerators,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 10, no. 4, pp. 406–418, 2020.

[18] D. Ma, R. Thapa, X. Wang, C. Hao, and X. Jiao, “Workload-aware
approximate computing configuration,” in Design, Automation Test in
Europe Conference Exhibition (DATE) (in press), 2021, February 2021,
pp. 258–261.

[19] G. Zervakis, H. Amrouch, and J. Henkel, “Design automation of ap-
proximate circuits with runtime reconfigurable accuracy,” IEEE access,
vol. 8, pp. 53 522–53 538, 2020.

[20] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approx-
imate hardware under joint precision and voltage scaling,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, March
2017, pp. 187–192.

[21] P. Huang, C. Wang, W. Liu, F. Qiao, and F. Lombardi, “A hardware/-
software co-design methodology for adaptive approximate computing
in clustering and ann learning,” IEEE Open Journal of the Computer
Society, vol. 2, pp. 38–52, 2021.

[22] X. F. M. Ye and S. Wei, “Runtime hardware security verification using
approximate computing: A case study on video motion detection,” in
Proc. of IEEE AsianHOST, 2019.

[23] F. P. T. Isenberg, M.C. Jakobs and H. Wehrheim, “Validity of software
verification results on approximate hardware,” in IEEE Embedded Sys-
tems Letters, 2018.

[24] Y. M. K. Yoshisue and T. Ishihara, “Dynamic verification of approximate
computing circuits using coverage-based grey-box fuzzing,” in Proc. of
IEEE IOLTS, 2021.

[25] “Standard for property specification language (PSL),” IEC
62531:2012(E) (IEEE Std 1850-2010), pp. 1–184, 2012.

[26] S. Germiniani and G. Pravadelli, “Harm: A hint-based assertion miner,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 11, pp. 4277–4288, 2022.

[27] https://github.com/SamueleGerminiani/harm. Last accessed 2024-01-22.
[28] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on

Information Theory, vol. 28, no. 2, pp. 129–137, 1982.
[29] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

Alberto Bosio received his MSc (2003) and PhD (2006) in Computer
Engineering in the area of digital systems dependability at the Politecnico di
Torino (Italy). He is now a Full Professor at Ecole Centrale de Lyon, Institue
of Nanotechnology (France). His research activities are related to the design
and test of advanced digital circuits and systems. He served as committee
and organizing member in several international conferences including DATE
(Track Chair) and ETS (Program Chair) as well as guest editors for many
international journals. He is a member of the IEEE and the Vice-Chair of the
European Test Technical Technology Council.

Samuele Germiniani Samuele Germiniani received the PhD degree in
Computer Science from the University of Verona, Italy, in 2023, where he
is currently a post-doc research fellow at the Department of Engineering for
Innovation Medicine. His main research interests are related to semi-formal
verification and embedded security of cyberphysical systems. He is a member
of the IEEE.

Marcello Traiola received the Ph.D. degree in Computer Engineering in 2019
from the University of Montpellier, France and the Laurea degree (MSc) in
Computer Engineering in 2016 from the University of Naples Federico II,
Italy. Currently, he is a tenured Research Scientist with the Inria Research
Institute, at the IRISA laboratory in Rennes, France, in the TARAN research
team. Previously, he was a postdoctoral researcher at the Lyon Institute of
Nanotechnology, École Centrale de Lyon, in France. His main research topics
are emerging computing paradigms (approximate computing, in-memory
computing) with special interest in hardware design, test, and reliability.
He served as committee and organizing member in several international
conferences as DATE (Review Chair). He is an IEEE and ACM member and
responsible for the Test Technical Technology Community (TTTC) website.
More informations at https://people.rennes.inria.fr/Marcello.Traiola/

Graziano Pravadelli PhD in computer science, IEEE senior member, IFIP
10.5 WG chair, is full professor of information processing systems at the
Department of the Engineering for Innovation Medicine at the University of
Verona (Italy) since 2018. In 2007 he co-founded EDALab s.r.l., an SME
working on the design of IoT-based monitoring systems. His main interests
focus on system-level modeling, simulation and semi-formal verification of
embedded systems, as well as on their application to develop virtual coaching
and telemedicine platforms for people with special needs.

https://github.com/SamueleGerminiani/harm

	Introduction
	Related work
	Preliminary definitions
	Methodology overview
	Overview of the syntax-based method
	Overview of the semantic-based method

	Assertion mining
	Syntax-based method
	Syntactic data extraction
	Syntactic impact estimation
	Syntactic ranking

	Semantic-based method
	Faulty traces generation
	Semantic impact estimation
	Semantic ranking

	Case Study
	Results for the syntactic-based approach
	Results for the semantic-based approach

	Conclusions
	References
	Biographies
	Alberto Bosio
	Samuele Germiniani
	Marcello Traiola
	Graziano Pravadelli

