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Abstract

This paper presents a method to map out the behavior of a multistable dynamical system. The method
outputs the boundaries of the stability regions of each multistable regime in the space of system
parameters. Boundaries are produced by Support Vector Machines models. Adaptive sampling is used
to improve speed and generalization to high dimensions. The method is general to any dynamical
system with distinguishable multistable regimes. It is applied to a clarinet model with four distinct
regimes (equilibrium and three distinct periodic notes). The cartography shows that, on the highest
fingerings, the simple clarinet model only favors the expected note for very narrow ranges of reed
parameters.

Keywords: Multistability, Support Vector Machines, Musical Acoustics, Clarinet

1 Introduction

Multistability is the coexistence of several stable
regimes for a single set of values of the parame-
ters of a system. It is inherent to the behavior of
many dynamical systems, such as biological mod-
els [1], neural networks [2], or ecological models [3].
In practice, multistability causes unpredictability
in the system’s behavior, when considering the
relation between the value of the system param-
eters and the observed regime. For example, a
multistable musical instrument model is not guar-
anteed to play the desired note. On the one hand,
this behavior can be considered desirable, because

it translates a realistic difficulty in playing the
acoustic instrument. On the other hand, it can
be considered undesirable, if the user wants the
model to reliably play the desired notes. In both
cases, it is interesting to outline the multistability
regions in the control parameter space. They can
then be avoided or favored depending on the use
case.

Self-sustained musical instruments models are
largely multistable. Evidence has been provided
for violin [4], brass instruments [5, 6], and wood-
winds such as saxophones [7] or clarinet-like
instruments [8]. When playing an instrument, the
musician often wants to obtain a given regime.
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In the case of multistability, that is not guar-
anteed, as another regime can appear and be
maintained instead of the desired one. A sure way
to obtain a given regime is to find a monostability
region, i.e. control parameter values that necessar-
ily lead to a given regime. Maps referencing stable
regimes throughout the control parameter space
can be used to better understand player strate-
gies, or to ensure a certain regime is produced if
the instrument model is used in sound synthesis
[9]. Producing these maps is challenging, because
there are often many control parameters, and
potentially many multistable regimes. Notably,
the traditional approaches based on bifurcation
diagrams do not scale well in high dimensions.
Another traditional method is Linear Stability
Analysis which is easily applied in high dimensions
[10]. However, this method give little information
beyond the loss of stability of the non-oscillating
regime.

The present study characterizes the stabil-
ity zone of each multistable regime in the con-
trol parameter space. Classical carpet bombing
approaches, where the space is meshed in a sys-
tematic manner, or Monte Carlo methods where
new samples are chosen randomly, fall apart when
the dimension of the space increases.

The presented method relies on Support Vec-
tor Machines and adaptive sampling to estimate
the boundary of the stability zones. Using a
small number of points as initialization, new sam-
ples are added where needed by Explicit Design
Space Decomposition (EDSD) [11]. This allows
the method to work with several control parame-
ter space dimensions as well as multistable regimes
to study.

Note that a complete study of a multistable
system involves mapping out the basin of attrac-
tion of each multistable regime, i.e. the initial
conditions which lead to each regime, for each
value of the control parameters. This aspect of
the study is not considered here as it increases
the dimension of the problem by the number of
variables of system.

First, we present the simple clarinet model
and the expected oscillation regimes. Then, the
cartography method is detailed, especially the
initialization and the precautions to take when
testing a new point in the parameter space. The
method is then applied to the space of the control

parameters of the clarinet (blowing, lip force, reed
parameters) in increasing dimension.

2 Preliminary: a multistable
woodwind model

2.1 The clarinet model

This work treats a simple modal clarinet model,
similar to that used in [10, 12, 13]. The resonator
is modeled by a modal formalism. The modal
pressures time-derivative are given by

ṗk = Cku+ skpk (1)

and the pressure is computed as the sum of their
real part

p = 2

Nm∑
k=1

Re(pk) (2)

The number of modes is set at Nm = 3, and Ck

and sk are due to modal analysis on a measured
impedance [14]. The flow rate at the input of the
resonator is classically given as a function of the
pressure p as

u = ζ[x+ 1]+sign(γ − p)
√

|γ − p|

where the two control parameters γ and ζ respec-
tively depend on the blowing pressure and lip force
of the musician, and x is the reed position. The
notation [x + 1]+ = max(x + 1, 0) is the positive
part of the reed opening. This characteristic is reg-
ularized by using the smooth function

√
·2 + η [15]

instead of absolute values:

u = ζ(γ − p)
x+ 1 +

√
(x+ 1)2 + η

2 ((γ − p)2 + η)
1/4

. (3)

The regularization parameter η is fixed at η =
10−3. The reed position x is governed by a single
degree-of-freedom oscillator

ẍ+ qrωrẋ+ ω2
r(x− p+ γ) = 0, (4)

with parameters qr (damping) and ωr (angular
eigenfrequency). For this study, the reed damping
qr is set at 0.1, which is a rather low value. Here,
the reed displacement is considered unaffected by
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the mouthpiece rails, following the usual ghost reed
simplification [16]. The integration of the differen-
tial system is performed using the Matlab built-in
ODE45 routine [17] with the default tolerances
and parameters.

2.2 Classifying clarinet regimes

In addition to the stable non-oscillating regime,
the clarinet model produces several types of oscil-
lation distinguished by their fundamental fre-
quency. Each one can be tied to a single mode
of the resonator, and they are referred to as first,
second and third register sounds (depending on
the index of the corresponding mode). The funda-
mental angular frequency of each register is close
to ℑ(sk). A robust way to label each regime on
the clarinet is a comparison of the amplitude of
the modal pressures pk. The greatest amplitude
gives the current register. Figure 1 illustrates the
non-oscillating and periodic regimes. These sig-
nals are obtained with constant blowing pressure
γ = 0.4 and reed opening parameter ζ = 0.4.
The reed eigenfrequency ωr increases and as it
approaches the modal eigenfrequencies the corre-
sponding register is produced. When a new reg-
ister appears, the corresponding modal pressure
greatly increases while the two others decrease.

3 Two-dimensional
multistable cartography

3.1 The support vector machines
and adaptive sampling (EDSD)

A Support Vector Machine (SVM) model esti-
mates the boundary between regions of qualita-
tively different behavior in the control param-
eter space. We use the CODES toolbox [11],
which builds and trains SVM models. It also
includes adaptive sampling tools. The CVT (Cen-
tral Voronoi Tesselation) method provides an
initial set of points to start the SVM training.
The EDSD (Explicit Design Space Decomposi-
tion) method selects relevant new points in the
space to test at each iteration. These points are
used to refine the SVM model.

In our case, the regions of interest are the
regions of stability of each clarinet regime (non-
oscillating and first, second and third register).

Fig. 1 Regimes of the clarinet model for a single fingering.
Control parameters: γ = 0.4, ζ = 0.4, ωr linearly varying
from 12 to 12000 rad.s−1)

These stability regions overlap because the clar-
inet model is multistable. Therefore, it is necessary
to have a separate SVM model for each regime.
For each SVM model, samples labeled positive
are the points where the corresponding regime
is stable. For samples labeled negative, the cor-
responding regime loses its stability, either by
becoming unstable or by disappearing.

3.2 Initialization for a clarinet

The initialization process is schematized in Figure
2.

First, a CVT grid of points is produced in
the parameter space. We produce initial samples
through time-domain integration of the model. For
each sample, a new integration is launched with
null initial conditions. During these integrations,
the control parameters are constant. The perma-
nent regime that is observed at the end of each
integration is considered stable. This information
then leads to each labeling sample as positive or
negative, depending on the SVM model (i.e. the
regime under focus). This process is illustrated in
Figure 2. Figure 2 (a) shows the regime obtained
at the end of the time integration procedures, and
they are labeled differently in (b) and (c). Indeed,
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in Figure 2 (b) the focus is on the stability zone
of the non-oscillating regime, and in Figure 2 (c)
the focus is on the stability zone of the first reg-
ister. Similar labeling is carried out to initialize
the SVM models giving the frontiers of the regions
where regimes 2 and 3 are stable.

It is crucial for initialization samples to avoid
multistability zones between the regime of interest
and the others. Otherwise, the learning starts with
spurious negative samples. This requires knowl-
edge of the system, so that initialization samples
avoid these regions.

For the clarinet model, the Hopf bifurcations
giving birth to each periodic regime are almost
always direct [18] and near γ = 1/3. This means
that there is no multistability regions between the
equilibrium and the periodic regimes around these
Hopf bifurcations. We also know that Hopf bifur-
cations in ζ are direct [15]. However, it is not
the case in all the parameter space. For γ beyond
γi
M = 1 the periodic branches stay stable before

they encounter a fold bifurcation, and end in a
Hopf bifurcation near γ = 1. This means that γ >
1 is a potential multistability region between the
non-oscillating and the oscillating regimes. Figure
2 (a) highlights in yellow the safe region of the
parameter space where the CVT grid is created.
This region is free of multistability for the non-
oscillating regime, which makes all the samples in
it suitable for initializing the non-oscillating SVM
model.

The situation is different for the oscillating
regimes, which are potentially multistable. To pro-
duce a clean initialization set for oscillating SVM
models, the oscillating samples that are not the
regimes of interest are deleted. This yields a new
initialization set, such as the one displayed in
Figure 2 (c) for the first register.

The SVM models must outline the stability
regions of each regime. When a new point is added,
one cannot simply launch a time integration with
arbitrary initial conditions (as is the case for the
initialization samples). This is because of multi-
stability. Even if the regime of interest is stable at
the tested point, arbitrary initial conditions risk
leading to another regime. This would constitute
a misclassification. To avoid these errors, the time
integration starts from the closest known positive
sample, with initial conditions corresponding to

γ

ζ γM,i γM
ζM

00 00 00

0

0

1

1

2

3

(a) All initialization samples

γ

ζ

+ ++ +

+

+

−

−
−

−

?

(b) Focus on non-oscillating regime

γ

ζ

− − −
−

−

++

+

?

(c) Focus on first register regime
Fig. 2 Initialization of the Support Vector Machines prob-
lem. (a) all initial samples. Initial CVT range: yellow area.

Added known non-oscillating samples 0 . First new sam-
ple evaluation for (b) the non-oscillating regime and (c)

the first register. Positive samples + , negative samples

− , new sample ? , closest positive sample + , evaluation
trajectory . Expected stability limits: dashed lines. In
(c), the oscillating samples not belonging to the register of
interest are removed.
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the established regime of interest. This is schema-
tized in Figure 2 (b) and (c). This way, if the
regime of interest is stable on the path until the
new sample, the new sample is then classified as
positive. If, on the contrary, the regime loses its
stability somewhere along the path, the new sam-
ple is classified as negative. To ensure whether the
regime stays stable on the new sample, some time
is spent on the new sample without varying the
control parameters.

Note that the method can fail if the stabil-
ity zone is concave or non-connected. This can
be mitigated by adding samples, notably in the
initialization. In the clarinet model, this poses a
problem for the non oscillating regime. Three par-
ticular initial samples are added where the non
oscillating regime is known to be stable, for ζ = 0
and γ = 0, γ = 1 and γ = γM . They are high-
lighted by double circles on Figure 2 (a). Their
use appears in Figure 2 (b). To test the new sam-
ple, the time integration starts from the positive
sample at (γM , 0). If the three particular samples
at ζ = 0 did not exist, the time integration would
have to start from one of the positive samples at
γ < 1 and ζ > 0. The path would then cross the
region where the non oscillating regime is unsta-
ble, and the new sample would be misclassified as
negative.

To assess the ability of the SVM model to
determine the stability zones of the different
regimes, a validation set is constructed from the
initialization points. Figure 3 schematizes the con-
struction process. For each initialization point in
the parameter space, its components along each
dimension are varied one after the other by time
integration, in both positive and negative direc-
tions. For initialization points located on the ζ = 0
axis, variations along γ are not performed, since
the system is known to be monostable in the non-
oscillating regime when ζ = 0. The same applies
to the points on the γ = 0 axis and the variation
of ζ. Adding these trivial points to the validation
set would tend to make the test too simple, and
thus overestimate model convergence. These varia-
tions are performed by small steps, e.g. 1/20 of the
dimension range (the step in Figure 3 is different,
for illustrative purposes). One time integration
lasts 2∆t. During the first ∆t, the component to
be varied evolves linearly to its final value. It is
then kept constant for the same duration ∆t.

The progression along a dimension persists
until it reaches one of the boundaries of the param-
eter space, or when the regime of the initialization
point loses its stability. In that case, the last sam-
ple is then stored as negative in the validation
set and the time-integration stops. Any further
negative points run the risk of being misclassified
as a result of multistability. There are as many
validation sets as regimes identified during the
initialization procedure. When evaluating the per-
formance of the model, it should be noted that
reaching 100% accuracy is made very difficult by
dynamical bifurcation phenomena. However, the
validation set signals two possible failures of the
model. Firstly, since new samples depend on the
existing samples, any misclassification propagates
with potentially dramatic effect. This is especially
true for false positives which can be taken as start-
ing points for subsequent integrations. Secondly,
as mentioned earlier, the method is vulnerable to
concave or disconnected stability zones. Compari-
son of the SVM model to the validation set signals
any large scale omission, notably of a disconnected
stability region.

This procedure of construction is designed to
be generalized easily in higher dimension. While
varying a single parameter at a time may seem
naive, it makes the results easier to interpret and
to compare to thresholds obtained by classical
methods such as continuation.

3.3 Result: amplitude surfaces with
stability boundaries

The first application of the method is to map out
a two-dimensional parameter space, such as (γ, ζ).
This parameter choice for woodwinds has been
made in both experimental studies [19–21] and
numerical studies [15, 22]. The results can also be
compared with linear stability analysis [23].

Rather than just outlining the stability zones,
we use the gathered data to approximate the
amplitude of the stable periodic regimes. An
interpolation is realized on the non uniform grid
constituted by the SVM samples [24]. The ampli-
tude of the regimes is linked to the loudness of the
radiated sound. This is especially interesting on
the edges of the stability regions. If the amplitude
tends towards zero, it indicates that the regime
can be played arbitrarily softly. In the opposite
case, it can indicate that the softest nuances are
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Fig. 3 Construction of the validation set. Positive samples

+ , negative samples − . Colors correspond to the regime
of interest : black for non-oscillating, red for first register,
blue for third register. Bigger nodes are initial samples and
smaller nodes along thick lines constitute the samples val-
idation set. Schematic stability limits: dashed lines.

not permitted with this regime. These considera-
tions are linked to the direct or inverse nature of
the Hopf bifurcations [18, 25]. The same could be
done with another descriptor such as fundamental
frequency.

The cartography in the (γ, ζ) plane based on
the four SVM models is displayed in Figure 4.
The fingering is the lowest of the clarinet (written
E2, heard D2, approximately 146.8 Hz for the first
register regime).

The reed parameters are picked so that the
behavior of the model is quite rich. The angu-
lar eigenfrequency of the reed is ωr = 2π ×
1100 rad.s−1, which is higher than the third modal
frequency of ℑ(s3) = 2π × 706.4 rad.s−1. This
makes the three different oscillating regimes possi-
ble to obtain (see Section 4 for further discussion).
A rather low reed damping qr = 0.3 also favors the
apparition of second and third register regimes.

The range of the cartography is γ ∈ [0; 4] and
ζ ∈ [0.01; 1.7]. This largely encompasses parame-
ter value choices made in past numerical studies
on the clarinet [26, 27]. Figure 4 shows that
monostability (i.e. only one stable regime) is very
rare throughout the parameter space. It happens
mainly for the lowest values of γ and ζ where only
the non oscillating regime is stable. For a major-
ity of the space where γ > 1, the four regimes

(a)

(b) Zoom around first register monostability
Fig. 4 (a) Multistable cartography for fingering written
E2: RMS pressure vs. γ and ζ, within the limits of sta-
bility of each regime (red: first, green: second and blue:
third register). Surfaces are vertically offset by 1, 2 and 3
(respectively) for clarity. The lines on the horizontal plane
indicate the limits of stability (projected boundaries of the
first, second and third register surfaces in colors, and limit
of stability of the non-oscillating regime in black). The gray
rectangle is zoomed on in (b). (b) Boundaries in the (γ, ζ)
plane around the first register monostability region (high-
lighted by a red 1).

are stable. For γ < 1, it is more common to have
all three oscillating regimes stable than two, and
very rarely is only one regime stable. Figure 4 (b)
shows that it only happens for a very low ζ and γ
between 0.6 and 1. The oscillating regime that is
monostable in that case is the first register. This
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is the regime that is expected to sound for this fin-
gering. With these reed parameters, ensuring that
this regime appears seems very difficult. It requires
either aiming precisely at the region where it is
monostable, or leading the system into the first
register’s basin of attraction in a multistability
zone. Basins of attraction for musical instrument
models is only an emerging topic [7, 28, 29], and
there is no evidence that musicians are able to
target a specific region of the phase space of a
system.

The SVM model does not provide proof as to
the direct or inverse nature of the Hopf bifurca-
tions. Some clues are contained in the amplitude
at the boundary between the stability region of an
oscillating regime. There is also a decisive clue in
the distance between the non-oscillating stability
limit. Figure 4 shows that the non-oscillating limit
matches that of the third register, except for very
low reed opening ζ. The amplitude of the third
register regime also starts from an almost null
value (the surface on Figure 4 begins around 3,
because it is offset by the register index). Both of
these facts together strongly point to a direct Hopf
bifurcation: oscillations of arbitrarily low ampli-
tude can be obtained near the threshold where
the non-oscillating regime loses its stability. This
is tested via time integration in Appendix A.

4 Cartography in higher
dimensions

The second endeavor deals with the tree-
dimensional space (γ, ζ, ωr). The reed damping
remains low at qr = 0.2. In this space, we choose
to limit the study to γ ∈ [0.05; 0.98], ζ ∈ [0.01; 0.5]
and ωr ∈ 2π × [100; 3000] rad.s−1. The domain in
blowing pressure γ and ζ is comparable to that
used in [10, 12, 13]. These three papers study sim-
ple models of clarinet very similar to the present
one. They tackle its oscillation thresholds, which
is a particular case of stability zone boundary.
The present results can therefore be seen as an
extension of these papers.

Fingerings A2, E4, and C♯5 serve as exam-
ples in this section. These fingerings each have
a different expected register, indicated by their
name: for A2, players expect the first register, for
E4 the second and for C♯5 the third. In order
to favor the higher registers, the player unplugs

upstream holes while leaving the downstream part
of the tonehole lattice unaffected. Figure 5 shows
the acoustical input impedance for these finger-
ings. The peaks of the impedance curve signal
the modes of the resonator. Their height, width
and frequency condition the playable notes. Here,
except for the first register fingering A2, the peak
corresponding to the expected register is not taller
than the others. For the fingerings E4 and C♯5
respectively, the first and second peak are rather
disturbed in frequency by the opening of upstream
holes. The tools developed in this article exam-
ine how this modification of the impedance affects
regime stability zones. In particular, one could
assume that the expected regime dominates the
others.

R R

Fig. 5 Acoustical input impedances for fingerings A2
(red), E5 (green), and C♯6 (blue), and fingering layouts

in corresponding colors. The symbol R indicates that the
register key is pressed.

Figure 6 displays the multistable cartography
for the three studied fingerings. We focus first on
Figure 6 (a), for the first register fingering (A2).
As for the E2 fingering of Figure 4, multistability
is pervasive and encompasses most of the control
parameter space.

Figure 6 shows the stability regions for each
regime. Comparison of the SVM prediction to the
validation set returns values between 85% and
95% of correct answers. This is deemed satis-
factory: no disconnected regions of stability are

7
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(a) A2:

(b) E5: R

(c) C♯6: R

Fig. 6 Limits of stability in the (γ, ζ, ωr) space. Non-
oscillating regime (black), first (red) second (green) and
third (blue) registers. Fingerings are written A2 (a), E5 (b),

and C♯6 (c) with associated tablature ( R signals a pressed
register key). Ticks in the ωr axis mark the three modal
frequencies ℑ(s1,2,3).

omitted. There are monostable regions, notably
when the reed eigenfrequency ωr is low. For ωr =
ωmin
r , only the non-oscillating regime is stable.

This feature is also shown on the two-dimensional
section at ζ = 0.2 of Figure 7. For ℑ(s1) < ωr <
ℑ(s2), only the first register regime is stable. This
region is interesting as the model can only pro-
duce silence or the expected regime throughout
the (γ, ζ) plane. This result can also be deduced
from the considerations on oscillating thresholds
provided in [12]. When ωr ≃ ℑ(s1), the stability
region of the first register bulges outward. This
is because of the low value of the reed damp-
ing qr. Similar bulges occur when ωr ≃ ℑ(s2) for
the second register and when ωr ≃ ℑ(s3) for the
third register. This shape is announced in [13] and
[10]. However, it appears that the bulges in our
study outgrow the limit of stability of the non-
oscillating regime, which indicates an inverse Hopf
bifurcation. The limit of stability is then classi-
cally a saddle-node bifurcation, which cannot be
detected by mere linear stability analysis. Figure
7 shows a two dimensional section of the stabil-
ity zones along the plane ζ = 0.2. Note that
Figure 7 reuses the SVM models trained in three
dimensions. Figure 7 shows small, arrow-shaped
white regions (around γ = 0.4) that do not seem
to belong to any stability regions. Specific time-
domain integration in these zones, not depicted
here for brevity, show that they are monostable
non-oscillating regime. They should be part of
the black region. In fact, the region outlined by
the SVM has relatively smooth edges by con-
struction of the gaussian kernel. Describing sharp
angles requires significantly more samples, or dif-
ferent parameters for the kernel which degrades
the performance of the model in other parts of the
parameter space.

For ωr >> ℑ(s3), the stability zones vary less,
with the first register being the outer surface. This
region of high ωr seems to be the most relevant in
practice. Experimental studies [30] find reed eigen-
frequencies between 2 kHz and 3.5 kHz, higher
than the third mode (around 1.1 kHz here). For
the first register fingering A2, the second and third
register stability zones seem largely inside of the
first register zone. In particular, there is a large
monostability zone of the first register at high ωr

for ζ < 0.25. This monostability can be seen on
Figure 7. This feature could indicate a clear dom-
inance of the expected first register regime for
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Fig. 7 Stability regions for ζ = 0.2. Non-oscillating regime
(black), first (red) second (green) and third (blue) registers.
Fingering: written A2.

this fingering. This conclusion cannot be reached
from the linear stability analysis of previous work,
where oscillation thresholds of all registers tend to
very similar values for high reed eigenfrequency.

For the second register fingering E4 in Figure
6 (b), the first register stability zone shrinks,
especially in the region where ωr ≃ ℑ(s1). This
matches the function of pressing the register key:
hindering the production of the first register.
However, for high reed eigenfrequency ωr, the
first and second register stability zones are very
close together. The second register is mostly the
outer limit, but there is only a very slim zone
of monostability. The third register surface is
also larger than for the A2 fingering. All of this
means that this fingering is almost never guaran-
teed to produce the expected second register. The
largest monostability zone for the second register
is obtained at the bulge around ωr ≃ ℑ(s2).

For fingering C♯5 in Figure 6 (c), the expected
third register seems even more difficult to ensure.
Except for ωr ≃ ℑ(s3) the third register multista-
bility zone never outgrows the two others. At high
ωr values, the first register stability zone is the
largest. Although narrower than for the first reg-
ister fingering A2, there is a clear monostability
zone for the first register before the third register

becomes stable again. However, the second regis-
ter stability zone is shrunk to the point where it
disappears when ωr > ℑ(s3). Multistability zones
featuring the three oscillating regimes are rare for
this fingering.

The fingerings can be compared quantitatively
by computing the volume of each stability zone.
The percentage of the parameter space that is
occupied by each regime is summarized in Table
1. Each regime (in bold) occupy a larger volume
for the fingering where it is expected than for the
others. However, the differences can be very tenu-
ous, especially in the case of the third register. The
first register also occupies a similar volume for A2
and C♯5 (the first and third register fingering).

qr = 0.1

Non-osc 1st reg 2nd reg 3rd reg

A2 44.7% 38.5% 20.2% 26.0%

E5 52.1% 26.8% 38.1% 28.1%

C♯6 51.2% 36.9% 7.2% 27.6%

qr = 0.2 (all other figures)

Non-osc 1st reg 2nd reg 3rd reg

A2 50.0% 46.2% 17.9% 24.8%

E4 55.9% 33.8% 37.5% 25.7%

C♯5 54.9% 42.1% 5.93% 26.0%

qr = 0.5

Non-osc 1st reg 2nd reg 3rd reg

A2 54.3% 46.8% 16.0% 15.0%

E5 61.2% 38.8% 34.8% 16.9%

C♯6 60.1% 41.0% 1.36% 17.3%

Table 1 Percentage of the parameter space
(γ, ζ, ωr) occupied by the stability zones of each
regime for the three studied fingerings (written
A2, E4, C♯5). Values for the expected regime for
each fingering are in bold.

The features of Figure 6 (b) and (c) and the
results of Table 1 indicate the model is mostly
unable to guarantee second and third register
regime on the fingerings where it is expected. This
feature translates to other values of qr and η, and
can therefore be called a feature of the model
itself (given that the modal parameters are mea-
sured on a real clarinet). This lack in production
of the second and third register puts into ques-
tion the simple clarinet model used here. This type
of model is widely accepted as correctly describ-
ing first register fingerings on the clarinet (such
as A2) [26, 31]. However, it has very rarely been
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used to simulate second and third register fin-
gerings. This study offers some possible reasons.
For the present clarinet model to produce sec-
ond and third register regimes, one needs to set
the reed eigenfrequency near the frequency of the
corresponding mode. Players can impact the reed
eigenfrequency, using their lip for example. How-
ever, it seems dubious that they would adapt it
specifically to each fingering of the instrument. It
is more probable that the present simple model
fails to encapsulate a real instrument’s behav-
ior for high fingerings because a physical effect
was abusively ignored. Nonlinear losses in the
upstream holes of the instrument have been cited
as a potential improvement in this direction [32–
34]. These losses are a difficult topic, which is
beyond the scope of the present work.

5 Discussion: on linear
stability analysis

Note that [10, 12, 13] deal with the oscillation
threshold of a simplified clarinet model very close
to the one studied here. They all aim to out-
line the region of existence of each regime, and
map out which one emerges at the lowest blowing
pressure γ as a function of the reed parameters.
The present paper has similar aims, but stud-
ies stability zones instead of oscillation threshold,
which entails two major consequences. Firstly,
oscillation thresholds only give information for
low-amplitude oscillation. Secondly, nothing guar-
antees an emerging regime to be stable anywhere,
especially if the fixed point it emerges from is
unstable. Therefore, the most informative oscilla-
tion threshold is the first one, as illustrated by [10]
which devotes a lot of attention to the lowest oscil-
lation threshold. In this paper, the locus of the
first oscillation threshold is described by the SVM
model attached to the non oscillating regime. The
boundaries traced by the SVM models attached to
oscillating regimes are zones of stability in which
they can be obtained and maintained during a
time-integration. Of course, the SVM models say
nothing of the point at which solution branches
emerge from fixed points. They also give no indi-
cation as to the relative probability of apparition
of a given regime in multistability, which would
require a study of the basins of attraction.

6 Conclusion

The stability zones of multistable dynamical sys-
tems can be mapped out using Support Vec-
tor Machines. The method generalizes to higher
dimensions more straightforwardly than usual
continuation methods, especially because of adap-
tive sampling. By accounting for multistability,
it gives information that is hard to gather using
classical carpet-bombing approaches. The initial-
ization procedure requires some initial knowledge
of the system: at least one monostability zone
must be known a priori.

The method yields interesting conclusions on
the behavior of a simple self-sustained musi-
cal instrument model. Firstly, it reinforces and
expands upon previous results obtained by linear
stability analysis. Secondly, the methods allows an
exhaustive mapping of three-dimensional chunks
of the control parameter space. This draws a
strong conclusion on the inability of this model
to reliably produce high register regimes, unless
the reed is tuned to a particular mode of the res-
onator. Producing an exhaustive cartography of
the control parameter space (4 dimensions here),
or even of the 14 dimensions of the model includ-
ing the modal parameters is attainable using the
method, but the results would be rather tedious
to assimilate.

Appendix A Direct Hopf
bifurcation

Figure 4 hints at a direct Hopf bifurcation around
γ = 0.35. A verification of this behavior is done
by time integration. Figure A1 shows the results
of the time integration for ζ = 0.4. The figure
was generated by increasing the blowing pressure
γ by small steps, integrating until the perma-
nent regime is reached for each value, and then
decreasing it using the same values. This proce-
dures allows to check for hysteresis. Figure A1
indicates that the third register is the one that
appears in numerical integration, which confirms
that it is the first to become stable when the non
oscillating regime loses stability. Figure A1 also
shows that the bifurcation is direct, as predicted:
there is almost no hysteresis phenomenon. Only
one point is different when γ increases or when
it decreases, and the dynamics around the Hopf
bifurcation are so slow that transients become
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Fig. A1 Exploration of the behavior around the bound-
aries between stability regions for the non-oscillating and
third register regime. Lines are cuts of the surfaces of
figure 4. Upwards triangles are due to time-integration with
increasing γ, downwards triangles with decreasing γ. Their
color indicates the register (black : non oscillating, blue :
third register).

indistinguishable from the permanent regime. The
RMS amplitude of the SVM samples (plain line)
does not fit exactly the one obtained by time inte-
gration (triangles) in that case, but remember that
the RMS estimate is due to interpolation between
points that can be relatively far away compared to
the fine variations of γ and RMS value considered
here.

Note that the direct nature of the Hopf bifur-
cation has a direct implication on the behavior
of the model when used for real-time sound syn-
thesis: setting the mouth pressure allows to play
with arbitrarily low volumes. This example is also
a reminder that the first stability threshold holds
a particular significance since it is the one that is
observed for slowly varying control parameters.
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threshold of woodwind instruments. Acta
Acustica united with Acustica 83(1), 137–151
(1997)

[24] Amidror, I.: Scattered data interpolation
methods for electronic imaging systems: a
survey. Journal of electronic imaging 11(2),
157–176 (2002)

[25] Bouasse, H.: Instruments À vent. Impr. Dela-
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