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Abstract. Count-distinct SPARQL queries compute the number of un-
ique values in the results of a query executed on a Knowledge Graph.
However, counting the exact number of distinct values is often computa-
tionally demanding and time-consuming. As a result, these queries often
fail on public SPARQL endpoints due to fair use policies. In this pa-
per, we propose CRAWD, a new sampling-based approach designed to
approximate count-distinct SPARQL queries. CRAWD significantly im-
proves sampling efficiency and allows feasible execution of count-distinct
SPARQL queries on public SPARQL endpoints, considerably improving
existing methods.

Keywords: Semantic Web, Approximate Aggregation, Sampling, Count-
Distinct

1 Introduction

How many people live in Europe? How many books have been written by Euro-
peans? How many women head cities in Europe? How many distinct objects are
in a knowledge graph? These questions can be formulated using count-distinct
aggregate SPARQL queries, as shown in Figure 1. However, these queries pose
significant execution challenges as they require substantial memory to prevent
double-counting and are time-consuming because they typically involve scanning
large segments of knowledge graphs. All queries in Figure 1 time out after 60
seconds on Wikidata, providing no results. This is due to the fair use policy
of public SPARQL endpoints, which maintains servers responsive but prevents
many count-distinct aggregate SPARQL queries from completing. Consequently,
many downstream activities cannot be performed online, such as processing ag-
gregate queries [7], developing indexes of SPARQL endpoints [9,15], and com-
puting summaries for federation engines [18].

If it is not possible to return exact results in 60 seconds, it may be possible
to return an approximate value in 60 seconds, which can be refined by running
the count-distinct aggregate query for another round of 60 seconds. Approxi-
mate query processing has already been used for count SPARQL queries [1,18],
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SELECT(COUNT(DISTINCT ?person)
AS ?cd_persons )

WHERE {
?person wdt:P31 wd:Q5 .
?person wdt:P19 ?city .
?city wdt:P17 ?country .
?country wdt:P30 wd:Q46 .

}

(a) How many people live
in Europe?

SELECT(COUNT(DISTINCT ?book )
AS ?cd_books )

WHERE {
?book wdt:P31 wd:Q571 .
?book wdt:P50 ?author .
?author wdt:P19 ?city .
?city wdt:P17 ?country .
?country wdt:P30 wd:Q46 }

(b) How many books were
written by Europeans?

SELECT(COUNT(DISTINCT ?mayor )
AS ?cd_mayors )

WHERE {
?city wdt:P17 ?country .
?city wdt:P6 ?mayor .
?mayor wdt:P21 wd:Q6581072 .
?country wdt:P30 wd:Q46 .

}

(c) How many women
head cities in Europe?

SELECT (COUNT (DISTINCT ?object ) AS ?cd_objects ) WHERE { ?subject ?predicate ?object }

(d) How many distinct objects are in a knowledge graph (QB5 of SPORTAL [9]) ?

Fig. 1: Count-distinct queries that time out after 60s on Wikidata due to quotas.

Table 1: Performance of the count-distinct query QB5 on WDBench [4].
1s 30s 60s Expected

ex
a

ct Blazegraph, Jena NA NA NA1 304,967,140

Chao and Lee’s [5] 5,909 247,276 561,301 304,967,140
CRAWD 299,831,155 304,180,989 304,357,330 304,967,140

a
p

p
ro

x

CRAWD 16 threads 324,940,368 305,837,635 304,798,354 304,967,140

but it does not support count-distinct aggregate SPARQL queries. The research
question thus arises: Is it possible to build a count-distinct aggregate estimator
for SPARQL?

Distinct-value estimators, originally developed for databases [8,22], estimate
the number of distinct values from a sample, ensuring the convergence to the
exact value. However, the convergence time to the expected values is very high,
making them impractical in the context of RDF and online public SPARQL
endpoints. To illustrate, using the real-world WDBench benchmark [4], which
includes 1.2 billion triples from Wikidata, it is impossible to obtain results for
the query QB5 in Figure 1d in 60 seconds with Blazegraph or Apache Jena1.
In Table 1, we present the results of the Chao-Lee count-distinct estimator [5],
a representative state-of-the-art count-distinct estimator. Its provided estimate
has reached 561,301 after 60 seconds. Although the estimate converges, it is still
far from the exact value.

In this paper, we introduce CRAWD, the first count-distinct aggregate es-
timator for SPARQL queries. CRAWD employs a novel approach: each time
CRAWD samples a value, it resamples its frequency, i.e., its number of dupli-
cates in the query. We demonstrate that knowing these frequencies is sufficient

1 Both engines crash after 5 hours, running out of memory.
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to estimate the number of distinct values. Since the number of distinct frequen-
cies can be much lower than the number of distinct values, the overall sampling
efficiency of CRAWD is drastically higher than that of existing methods. In our
example of Table 1, CRAWD estimates QB5 to 304.3M after 60 seconds, and
304.7M when parallelizing sampling with 16 threads. Our scientific contributions
are twofold:

– We proposed a new count-distinct estimator specifically designed for count-
distinct aggregate SPARQL queries. We established its correctness, demon-
strating that CRAWD consistently converges to the ground truth. CRAWD
can process queries involving basic graph patterns and requires only inde-
pendent draws instead of uniform sampling from the query results.

– We conducted an extensive experimental study, focusing on the sample ef-
ficiency of CRAWD compared to existing estimators. The experimental re-
sults indicate that CRAWD significantly outperforms the state-of-the-art
approaches by orders of magnitude in terms of sample efficiency.

This paper is organized as follows: Section 2 presents preliminaries and moti-
vations. Section 3 describes CRAWD sampling approach. Section 4 presents our
experimental results conducted on challenging real and synthetic benchmarks.
Section 5 describes our positioning compared to related works. Section 6 con-
cludes and outlines future works.

2 Preliminaries and Motivations

We assume the reader is familiar with SPARQL 1.1 concepts and notations [12,17].
In this paper, we focus on count-distinct aggregate conjunctive SPARQL queries
Q, represented as Q = Aggregate(E, COUNTD, P ) where E is a set of variables, and
P is a basic graph pattern (BGP), i.e., a set of triple patterns (tp1 ▷◁ tp2 ▷◁ . . . ▷◁
tpn). For instance, QB5 is a single triple pattern query and can be represented
by Aggregate({?o}, COUNTD, (?s ?p ?o)).

The evaluation of a query Q on an RDF graph G is denoted JQKG and
returns a multiset of mappings where each result mapping µ is a partial function
µ : V → T , where V are variables and T are terms. For the sake of simplicity,
let JQKG = JAggregate(E, COUNTD, P )KG, we note: (i) N the number of results of
JP KG, (ii) D the number of distinct results of JP KG, and (iii) Fµ the number
of occurrences of a mapping µ projected on variables E in the results of P :
Fµ = JAggregate(∗, COUNT, Filter(

V
v∈E v = µ[v], P ))KG. In other terms, Fµ is the

number of duplicates of µ. For simplicity, when a single variable is projected, we
denote this by writing Ft, where t is the term of the projected variable.

Many count-distinct aggregate estimators were developed for databases [8,22].
To better understand the limitations of existing approaches, we consider a repre-
sentative: Chao and Lee’s count-distinct aggregate estimator [5]. This estimator
is versatile and capable of operating on uniform and non-uniform samples, both
with and without replacement. Chao and Lee’s count-distinct estimator is de-
fined as bDCL = |Sd|P

µ∈Sd

Fµ
N

where Sd is a sample of distinct values.
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Consider a highly skewed graph Gskew where the first 5000 triples have o1
as objects, while the remaining triples each have unique objects o2, ..., o5001,
totalling 10000 triples:

:s1 :p1 :o1 :s1 :p2 :o2

:s2 :p1 :o1 :s1 :p2 :o3

. . . . . .

:s5000 :p1 :o1 :s1 :p2 :o5001

The evaluation J(?s ?p ?o)KGskew
returns 10000 solutions mappings, 5001 of which

are distinct when projected on the variable ?o. Therefore |J(?s ?p ?o)KGskew
| =

N = 10000 and JQB5KGskew
= D = 5001. In the original paper [5], Fµ is assumed

to be unavailable. However, in RDF, Fµ can be computed through count queries
or approximated count queries [1,13]. In our example, F:o1

= 5000, and F:o2
=

F:3
= . . . = F:o5001

= 1. The likely result of four random samples is the following:

(1) {?o → :o1} bDCL = 1
5000

10000

= 2

(2) {?o → :o57} bDCL = 2
5000

10000+
1

10000

≈ 4

(3) {?o → :o1} already seen, no change ≈ 4

(4) {?o → :o102} bDCL = 3
5000

10000+
1

10000+
1

10000

≈ 6

This result highlights several weaknesses of Chao and Lee’s estimator: (i) Af-
ter 4 draws bDCL = 6, which is very far from 5001. Even by sampling 50% of
Gskew (2500 times :o1 and 2500 times a value belonging to :o2, ..., :o5001), the
best case estimate is bDCL ≈ 2501

5000
10000+

2500
10000

≈ 3334.6, which is still far from 5001.
(ii) We have a 50% chance of drawing o1, which does not result in any progress.
Progress only happens when a new distinct value is sampled, which becomes ex-
ponentially difficult as the sample size increases. (iii) Chao and Lee’s estimator
requires remembering all observed distinct values, which may be high and may
hit the memory limit of a server.

Although Chao and Lee’s count-distinct estimator is well-crafted, like other
existing estimators, it is intrinsically slow in the presence of such a skew. This
makes such approaches impractical for large RDF datasets.

3 CRAWD: Sampling-Based Count-Distinct Estimator

CRAWD relies on an essential observation: while the number of distinct values
can be extremely high, the number of distinct frequencies of these values is often
much lower. Remarkably, CRAWD maintains its high performance even when
faced with skewed data. For example, in Gskew, there are 5001 distinct values
but only two distinct frequencies: F:o1

= 5001 and F:o2
= ... = F:o5001

= 1. Here,
each distinct frequency has a 50% probability of appearing in Gskew, 50% for
the frequency of 5001, and 50% for the frequency of 1. Similarly, in the DBpedia
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dataset in Figure 2, although there are 13,619,093 distinct objects, there are
only 2,141 distinct frequencies. In the following sections, we detail CRAWD;
with Definition 1 as starting point:

Definition 1 (Exact count-distinct value). Given a SPARQL count-distinct
query Q = Aggregate(E, COUNTD, P ) to be executed over a graph G, and the fre-
quencies of all mappings of P , the exact number of distinct values D is:

D =
X

µ∈JP KG

1

Fµ
(1)

When we observe a uniform sample Suni of µ ∈ JP KG with their respective
frequencies Fµ, we need only to apply a scaling factor to the sum of frequencies
to estimate the number of distinct values.

3.1 CRAWD with Uniform Sampling ( bDuni)

Definition 2 (Count-distinct estimator for uniform sampling). Given a
query Q = Aggregate(E, COUNTD, P ) to be executed over a graph G, and a uniform
sample Suni of the results JP KG, the count-distinct estimator bDuni is defined as:

bDuni =
bN

|Suni|
·

X
µ∈Suni

1bFµ

(2)

The first part of the equation scales the observations made by the multiset
sample Suni to the estimated size of the results bN . The second part of the equa-
tion weights each element of the sample with the inverse number of duplicates.

To illustrate, we use the skewed example of QB5 over Graph Gskew, assuming
an identical sample we obtain:

(1) {?o → :o1} bDuni = 10000
1 × 1

5000 = 2

(2) {?o → :o57} bDuni = 10000
2 × ( 1

5000 + 1
1 ) = 5001

(3) {?o → :o1} bDuni = 10000
3 × ( 1

5000 + 1
1 + 1

5000 ) ≈ 3333

(4) {?o → :o102} bDuni = 10000
4 × ( 2

5000 + 2
1 ) = 5001

The first estimate is far from the expected count-distinct, like Chao and Lee’s
estimate. However, the second estimate has already reached it. It is normal as
soon as CRAWD observes the distinct frequencies with corresponding probability
to appear, it delivers the exact value. Unfortunately, it is impossible to know that
all other draws are useless. However, it is important to converge to the exact
value. The third estimate drifts away from the expected value but remains much
closer than the first. The fourth estimate reaches the actual value again. Over
the samples, the relative error decreases quickly. Eventually, CRAWD’s estimate
reaches the expected count-distinct value of 5001.

Theorem 1. bDuni is an unbiased estimator of D.



6 T. H. T. Pham et al.

Proof. We must prove that E[ bDuni] = D.

E[ bDuni] = E

" bN
|Suni|

·
X

µ∈Suni

1bFµ

#
=

N

|Suni|
· E

"
1bFµ1

+ . . . +
1bFµ1

+
1bFµ2

+ . . . +
1bFµd

#

=
N

K × N
· E

"
1bFµ1

+ . . . +
1bFµ1| {z }

K×Fµ1
times

+
1bFµ2

+ . . . +
1bFµd

#
with |Suni| = K × N

=
1

K
· E[K × (1 + 1 + . . . + 1)| {z }

D times

] =
K × D

K
= D ⊓⊔

Assuming a sufficiently large uniform sample of the results (typically the
scaling factor K ≪ 1 as shown in Section 4), our count-distinct estimator bDuni

converges towards the exact value. However, drawing a uniform sample over joins
– especially in graphs – is tedious and often requires to reject large portions of
the sampled results, resulting in poor sample efficiency [23]. Inspired by Horvitz-
Thompson estimators [11], we devise an unbiased count-distinct estimator for
non-uniform samples.

3.2 CRAWD with Non-Uniform Sampling ( bDnon)

Contrarily to uniform sampling where each element has Pµ1
= Pµ2

= . . . =
Pµn = 1

N chances to get picked in the sample, each mapping µ of the results
may have a different probability Pµ to get picked in the sample. The probability
of drawing an element is not reflected by its number of occurrences in the results
anymore. An element with many duplicates may have few chances to appear in
the sample. To counterbalance this bias, we introduce Pµ in the formula.

Definition 3 (Count-distinct estimator for non-uniform sampling). Given
a query Q = Aggregate(E, COUNTD, P ) to execute over a graph G, a non-uniform
sample Snon of the results JP KG where each mapping µ has a probability Pµ of
having been picked, the count-distinct estimator bDnon is:

bDnon =
bNP

µ∈Snon
P 91
µ

·
X

µ∈Snon

P 91
µbFµ

(3)

To illustrate, consider the query Qrole
bgp of Figure 2a. Qrole

bgp can be presented
by Qrole

bgp = Aggregate(role, COUNTD, P ) where P is a BGP comprising three triple
patterns. The evaluation JP KGex

returns 3 results:

(1) [⟨:b1a:B⟩, ⟨:b1:member:m1⟩, ⟨:m1:role:r1⟩], (?role → :r1);
(2) [⟨:b1a:B⟩, ⟨:b1:member:m2⟩, ⟨:m2:role:r1⟩], (?role → :r1);
(3) [⟨:b2a:B⟩, ⟨:b2:member:m4⟩, ⟨:m4:role:r2⟩]; (?role → :r2).

We assume to have a non-uniform sample of JP KGex
over the graph Gex repre-

sented in Figure 2b, along with their associated probabilities:
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SELECT (COUNT (DISTINCT ?role ) AS ?roles )
WHERE {

?band a :B . #tp1
?band :member ?member . #tp2
?member :role ?role #tp3

}

(a) Query Qrole
bgp that requests the number

of roles and the number of distinct roles in
bands, respectively. In Graph Gex, there
are three roles but only two distinct roles.

:B

:b1

:b2

:m4 :r2

:m1

:m2

:m3

:r1
1
6

1
2

a

a

:member :role

:me
mbe

r

:member
:member

:role

:role

(b) Graph representation of Gex.

Fig. 2: A simple conjunctive query with 3 triple patterns.

(1) [⟨:b1a:B⟩, ⟨:b1:member:m1⟩, ⟨:m1:role:r1⟩], Pµ1 = ( 1
2 × 1

3 × 1 = 1
6 );

(2) [⟨:b2a:B⟩, ⟨:b2:member:m4⟩, ⟨:m4:role:r2⟩]; Pµ2
= ( 1

2 × 1 × 1 = 1
2 );

(3) [⟨:b2a:B⟩, ⟨:b2:member:m4⟩, ⟨:m4:role:r2⟩]; Pµ3 = ( 1
2 × 1 × 1 = 1

2 );

In this sample, :r2 appears more often than :r1 despite appearing half as often
in the query results JP KGex . Assuming accurate estimates for bN and bFµ, we
obtain the following count-distinct estimate:

bDnon =
3

P 91
µ1

+ P 91
µ2

+ P 91
µ3

×
�

P 91
µ1

F:r1

+
P 91

µ2

F:r2

+
P 91

µ3

F:r2

�
=

3

6 + 2 + 2
×

�
6

2
+

2

1
+

2

1

�
=

21

10

Again, increasing the sample size increases the accuracy of the estimate. It even-
tually converges to the exact count-distinct value.

Theorem 2. bDnon is an unbiased estimator of D.

Proof. The demonstration is analogous to that of Theorem 1 with probability of
appearance Pµ being neutralized by their respective weights P 91

µ . ⊓⊔

3.3 Implementing CRAWD

Algorithm 1 provides the general instructions for computing count-distinct es-
timates using CRAWD under budget b. CRAWD requires (i) a count estimator
for bN under budget bN (Line 3); (ii) a sampler returning each sampled mapping
µ ∈ JP KG with its inverse probability of having been picked P 91

µ (Line 5); and
(iii) a count estimator for bFµ under budget b bFµ

(Line 9). Sampled solutions be-
come part of the estimate by updating the two sums on Lines 10 and 11 until
the cost c exceeds the budget b. The function finally returns an estimate based
on Equation 3.

While this algorithm highlights that any sampling method and any count
estimator [16] would work, this paper focuses on the implementation of Algo-
rithm 2 based on RAW-JENA [1] for non-uniform sampling with replacement,
and on Wander Join [13] for its count estimates.
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Algorithm 1: Generic implemen-
tation of CRAWD.

1 Function CRAWD(G,P,E, b, bN , bFµ ):
2 (sumP 91

µ
, sumP 91

µ /Fµ
)← (0, 0)

3 ( bN, c)← CountEstimate(G,P, bN )

4 while c < b do
5 (µ, P 91

µ , cµ)← Sample(G,P )

6
7 // Sample provides only µ ∈ JP KG

8 P ′ ← Filter(
V

v∈E v = µ[v], P )

9 ( bFµ, cFµ )← CountEstimate(G,P ′, bFµ )

10 sumP 91
µ
← sumP 91

µ
+ P 91

µ

11 sumP 91
µ /Fµ

← sumP 91
µ /Fµ

+
P 91

µbFµ
12 c← c + cµ + cFµ

13 if sumP 91
µ

= 0 then return 0
14 return cN

sum
P 91

µ

× sumP 91
µ /Fµ

Algorithm 2: CRAWD based on
random walks and Wander Join.

1 Function CRAWD(G,P,E, b, bN , bFµ ):
2 (Swj , sumP 91

µ /Fµ
)← (0, 0)

3 c← 0 // bN included in the loop
4 while c < b do
5 (µ, P 91

µ , cµ)← RandomWalk(G,P )

6 Swj ← Swj + 1

7 if µ ∈ JP KG then
8 P ′ ← Filter(

V
v∈E v = µ[v], P )

9 ( bFµ, cFµ )←WanderJoin(G,P ′, bFµ )

10 sumP 91
µ /Fµ

← sumP 91
µ /Fµ

+
P 91

µbFµ
11 c ← c + cFµ

12 c← c + cµ

13 if Swj = 0 then return 0
14 return 1

Swj
× sumP 91

µ /Fµ
// simplified

Sampling RAW-JENA uses random walks to provide mappings µ along with
their exact probability of getting picked Pµ. For a conjunctive query Q = (tp1 ▷◁
tp2 ▷◁ . . . tpn), a random walk γi = (t1, . . . , tn) is computed by randomly picking
t1 in Jtp1KG, and each subsequent ti (i > 1) in Jti−1 ▷◁ tpiKG.

For example, assuming an augmented B-Tree indexes such as Blazegraph’s,
which enables picking a triple uniformly at random from a triple pattern, and
retrieving the cardinality of a triple pattern; with the query Qrole

bgp on Graph Gex

of Figure 2b, Line 5 of Algorithm 2 performs a first random walk:

(1) γ1 = [⟨:b1 a :B⟩, ⟨:b1 :member :m1⟩, ⟨:m1 :role :r1⟩]
(1) µ1 = {?role → :r1}
(1) P 91

µ1
= |J?b a:BKGex

|×|J:b1:member ?mKGex
|×|J:m1:role ?rKGex

| = 2×3×1 = 6

Since the found mapping µ1 is a valid solution of Query P over Graph
Gex, Line 7 of Algorithm 2 states that CRAWD should evaluate bFµ1 to up-
date its dedicated sum. Therefore, Line 8 binds the variable ?role of Query P
with the found mapping :r1 in order to evaluate bFµ1

as a regular COUNT query:
Aggregate(∗, COUNT, (?b a :B ▷◁ ?b :member ?m ▷◁ ?m :role :r1)).

Estimating bFµ According to the G-Care Benchmark [16], Wander Join [13] is
an accurate and unbiased cardinality estimator on RDF data. Being unbiased,
increasing the dedicated budget bFµ improves the expected accuracy of the pro-
vided estimates. Assuming a conjunctive query Q = (tp1 ▷◁ tp2 ▷◁ . . . tpn) and
a set of a random walks Swj = {(t1, . . . , tn)}, Wander Join estimates the cardi-
nality bNwj of a query Q as follows:

bNwj =
X

γ∈Swj

P 91
γ

|Swj |
where P 91

γ =

(
|Jtp1K|

Qn
i=2 |Jti−1 ▷◁ tpiK| if γ succeeded,

0 if γ failed.
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For example, with a budget bFµ
of two random walks, and the built query

P ′ = (?b a :B ▷◁ ?b :member ?m ▷◁ ?m :role :r1), Wander Join on Line 9
computes bFµ1

as follows:

(1) [⟨:b1 a :B⟩, ⟨:b1 :member :m1⟩, ⟨:m1 :role :r1⟩], bFµ1
= 2×3×1

1 = 6
(1) [⟨:b1 a :B⟩, ⟨:b1 :member :m3⟩], bFµ1 = 6+0

2 = 3

Line 10 of Algorithm 2 aggregates this result into sumP 91
µ /Fµ

= 6
3 = 2. At this

point, if the cost c exceeds the budget b, CRAWD’s estimate is bDnon = 2
1 = 2.

Contrary to Line 14 of the generic Algorithm 1, the term bN does not appear.
By using Wander Join to estimate bN as well, we have Snon ⊂ Swj , thereforeP
µ∈Swj

P 91
µ =

P
µ∈Snon

P 91
µ which simplifies

bNwjP
µ∈Snon

by 1
|Swj | .

Overall CRAWD provides a range of different implementations, allowing for
trade-offs depending on (i) the chosen approach to estimate N , (ii) the cho-
sen approach to estimate Fµ, and (iii) the chosen approach to provide sampled
mappings µ. Being unbiased, increasing CRAWD’s budget improves its accu-
racy. For most queries, CRAWD converges quickly towards the expected value,
even in highly skewed settings where other estimators might fail. However, some
complex queries may require budget adjustments as demonstrated in our exper-
imental results.

4 Experimental Study

We want to answer the following questions empirically:

1. What is the sample efficiency of CRAWD compared to other count-distinct
estimators for single triple pattern queries? For these queries, provided Fµ are
exact thanks to the indexes of SPARQL engines. Therefore, this experiment
shows the performance of count-distinct estimators without the noise induced
by underlying count estimators.

2. What is the sample efficiency of CRAWD for basic graph pattern queries?
The presence of joins makes the estimation of Fµ approximate. This experi-
ment measures how the approximation of Fµ impacts CRAWD.

CRAWD is implemented in Java on top of Blazegraph’s storage. The code for
reproducible experiments is public and available on the GitHub platform at:
https://github.com/GDD-Nantes/crawd-experiments.

4.1 Experimental Setup

Datasets: We experiment on the three datasets summarized in Table 2:
– WatDiv10M : A synthetic dataset with 10 million triples based on Waterloo
SPARQL Diversity Test Suite [3].
– DBpedia: A subset of DBpedia within LargeRDFBench [19] sourced from
Wikipedia and containing around 43 million triples.

https://github.com/GDD-Nantes/crawd-experiments
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Table 2: Characteristics of datasets (NA: Not Available).
distinct (value / frequency)

triples subjects predicates objects

WatDiv10M 10,916,457 521,585 / 308 86 / 74 1,005,832 / 641
DBpedia 42,849,609 9,494,331 / 121 1,058 / 739 13,619,093 / 2,141
WDBench 1,257,169,959 92,498,623 / NA 8,604 / 8,195 304,967,140 / NA

– WDBench [4]: A real-world large dataset extracted from Wikidata containing
around 1.25 billion triples.

Queries: As there is no dedicated benchmark for count-distinct aggregate queries,
we used the synthetic benchmark WatDiv and the real-world benchmark WD-
Bench to build two workloads. We transformed the original queries from these
benchmarks into count-distinct aggregate queries and selected the most chal-
lenging queries for the estimators, i.e., those producing a large number of dis-
tinct results. For both workloads, we added single triple pattern queries from
SPORTAL[9]: QB3 (count-distinct predicates), QB4 (count-distinct subjects),
and QB5 (count-distinct objects), the most basic VoID statistics2. From SPORTAL,
we added ten queries that count distinct objects per class for the top 10 classes
with the highest number of distinct objects per class.
The result is a workload of 58 queries ranging from 1 to 12 triple patterns for
WatDiv and a workload of 43 queries from 1 to 5 triple patterns for WDBench.
The methodology used to build our workloads is detailed on the project website.

Baseline estimators: For single pattern count-distinct queries, we compare the
performance of CRAWD with the following count-distinct estimators [8]:
– Horvitz-Thompson [11,20] : is a specialisation of the general Horvitz-Thompson
statistical estimator to count distinct items. In this case, the challenge is to
compute the inclusion probability of a distinct element. This specialisation is
different from the Horvitz-Thompson estimator for cardinality estimation used
in Wander Join [13].
– Smoothed Jackknife [8] : accounts for true bias structures.
– Chao-Lee [5] : implements the Chao and Lee estimator using a natural coverage
estimator that assumes Fµ to be unavailable.
– Chao-Lee-Fµ [23] : is a variant of Chao-Lee where Fµ is computed using rewrit-
ing and cardinality estimation. Out of fairness, it uses the same cardinality es-
timator as CRAWD.
– NDV estimator [22] : is a learned estimator. According to the authors, the
model has been trained with synthetically generated training data and can be
deployed on unseen tables and workloads.
For BGP count-distinct queries, we only compare CRAWD and Chao-Lee-Fµ as
they are the sole representative supporting non-uniform sampling over joins [23].

2 https://www.w3.org/TR/void/

https://www.w3.org/TR/void/
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Fig. 3: Relative error of count-distinct estimators for single triple pattern queries.

Evaluation Metrics: We measure the mean relative error over five runs to eval-
uate the accuracy of count-distinct estimators. The relative error for an estima-
tion bD with the ground-truth value D is defined as bD−D

D × 100. For single triple
pattern count-distinct queries, we keep the sign of relative errors to highlight
the over estimations and underestimations of reference values.
The sample efficiency is given by comparing the relative error of two count-
distinct estimators for the same sample size.

Hardware: We use a local cloud instance with Ubuntu 20.04.4.LTS, an AMD
EPYC 7513-Core processor with 16 vCPUs allocated to the VM, 1 TB SSD, and
64 GB of RAM.

4.2 Experimental Results

What is the sample efficiency of CRAWD compared to other count-distinct es-
timators for single triple pattern queries? For single triple pattern queries,
provided bN and Fµ are exact, thanks to the indexes of the SPARQL engines.
Therefore, this experimentation shows the performance of the estimator itself
without the noise induced by underlying count estimators. Therefore, the bud-
get bFµ dedicated to count estimates for both Chao-Lee-Fµ and CRAWD is 0.
To enable fair comparison, we draw for all different approaches uniformly with
replacement 10% of subjects, predicates, and objects from WatDiv10M and DB-
pedia, and 1% of subjects, predicates, and objects from WDBench. Concerning
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WDBench, we limit the sampling ratio to 1% as it represents 12M triples, which
is already greater than the whole WatDiv10M dataset.

Figure 3 presents the sample efficiency for our three single pattern queries
over our three datasets. On the x-axis, we have the sampling ratio, and on the
y-axis the mean relative error.

The overall results show that whatever the query and the dataset, CRAWD
converges to the ground truth extremely fast compared to other estimators, i.e.,
with 1% of sampling ratio, CRAWD has a relative error under 2%.

When we examine the queries, the performance disparity between CRAWD
and the competitors is less pronounced in queries about distinct predicates
(QB3). This is normal as the number of distinct frequencies for predicates is
closer to the number of distinct values as described in Table 2.

However, the performance gap significantly increases when counting the dis-
tinct subjects and reaches its peak in queries involving distinct objects. The
primary reason is the varying number of distinct elements (see Table 2). The
performance of existing estimators tends to degrade as the number of distinct
elements increases. CRAWD performs extremely well as the number of distinct
frequencies is significantly lower compared to the number of distinct elements3.

Focusing on the different datasets, it is evident that changes in dataset size
predominantly affect the performance of counting the distinct predicates. For ex-
ample, WatDiv10M has 86 predicates, DBpedia has 1,058 predicates, and WD-
Bench has 8,604 predicates. Consistent with earlier findings, the performance of
existing estimators deteriorates as the number of distinct elements in a dataset
increases, leading to slower convergence.

Focusing on the estimators, the performance of Chao-Lee and Chao-Lee-Fµ

is comparable, indicating that the two methodologies for estimating Fµ yield
similar results. The performance of Smoothed Jackknife is also akin to that of
Chao-Lee-Fµ. However, the performance of Horvitz-Thompson appears to dete-
riorate more rapidly than that of Chao-Lee’s as the number of distinct elements
increases. Finally, the performance of NDV is erratic. Being a learned estimator,
it remains unclear whether NDV’s inconsistent results are due to generalization
issues.

In summary, for single triple pattern queries, CRAWD outperforms other
estimators on all the datasets for count-distinct subjects, predicates, and objects.

What is the sample efficiency of CRAWD in the presence of basic graph patterns?
For the BGP count-distinct queries, we only compare CRAWD and Chao-Lee-
Fµ, as they are the sole representatives of count-distinct estimators that support
non-uniform sampling over joins [23].

To ensure a fair comparison, each count-distinct aggregate query is executed
with an identical global budget b in terms of number of scans over Blazegraph’s
indexes. For this experiment, the global budget b is set to 10K, 100K, and 1M
scans. This budget includes a frequency budget b bFµ

, which is the number of scans

3 We were unable to compute frequencies of distinct subjects and objects for WDBench
with our computing resources.
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(a) Workload of WatDiv10M. (b) Workload of WDBench.

Fig. 4: Aggregated mean relative error for the different combinations of b/b bFµ
.

allocated for frequency estimation Fµ per sampled result µ. In the experiment,
the frequency budget b bFµ

is set to 1, 10, 100 multiplied by the number of triple
patterns in the query. For instance, a query with two triple patterns will consume
2, 20, or 200 scans to estimate each bFµ, depending on the configuration.
Overall, this represents nine configurations with different budget allocations b
and b bFµ

for each query.
Figure 4 presents the average relative error for all queries per configuration.

As expected, the error decreases as the budget for sampling increases for both
Chao-Lee-Fµ and CRAWD. In this experiment, CRAWD consistently outper-
forms Chao-Lee-Fµ.

For a fixed budget, the average relative error also decreases as the frequency
budget increases. However, an increased frequency budget results in a decrease
in the number of sampled results. There is a trade-off between the overall budget
and the frequency budget, which can vary depending on the query.

By comparing the results on WatDiv10M and WDBench, we observe that
CRAWD and Chao-Lee-Fµ perform better on WDBench, which is 100 times
larger than WatDiv10M. This is due to the nature of the WatDiv workload,
which includes queries with up to 12 triple patterns. Queries with a high number
of triple patterns tend to deliver less accurate estimations, thereby degrading the
overall performance of the WatDiv workload.

Figure 5 presents the results per query for each workload for b = 1M and
b bFµ

= #tp×100. The queries are grouped on the x-axis by their number of triple
patterns. As shown, CRAWD significantly outperforms Chao-Lee-Fµ in most
cases. For some queries, both estimators have similar performance, and only a
few times Chao-Lee-Fµ performs better than CRAWD: q_2023_v9, q_3919_v9
on WatDiv, and q_407 for WDBench.
When CRAWD estimates poorly, there can be a few causes:

1. The estimation of Fµ is performed with random walks, making join ordering
critical. An incorrect join order negatively impacts CRAWD’s estimation.
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(a) Mean relative errors of 55 queries for WatDiv10M.

(b) Mean relative errors of 40 queries for WDBench.

Fig. 5: Mean relative errors of estimates provided by CRAWD and Chao-Lee-Fµ

with a global budget b = 1M and a frequency budget b bFµ
= #tp × 100.

We observed this issue with the queries q_407 and q_637. After forcing the
good join order, CRAWD delivered nearly perfect estimations.

2. Compared to the original query, the query for Fµ can be highly selective. For
instance, to estimate the query Q=Aggregate({?y}, COUNTD, (:foo :knows ?x
▷◁ ?x :knows ?y)), with a sampled mapping {y → :bar}, we generate the fre-
quency query F:bar=Aggregate(∗, COUNT, (:foo :knows ?x ▷◁ ?x :knows :bar)).
If F:bar is highly selective, it may require more scans than the allocated fre-
quency budget to be estimated accurately. The queries q_224 with four triple
patterns and q_638 with five triple patterns of WDBench have this issue.

Regardless of the causes of poor estimation accuracy, we know that Fµ is an
unbiased cardinality estimator. It eventually converges to the expected values.
Consequently, CRAWD also eventually converges to the correct value. The key
question is: What budget is required to achieve such a convergence?

Given an overall budget b and a frequency budget b bFµ
, we can assess if they

need to be increased by comparing the provided count-distinct estimates with
the estimates provided by a smaller configuration with a lower global budget
and a smaller frequency budget.
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To illustrate, consider the query q_9962_v2 with 12 triple patterns of WatDiv
that should return 8,321. With b = 1M and b bFµ

= 1,200, the estimate is approx-
imately 130. With a smaller b = 100K and b bFµ

= 120, the estimate is approx-
imately 14. The ratio between these two estimates is 130

14 ≈ 9.2 indicates that
the estimation still evolves significantly and requires more sampling. Conversely,
the query q_137 of WDBench should return 223,432. CRAWD returns 218,308.8
with b = 1M and b bFµ

= 400; and 202,951.6 with b = 10K and b bFµ
= 40. The

ratio is 1.07, indicating a stable value.
In Figure 5, we computed for CRAWD, the estimation ratio for all queries,

dividing the distinct values obtained with b = 1M and b bFµ
= #tp × 100 by the

distinct values obtained with b = 1M and b bFµ
= #tp × 10. The estimation ratio

appears on top of the CRAWD bars. As we can see, when the estimation ratio is
high, the relative error is high, and when the estimation ratio is close to 1, the
relative error is low.

To confirm the correlation, we calculated the Spearman’s correlation coeffi-
cient for both datasets, WatDiv10M and WDBench, with the two configurations:
b = 1M, b bFµ

= 100 and b = 100K, b bFµ
= 10. The coefficients are 0.87 and 0.57,

respectively, with p-values close to 0. This statistically significant result confirms
the correlation between the estimation ratio and relative error. Consequently, an
end-user can utilize CRAWD by progressively increasing the budget until stable
values are found.

5 Related Work

Executing count-distinct aggregate SPARQL queries poses significant challenges,
as they can quickly exhaust quotas in time and memory of public SPARQL
endpoints. Consequently, the execution of count-distinct aggregate queries often
gets interrupted by fair use policies [9,15].

To address the memory issue, one can use sketch-based approaches such as
HyperLogLog [6,10], which offer accurate estimates with error-bound. While
sketches resolve the memory issue, they are still time-consuming as they require
scanning all results of the count-distinct aggregate queries. One strategy to over-
come the timeout issue is to rely on web preemption [2,7]. Web preemption allows
splitting the processing of count-distinct aggregate queries into several quanta
of time, making the processing compatible with fair use policies. Unfortunately,
web preemption still requires to scan all results of the count-distinct aggregate
queries.

Online Approximative Query Processing (AQP) [14] is an alternative ap-
proach for computing aggregate queries. Unlike sketches, AQP does not require
scanning all results of a count-distinct aggregate query, i.e., results can be deliv-
ered by scanning only a tiny fraction of the dataset. However, it cannot guarantee
error-bound as sketches; the only guarantee of AQP is to converge to the correct
result in a pay-as-you-go scenario. AQP has already been successful for SPARQL
aggregate queries but without the solution modifier DISTINCT [1,18,21]. These
aggregates can be handled with random walks as proposed in Wander Join [13].
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However, it cannot handle count-distinct aggregate queries as the Wander Join
statistical estimator is not designed to count distinct values. To the best of
our knowledge, CRAWD is the first proposal to sample SPARQL count-distinct
queries.

In the field of databases, a large number of count-distinct estimators are
proposed [8,22]. These estimators are used to estimate the number of distinct
values in a column of a table. As highlighted in this paper, these approaches
deliver very poor sample efficiency in the context of RDF, i.e., in the presence of
a table with three columns: subject – predicate – object. CRAWD outperforms
other count-distinct estimators in this context. Moreover, existing databases
count-distinct estimators are not evaluated over query results, mainly to avoid
the challenging problem of sampling over joins [23]. When sampling over joins,
results become non-uniform, and many count-distinct estimators cannot be used.
Different algorithms have been proposed to draw uniform samples over joins [23],
such as online exploration, Extended Olken (EO), and exact weight.

However, providing uniform sampling over joins has a very high cost in terms
of sample efficiency [23]. CRAWD avoids this issue by using a non-uniform sam-
pling. This is an essential feature for making the whole approach usable in prac-
tice.

6 Conclusion

In this paper, we proposed CRAWD, the first count-distinct estimator for SPARQL
queries. By leveraging the relatively small number of distinct frequencies com-
pared to distinct values, CRAWD significantly improves sample efficiency, even
in the presence of joins. Our comprehensive experimental evaluations empirically
demonstrate that CRAWD significantly outperforms state-of-the-art approaches
in terms of sample efficiency. In addition, we provide an engine that runs on
Blazegraph storage, enabling Blazegraph and CRAWD to be used on the same
physical data.

Our future work will focus on extending the support of our approximate
count-distinct estimator CRAWD to more complex operators such as OPTIONAL,
SET MINUS, and NOT EXISTS. Our experiments also highlighted a trade-off in
CRAWD’s sampling budget allocation between result sampling and sampling
cardinality estimation of results. Exploring an intelligent strategy for optimizing
this allocation is an interesting direction for future research. Finally, combin-
ing CRAWD with a cardinality estimator with better performance than Wan-
der Join [13] could further enhance its performance.

Supplemental Material Statement: All datasets and code required to run and
reproduce the experiments are publicly available on the GitHub platform at:
https://github.com/GDD-Nantes/crawd-experiments.
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