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A Data-driven Contact Estimation Method for Wheeled-Biped Robots

U. Bora Gökbakan1, Frederike Dümbgen1 and Stéphane Caron1

Abstract— Contact estimation is a key ability for limbed
robots, where making and breaking contacts has a direct impact
on state estimation and balance control. Existing approaches
typically rely on gate-cycle priors or designated contact sensors.
We design a contact estimator that is suitable for the emerging
wheeled-biped robot types that do not have these features. To
this end, we propose a Bayes filter in which update steps are
learned from real-robot torque measurements while prediction
steps rely on inertial measurements. We evaluate this approach
in extensive real-robot and simulation experiments. Our method
achieves better performance while being considerably more
sample efficient than a comparable deep-learning baseline.

I. INTRODUCTION

Legged robots with feet can navigate rough terrains or
confined spaces, yet at a relatively higher cost of transport
and mechanical complexity than their wheeled counterparts.
At the intersection between legs and wheels, wheeled-legged
robots [1], [2] combine legs for active suspension and loco-
motion over varied terrains. They can drive, walk, jump [1]
or skate [3], [4].

Wheeled-legged robots make and break contact with their
environment, for instance, when jumping or stepping down-
stairs. In the resulting hybrid dynamics, the presence or
absence of contacts changes the equations of motion, thus
impacting state estimation and motion control. Hence, the
question of contact estimation or contact detection, where the
system determines its contacts from sensory measurements,
has been studied in itself as a key component of legged
robotic systems.

One straightforward approach to contact estimation is to
add dedicated contact sensors to the system. Direct measure-
ments of contact forces by a collocated force/torque (F/T)
sensor were spearheaded by the Honda P2 [5] and were kept
in following iterations of the humanoid robotics project [6].
This design choice is still actively studied today, with recent
works including an unsupervised approach by fuzzy c-means
clustering [7] and a supervised approach training a contact-
detection multi-layer perceptron (MLP) [8].

Alternative direct contact sensors include load cells and
additional inertial measurement units (IMUs). The Solo
open-source quadruped robot, in its first iteration [9], in-
cluded a load cell in each foot, while measurements from
collocated IMUs were considered in [10]. Overall, the up-
sides of dedicated contact sensors include the reliability and
simplicity of estimating contact from direct measurements.
The downsides include increased leg inertia, design complex-
ity, and hardware costs.

1 The authors are with Inria and the Computer Science Department of
ENS (DI ENS), PSL Research University, Paris, France. Corresponding
author: umit-bora.gokbakan@inria.fr

knee torques

wheel torques

acceleration

co
nt

ac
t 

no
 co

nt
ac

t

Fig. 1. Robustly detecting the moments when a wheeled-biped robot
makes and breaks contact is crucial for successful estimation and control.
This paper proposes a contact estimator based only on inertial and torque
measurements. The measurements are fed into a novel Bayesian filter
formulation to robustly estimate the binary contact state. We validate
our results extensively both in simulation and real-world experiments, as
depicted in the bottom figure.

More recent humanoid [11] and quadruped [12], [13], [14]
robots explored a different design path, using integrated joint
torque sensors rather than dedicated contact sensors. This
indirect approach made the question of contact estimation
more pressing, as fault-prone contact detection was identified
as a major cause of drift by ensuing state estimators [15]. Fol-
lowing up on this observation, [16] proposed a probabilistic
state machine to estimate each leg’s contact state separately
by fusing the system’s kinematic and dynamic models. The
approach was later extended in [17] to distinguish between
sticking and sliding contact modes. Nevertheless, these meth-
ods rely on gait priors and kinematic models, which are not
informative for stiff-legged wheeled-bipeds.

In this work, we estimate the ground contact state of
a wheeled biped robot using only IMU and joint torque
sensors that are readily available on current robots. Our main
contributions are 1) the design of a Bayes filter with param-
eters learned from real-robot data, 2) its noise analysis in
simulation and real-robot performance evaluation compared
with a deep-learned baseline, and 3) the real-time, open-
source implementation of the estimator, packaged as a new
agent for the Upkie wheeled-biped platform.
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Fig. 2. Overview of the estimation pipeline. We use Bayesian filtering to estimate the posterior probability P (St|m0:t) of being in contact state St

given measurements m0:t. Internally, measurement probabilities P (mt|St) are estimated by kernel density estimation (KDE) from knee and wheel torque
sensors, while transition probabilities are estimated from IMU measurements through frequency analysis.

II. RELATED WORKS

Our approach borrows the probabilistic state machine
of [16], [17], which we cast into the framework of Bayesian
filtering. Rather than using a kinodynamic model of the
system, however, we rely directly on real-robot data to
learn the underlying measurement model distributions and
to derive transition probabilities.

In a more data-driven approach, [18] used logistic regres-
sion models to estimate the probability of ground contact,
with parameters learned from real-robot data. This pipeline
also relies on a kinodynamic model to compute ground
reaction forces, while our proposal is to work directly
with collected sensory data. In a more recent work, [10]
instrumented the feet of their robots with additional IMU
sensors, fitting a kernel density estimator (KDE) on each
of the six IMU measurements independently. Both [18]
and [10] are purely measurement-based approaches, whereas
in the probabilistic framework of Bayesian filtering we will
consider two separate measurement and transition processes.
We evaluate the effect of this separation as an ablation
in our experiments and show that considering transition
probabilities is important for high performance.

Training contact estimation from extensive simulation data
has also been explored by [19], who suggested early stopping
as an alternative to domain randomization for closing the
sim-to-real gap more effectively. We reproduce the contact
estimation network from their work and discuss it further
in our experiments. We show that we achieve higher per-
formance with significantly lower sample complexity by
learning from a few real-world experiments.

III. METHOD

We consider the question of contact estimation from
a probabilistic standpoint. Our proposal is to model our
system as a Markov process and use Bayesian filtering to
recursively update the contact estimate based on incoming
measurements. Figure 2 gives an overview of the pipeline.

A. Probabilistic Framework

We represent the contact state at time t as a binary random
variable St that can take values {C,¬C}, where C indicates
contact with the ground and ¬C indicates no contact. We
aim to calculate the posterior probability distribution of St,
which we will refer to as the belief following the convention

of [20]. It is defined as

bel(St) := P (St | m0:t), (1)

where m0:t = {m0, · · · ,mt} contains all measurements
made up to time t. The belief at time t > 0 can be recursively
computed by alternating between a prediction and an update
step, defined respectively by

bel(St) =
∑

S∈C,¬C

P (St |St−1 = S)bel(St−1), (2a)

bel(St) = η−1
t P (mt |St)bel(St), (2b)

where we have introduced the intermediate prior belief
bel(St) := P (St |m0:t−1), and the normalization constant
ηt. The prediction step updates the current belief based on the
transition model P (St |St−1) (also called process or motion
model), while the update step incorporates new observations
through the measurement model P (mt |St). We discuss
the form of these two models in the next sections. The
normalization factor ηt in (2b) is estimated by marginalizing
over both possible contact states:

ηt =
∑

St∈{C,¬C}

p(mt |St = S)bel(St = S). (3)

In the absence of other information, we define a flat (non-
informative) prior P (S0 = C) = P (S0 = ¬C) = 0.5 for the
initial contact state.

B. Measurement Model

The measurement model P (mt |St) is given by the like-
lihood of observing the measurements mt given the contact
state St. Rather than using a parametric model, such as
a kinodynamic robot model, we follow a non-parametric
approach by fitting a KDE to torque measurements from the
knee and wheel joints of each leg:

mt = (τknee, τwheel) ∈ R2 (4)

KDEs estimate the probability density function (PDF) of
a random variable by placing a kernel function K over all
data points and summing them up. The kernel function is
a non-negative function with a bandwidth parameter h that
trades off smoothness and accuracy of the estimated PDF,
whose formula is given by:

fS(x) =
1

NS

NS∑
i=1

K
(
x− x̂S

i , h
)

(5)
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Fig. 3. Results of modeling torque measurements mt in contact (C) and
no-contact (¬C) states. The left two plots show the Gaussian KDEs fit to
vectors of absolute knee and wheel torques mt ∈ R2 : (τknee, τwheel).
The contact likelihood model is normalized by the marginal likelihood by
assuming a flat bel(St) at each timestep. This gives a simple non-recursive
“Measurement Only” model to estimate the contact probability directly,
without any dependence on the history or prior beliefs (right-most plot).

where K is the kernel function, x̂S
i are the data points

collected for a given contact state S, and NS is the number
of data points in the measurement set.

This PDF provides our measurement model:

P (mt | St = S) = fS(mt), (6)

where fS is the KDE fitted on contact state S. As we model
contact as a binary variable, we only have two KDEs fC
and f¬C to fit. We use Gaussian kernels, as they are smooth
functions with infinite support that allow us to cover the
entire space of torque measurements. Figure 3 illustrates the
KDEs estimated from real-robot data.

C. Transition Model

Given a pair A,B ∈ {C,¬C}, we estimate the tran-
sition probability P (St = A |St−1 = B) empirically
from accelerometer measurements. It is possible to detect
when a transition event occurs thanks to nonstationarities in
accelerometer measurements. It is nevertheless not straight-
forward to predict the direction (landing or takeoff) of the
transition, as empirically, both takeoff and landing yield
high upward and downward accelerations indifferently. We
approach this by decomposing transition probabilities into
two factors:

1) Switch (non-directional) probabilities P (St ̸= St−1)
that treat takeoff and landing indifferently, and

2) Directional probabilities P (St = C |St ̸= St−1) and
P (St = ¬C |St ̸= St−1) that estimate the direction of
a given switch.

Transition probabilities are then a product of these two. For
instance, in case of a landing, we have:

P (St = C, St−1 = ¬C)

= P (St = C, St ̸= St−1) (7)
= P (St = C |St ̸= St−1)P (St ̸= St−1). (8)

1) Switch Probabilities: We use the vertical accelerometer
measurements for calculating switch probabilities as follows.
Let us denote by γt ∈ R3 the accelerometer measurement
from the IMU at a given time step t. We consider a slice of

Fig. 4. The Bullet environment used to collect contact data. The robot
was driven down a flight of steps, each with a height of 0.25. The captured
IMU and proprioceptive readings were used to evaluate the contact estimator
against noise.

the N most recent accelerometer measurements projected on
the vertical axis in the world frame:

at :=
[
γz
t−N+1,γ

z
t−N+2, ...,γ

z
t

]
∈ RN (9)

and compute its power spectrum At(ω):

At(ω) =
∥ât(ω)∥22

N
(10)

where ât(ω) is obtained by performing the short-time Fourier
transform (STFT) of the windowed signal, and ω is the
frequency bin.

Both take-off and landing events are impulsive, meaning
their respective windows will have higher power densities
than when neither occurs. We thus formulate the transition
probability with a sigmoid function σ1 of the power density
in the window:

P (St ̸= St−1) = σ1(At(ω)) (11)

where σ1 is a sigmoid with offset and slope set to (8, 1) in
all experiments.

2) Directional Transition Probabilities: On real-robot
data, we identified that vertical accelerations were higher
during landing, by a significant margin, compared with take-
off. These Dirac-like accelerations are reflected in a more
uniform energy distribution across the frequency spectrum.
Takeoffs, on the other hand, are smoother and display rela-
tively more energy at lower frequencies. We then distinguish
the two with a heuristic based on the median frequency
ωmedian splitting the energy mass of the sliding window into
two halves1:

ωmedian(At(ω)) = argmin
ω∗

∫ ω∗

0

At(ω) dω−
∫ +∞

ω∗
At(ω) dω.

(12)
We convert ωmedian to a directional probability using a

logistic function σ2 with offset and slope given by (7.5, 2.5):

P (St = C |St ̸= St−1) = σ2 (ωmedian(At(ω))) . (13)

1As we deal with discrete time and frequencies, we interpolate linearly
between the two frequencies closest to the true median.
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Fig. 5. Robustness study with respect to measurement noise in simulation. The heatmap shows the overall success rate of the estimator under different
noise levels (standard deviation of zero-mean Gaussian measurement noise). On its right, we provide a detailed study for two representative noise settings,
highlighted with black rectangles. We zoom in on the robot rolling down one step (z-coordinate in world frame shown in green) and show, from left to
right, the ground truth (top) and noisy (bottom) torque measurements, the resulting contact probabilities, the STFT of the ground truth (top) and noisy
(bottom) accelerometer data (including power and median frequency), and the resulting transition probabilities.

IV. SIMULATION STUDY

We study the sensitivity of the designed filter to sensory
noise in simulation. The simulation environment, shown in
Figure 4, is built on Bullet and publicly available. In the en-
vironment, the open source Upkie wheeled biped robot [21]
is driven down a flight of steps of height 0.25 m each. We
collect two datasets: one to fit the measurement model (one
run with no additional noise) and one with many runs to test
the estimator’s performance by adding zero-mean Gaussian
noise of varying magnitudes to knee torques, wheel torques,
and accelerometer measurements.

Using the ground-truth contact state, we measure the
success rate as the number of correctly classified contact
states, where we use a threshold of 0.8 on the probabilities
to define contact. This resulting success rate is visualized
as a function of the noise levels in Figure 5. Across all
acceleration noise levels, we observe a near-perfect success
rate if the noise on torques is below 1 Nm. This is far above
the noise levels we observed in real-world experiments (up to
0.12 Nm for wheel torques and 0.25 Nm for knee torques).
The performance with respect to the acceleration noise is
also near-perfect up to noise levels of about 7 m/s2 , and
real-world data was always below 0.23 m/s2.

We finally provide qualitative plots of the measurement
and transition model performance to investigate how the
different elements affect the drop in performance as we
increase the noise. At the considered torque noise level,
we observe many false non-contact detections, however
this affects performance only little, possibly because the
transition probability smoothes out such false detection. For
the transition model, the added noise particularly affects the
median frequency, which detects contact switch directions.
This sensitivity leads to a drastic performance drop as we

increase the noise (see, for example, the acceleration noise
6 in the the left heatmap in Figure 5).

V. EXPERIMENTS

We implement and test the performance of the Bayesian
filter to detect contacts on the wheeled-biped Upkie. Our
study focuses on drops from unforeseen steps, where the
robot alternates between contact and free-fall phases. We set
up a test course where the robot travels over a horizontal
floor, climbs a meter-long ramp with an 8° incline, drops
3 cm from the ramp onto a platform, rolls forward and
drops again from a 12-cm step, which we repeated for a
total number of 10 drops or 5 laps.2

A. Data collection

We fit measurement models and transition functions using
real-robot data collected during a 20-minute session. For
measurement likelihoods, we collected data for 7 min where
the robot either (i) balanced and moved around the room,
or (ii) was hung on a tether without making contact with
the ground. Figure 3 illustrates the resulting distributions of
torque measurements for both contact states.

In the second 13-minute long part of the data collection,
we put the robot on an elevated platform (Fig. 1, top) and
drove it over the edge to induce a drop. After each drop,
we wait for the robot the stabilize (helping it with a tether
if needed), and reposition it on the platform. We use robot
measurements and a relatively high-speed camera to segment
each trial into three consecutive phases: rolling, falling, and
stabilization. We define takeoff and landing as the start and
end times of each falling phase.

2Falls took slightly longer than a true free-fall because of the rolling
down phase.
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B. Training

a) Measurement Model: As we collected contact and
no-contact joint measurements separately, we can use them
directly without annotation to fit our two KDEs. We estimate
the bandwidth parameter h (≈ 12.5) of our kernel functions
following Scott’s rule of thumb, based on the number of
samples and dimensions [22].

As the KDE method has a time and memory complexity
of O(nd) in the number of samples n and dimensions d, it
is common to use efficient search algorithms like balltrees
or k-d trees and sample only near the input point3. In our
case, we build 200×200 regular lookup grids and interpolate
them linearly to achieve even faster prediction times, which
is possible as our data has low-enough dimensionality.

b) Ablation: We integrate KDEs to predict the mea-
surement likelihoods P (mt | St) in the overall filter, but
it would also be possible to normalize them to estimate a
contact probability directly as:

Pτ (St | mt) =
P (mt | St = C)∑

S∈{C,¬C} P (mt | St = S)
, (14)

We will call this indicator “measurements only”, as it is an
ablation of the Bayes filter without transitions.

C. Neural Measurement Network

We reproduce the proposal from [19] of a neural measure-
ment network (NMN) trained from simulated data produced
by running an independent locomotion policy. Practical ben-
efits from training in simulation include the ability to work
with a large dataset and compare against perfect ground
truth, the downside being a corresponding sim-to-real gap.
While the adaption from point-foot quadruped to wheeled
biped requires some changes, we strive to follow the original
proposal whenever possible.

a) NMN inputs: In the formulation of [19] for
quadrupeds, the NMN receives as input a measurement
vector mt = [γt,ωt,qt, q̇t,uquad,t−1], where γt denotes
the linear acceleration measured by the accelerometer of the
IMU, ωt is the body angular velocity from the IMU frame,
qt is the vector of measured joint angles with q̇t its time-
derivative, and uquad,t−1 = qdes,t−1 is the vector of joint
position targets sent at the previous time step to actuators.
Rather than a position-controlled quadruped robot, in these
experiments, our system is a wheeled biped with locked hip
and knee positions and velocity-controlled wheels. We thus
adapted the input measurement vector to:

mt = [γt,ωt,qt, q̇t,uwheel,t−1] (15)

where IMU and joint measurements have the same definition
as above, and uwheel,t−1 is the commanded ground velocity
at the previous time step. In both cases, uquad,t−1 and
uwheel,t−1 represent the action sent by the agent to its
environment.

3This is an approximation when the kernel has infinite support.

b) NMN outputs: The NMN outputs (1) a probability
PNMN(St = C|mt) that the robot’s feet are in contact with
the ground, and (2) an estimate of the body linear velocity
bvt(mt) from the IMU frame to the world frame. Although
we do not use the latter thereafter, we included it in our
reproduction as it can be beneficial for the estimator to be
trained to predict both outputs rather than training to detect
contacts only.

c) Simulation: We train the neural measurement net-
work (NMN) in the open-source Bullet physics simula-
tor [23]. The terrain consists of a flat horizontal floor,
with a lateral friction coefficient of µ = 0.1 and a rolling
friction coefficient of µR = 0.01. As recommended for
wheels in the simulator documentation [23], we set the
“stiffness” and “damping” parameters (of the underlying
frictional-contact linear complementarity problem) to 3 · 104
and 103 respectively. During each episode, we randomly
apply vertical external forces to lift the robot up or let it
fall down, generating a variety of contact and no contact
states.

d) Training: The network architecture from [19] con-
sists of a one-layer gated recurrent unit (GRU) with 128
hidden features, followed by a 256×128 MLP. We generate
a dataset of 4,400,000 simulation steps (≈ 5.5 hours of
simulation data), each step lasting 5 ms, then split it into a
training set of 4,000,000 steps and a validation set of 400,000
steps. As in [19], at each iteration of the NMN training loop,
we use a batch size of 400 parallel environments rolling
out episodes of 400 simulation steps using an independent
locomotion policy. We select a sequence length of 10 to train
the recurrent layer, trading off between the value of 1 used at
inference (faster training, higher validation loss) and larger
values such as 100 (slower training, lower validation loss).
We use the Adam optimizer [24] with a learning rate of
5 · 10−4 and 32 epochs.

As advocated in [19], we rely on early stopping rather than
domain randomization over geometric and inertial parame-
ters. We tracked training and validation losses to determine
the number of iterations to stop at, which we identified as 20
in our use case, as opposed to 200 for a quadruped walking
over varied terrains. This difference in scale can be readily
explained by the lower number of degrees of freedom and
terrain complexity of our application.

D. Results

We evaluate the complete Bayes filter, the simulation-
trained NMN and the measurements-only ablation on the
final task of detecting contacts on the real robot.

a) Contact estimation: We validate contact estimation
as a binary classification task over a test set of real-robot
data manually annotated by a human operator. We threshold
the scalar output of each method to obtain a corresponding
binary classification variable ŷt ∈ {C,¬C}. We then eval-
uate “point-wise” precision and recall for each, as reported
in Table I.

All methods achieve (near-)perfect results when the robot
is in contact, as the robot stays in contact for longer periods,
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where delays in transitions and label noise have very little
effect. Nevertheless, predictions made during the free-flight
phase are much more sensitive to errors and delays, as
they are much shorter in duration. Despite this, we observe
that both the Bayes filter and the measurement-only method
maintain their ability to detect flight phases while predicting
contact.

St = C St = ¬C

Method Precision Recall Precision Recall

Bayes filter 1.0 1.0 0.55 0.37
Meas. only 1.0 1.0 0.53 0.40
NMN [19] 0.99 1.0 0.28 0.15

TABLE I
PRECISION AND RECALL OF POINT-WISE CONTACT-STATE DETECTION.

b) Transition Detection: Evaluating contact detection
as a classification problem does not take into account the
time-series nature of the collected data. In particular, delays
in takeoff detection have a considerable impact on no-contact
recall and precision, as delays account for a significant
portion of the short flight duration. Consequently, we also
evaluate the (mis)-detection rate of each method for landings
and takeoffs. Results are reported in Table II. After each tran-
sition, we employ a period of 250 ms to exclude irrelevant
(mis)detections.

Method Takeoff Landing

Precision Recall Precision Recall
Bayes filter 0.91 1.0 0.71 1.0
Meas. only 0.59 1.0 0.55 1.0
NMN [19] 0.53 0.90 0.56 0.90

TABLE II
DETECTION OF TRANSITION EVENTS OVER 10 DROPS DURING A

SESSION OF 4 MINUTES.

Both the measurement ablation and the Bayes filter
achieve perfect recall on both transition types. In other words,
they never fail to detect a transition within the admitted
period, while the NMN baseline misses one. It is also
important to consider the precision of the transitions, as
misdetections can potentially lead to inappropriate actions by
the robot. The Bayes method achieves a considerably higher
precision rate, meaning we can ascribe more confidence to
its predictions.

We witness that using measurements only can lead to more
frequent misdetections. A transition can be triggered due to
a spontaneous change in leg torques, which is frequent for a
wheeled bicycle during balancing or crouching.

In Table III, the average time each method takes to detect
a contact transition event is given. It is shown that, despite
being a more conservative estimator that is not triggered as
often as the measurement-only baseline, the Bayes method
achieves favorable latencies.

Method Takeoff Landing

Bayes filter 77.1 ± 31.8 17.9 ± 9.1
Meas. only 83.1 ± 31.9 10.1 ± 7.37
NMN [19] 125.0 ± 59.6 22.4 ± 7.4

TABLE III
TRANSITION LATENCIES OF TESTED METHODS (MS). ONLY CORRECTLY

IDENTIFIED TRANSITIONS WERE CONSIDERED.

VI. CONCLUSION AND DISCUSSION

We have presented a Bayesian filter for contact estimation
on wheeled-biped robots, where all measurements come from
IMU and joint torque sensors that are commonly available on
experimental platforms. We learn measurement likelihoods
from a small real-robot dataset of labeled torque measure-
ments, and estimate transition probabilities online using
accelerometer data. We have evaluated this contact estimator
in real-robot experiments, where we observed better accuracy
while requiring considerably fewer samples than an existing
alternative trained on extensive simulation data.

The proposed method can be improved in several ways.
First, because of the Markov assumption, the filter ignores
longer-term effects, such as the low-frequency acceleration
oscillations that can follow a harsh landing. Augmenting
the state or using transition models with memory capa-
bilities, such as long-short-term memory, could be a way
to capture longer contexts. On another front, our method
requires retraining for different types of robots. A future
study could investigate the variability of learned distributions
across different robots.
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