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A B S T R A C T

Conjugate heat transfer in heat exchangers is at the heart of numerous industrial appli-
cations. Topology optimization (TO) is a promising numerical method that allows for
the design of high-performance thermo-hydraulic systems from scratch. However,
full-scale three-dimensional thermofluidic TO remains largely within the academic
sphere and has yet to be easily explored by thermal engineers. To bridge this gap, this
paper presents an integrated design workflow tailored for three-dimensional, high-
resolution topology optimization of conjugate heat transfer systems, incorporating a
mean compliance constraint to ensure structural integrity and load-bearing capabil-
ity. This is achieved using a dual-mesh approach within the density-based TO frame-
work. We also introduce Tanatloc, a user-friendly graphical user interface developed
in JavaScript, which provides versatile functionalities and an interactive experience
for thermal engineers. Finally, a 3D printed metal-based prototype is fabricated, and
reverse engineering is conducted to reconstruct a CAD model using CT-scan images,
paving the way for future experimental investigations.

1. Introduction
Heat exchangers are devices designed to transfer thermal energy between a fluid and a solid (heat sink,
also known as a passive heat exchanger) or between two or more fluids (known as a bi-fluid heat ex-
changer). Conjugate heat transfer of heat exchangers are at the heart of numerous industrial applications,
ranging from combustion engine cooling, air conditioning, power production, and refrigeration, to the
recent advancements in microelectronic packaging and micro-reactors [1]. Despite their widespread use
in industry and coverage in basic heat and mass transfer courses, heat exchangers are typically designed
using empirical methods based on classical heat transfer theory, where geometric layouts are predefined
intuitively. The ability to predict thermohydraulic behavior can significantly benefit from advanced design
and optimization techniques.
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Topology optimization (TO) is a promising numerical method that combines simulations with mathe-
matical optimization algorithms to deliver conceptual designs with a high degree of design freedom. It
allows designers to start from scratch and maximize functional performance, facilitating an optimization
process. TO originated in structural optimization, with the seminal paper by Bendsøe and Kikuchi [2]
introducing the homogenization-based design approach. However, this method was considered complex
and often resulted in solutions that could not be manufactured. The advent of simpler approaches such
as the density-based approach and the level set-based method provided researchers with accessible TO
techniques, enabling the exploration of more complicated multiphysics problems, including thermoflu-
idic challenges. We refer readers to three review articles for a more comprehensive overview of this
field [3–5]. Since the early works [6–9], thermofluidic topology optimization has advanced significantly
in various directions, such as multi-objective trade-offs [10, 11] and pseudo-3D modeling [12–15], and
recently multi-scale cooling [16–18] although many studies remain limited to two-dimensional settings.
Given that real-world applications are inherently three-dimensional, full-scale 3D thermofluidic TO has
become increasingly attractive in both academia and industry.
In the literature on full-scale three-dimensional topology optimization of thermofluidic problems, we
summarize selected representative works in Table 1, highlighting different design strategies and numerical
techniques. The categorization of these works is visualized in the Sankey diagram shown in Fig. 1, with
a brief discussion of these categories below.
Fluid flow can be steady or unsteady state, and further classified into laminar, turbulent, or Darcy flow.
Steady-state flows are simpler and less computationally intensive [19–38], whereas unsteady flows capture
transient phenomena but require more computational resources [39–41]. Laminar flows are easier to
model but less representative of practical applications [19, 20, 22, 25–33, 35–41], while turbulent flows,
though more complex and computationally demanding, are more realistic [21, 34]. Darcy flow is specific
to porous media and provides insights into fluid movement through such materials [23, 24].
Topology optimization methods include density-based approaches, the level-set method, moving mor-
phable components, and the ersatz level-set method. Density-based approaches are widely used due to
their simplicity and robustness but may suffer from misinterpretation caused by the existence of grey-scale
elements (or cells) [20, 25, 26, 28, 30, 34, 41]. The level set method offers precise boundary descriptions
but is more computationally intensive, often requiring the reinitialization of the level-set function and the
computation of the signed distance function [24, 27, 29, 37, 39]. Moving Morphable components [33]
and the ersatz level-set method [19, 31, 38] combine aspects of both density-based and level set methods,
aiming to leverage their advantages while mitigating their disadvantages.
Sensitivity analysis can be performed using continuous adjoint, discrete adjoint, or automatic differentia-
tion. Continuous adjoint methods provide analytical sensitivities but can be complex to derive. Discrete
adjoint methods are more straightforward to implement numerically but require storage of the Jacobian
matrix from the governing equations, which can be memory-intensive. Automatic differentiation offers
high accuracy and ease of implementation, but comes with increased computational expense.
Various optimization algorithms are employed, including the method of moving asymptotes (MMA),
globally convergent MMA (GCMMA), steepest-descent, reaction-diffusion equation, Hamilton-Jacobi
equation, and null space optimizer. MMA and GCMMA are well-known for their robustness and effi-
ciency; they work by approximating the objective function with a convex approximation, making them
particularly effective for large-scale problems with complex constraints. The steepest-descent method, on
the other hand, is simple to implement and easy to understand, involving iterative steps in the direction
of the negative gradient to minimize the objective function, but it can be slow to converge, especially for
problems with ill-conditioned Hessians. Reaction-diffusion and Hamilton-Jacobi equations offer more
sophisticated approaches for handling complex design spaces. These methods often use the Augmented
Lagrangian method for updating Lagrange multipliers, which heavily relies on numerical implementa-
tion experience. The null space optimizer is effective in high-dimensional problems but seems to be
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less straightforward to implement. The interested readers are referred to in [42, 43] for a tutorial and a
comparison among some of these widely used optimizers.
Different numerical methods such as finite element analysis (FEA), finite volume method (FVM), lat-
tice Boltzmann method (LBM), and extended finite element method (XFEM) are used. FEA is versa-
tile and widely used in topology optimization community [19, 20, 23, 24, 26–31, 35–37], but FVM is
better suited for fluid flow problems because it inherently ensures local and global conservation prop-
erties [21, 22, 25, 32–34]. LBM, as an explicit numerical method, offers advantages in handling time-
dependent problems but can be less accurate [38, 40, 41]. XFEM allows for modeling discontinuities
within elements, adding complexity, but it is the most accurate approach for implementing the level-set
method without requiring body-fitted mesh adaptation [39]. Mesh types include fixed hexahedral mesh,
body-fitted mesh, isotropic adaptive mesh, anisotropic adaptive mesh, and fixed tetrahedral mesh. Fixed
hexahedral meshes are simple and efficient but less flexible. Body-fitted meshes provide accurate bound-
ary representation but are harder to generate [44]. Adaptive meshes (both isotropic and anisotropic) adjust
to the solution’s features, improving accuracy and efficiency but adding complexity to the mesh genera-
tion process. Fixed tetrahedral meshes offer flexibility in handling complex geometries but can be less
efficient compared to the adaptive mesh and less accurate than a good hexahedral mesh.
The tools used range from commercial software such as COMSOL Multiphysics, to in-house codes and
open-source software such as FeniCS, OpenFOAM, and FreeFEM. Commercial software provides robust
and user-friendly environments but can be expensive and may not be able to tackle large-scale problem.
Open-source software offers flexibility and cost savings but may require more effort to set up and use
effectively. In-house codes can be highly tailored to specific needs but require significant development
time and expertise.
The studies focus on various applications, including forced convection cooling devices, natural convec-
tion heat sinks, and bi-fluid heat exchangers. Forced convection devices utilize external means, such as
fans or pumps, to enhance the heat transfer process by actively moving the fluid over the heat exchange
surface [19, 21, 22, 24, 25, 27, 28, 32, 33, 35–37, 40]. In contrast, natural convection devices rely on
the buoyancy-driven flow of fluid caused by temperature differences, without any external mechanical
aid, to facilitate heat transfer [20, 23, 31, 38, 39, 41]. Bi-fluid heat exchangers are devices designed to
transfer heat between two different fluid flows, typically separated by solid walls to prevent mixing while
allowing efficient thermal exchange [26, 29, 30, 34]. By understanding these categories and their associ-
ated methodologies, one can appreciate the diverse approaches and trade-offs in the field of thermofluidic
topology optimization, guiding future research and application development.
As discussed above, although thermofluidic TO has seen tremendous development, it remains largely
within the academic sphere and has yet to be easily explored by engineers. This can be attributed to
various challenges, including but not limited to:

1. Accurate modeling of fluid flow motions requires solving the full Navier–Stokes equations rather
than relying on simplified models such as Newton’s law of cooling or Darcy’s law. Moreover, han-
dling high-resolution 3D cases necessitates constructing a distributed framework to handle large-
scale problems. This typically involves significant algorithmic efforts, including scalable domain
decomposition, matrix assembly, parallel interpolation, and linear solvers, which are not readily
available in general-purpose libraries. Many state-of-the-art works as shown in Table 1 rely on
multi-node clusters, posing a challenge in terms of affordability and accessibility for general users.

2. The lack of interpretation of TO results, including boundary descriptions, poses a challenge in
transforming these outcomes into models appropriate for post-processing, simulation, and man-
ufacturing applications. Some works presented CAD-oriented structural topology optimization
method [47], while most of the other works highlights optimized results using characteristic func-
tions and illustrates the cost function obtained from the TO solver, ensuring a high-quality inter-
pretation of these optimized structures is equally crucial for real-world product development.
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Steady laminar
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Overhang angle

Ersatz LSM

Density

LSM

MMC-Density

Continuous adj.
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A.D.

Semi-Continuous adj.

RDE

MMA

GCMMA

Steepest-descent

H-J

NLSPACE

FEA

XFEM

LBM

FVM

COMSOL

PETSc

Inhouse

Fortran

OpenFOAM

FreeFEM

FeniCS

C++

Fixed hex.

Fixed tetra.

Body-fitted

Iso. adapt.

Aniso. adapt.

FC HS

NC HS

SF HX

FC Channel

Bi-F HX

Loading [MathJax]/extensions/MathMenu.js

Fig. 1: Categorization of the 25 representative existing works summarized in Table 1 and their correlations.
(LSM: Level-Set Method; MMC: Moving Morphable Component; A.D.: Automatic Differentiation; RDE:
Reaction-Diffusion Equation; MMA: Method of Moving Asymptotes; GCMMA: Globally Convergent Method
of Moving Asymptotes; H-J: Hamilton-Jacobi Equation; NLSPACE: Null-Space Optimizer; FEA: Finite El-
ement Analysis; FVM: Finite Volume Method; LBM: Lattice Boltzmann Method; XFEM: Extended Finite
Element Method; Fixed hex.: Fixed hexahedrons; Fixed tetra.: Fixed tetrahedrons; Iso. adapt.: Isotropic
adaptive mesh; Aniso. adapt.: Anisotropic adaptive mesh; FS HS: Forced Convection Heat Sink; NC HS:
Natural Convection Heat Sink; SF HX: Single Fluid Heat Exchanger; Bi-F: Bi-Fluid Heat Exchanger).

3. The lack of user-oriented graphical user interface limits its accessibility and functionality. To date,
only a few studies demonstrate Graphical User Interfaces (GUIs) for topology optimization. Aage
developed the TopOpt App [48], available for iOS, Android, Windows, and OSX, later extended it
to TopOpt 3D [49], . These applications enable real-time interactive control over loading condi-
tions and support positions for minimum compliance problems, allowing users to visualize design
changes in real-time. Similarly, liteITD [50], implemented in MATLAB, focuses on the topology
optimization of 2D continuum structures using von Mises stress isolines. Designed primarily for
educational purposes, it supports multiple materials and loading conditions, offering a free, acces-
sible tool for students, designers, and engineers. Another notable application, Toptimiz3D [51],
goes beyond educational purposes by handling more complicated real-world geometries and un-
structured meshes. It addresses five different optimal design problems, including the minimum
compliance problem, multiload compliance problem, compliant mechanism problem, and stress
constraint problem, and integrates three optimizers for users to choose from, including MMA, OC,
and IPOPT. These GUIs represent significant strides in making topology optimization more in-
teractive, educational, and applicable to real-world design problems in the context of compliant
mechanical systems. Furthermore, Xie and his co-workers have successfully integrated their bi-
directional evolutionary structural optimization (BESO) technique into the commercial topology
optimization software package, Ameba [52, 53]. This tool provides a robust platform for a variety
of design applications, particularly in architecture [54] enabling designers to leverage advanced
topology optimization methods in real-world products. However, to the best of our knowledge,
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very few GUI tools have been specifically dedicated to multiphysics topology optimization, such
as thermofluidic problems. Notable exceptions include Diabatix [55] and ToffeeX [56], though the
lack of detailed documentation regarding their algorithms makes it less straightforward for users to
understand the theoretical background and engage with these tools.

This paper aims to narrow the gap between recent advancements in thermofluidic TO techniques and their
practical applications by taking a stride in this direction. We present a comprehensive workflow tailored
for three-dimensional, high-resolution design optimization for conjugate heat transfer systems. A mean
compliance constraint is introduced into the optimization formulation, ensuring both structural integrity
and load-bearing capability. We conduct numerous numerical test cases to illustrate distinct trade-offs
between thermal-hydraulic-structural performances. A highlight of our algorithm is the use of a dual-
mesh approach within the density-based TO framework, allowing us to achieve feature-rich designs on a
high-resolution fixed mesh of approximately 4.5 million tetrahedral elements while performing forward
and adjoint analyses on a locally refined mesh to enhance computational efficiency. Additionally, we
showcase Tanatloc, a user-friendly graphical user interface developed in JavaScript, which offers versatile
functionalities and an interactive user experience for thermal engineers. Eventually, we fabricate a 3D
printed metal-based prototype and reconstruct the CAD model using CT-scan images, paving the way for
further experimental investigations.
The remainder of this paper is structured as follows: in Section 2, we present the mathematical framework
for the thermal-fluid structure system, including the material interpolation, filtering, projection schemes,
optimization mathematical model, and sensitivity analysis. In Section 3, we delve into the implementation
details of the optimization algorithms. In Section 4, we showcase the proposed TO framework through
various numerical examples. Following that, we introduce a user interface in Section 5. Finally, we
present the fabrication of a metal-based prototype in Section 6, and conclude by discussing the future
work in Section 7.

2. Formulation
In this section, we start by presenting the governing equations for fluid flow, conjugate heat transfer, and
linear elasticity in Section 2.1. Then, we illustrate the material interpolation functions, PDE filtering and
projection scheme in Section 2.2. Finally, we formulate the optimal design problem for a weakly coupled
thermal-fluid structure system in Section 2.3, followed by the sensitivity analysis.
2.1. Governing equations
2.1.1. Fluid flow
The fluid motion within a fixed and bounded domain Ω in ℝ𝑑 , where 𝑑 = 2 or 3, is described by the
velocity field 𝒗 ∶ Ω → ℝ𝑑 and pressure 𝑝 ∶ Ω → ℝ. This motion, characterized by the Reynolds number
Re ≡ 𝜌𝑈𝐿∕𝜇, where 𝜌 is the fluid density, 𝑈 is the characteristic velocity, and 𝜇 is the dynamic viscosity
of the fluid. The fluid flow is governed by the incompressible, steady-state Navier-Stokes equations under
laminar conditions, as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−div
(

𝝈f(𝒗, 𝑝)
)

+ (𝒗 ⋅ ∇)𝒗 = 𝒇 in Ω,
−div(𝒗) = 0 in Ω,

𝒗 = 𝒗0 on Γin,
𝝈f(𝒗, 𝑝) ⋅ 𝒏 = 𝟎 on 𝜕Ω𝑁

(𝒗,𝑝),

𝒗 = 𝟎 on Γwall.

(1)
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In the above system of equations, the internal stress of the fluid is modeled with the fluid stress tensor
𝝈f(𝒗, 𝑝), which is defined as follows:

𝝈f(𝒗, 𝑝) ≔
2
Re

𝑒(𝒗) − 𝑝𝐈, (2)

where the rate of strain tensor is defined as 𝑒(𝒗) ≔ 1
2
(

∇𝒗 + ∇𝒗T
). A fictitious body force 𝒇 = −𝛼(𝒙)𝒗,

representing the fluid flows through a porous medium is used to penalize flow in solid regions. The inverse
permeability 𝛼(𝒙) varies with spatial position 𝒙 and is defined as follows:

𝛼 (𝒙) =

{

0 if 𝒙 ∈ Ωf,
𝛼max if 𝒙 ∈ Ω∖Ωf.

(3)

The unit normal vector 𝒏 is directed from Ωf towards Ωs.
The boundary 𝜕Ω(𝒗,𝑝) is composed of a Dirichlet boundary 𝜕Ω𝐷

(𝒗,𝑝) and a Neumann boundary 𝜕Ω𝑁
(𝒗,𝑝).

On 𝜕Ω𝐷
(𝒗,𝑝) = Γin ∪ Γwall, fluid enters Ω via the inlet Γin with a given velocity profile 𝒗0, and a no-slip

boundary condition is imposed on the wall Γwall. On 𝜕Ω𝑁
(𝒗,𝑝) (or outlet part), the fluid exits Ω with a zero

normal stress vector.
For the Navier-Stokes equations outlined in Eq. (1), using the finite element analysis (FEA), we derive the
weak forms of the Jacobian and the residual at a given linearization point (𝒗, 𝑝) for an increment (𝛿𝒗, 𝛿𝑝),
with the Pressure-Stabilizing Petrov–Galerkin (PSPG), as follows:

𝐹 (𝒗, 𝑝) =∫Ω
((𝒗 ⋅ ∇)𝒗) ⋅ 𝒗̃ dΩ + 2

Re ∫Ω
𝑒(𝒗) ∶ ∇𝒗̃ dΩ

− ∫Ω
𝑝∇ ⋅ 𝒗̃ dΩ − ∫Ω

𝑝̃∇ ⋅ 𝒗 dΩ + ∫Ω
𝛼(𝒙)𝒗 ⋅ 𝒗̃ dΩ − ∫𝜕Ω

(

𝝈f(𝒗, 𝑝) ⋅ 𝒏
)

⋅ 𝒗̃ dΓ

−
∑

𝐾∈
∫Ω𝑒

𝜏PSPG∇𝑝̃ ⋅ ((𝒗 ⋅ ∇)𝒗 + ∇𝑝 + 𝛼(𝒙)𝒗) dΩ𝑒 ∀(𝒗̃, 𝑝̃) ∈ U𝒗,𝑝, (𝒗, 𝑝) ∈ U𝒗,𝑝,

(4a)

𝐷𝐹 (𝒗, 𝑝)(𝛿𝒗, 𝛿𝑝) =∫Ω
((𝛿𝒗 ⋅ ∇)𝒗) ⋅ 𝒗̃ dΩ + ∫Ω

((𝒗 ⋅ ∇)𝛿𝒗) ⋅ 𝒗̃ dΩ + 2
Re ∫Ω

𝑒(𝛿𝒗) ∶ ∇𝒗̃ dΩ

− ∫Ω
𝛿𝑝∇ ⋅ 𝒗̃ dΩ − ∫Ω

𝑝̃∇ ⋅ 𝛿𝒗 dΩ + ∫Ω
𝛼(𝒙)𝛿𝒗 ⋅ 𝒗̃ dΩ − ∫𝜕Ω

(

𝝈f(𝛿𝒗, 𝛿𝑝) ⋅ 𝒏
)

⋅ 𝒗̃ dΓ

−
∑

𝐾∈
∫Ω𝑒

𝜏PSPG∇𝑝̃ ⋅ ((𝛿𝒗 ⋅ ∇)𝒗 + (𝒗 ⋅ ∇)𝛿𝒗 + ∇𝛿𝑝 + 𝛼(𝒙)𝛿𝒗) dΩ

−
∑

𝐾∈
∫Ω𝑒

(

𝛿(𝒗,𝑝)𝜏PSPG
)

∇𝑝̃ ⋅ ((𝒗 ⋅ ∇)𝒗 + ∇𝑝 + 𝛼(𝒙)𝒗) dΩ

∀(𝒗̃, 𝑝̃) ∈ U𝒗,𝑝, (𝒗, 𝑝) ∈ U𝒗,𝑝,
(4b)

where 𝒗̃ and 𝑝̃ are the test functions, with the Hilbert space U𝒗,𝑝 defined as follows:
U𝒗,𝑝 ≔

{

(𝒗̃, 𝑝̃) ∈ 𝐻1 (Ωf ,ℝ𝑑) × 𝐿2 (Ωf
)

∣ 𝒗̃ = 0 on 𝜕Ω𝐷
f
}

. (5)
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The stabilization parameter 𝜏PSPG is defined as follows [57]:

𝜏PSPG =
(

𝜏−21 + 𝜏−23 + 𝜏−24
)−1∕2 , (6)

where 𝜏1, 𝜏3, and 𝜏4 are defined as follows:

𝜏1 =
ℎ

2
√

𝒗 ⋅ 𝒗
, 𝜏3 =

ℎ2

12∕Re
, 𝜏4 =

1
𝛼(𝒙)

, (7)

where ℎ denotes the mesh element size. The variation of the stabilization term 𝛿(𝒗,𝑝)𝜏PSPG in Eq. (4b) is
derived in Eq. (A.5).
Subsequently, the nonlinear problem is solved using a Newton method with a tolerance value set to 10−6,
wherein the following linearized equations are solved in sequence: Find (𝛿𝒗, 𝛿𝑝) ∈ U𝒗,𝑝 with 𝛿𝒗 = 0 on
𝜕Ω𝐷

(𝒗,𝑝) such that:
𝐷𝐹 (𝒗, 𝑝)(𝛿𝒗, 𝛿𝑝) = 𝐹 (𝒗, 𝑝). (8)

2.1.2. Conjugate heat transfer
Once the Navier-Stokes equations are solved, they are then weakly coupled with the non-dimensional
steady-state convection-diffusion equation governing the conjugate heat transfer within the system, char-
acterized by the temperature 𝑇 ∶ Ω → ℝ, as follows:

⎧

⎪

⎨

⎪

⎩

Re Pr(𝒗 ⋅ ∇𝑇 ) − div(𝜅(𝒙)∇𝑇 ) = 0 in Ω,

𝑇 = 𝑇0 on 𝜕Ω𝐷
𝑇 ,

𝜅(𝒙)∇𝑇 ⋅ 𝒏 = 0 on 𝜕Ω𝑁
𝑇 ,

(9)

where Pr ≡ 𝑐𝑝𝜇∕𝜅 denotes the Prandtl number, where 𝑐𝑝 is the specific heat capacity. The thermal
conductivity 𝜅(𝒙) varies with spatial position 𝒙 and is defined as follows:

𝜅 (𝒙) =

{

𝜅f if 𝒙 ∈ Ωf,
𝜅s if 𝒙 ∈ Ω∖Ωf.

(10)

The boundary 𝜕Ω𝑇 consists of a Dirichlet boundary 𝜕Ω𝐷
𝑇 and a Neumann boundary 𝜕Ω𝑁

𝑇 . Specifically,
𝜕Ω𝐷

𝑇 = Γin ∪ Γhot, where the inlet Γin admits cold fluid with a lower temperature, while the hot wall Γhothas a high temperature imposed on it. The remaining boundaries are subject to an adiabatic boundary
condition.
The convection-diffusion equation defined in Eq. (9) can be written in weak form as: find 𝑇 ∈ P with
𝑇 = 𝑇0 on 𝜕Ω𝐷

𝑇 such that:

∫Ω
Re Pr(𝒗 ⋅ ∇𝑇 )𝑇̃ dΩ + ∫Ω

𝜅(𝒙)∇𝑇 ⋅ ∇𝑇̃ dΩ = 0 ∀𝑇̃ ∈ P , 𝑇 ∈ P , (11)

with the Hilbert space P defined as follows:
P ≔

{

𝑝̃ ∈ 𝐻1(Ω) ∣ 𝑝̃ = 0 on 𝜕Ω𝐷
𝑇
}

. (12)

2.1.3. Linear elasticity
Finally, given the velocity 𝒗, pressure 𝑝, and temperature 𝑇 within the computational domain Ω, we can
calculate the displacement 𝒖 ∶ Ω → ℝ𝑑 as the solution to a linear elasticity system. In this paper, we
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make the following assumptions: (1) Small displacements and deformations are observed, implying that
the changes in the fluid-structure boundaries Γs,f are negligible when the solid interacts with the viscous
fluid flow load. (2) The effects of body forces and gravity are neglected. (3) The linear thermoelasticity
system comprises materials with negligible thermal expansion coefficients over the temperature range of
interest, meaning that the structural response is primarily influenced by mechanical loading rather than
thermal effects or the viscous fluid flow load. Note that for completeness, the thermal expansion term is
included in the formulation.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−div
(

𝝈s (𝒖, 𝑇 )
)

= 0 in Ω,

𝒖 = 𝒖0 on 𝜕Ω𝐷
𝒖 ,

𝝈s (𝒖, 𝑇 ) ⋅ 𝒏 = 𝒕 on 𝜕Ω𝑁
𝒖 ,

𝝈s (𝒖, 𝑇 ) ⋅ 𝒏 = 𝝈f(𝒗, 𝑝)𝒏 on Γs,f,

(13)

With the isotropic thermoelastic material characterized by Lamé coefficients 𝜆 and 𝜇, thermal expansion
coefficient 𝛼𝑇 , and reference temperature 𝑇ref, the solid stress tensor is defined as:

𝝈s (𝒖, 𝑇 ) = ℂ (𝒙) ∶ 𝑒(𝒖) − 𝛼𝑇
(

𝑇 − 𝑇ref
)

𝐈. (14)
The fourth-order elasticity tensor ℂ in Eq. (14) is defined as follows:

ℂ ≔ 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇
(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

, (15)
where 𝛿𝑖𝑗 denotes the Kronecker delta function. The elasticity tensor varies depending on spatial position
𝒙 as follows:

ℂ (𝒙) =

{

ℂv if 𝒙 ∈ Ωf,
ℂs if 𝒙 ∈ Ω∖Ωf.

(16)

Then, the Lamé equation defined in Eq. (9) can be written in weak form as: find 𝒖 ∈ U with 𝒖 = 𝒖0 on
𝜕Ω𝐷

𝒖 such that:

∫Ω
(𝑒(𝒖) ∶ ℂ(𝒙)) ∶ 𝑒(𝒖̃) dΩ = ∫Ω

𝛼𝑇
(

𝑇 − 𝑇ref
)

I ∶ ∇𝒖̃ dΩ+∫𝜕Ω𝑁
𝒖

𝒕 ⋅ 𝒖̃ dΓ ∀𝒖̃ ∈ U , 𝒖 ∈ U , (17)

with the Hilbert space U defined as follows:
U ≔

{

𝒖̃ ∈ 𝐻1 (Ω,ℝ𝑑) ∣ 𝒖̃ = 0 on 𝜕Ω𝐷
𝑠
}

. (18)

2.2. Material interpolation functions
To perform topology optimization, a pseudo-density field 𝛾 (𝒙) continuously varying between 0 and 1, is
introduced. The solid phase is represented by 𝛾 (𝒙) = 0 and the fluid phase by 𝛾 (𝒙) = 1, i.e.:

𝛾 (𝒙) =

{

0 if 𝒙 ∈ Ωs,
1 if 𝒙 ∈ Ωf.

H. Li, S. Garnotel, P. Jolivet, H. Ogawa et al. Page 9 of 40



To mitigate the well-known checkerboard phenomenon, filtering techniques are employed [58, 59]. The
design variables 𝛾 is smoothened by solving the following PDE with 𝑟 the regularization parameter:

{

−𝑟2Δ𝛾̃ + 𝛾̃ = 𝛾 in Ω,
∇𝛾̃ ⋅ 𝒏 = 0 on 𝜕Ω.

(19)

The weak form for Eq. (19) is as follows: find 𝛾̃ ∈ P such that:

∫𝐷
𝑟2∇𝛾̃ ⋅ ∇𝑣 + 𝛾̃𝑣dΩ = ∫𝐷

𝛾𝑣dΩ ∀𝛿𝑣 ∈ P , 𝛾̃ ∈ P . (20)

A smoothed Heaviside function is used to obtained the projected density field 𝛾̂ with the threshold 𝜂 and
sharpness 𝛽:

𝛾̂(𝛾̃ , 𝛽, 𝜂) =
tanh(𝛽𝜂) + tanh(𝛽(𝛾̃ − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

. (21)

Then, the inverse permeability 𝛼 (𝛾̂), thermal conductivity 𝜅 (𝛾̂), and elasticity tensor ℂ (𝛾̂) can be inter-
polated as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼 (𝛾̂) = 𝛼max
𝑞𝛼 (1 − 𝛾̂)
𝑞𝛼 + 𝛾̂

,

𝜅 (𝛾̂) = 1 +
(

𝜅s
𝜅f

− 1
)

𝑞𝜅 (1 − 𝛾̂)
𝑞𝜅 + 𝛾̂

,

ℂ (𝛾̂) = ℂv + (1 − 𝛾̂)𝑞ℂ
(

ℂs − ℂv
)

.

(22)

where 𝑞𝛼 , 𝑞𝜅 and 𝑞ℂ are the penalty factors for 𝛼, 𝜅, and ℂ respectively. The projection threshold 𝜂 is set
to 0.5. For the projection sharpness 𝛽, a continuation scheme is employed as follows:

𝛽it+1 = min
(

60, 𝛽it + 0.2
)

, 𝛽1 = 1.0, (23)
where the subscript denotes the optimization iteration number. Note that in comparison to the stepwise
continuation approach, where 𝛽 is held constant for a set number of iterations before being increased, the
incremental continuation scheme employed in this work offers a smoother transition by gradually increas-
ing 𝛽 at each iteration. While the stepwise approach provides more stable sensitivity calculations within
each block of iterations, it can lead to abrupt changes when 𝛽 is increased. The incremental approach,
on the other hand, promotes smoother transitions, enhancing optimization speed by avoiding disruptive
changes. Although this may slightly reduce sensitivity accuracy in the early stages, this is not an issue
during the conceptual design phase, where the focus is on broad exploration rather than fine-tuning.
2.3. Optimization problem
The focus of this study is to develop pin-fin structures that strike a balance between maximizing heat trans-
fer by the fluid phase and minimizing viscous energy dissipation, while also meeting a maximum allowed
mean compliance to ensure the load-carrying capacity of the optimized fin structures. The schematic
diagram illustrating the design settings is presented in Fig. 2. As depicted in Fig. 2a, we assume that
the fin structures are arranged periodically in the 𝑦-direction, with the design domain highlighted in pur-
ple. Further details of our design model are outlined in Fig. 2b. The computational domain measures
3.0 × 0.5 × 0.5. A cold fluid flow, characterized by the Reynolds number Re, enters the computational
domain through an inlet boundary denoted as Γin (left end of the domain), with a prescribed velocity
𝒗 = 𝒗0 exhibiting a parabolic profile 𝒗 = 𝒗(𝑧) and a prescribed temperature 𝑇 = 0. The fluid exits the
domain through the outlet boundary Γout (right end of the domain) with a zero normal-stress boundary
condition. The top and side walls are subject to a free-slip boundary condition, expressed as 𝒗 ⋅ 𝒏 = 0,
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while the bottom wall has a no-slip boundary condition, represented as 𝒗 = 𝟎. The middle portion of
the bottom wall is imposed to have a prescribed high temperature of 𝑇 = 1, and an adiabatic boundary
condition, ∇𝑇 ⋅ 𝒏 = 0, is imposed on the side walls and the top wall. Additionally, a surface traction 𝑡 is
applied to the middle portion of the bottom wall, while the top wall is held fixed with 𝒖 = 𝟎.

(a) Highlighting of the design domain within the periodically arranged fin structures is depicted in purple.
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(b) Optimization design model.

Fig. 2: Schematic diagram of the design setting.

The objective function considered is to maximize the heat flux out of the system, and the corresponding
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optimization mathematical model is formulated as follows:

min
𝛾∈

𝐽 (Ω) = −∫Γout
(𝒗 ⋅ 𝒏) 𝑇 dΓ, (24a)

s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Eqs. (1), (9) and (13),
𝐺1 =

∫𝐷 1 − 𝛾̂ dΩ
∫𝐷 dΩ

≤ 𝑉max,

𝐺2 = Φ(Γ, 𝒗(Γ), 𝑝(Γ)) ≤ Φmax,
𝐺3 = Ψ(Γ, 𝒖(Γ)) ≤ 𝐶CompΨ0,

0 ≤ 𝛾 (𝒙) ≤ 1 ∀𝒙 ∈ 𝐷,

(24b)

where 𝐺1, 𝐺2, and 𝐺3 represent the volume constraint, energy dissipation constraint, and mean compli-
ance constraint, respectively. 𝑉max denotes the maximum allowable volume fraction for the solid phase.
Φmax indicates the maximum allowed viscous energy dissipation by the fluid. Ψ0 denotes the mean com-
pliance at the initial iteration, and 𝐶Comp indicates the maximum permitted mean compliance fraction
with respect to the initial value. The energy dissipation, Φ, and mean compliance, Ψ, are formulated as
follows:

Φ(Γ, 𝒗(Γ), 𝑝(Γ)) = ∫Γin∪Γout

(

𝑝 + 1
2
|𝒗|2

)

(

−𝒗 ⋅ 𝒏f
)

dΓ, (25a)

Ψ(Γ, 𝒖(Γ)) = ∫𝜕Ω𝑁
𝒖

𝒕 ⋅ 𝒖 dΓ. (25b)

Sensitivity analysis can be conducted using the adjoint method, which can be further classified into con-
tinuous and discrete adjoint methods. To ensure this paper is self-contained, we briefly discuss both
methods. The choice between them depends on user preference and software requirements. This method-
ology is well-documented in various textbooks, such as [60]. Interested readers are encouraged to refer
to these textbooks for a more mathematical background.
For the optimum design problem defined in Eq. (24), evaluating the sensitivities w.r.t. the objective 𝐽
and the two constraint functions (𝐺2 and 𝐺3) requires solving three systems of adjoint equations. Each
adjoint system involves solving the adjoint elasticity equation (only if the displacement depends on ther-
mal expansion), adjoint convection-diffusion equation, and adjoint Navier-Stokes equations in a weakly
coupled manner. Note that for a given system, two Gâteaux derivatives are required for both the residual
𝐫 and cost functions 𝐽 and 𝐺𝑖: one w.r.t. the design variable 𝛾 and the other w.r.t. the state variables 𝐬.
These Gâteaux derivatives can be obtained either analytically or using symbolic differentiation tools. In
this paper, we derived them manually.
To this end, the continuous adjoint method involves deriving the adjoint equations from the continuous
form of the governing equations before discretizing them. This method provides analytical expressions
for the adjoint systems, which can be highly accurate in the continuous sense but mathematically intensive
and complex. The derivation of the continuous adjoint equations can be found in Appendix A.1.
Alternatively, the discrete adjoint method involves first discretizing the governing equations and then
deriving the adjoint equations from this discrete form. For instance, in the case of the adjoint Navier-
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Stokes equations, the Jacobian matrix built for the final non-linear Newton iteration is reused, provided
that the Newton tolerance is sufficiently small [57]. The transposed Jacobian is then used to solve the
adjoint problems with the corresponding right-hand sides. The derivation of the discrete adjoint equations
is detailed in Appendix A.2.
The design variable 𝛾 is updated through the method of moving asymptotes (MMA) [61]. During each
optimization iteration, the sensitivities serve as input parameters. Subsequently, a convex approximating
subproblem is formulated and solved.

3. Implementation details
As previously mentioned, thermofluidic TO cases demand substantial computational resources due to the
repeated solving of weakly coupled systems of equations (governing and adjoint equations). Moreover,
achieving a high-resolution TO design in a three-dimensional context requires a fine mesh, especially
around the fluid–solid interface, intensifying the challenge. To address these challenging issues, this
paper proposes a distributed density-based TO framework that integrates anisotropic mesh adaptation.
More specifically, we use the ℎ-adaptation technique [62, 63] which is recently popularized in the level
set-based TO framework [37, 64, 65]. In this paper, ParMmg [66] is used to perform the ℎ-adaptation in
a distributed fashion, and Mmg [67] to generate body-fitted meshes with a single-core code.
FreeFEM [68, 69] is used to discretize the PDEs presented in Section 2, while PETSc [70] serves as the
distributed linear algebra backend. FreeFEM is a domain-specific language (DSL) designed to perform
finite element analyses with a high level of abstraction. Once the weak (or variational) form of a partial
differential equation is established, users are relieved from the cumbersome tasks inherent to the finite ele-
ment method, such as vector or matrix assembly and mesh adaptation, as these can be efficiently executed
within the FreeFEM DSL using a syntax that closely resembles the mathematical formulation. PETSc, on
the other hand, is an algebraic backend widely used in scientific libraries globally and has been deployed
on a range of architectures, from laptops to large exascale systems. Together, this ecosystem offers a flex-
ible infrastructure to handle coupled and high-dimensional systems of equations using Message Passing
Interface (MPI) for distributed-memory parallelism.
The proposed TO algorithm utilizes two different meshes. The first, denoted as analysis, is used for solving
the governing and adjoint equations. Specifically, at each optimization iteration, a metric tensor ,
constructed based on error estimations involving the Hessian of the target output (i.e., 𝛾̂), regulates mesh
sizes and edge directions. The second mesh, design, remains fixed throughout the optimization process
and is used for updating design variables and conducting PDE-filter operations. The use of a fixed-
design mesh simplifies the implementation of the MMA algorithm, as it mandates the number of design
variables to remain consistent across iterations, see similar “mesh-independent” approaches in the context
of structural optimization [65, 71]. Note that the mesh size must be smaller than or equal to the filter radius.
An efficient finite element interpolator is used to conduct interpolations between these two meshes [68].
Now, we provide details in Algorithm 1 of the optimization algorithm. First, we partition analysis and
design using METIS [72]. Subsequently, we build PETSc matrices to enable the interaction between
FreeFEM and PETSc. We define the finite element spaces, declare the unknowns, and define the weak
forms for the PDEs. We summarize in Table 2 the physics-tailored preconditioners used for solving the
PDEs. Within the optimization loop, the governing equations are solved to compute velocity, pressure,
temperature, and displacement fields, and the objective and constraint values are computed. Next, the ad-
joint equations are solved to obtain adjoint variables, and sensitivities are computed. These sensitivities
are then interpolated from analysis to design. The design variables are updated using MMA, and the up-
dated variables are interpolated from design to analysis. Afterward, the analysis mesh analysis is remeshed
for the subsequent optimization iteration simulation, while the density, velocity, and pressure fields are
interpolated from the current iteration. The optimization algorithm continues to iterate until convergence
or until reaching a maximum number of iterations.
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Table 2
The preconditioners being used to solve the PDEs.

PDEs Preconditioner

Navier-Stokes equations, cf. Eq. (8) Modified Augmented Lagrangian preconditioner [73]
Convection-diffusion equation, cf. Eq. (11) Additive Schwarz Method (ASM) [74]
Lamé equation, cf. Eq. (17) Geometric Algebraic MultiGrid (GAMG) [75]
Adjoint Lamé equation, cf. Eq. (A.4a) Geometric Algebraic MultiGrid (GAMG) [75]
Adjoint convection-diffusion equation, cf. Eq. (A.4b) Additive Schwarz Method (ASM) [74]
Adjoint Navier-Stokes equations, cf. Eq. (A.4c) Additive Schwarz Method (ASM) [74]
Reaction-diffusion equation, cf. Eq. (20) High Performance reconditioner (hypre) [76]

Finally, it should be noted that when employing the density-based approach and relying on the Brinkman
term to represent the fluid/solid phases, it is essentially needed to validate the performance using a body-
fitted mesh. With the body-fitted meshes, it is possible to disjoint reunion of a fluid subdomain Ωf and
a solid subdomain Ωs, separated by the fluid–solid interface Γs,f. Hereinafter, we outline the governing
equations used for the body-fitted simulation.
For the fluid flow, the Navier-Stokes equations without any body-force term are solved within Ωf, with
the no-slip boundary condition imposed on Γs,f, as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−div
(

𝝈f(𝒗, 𝑝)
)

+ (𝒗 ⋅ ∇)𝒗 = 0 in Ωf,
−div(𝒗) = 0 in Ωf,

𝒗 = 𝒗0 on 𝜕Ω𝐷
(𝒗,𝑝),

𝝈f(𝒗, 𝑝) ⋅ 𝒏 = 0 on 𝜕Ω𝑁
(𝒗,𝑝),

𝒗 = 0 on Γwall ∪ Γs,f.

(26)

With the fluid velocity 𝒗, we can then compute the temperature field 𝑇 across the entire domain. This
involves solving convection-diffusion equation within Ωf, and pure diffusion equation within Ωs. Both
temperature and normal heat flux remain continuous across the interface Γs,f separating Ωf and Ωs. As a
result, the conjugate heat transfer is governing by the following equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Re Pr(𝒗 ⋅ ∇𝑇 ) − div(𝜅f∇𝑇 ) = 0 in Ωf,
−div(𝜅s∇𝑇 ) = 0 in Ωs,

𝑇 = 𝑇0 on 𝜕Ω𝐷
𝑇 ,

𝜅f∇𝑇 ⋅ 𝒏f = 0 on 𝜕Ω𝑁
𝑇 ∖𝜕Ωs,

𝜅s∇𝑇 ⋅ 𝒏s = 0 on 𝜕Ω𝑁
𝑇 ∖𝜕Ωf,

𝑇s = 𝑇f on Γs,f,
−𝜅f∇𝑇 ⋅ 𝒏f = −𝜅s∇𝑇 ⋅ 𝒏s on Γs,f.

(27)

Lastly, the displacement 𝒖 can be computed only inside the Ωs using the following linear thermoelastic
equation:

⎧

⎪

⎨

⎪

⎩

−div
(

𝝈s (𝒖, 𝑇 )
)

= 0 in Ωs,
𝒖 = 𝒖0 on 𝜕Ω𝐷

𝒖 ,

𝝈s (𝒖, 𝑇 ) ⋅ 𝒏s = 𝒕 on 𝜕Ω𝑁
𝒖 .

(28)
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Algorithm 1: Topology optimization of heat exchangers.
input: analysis, design

1 initialization
2 domain decomposition, create PETSc matrices
3 create finite element spaces, declare unknowns, define variational formulations
4 initialize the density fields 𝛾
5 begin
6 for it = 0; it < Maxloop; it = it + 1 do
7 solve Navier-Stokes equations, cf. Eq. (8) to get (𝒗, 𝑝)
8 solve convection-diffusion equation, cf. Eq. (11) to get 𝑇
9 solve Lamé equation, cf. Eq. (17) to get 𝒖

10 compute objective and constraint values, cf. Eq. (24)
11 if ‖

‖

𝐽it+1 − 𝐽it‖‖ < 𝜀, ‖
‖

𝐺it+1 − 𝐺it‖‖ < 𝜀 then
12 break
13 else
14 solve adjoint Lamé equations, cf. Eq. (A.4a) (or Eq. (A.17a)) to get 𝒖𝑎
15 solve adjoint convection-diffusion equations, cf. Eq. (A.4b) (or Eq. (A.17b)) to get 𝑇𝑎
16 solve adjoint Navier-Stokes equations, cf. Eq. (A.4c) (or Eq. (A.17c)) to get (𝒗𝑎, 𝑝𝑎)
17 compute 𝛿𝛾̂, cf. Eq. (A.9)
18 interpolate 𝛿𝛾̂ from analysis to design
19 compute sensitivity 𝛿𝛾 on design, cf. Eq. (20)
20 update design variable 𝛾 on design using MMA
21 solve PDE-filter to get 𝛾̃ , cf. Eq. (20); Heaviside projection to get 𝛾̂ , cf. Eq. (21)
22 interpolate 𝛾̂ from design to analysis
23 if Remesh then
24 centralize 𝛾̂ to a single MPI process
25 call ParMmg to remesh analysisit to analysisit+1 based on the metric
26 domain decomposition, create PETSc matrices
27 interpolate 𝛾̂it,

(

𝒗it, 𝑝it
) from analysisit to analysisit+1

28 end
29 end
30 end
31 end

All the numerical experiments including topology optimization and performance validation were con-
ducted on Rescale1, using 1 node (60 MPI processes) equipped with AMD EPYC 7742 (Rome), operating
at a clock frequency of 2.5GHz, and with 456GB of memory allocated.

4. Numerical investigations
In this section, we present various numerical examples, as depicted by the design model in Fig. 2b. We
begin in Section 4.1 by outlining the optimization parameters utilized for these test cases, along with the
rationale behind their selection. Following this, in Section 4.2, we provide a detailed demonstration of
the optimization algorithm using one of these test cases, accompanied by performance validation using
body-fitted meshes. Finally, in Section 4.3, we conduct a parameter study by showcasing the optimized
results for all the test cases.
4.1. Optimization parameters
For all these test cases, the density field is initialized with a uniform value of 𝛾 = 0.3. We specify the
Reynolds number as Re = 100, the Prandtl number as Pr = 1.0, and the ratio of thermal conductivity

1Rescale: A cloud-based platform for computational engineering and R&D
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between solid and fluid phases as 𝜅s∕𝜅f = 100. The Young’s modulus for the solid domain is set to
𝐸s = 1.0, while for the void domain, it is 𝐸v = 10−6. The Poisson’s ratio is set to 0.3. Furthermore,
the maximum inverse permeability is set to 𝛼max = 104. Lastly, the RAMP interpolation coefficients
are set to 𝑞𝛼 = 0.01 and 𝑞𝜅 = 1∕30, while the SIMP penalty factor is set to 𝑞ℂ = 3. The selection of
these coefficients and the penalty factor is based on finding a balance between reducing the stiffness of
the optimization problem and maintaining accuracy w.r.t. the body-fitted mesh model. Our experience
suggests that smaller values of 𝑞𝛼 and 𝑞𝜅 , and a larger value of 𝑞ℂ, tend to stiffen the optimization problem.
Additionally, the moving limit of the MMA algorithm is set to 0.2.
For the design mesh design, we choose a mesh size of 0.01, resulting in approximately 4.5 × 106 tetra-
hedral elements. For the analysis mesh analysis, the initial mesh size is set to 0.025, resulting in a mesh
with approximately 2.88 × 105 tetrahedral elements and approximately 2.13 ⋅ 105 unknowns for the flow
equations. Mesh adaptation is triggered after 200 iterations and is activated every 5 iterations thereafter,
and the optimization process is terminated after 500 iterations. The maximum mesh size of analysis is
limited to 0.1, while the minimum mesh size is determined dynamically as 10−2 × (

1 − 𝑛it∕5000
). The

PDE-filter radius is set to 𝑟 ≈ 2.4ℎ where ℎ is the edge size of design.
Our primary focus lies in examining the effects of varying maximum allowed energy dissipation and
mean compliance constraint. Therefore, across all test cases, we maintain a consistent maximum allowed
volume fraction of the solid phase, set to 𝑉max = 37%. Detailed values of Φmax and 𝐶DP are summarized
in Table 3. It is important to note that the design outcomes and observations are heavily influenced by
the problem setup and parameters. Our goal is not to derive generalized conclusions; rather, we aim to
demonstrate the effectiveness of the proposed algorithm. And given that some level of hyper-parameter
tuning is necessary especially for the nonlinear problems, we do not aim to conduct seemingly exhausted
parameter study.

Table 3
The values of 𝑅𝑒, 𝑉max, Φmax, and 𝐶Comp used for each test case.

Case # 𝑅𝑒 𝑉max Φmax 𝐶Comp

#1, cf. Fig. 8a 100 37% 10.0 0.2
#2, cf. Fig. 8b 100 37% 10.0 0.7
#3, cf. Fig. 8c 100 37% 10.0 -
#4, cf. Fig. 8d 100 37% 5.0 0.2
#5, cf. Fig. 8e 100 37% 5.0 0.7
#6, cf. Fig. 8f 100 37% 5.0 -
#7, cf. Fig. 8g 100 37% 1.0 0.2
#8, cf. Fig. 8h 100 37% 1.0 0.7
#9, cf. Fig. 8i 100 37% 1.0 -

4.2. Demonstration of the TO algorithm
Before presenting the optimized results for all the test cases, we first provide details using one of them,
Case #4. Several snapshots of the topological shape represented by the isovolume of 𝛾̂ = 0.5 and the cross
section view of the locally refined mesh are depicted in Fig. 3. Additionally, the convergence histories of
the objective value and constraint values are plotted in Fig. 4.
Significant observations can be made throughout the optimization process. Initially, within the first 30 it-
erations, there is a notable decrease in the volume of the solid phase, primarily aimed at fulfilling the fluid
energy dissipation constraint by eliminating solid material from the bottom half section. Subsequently,
around the 50th iteration mark, a prominent pin-fin structure begins to form in the middle, accompa-
nied by the emergence of several major branches on the top half section. Concurrently, to adhere to the
mean compliance constraint, supportive structures start to appear, characterized by plate-like extensions
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(a) 𝑛it = 100. (b) 𝑛it = 200.

(c) 𝑛it = 300. (d) 𝑛it = 400.

(e) 𝑛it = 500.

Fig. 3: Evolutionary history of topological shape and mesh for Case #4. In each subfigure, the top figure
displays a cross-sectional view of the mesh analysis at the 𝑥𝑧-plane 𝑦 = 0.25. Note that local mesh refinement
is initiated at the 200th iteration. The bottom figure illustrates the isovolume of 𝛾̂ ≤ 0.5.
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Fig. 4: Convergence histories of (a) objective value, (b) volume fraction of the solid phase, (c) viscous energy
dissipation, and (d) mean compliance for Case #4.

touching the top surface. Between iterations 100 and 200, the energy dissipation value gradually rises
to its upper limit, while the mean compliance decreases to meet its maximum allowed value, along with
an increase in the volume fraction reaching its upper limit. This phase also witnesses the generation of
additional branches to augment the contacting area, thereby enhancing heat exchange as evidenced by the
decrease in the objective value. Beyond the 200th iteration, most constraints are satisfactorily met, and
the locally refined mesh facilitates the capture of finer features. However, small fluctuations persist in the
convergence history, most likely attributed to the inherent high nonlinearity of the problem and the cost
functions is rather sensitive to minor mesh variations due to the use of mesh adaptation. Despite these
fluctuations, they appear to stabilize within a certain range, thereby we terminate the optimizer after 500
iterations.
Next, we assess the computational efficiency of the proposed TO framework by analyzing the runtime
for Case #4. It is important to recall that the algorithm utilizes a fixed design mesh design for updating
design variables and a dynamically refined mesh for physics computations analysis, with mesh adaptation
activated after 200 iterations. Before iteration 200, the degree of freedom (DOF) count for solving the
fluid flow governing equation is approximately 2.13 ⋅ 105, increasing to 2.02 ⋅ 106 by iteration 500. To
evaluate overall computational efficiency, we present in Table 4 a runtime breakdown for each finite
element action. Additionally, Fig. 5 provides a pie chart showing the percentage distribution for a clearer
understanding.
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Table 4
Time breakdown of the finite element actions for Case #4 performed on Rescale HPC
platform using AMD EPYC 7742 @ 2.5GHz.

Action Runtime

Solve Navier-Stokes equations 2 h34min60 s
Solve convection-diffusion equation 10min16 s
Solve linear elasticity equation 44min31 s
Solve adjoint convection-diffusion equations 4min26 s
Solve adjoint Navier-Stokes equations 2 h18min41 s
Assemble sensitivities 2min60 s
Update design variable using MMA 5min2 s
PDE filtering and projection 9min58 s
Centralize solution to one MPI process 2min20 s
Distributed mesh adaptation (60 times) 13min50 s
Mesh partitioning, create PETSc matrices 6min45 s
Interpolate solution to the updated mesh 2min43 s

Total 6 h36min35 s
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Fig. 5: Pie chart illustrating the percentage distribution of runtime breakdown allocated to the finite element
actions.

Examining the percentage of FE actions against total runtime reveals that solving the governing equa-
tions and their adjoint equations are the most computationally demanding tasks. Specifically, solving the
Navier-Stokes equations and their adjoints equations for 39.1% and 35.0%, respectively, of the total run-
time. It is worth noting that mesh adaptation significantly reduces this computational load; solving these
PDEs on a fixed fine mesh would be considerably more resource-intensive, likely beyond the capacity of
60 MPI processes to achieve a similar level of high-resolution design in reasonable time.
Tasks performed on the fixed fine mesh, including updating design variables using MMA, PDE filtering,
and projection operations, are notably efficient, collectively consuming 2.5% of the total runtime. How-
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ever, mesh adaptation poses a significant challenge. While it is executed in a distributed manner using
ParMmg, the global solution must first be centralized on a single MPI process for mesh adaptation. Once
the new mesh is generated, it must be gathered again on a single MPI process before being partitioned
for the next iteration’s computations. This process could become a bottleneck when scaling the problem
to larger sizes, potentially leading to memory leakage when attempting to centralize an ultra-large global
mesh on a single core.
Overall, the scaling achieved is satisfactory, striking a good balance between executing complex multi-
physics topology optimization and reasonable CPU time.
As discussed earlier, when employing the density-based approach and integrating the Brinkman term to
delineate fluid/solid phases, it is essential to validate the performance using a body-fitted mesh. This goal
of such validation is to examine that the density field has been evolved into a clear binary structure, and
that the fluid flow does not intrude into the solid phase. Achieving these conditions confirms the accuracy
of the topology optimization (TO) method, instilling confidence in its outcomes.
With body-fitted mesh, it allows the disjoint of a fluid subdomain Ωf (as depicted in Fig. 6a) and a solid
subdomain Ωs (as depicted in Fig. 6b), with the fluid-solid interface Γs,f represented by the isosurface
where 𝛾̃ = 0.5. Subsequently, we solve the governing equations outlined in Eqs. (26) to (28). The
velocity, temperature, and displacement fields obtained from both the TO solver (left column) and the
body-fitted solver (right column) are plotted in Fig. 7. It is noticeable that these distributions exhibit a
good alignment with minor discrepancies in magnitude that fall within a reasonable relative error range,
as demonstrated in Table 5.

(a) fluid. (b) solid.

Fig. 6: Body-fitted mesh obtained based on the isosurface of 𝛾̃ = 0.5 for Case #4.

Table 5
Performance validation comparing the TO solution with the body-fitted simulation using
Case #4, cf. Fig. 7

Cost function TO solver Body-fitted Relative error

Objective function 𝐽 −0.1646 −0.1652 0.36%
Energy dissipation Φ 5.01 5.097 1.7%
Mean compliance Ψ 2.218 2.104 5.1%
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(a) Velocity field on ℎ−adapted mesh analysis. (b) Velocity field on body-fitted mesh fluid.

(c) Temperature field on ℎ−adapted mesh analysis. (d) Temperature field on body-fitted mesh total.

(e) Displacement field on ℎ−adapted mesh analysis. (f) Displacement field on body-fitted mesh solid.

Fig. 7: Velocity, temperature, and displacement fields computed on the ℎ-adapted mesh analysis utilized for
topology optimization at the 500th iteration, cf. Fig. 3e, alongside those obtained on the body-fitted mesh
for performance validation, cf. Fig. 6.

4.3. Test cases
Now, we execute the TO solver followed by the body-fitted validation solver to tackle the test cases out-
lined in Table 3. The optimized outcomes for Cases #1–#9 are depicted in Fig. 8. In each row, the max-
imum permitted energy dissipation decreases from top to bottom, while in each column, the maximum
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allowed mean compliance increases from left to right (the rightmost column displays results obtained
without imposing a mean compliance constraint). The calculated objective value, energy dissipation, and
mean compliance obtained using the body-fitted validation solver are summarized in Table 6. The stream-
lines and temperature fields for the optimized results obtained with different maximum allowed energy
dissipation values are shown in Figs. 9 and 11, respectively.

(a) Case #1. (b) Case #2. (c) Case #3.

(d) Case #4. (e) Case #5. (f) Case #6.

(g) Case #7. (h) Case #8. (i) Case #9.

Fig. 8: Optimized results for Cases #1–#9, represented by body-fitted meshes based on the isovolume of
𝛾̃ ≤ 0.5. In each row, the maximum permitted energy dissipation decreases from top to bottom, while in each
column, the maximum allowed mean compliance increases from left to right (the rightmost column displays
results obtained without imposing a mean compliance constraint).

As illustrated in Fig. 8, the optimized outcomes showcase a remarkable diversity of forms, ranging from
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Table 6
The calculated objective value, energy dissipation, and mean compliance obtained using
the body-fitted validation solver for each test case.

Case # 𝐽 Φ Ψ

#1, cf. Fig. 8a −0.1658 10.154 2.181
#2, cf. Fig. 8b −0.1659 10.118 9.721
#3, cf. Fig. 8c −0.1665 10.147 -
#4, cf. Fig. 8d −0.1652 5.097 2.104
#5, cf. Fig. 8e −0.1653 5.068 7.187
#6, cf. Fig. 8f −0.1657 5.084 -
#7, cf. Fig. 8g −0.1486 0.993 2.988
#8, cf. Fig. 8h −0.1517 1.001 7.507
#9, cf. Fig. 8i −0.1547 1.048 -

simplistic, solitary shapes to intricate, branching structures. Notably, many of these configurations bear
a striking resemblance to features found in natural ecosystems, such as coral reefs. Delving into the evo-
lutionary mechanisms behind this resemblance reveals intriguing insights. The shapes and topologies of
coral colonies are finely adapted to their unique growth environments, which including factors like fluid
motion, nutrition in their surroundings, allowing them to behave very differently from one another and
highlighting the remarkable diversity and resilience of these ecosystems [77]. For instance, corals situ-
ated in regions with strong water currents, like near reef edges or in channels, tend to adopt simpler, more
compact forms to minimize drag [78]. This adaptation is evident in Cases #7–#9, where lower limits on
viscous energy dissipation are imposed, cf. Fig. 9c. Conversely, in regions with calmer waters such as
sheltered lagoons or shallow bays, corals have the opportunity to develop intricately branched and elab-
orate structures. This is because reduced water flow allows sediment particles to accumulate, providing
a substrate for coral growth and fostering the formation of complex colonies [79]. This pattern is mir-
rored in Cases #1–#3, where higher energy dissipation encourages the development of irregular-shaped
tentacles, facilitating the efficient dissipation of heat energy from the bottom hot wall to the surround-
ing coolants through these tentacles, see Fig. 9a. Moreover, the variability in coral morphology can be
attributed to the unique challenges and opportunities presented by their specific growth environments.
In some instances, corals must contend with limited access to light exposure, necessitating specialized
shapes and structures to thrive [80]. In the context of our test cases, the distinct requirements arise from
the need for load-bearing capability. Consequently, with a mean compliance constraint, loading paths
emerge to distribute surface traction, often manifesting as flattened extensions in contact with the fixed
wall.
Upon closer examination of the computed cost function values presented in Table 6, we further normalize
them to serve as performance indices Idx𝑖 ∈ [0.5, 1], 𝑖 = 1, 2,… , 9, evaluating the trade-offs of thermal,
hydraulic, and structural performance. This normalization is achieved using the following linear rescaling:

Idx𝑖 =
|

|

𝐽𝑖|| − min𝑛𝑖=1 ||𝐽𝑖||
2
(

max𝑛𝑖=1
|

|

𝐽𝑖|| − min𝑛𝑖=1 ||𝐽𝑖||
) + 0.5 𝑖 = 1, 2,… , 9, (29)

where the subscript denotes the case number. Fig. 10 showcases different trade-offs obtained across the
nine test case. It is notable that the objective value achieved in the case without a mean compliance con-
straint slightly outperforms those with such a constraint. These insignificant differences suggest that the
influence of the mean compliance constraint is quite trivial, although this observation may vary depend-
ing on changes in the problem setting. Another observation arises when considering cases with relatively
lower energy dissipation, the upstream parts appear to have limited heat exchange between fluid and solid
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phases, as depicted in Figs. 11c and f. With an increase in the allowable energy dissipation, the heat
transfer by fluid approaches its upper limit, and further increases in energy dissipation do not contribute
significantly to the enhancement of heat transfer.

(a) Case #2.

(b) Case #5.

(c) Case #8.

Fig. 9: Streamlines for the optimized results obtained with different maximum allowed energy dissipation
values but under the same mean compliance constraint.

Table 1

Heat transfer Fluid dissipation Mean compliance

#1 -0.165792 10.1541 2.18107

#2 -0.165942 10.1175 9.72132

#3 -0.166503 10.1465 -

#4 -0.165215 5.09729 2.10425

#5 -0.165347 5.06809 7.18673

#6 -0.165689 5.08396 -

#7 -0.148605 0.992985 2.9883

#8 -0.151694 1.00084 7.50712

#9 -0.154684 1.04776 -

Performance index

Thermal Hydraulic Structural

#1 0.98013745 0.5 0.99495738
#2 0.98432786 0.50199757 0.5
#3 1 0.5004148 0
#4 0.96401833 0.77599315 1
#5 0.96770589 0.77758684 0.66637565
#6 0.97726003 0.77672068 0
#7 0.5 1 0.94196916
#8 0.58629456 0.99957129 0.6453446
#9 0.66982344 0.99701046 0

Thermal
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Fig. 10: Radar chart showcasing different trade-offs obtained by Cases #1–#9.
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(a) Case #2. (b) Case #5. (c) Case #8.

(d) Case #2. (e) Case #5. (f) Case #8.

Fig. 11: Temperature fields for the optimized results obtained with different maximum allowed energy dissi-
pation values.

5. A graphical user interface (GUI)
Tanatloc2 is a multiphysics FEA software developed by our industrial partner Airthium3. It provides
built-in models for both common physical problems, such as Poisson’s problem and linear elasticity, and
specialized ones, such as magnetostatics [81] and mechanical contact [82]. Users can create their own
models or collaborate with experts to develop custom solutions tailored to specific needs, such as topology
optimization. It features a user-friendly Graphical User Interface (GUI) that enables users to execute the
TO algorithm presented in Algorithm 1. Users can input all relevant data, including geometry files,
optimization parameters, boundary conditions and more, through the GUI. An overview of the developed
Tanatloc window is presented in Fig. 12.
The user interface consists of severals panels and a menu bar where the user can load and visualize geome-
tries, set up the TO problem parameters, execute the optimization case, visualize the simulation results
in real time and postprocess the results, as shown in Figs. 13–14. Geometries are dropped through the
“Geometry” panel and automatically processed to get the labels, as shown in Fig. 13a. Mesh refinement
parameters can be defined for each geometry. Various input parameters can be introduced and adjusted
through “Parameters” panel, as shown in Fig. 13b. These parameters include Reynolds number, Prandtl
number, the maximum allowed volume fraction of the solid phase, viscous energy dissipation, etc. Bound-
ary conditions are set up through “Boundary conditions” panel, as shown in Fig. 13c. Boundaries can be
selected directly in the GUI for applying corresponding boundary conditions, and labels are automatically
mapped to the meshes labels. Computing server can be selected through the “Run” panel. The simulation
can be run directly on the host computer, on Rescale, or on a specific cluster. For example, as depicted in
Fig. 13d, the users are allowed to choose their preferred core type offered by Rescale.
Once the problem is configured as described above, Tanatloc generate the Gmsh [83] and the FreeFEM [68]

2Tanatloc: An easy-to-use FEA software that allows you to implement your own physics models.
3Airthium: A heat pump to decarbonize the planet.
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scripts using a template engine, then run the mesh build and the FreeFEM simulation on the selected com-
puting server. Once the computation is terminated, the obtained design is shown in the Graphic Panel,
as shown in Fig. 14. The velocity, temperature, iterative history, and isosurface can be viewed by se-
lecting the corresponding field in the GUI. The meshes and results can be visualized and manipulated in
the graphic panel, allowing rotation, movement, and other operations like section view. Post-processing
operations are available in the GUI, Tanatloc uses internally Paraview python script to obtain the post-
processed result. Tanatloc can export the results in VTK format for post-processing using ParaView [84],
and in the Inria Medit format, which is natively parsed by FreeFEM and Mmg, for subsequent simulations
such as performance validation using a body-fitted mesh.
The initial meshes need to be generated using Gmsh [83] and exported to the MSH2 format, which can
be read by FreeFEM. Note that the current version of FreeFEM only supports 2D triangular and 3D
tetrahedral meshes.

Fig. 12: Tanatloc window.

6. Fabrication of metal-based prototypes
With the rapid development of topology optimization approaches and the growing industry trends sur-
rounding “3D printing” technologies, the gap between innovative design and advanced manufacturing
has significantly narrowed [85]. In this section, we leverage additive manufacturing techniques to bring
our optimized designs into prototypes, demonstrating the practical application of these advanced manu-
facturing methods.
6.1. Additive manufacturing of the prototype
The optimized structures obtained from our numerical simulations were converted into stereolithography
(STL) format as shown in Fig. 15a using ParaView [84] and they were further processed using Simple-
ware ScanIP (Synopsis Inc., UK) before they were ready for additive manufacturing. To showcase the
process, we specifically fabricated the design from Case #4. This was realized using Selective Laser
Melting (SLM) method with a powder material comprising AlSi10Mg (Toyo Aluminium K.K., Japan),
with particle diameters ranging between 10 to 45 µm. The chemical composition of this powder is listed
in Table 7.
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(a) Geometry and meshing.

(b) Input parameter.

Fig. 13: Panels for input optimization data (Part 1).

Table 7
Chemical composition of powder.

Element Si Mg Fe Mn Cu Zn Ti Al

Contents 9.0 − 11.0 0.2 − 0.45 < 0.55 < 0.45 < 0.05 < 0.1 < 0.15 Bal.
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(c) Allocate boundary conditions.

(d) Select computing resource.

Fig. 13: Panels for input optimization data (Part 2).

Our industrial collaborator, DENSO Corporation4, utilized SLM methods to produce prototypes shown
in Figs. 15b and c, depicting the prototypes before and after blasting treatment, respectively. Specialized
manufacturing parameters tailored for this material were implemented. These parameters were optimized
to yield components with relative densities approaching 100%, ensuring comparable mechanical proper-
ties to those obtained through conventional methods such as molding or machining. A Laser Powder Bed

4DENSO Corporation: A global automotive components manufacturer.
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(a) Temperature field.

(b) Velocity field.

Fig. 14: Panels for output optimization data (Part 1).

Fusion (LPBF) machine (EOSM400-4, EOS) with an energy density of 40 − 60 Jm−3 was employed for
the manufacturing process. The production chamber was maintained at a temperature of 165 ◦C, with
Nitrogen used as a protective gas to prevent oxidation and explosions. The material was deposited layer
by layer, following the, with each layer measuring 0.03 µm in thickness (resulting in 738 layers per sam-
ple). Temporary supports generated by Materialise Magics e-Stage (Materialise N.V., Belgium) were
utilized to secure the test-pieces during production. The total fabrication time was 6 hours and 53 sec-
onds. Residual stress relief annealing was not performed, but shot peening was conducted to remove the
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(c) Iterative history.

(d) Isosurface of 𝛾̂ ≤ 0.5.

Fig. 14: Panels for output optimization data (Part 2).

supports.
6.2. CT scans and reconstruction of CAD model
Once the prototype was printed, we conducted a reverse engineering [86] for the reconstruction of the
CAD model based on the prototype, facilitating a thorough experimental and numerical validation using
commercial CFD software, which is targeted in our future work. It should be pointed out that there is a
notable lack of experimental validation of thermal-fluid topology optimization (TO) in existing works,

H. Li, S. Garnotel, P. Jolivet, H. Ogawa et al. Page 30 of 40



(a) STL data.

(b) Prototype before blasting treatment. (c) Prototype after blasting treatment.

Fig. 15: Photographs of metal-based prototype for the Case #4, cf.Fig. 8d.

which are often limited to 2D designs [12, 87], with even fewer examples in full 3D [46, 88]. We used a
Computed Tomography (CT) scanning machine (TXScanner 33000, Toshiba) to capture precise 3D im-
ages of the printed prototype, as depicted in Fig. 16a. Subsequently, the CT data was exported in DICOM
format and further processed using Simpleware ScanIP. This processing encompassed segmentation of
the CT-scan images, mask development, contour smoothing for each slice, and surface reconstruction.
The resulting CAD data from the CT-scan images is illustrated in Fig. 16b. Following the reconstruction,
we conducted an accuracy analysis of this 3D reconstruction. We registered the two datasets (from the
original printing data and the reconstructed CAD model) and performed superimposition and surface de-
viation analyses using Simpleware ScanIP, as depicted in Fig. 17. The root mean square error (RMSE)
was 9.799 ⋅ 10−2 mm and the mean deviation was −2.388 ⋅ 10−2 mm, indicating a high level of accuracy.

7. Conclusions
To conclude, this paper presents an integrated workflow tailored for the three-dimensional topology op-
timization of conjugate heat transfer problems. Through leveraging advanced algorithms, optimization
techniques, and computational tools, this framework facilitates the generation of high-resolution designs.
Additionally, we provide a graphical user interface, enabling seamless prototyping and performance val-
idation. The primary findings are summarized as follows:

1. By incorporating a mean compliance constraint into the thermofluidic design problem formula-
tion, we ensure both the integrity and load-bearing capability of the optimized structures. Through
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(a) CT-scan images. (b) Reconstructed CAD model.

Fig. 16: Reverse engineering for the printed prototype.

(a) Superimposition (overlay).
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(b) Surface deviation analysis result.

Fig. 17: Analysis of accuracy of reconstructed CAD model w.r.t. the data used for 3D printing.

numerous numerical test cases with varied constraint values, we illustrate distinct trade-offs, remi-
niscent of the growth mechanisms observed in natural ecosystems, such as coral. These trade-offs
are effectively visualized using radar diagrams to emphasize their performance metrics. Our case
studies suggest that, in these specific scenarios, the influence of the mean compliance constraint
seems to be rather insignificant.

2. A dual-mesh approach is used in the density-based TO framework. This allows us to achieve
feature-rich designs represented by the pseudo-density fields on a high-resolution fixed mesh com-
prising approximately 4.5 million tetrahedral elements. Concurrently, forward and adjoint analyses
are conducted on a locally refined mesh, notably reducing the main computational burden. Runtime
analysis confirms the good computational efficiency of the constructed framework.

3. A user-friendly and easy-to-navigate graphical user interface, Tanatloc, is developed in JavaScript.
It offers versatile functionalities and an interactive user experience for thermal engineers to explore
and engage with advanced topology optimization algorithms.

4. A 3D printed metal-based prototype is fabricated, followed by the reconstruction of the CAD model
through CT-scan images. Through the surface deviation analyses, a high level of accuracy of the
fabricated prototype has been confirmed. This process paves the way for practical applications and
further experimental investigations.

Below are the primary limitations of the current work, along with prospects targeted in future works:
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1. The current implementation necessitates centralizing the solution on a single core before employing
ParMmg for distributed mesh adaptation. Subsequently, the updated mesh is partitioned and redis-
tributed to all MPI processes. This part of the solver limits the feasibility of ultra-high-resolution
topology optimization involving billions of DOFs. Future efforts will focus on developing a fully-
distributed framework.

2. Incorporating manufacturability constraints, such as overhang constraints, is vital for addressing
more practical and industrial cases. Furthermore, the experimental investigations are planned.

3. Improving the graphical user interface to cover a broader spectrum of conjugate heat transfer prob-
lems, such as designing active/passive heat sinks and achieving flow uniformity distribution, will
significantly boost the interface’s versatility and applicability.
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A. Sensitivity analysis
A.1. Continuous adjoint method
First, the Lagrange function  is constructed as follows:

 ≔ 𝐽 +
⟨

𝒗𝑎,−div
(

𝝈f(𝒗, 𝑝)
)

+ (𝒗 ⋅ ∇)𝒗 + 𝛼 (𝒙) 𝒗
⟩

+ ⟨𝑝𝑎,−div(𝒗)⟩
+ ⟨𝑇𝑎,Re Pr(𝒗 ⋅ ∇𝑇 ) − ∇ ⋅ (𝜅(𝒙)∇𝑇 )⟩ +

⟨

𝒖𝑎,−div
(

𝝈s (𝒖, 𝑇 )
)⟩

,
(A.1)

where 𝒗𝑎, 𝑝𝑎, 𝑇𝑎, and 𝒖𝑎 are the adjoint velocity, adjoint pressure, adjoint temperature, and adjoint dis-
placement, respectively. The variation of the Lagrange function is expressed as follows:

𝛿 = 𝛿𝛾̂ + 𝛿(𝒗,𝑝) + 𝛿𝑇 + 𝛿𝒖. (A.2)
In accordance with the Karush–Kuhn–Tucker (KKT) conditions applicable to PDE constrained optimiza-
tion problems,

⎧

⎪

⎨

⎪

⎩

𝛿𝒖 = 0,
𝛿𝑇 = 0,

𝛿(𝒗,𝑝) = 0.
(A.3)

The variation of the Lagrange function w.r.t. the state variables 𝒖, 𝑇 , and (𝒗, 𝑝) are derived as follows:

𝛿𝒖 = 𝛿𝒖𝐽 + ∫Ω
(𝑒(𝛿𝒖) ∶ ℂ(𝛾̂)) ∶ 𝑒(𝒖𝑎) dΩ = 0 ∀𝛿𝒖 ∈ U , 𝒖𝑎 ∈ U , (A.4a)

𝛿𝑇 = 𝛿𝑇 𝐽 + ∫Ω
Re Pr(𝒗 ⋅ ∇𝛿𝑇 )𝑇𝑎 dΩ + ∫Ω

𝜅 (𝛾̂) ∇𝛿𝑇 ⋅ ∇𝑇𝑎 dΩ

− ∫Ω
𝛼𝑇 𝛿𝑇 𝐈 ∶ ∇𝒖𝑎 = 0 ∀𝛿𝑇 ∈ P , 𝑇𝑎 ∈ P ,

(A.4b)
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𝛿(𝒗,𝑝) = 𝛿(𝒗,𝑝)𝐽

+ ∫Ω
((𝒗 ⋅ ∇)𝛿𝒗) ⋅ 𝒗𝑎 dΩ + ∫Ω

((𝛿𝒗 ⋅ ∇)𝒗) ⋅ 𝒗𝑎 dΩ + 2
Re ∫Ω

𝑒(𝛿𝒗) ∶ ∇𝒗𝑎 dΩ

− ∫Ω
𝛿𝑝∇ ⋅ 𝒗𝑎 dΩ − ∫Ω

𝑝𝑎∇ ⋅ 𝛿𝒗 dΩ + ∫Ω
𝛼 (𝛾̂) 𝒗𝑎 ⋅ 𝛿𝒗 dΩ

+ ∫Ω
Re Pr 𝑇𝑎∇𝑇 ⋅ 𝛿𝒗 dΩ

−
∑

𝐾∈
∫Ω𝑒

𝜏PSPG∇𝑝𝑎 ⋅ ((𝛿𝒗 ⋅ ∇)𝒗 + (𝒗 ⋅ ∇)𝛿𝒗 + ∇𝛿𝑝 + 𝛼(𝒙)𝛿𝒗) dΩ

−
∑

𝐾∈
∫Ω𝑒

(

𝛿(𝒗,𝑝)𝜏PSPG
)

∇𝑝𝑎 ⋅ ((𝒗 ⋅ ∇)𝒗 + ∇𝑝 + 𝛼(𝒙)𝒗) dΩ = 0

∀(𝛿𝒗, 𝛿𝑝) ∈ U𝒗,𝑝, (𝒗𝑎, 𝑝𝑎) ∈ U𝒗,𝑝.

(A.4c)

Hereinafter, we use 𝜏 for brevity. 𝛿(𝒗,𝑝)𝜏 is derived as follows:

𝛿(𝒗,𝑝)𝜏 = 𝜕𝜏
𝜕𝜏1

𝜕𝜏1
𝜕𝒗

+ 𝜕𝜏
𝜕𝜏3

𝜕𝜏3
𝜕𝒗

+ 𝜕𝜏
𝜕𝜏4

𝜕𝜏4
𝜕𝒗

= 𝜏−31 𝜏3
(

−ℎ
2
(𝒗 ⋅ 𝒗)−3∕2 (𝛿𝒗 ⋅ 𝒗)

)

.
(A.5)

Regarding the optimal design problem presented in Eq. (24), we derive the variations of the cost functions
w.r.t. the state variables as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿𝒖𝐽 = 0,

𝛿𝑇 𝐽 = −∫Γout
(𝒗 ⋅ 𝒏) 𝛿𝑇 dΓ,

𝛿(𝒗,𝑝)𝐽 = −∫Γout
(𝛿𝒗 ⋅ 𝒏) 𝑇 dΓ.

(A.6a)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝒖𝐺2 = 0,
𝛿𝑇𝐺2 = 0,

𝛿(𝒗,𝑝)𝐺2 = −∫Γin∪Γout

(

𝑝 + 1
2
|𝒗|2

)

(

𝛿𝒗 ⋅ 𝒏f
)

+ (𝛿𝒗 ⋅ 𝒗) (𝒗 ⋅ 𝒏f) dΓ.
(A.6b)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝒖𝐺3 = ∫𝜕Ω𝑁
𝒖

𝒕 ⋅ 𝛿𝒖 dΓ,

𝛿𝑇𝐺3 = 0,
𝛿(𝒗,𝑝)𝐺3 = 0.

(A.6c)

Finally, the functional derivative of the Lagrange function w.r.t. design variables, 𝛿𝛾, can be derived
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using the chain rule as follows:
𝛿
𝛿𝛾

= 𝛿
𝛿𝛾̂

𝜕𝛾̂
𝜕𝛾̃

𝛿𝛾̃
𝛿𝛾

, (A.7)

where the chain rule term 𝜕𝛾̂
𝜕𝛾̃

can be obtained by differentiation of the smoothed Heaviside function in
Eq. (21) as

𝜕𝛾̂
𝜕𝛾̃

= 𝛽
1 − tanh2(𝛽(𝛾̃ − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))
. (A.8)

The functional derivative of the Lagrange function w.r.t. the projected density field 𝛿𝛾̂ can be derived as
follows:

𝛿𝛾̂ = 𝛿𝛾̂𝐽 +
𝜕𝛼 (𝛾̂)
𝜕𝛾̂

𝒗 ⋅ 𝒗𝑎 +
𝜕𝜅 (𝛾̂)
𝜕𝛾̂

∇𝑇 ⋅ ∇𝑇𝑎 +
(

𝑒(𝒖) ∶ 𝜕ℂ (𝛾̂)
𝜕𝛾̂

)

∶ 𝑒(𝒖𝑎)

− 𝛿𝛾̂𝜏∇𝑝𝑎 ⋅ ((𝒗 ⋅ ∇)𝒗 + ∇𝑝 + 𝛼 (𝛾̂) 𝒗) − 𝜏∇𝑝𝑎 ⋅
𝜕𝛼 (𝛾̂)
𝜕𝛾̂

𝒗 in Ω,
(A.9)

where the partial derivatives w.r.t. the projected density field can be derived as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝛼 (𝛾̂)
𝜕𝛾̂

= −
𝑞𝛼𝛼max

(

𝑞𝛼 + 1
)

(

𝑞𝛼 + 𝛾̂
)2

,

𝜕𝜅 (𝛾̂)
𝜕𝛾̂

= −
𝑞𝜅

(

𝑐𝑘 − 1
) (

𝑞𝜅 + 1
)

(

𝑞𝜅 + 𝛾̂
)2

,

𝜕ℂ (𝛾̂)
𝜕𝛾̂

= −𝑞ℂ (1 − 𝛾̂)𝑞ℂ−1
(

ℂs − ℂv
)

,

(A.10)

and as follows:

𝛿𝛾̂𝜏 = 𝜕𝜏
𝜕𝜏4

𝜕𝜏4
𝜕𝛼 (𝛾̂)

𝜕𝛼 (𝛾̂)
𝜕𝛾̂

= −
𝜕𝛼 (𝛾̂)
𝜕𝛾̂

1
𝛼 (𝛾̂)2

(

𝜏−34 𝜏3
)

.
(A.11)

A.2. Discrete adjoint method
We denote the residual of the governing equations as 𝒓NS, 𝒓Energy, and 𝒓Lamé for the Navier-Stokes equa-
tions, convection diffusion equation, and the elasticity equation, respectively. The Lagrange function 
is constructed as follows:

 ≔ 𝐽 + 𝝀T(𝒗,𝑝)𝒓NS + 𝝀T𝑇 𝒓Energy + 𝝀T𝒖𝒓Lamé, (A.12)

where 𝝀(𝒗,𝑝), 𝝀𝑇 , and 𝝀𝒖 are the vectors of adjoint variables (𝒗𝑎, 𝑝𝑎
), 𝑇𝑎, and 𝒖𝑎, respectively. The total

derivative of the Lagrange function w.r.t. 𝛾̂ is then taken of the Lagrange function, as follows:
d
d𝛾̂

= d𝐽
d𝛾̂

+ 𝝀T(𝒗,𝑝)
d𝒓NS
d𝛾̂

+ 𝝀T𝑇
d𝒓Energy

d𝛾̂
+ 𝝀T𝒖

d𝒓Lamé
d𝛾̂

, (A.13)
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where the total derivative of the cost function is expressed as follows:
d𝐽
d𝛾̂

= 𝜕𝐽
𝜕𝛾̂

+ 𝜕𝐽
𝜕𝒔(𝒗,𝑝)

𝜕𝒔(𝒗,𝑝)
𝜕𝛾̂

+ 𝜕𝐽
𝜕𝒔𝑇

𝜕𝒔𝑇
𝜕𝛾̂

+ 𝜕𝐽
𝜕𝒔𝒖

𝜕𝒔𝒖
𝜕𝛾̂

, (A.14)

due to the implicit dependence of cost function 𝐽 (and 𝐺𝑖) on the state variables 𝒔. Thus, the total deriva-
tive of the Lagrange function can be expanded as follows:

d
d𝛾̂

= 𝜕𝐽
𝜕𝛾̂

+ 𝜕𝐽
𝜕𝒔(𝒗,𝑝)

𝜕𝒔(𝒗,𝑝)
𝜕𝛾̂

+ 𝜕𝐽
𝜕𝒔𝑇

𝜕𝒔𝑇
𝜕𝛾̂

+ 𝜕𝐽
𝜕𝒔𝒖

𝜕𝒔𝒖
𝜕𝛾̂

+ 𝝀T(𝒗,𝑝)

(

𝜕𝒓NS
𝜕𝛾̂

+
𝜕𝒓NS
𝜕𝒔(𝒗,𝑝)

𝜕𝒔(𝒗,𝑝)
𝜕𝛾̂

)

+ 𝝀T𝑇

(𝜕𝒓Energy
𝜕𝛾̂

+
𝜕𝒓Energy
𝜕𝒔𝑇

𝜕𝒔𝑇
𝜕𝛾̂

+
𝜕𝒓Energy
𝜕𝒔(𝒗,𝑝)

𝜕𝒔(𝒗,𝑝)
𝜕𝛾̂

)

+ 𝝀T𝒖

(

𝜕𝒓Lamé
𝜕𝛾̂

+
𝜕𝒓Lamé
𝜕𝒔𝒖

𝜕𝒔𝒖
𝜕𝛾̂

+
𝜕𝒓Lamé
𝜕𝒔𝑇

𝜕𝒔𝑇
𝜕𝛾̂

)

,

(A.15)

which can be rewritten as follows:
d
d𝛾̂

= 𝜕𝐽
𝜕𝛾̂

+ 𝝀T(𝒗,𝑝)
𝜕𝒓NS
𝜕𝛾̂

+ 𝝀T𝑇
𝜕𝒓Energy

𝜕𝛾̂
+ 𝝀T𝒖

𝜕𝒓Lamé
𝜕𝛾̂

+
(

𝜕𝐽
𝜕𝒔(𝒗,𝑝)

+ 𝝀T(𝒗,𝑝)
𝜕𝒓NS
𝜕𝒔(𝒗,𝑝)

+ 𝝀T𝑇
𝜕𝒓Energy
𝜕𝒔(𝒗,𝑝)

) 𝜕𝒔(𝒗,𝑝)
𝜕𝛾̂

+
(

𝜕𝐽
𝜕𝒔𝑇

+ 𝝀T𝑇
𝜕𝒓Energy
𝜕𝒔𝑇

+ 𝝀T𝒖
𝜕𝒓Lamé
𝜕𝒔𝑇

)

𝜕𝒔𝑇
𝜕𝛾̂

+
(

𝜕𝐽
𝜕𝒔𝒖

+ 𝝀T𝒖
𝜕𝒓Lamé
𝜕𝒔𝒖

)

𝜕𝒔𝒖
𝜕𝛾̂

.

(A.16)

The adjoint equations are then defined as what are inside the brackets, as follows:
(

𝜕𝒓Lamé
𝜕𝒔𝒖

)T
𝝀𝒖 = − 𝜕𝐽

𝜕𝒔𝒖
, (A.17a)

(𝜕𝒓Energy
𝜕𝒔𝑇

)T

𝝀𝑻 = − 𝜕𝐽
𝜕𝒔𝑇

− 𝝀T𝒖
𝜕𝒓Lamé
𝜕𝒔𝑇

, (A.17b)

(

𝜕𝒓NS
𝜕𝒔(𝒗,𝑝)

)T
𝝀(𝒗,𝒑) = − 𝜕𝐽

𝜕𝒔(𝒗,𝑝)
− 𝝀T𝑇

𝜕𝒓Energy
𝜕𝒔(𝒗,𝑝)

. (A.17c)

Finally, the sensitivity w.r.t. 𝛾̂ can be derived as follows:
d
d𝛾̂

= 𝜕𝐽
𝜕𝛾̂

+ 𝝀T(𝒗,𝑝)
𝜕𝒓NS
𝜕𝛾̂

+ 𝝀T𝑇
𝜕𝒓Energy

𝜕𝛾̂
+ 𝝀T𝒖

𝜕𝒓Lamé
𝜕𝛾̂

. (A.18)
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