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Abstract
Reliability analysis is a field of uncertainty quantification that focuses on calculating the failure probability
of a system. In this context, the limit-state function is crucial, as it predicts system failure. Traditionally, this
function is assumed to yield the same output when repeatedly evaluated on a given set of input parameters.
Recently, non-deterministic limit-state functions have attracted increasing interest in the field. These yield
random responses for each set of input parameters. This behavior introduces additional complexity to relia-
bility analysis, as both safe and failed states may be observed for the same input parameters. Our research
explores how reliability analysis differs when applied to stochastic simulators. More specifically, we aim
to expand the definition of failure probability to cope with these models. In this contribution, we propose
simulation methods for dealing with these cases. These, however, lead to a great computational burden.
Therefore, we also propose surrogate-based methods to efficiently compute the failure probability.

1 Introduction

Computer simulations are ubiquitous in modern engineering, as they allow virtual replication of real-world
systems without costly physical experiments. These virtual models take as input a set of variables that control
the characteristics and conditions of the virtual system, ultimately allowing the virtual model to mimic the
response of their real-world counterparts.

These virtual representations are essential in the field of reliability analysis. In this context, it is of interest
to compute the probability that the uncertainties related to a system will lead to its failure. To represent
this uncertainty, we collect the set of input parameters in a random vector X with joint probability density
function (PDF) fX, defined over the domain DX ⊂ RM .

Additionally, the status of the system, i.e., whether the system fails or not, is implicitly represented through
the sign of the limit-state function g : x ∈ DX → R. Conventionally, failure is associated to g(x) ⩽ 0. The
so-called failure domain can then be defined as Df = {x : g(x) ⩽ 0}. Within this mathematical framework,
it is possible to define the probability of failure as [1, 2, 3]:

Pf = P(g(X) ⩽ 0) =

∫

Df

fX(x) dx. (1)

Computing the probability of failure directly from Eq. (1) relies on the implicit assumption that the limit-
state function exhibits deterministic behavior. In other words, it assumes that a fixed input consistently leads
to the same output, which is either failure or success. However, this assumption is not always valid.

In the literature, models that return a random variable as the response to a given set of input parameters
are often called non-deterministic. Because every time the model is computed, a different response is ob-
served, both failed and safe outcomes can be observed for the same set of input parameters, making Eq. (1)
insufficient.

Non-deterministic behavior can arise for multiple reasons. In some cases, it results from the intrinsic ran-
domness (latent variability) within the model. A classic example of this is a structural model subjected to



earthquake excitations [4]. Such excitations are commonly specified by intensity measures, such as peak
ground acceleration or magnitude. However, these measures are only loosely related to the actual earthquake
excitations, and infinitely many different earthquakes can share the same intensity measures. Consequently,
there are infinitely many different responses for each value of an intensity measure. In these cases, stochas-
ticity is inherent to the model and cannot be disregarded or eliminated. We categorize these models as
stochastic simulators.

Another common cause for non-deterministic behavior in engineering systems is the presence of noise in the
data. In this scenario, an underlying deterministic model exists but is inaccessible because only noisy realiza-
tions of its response are available [5, 6, 7, 8, 9]. A well-known example of such behavior is crashworthiness
simulations [10]. In this case, the mesh of the finite element model significantly impacts the response, and
even minor changes can lead to different outcomes. While these fluctuations are generally small, reliability
analysis is very sensitive to the behavior of the limit-state function when it assumes near-zero values. Conse-
quently, these fluctuations can cause a change in the sign of the response of the limit-state function, possibly
leading to the misclassification of safe regions of the input domain as failed and vice versa [11, 12, 13]. Due
to their different nature from stochastic simulators, we refer to them as noise-corrupted models, or briefly
noisy models.

There are significant differences when performing reliability analysis for stochastic simulators and noisy
models. Back to the earthquake example, it is of interest to compute how the stochasticity of the load will
affect the probability of observing a failure in a structural frame. On the other hand, in the crashworthi-
ness example, it is of interest to filter out the noise component and to retrieve the underlying deterministic
reliability problem. Because these models are different in nature, they require different approaches when
performing reliability analysis.

To tackle these issues, this contribution is organized as follows: Section 2 formalizes the two types of non-
deterministic models and proposes methods for performing reliability analysis depending on the problem at
hand. Section 3 presents two surrogate-based approaches for expediting the reliability estimation in Section
2, due to the expensive nature of simulation-based methods. One of the two surrogate approaches can address
stochastic models, whereas the other can filter the noise component out of the problem. Section 4 shows the
application of the two proposed approaches to a well-known reliability example cast in two different ways:
as a stochastic simulator and as a noisy model. Finally, Section 5 summarizes our findings and provides
concluding remarks.

2 Problem statement

2.1 Reliability analysis of stochastic simulators

Stochastic simulators are described in the literature as the following mapping [14]:

g : DX × Ω → R,
(x, ω) 7→ g(x, ω),

(2)

where x is the input vector that belongs to the input space DX . Ω denotes the sample space of the probability
space {Ω,F ,P} which represents the internal stochasticity of the model. In turn, ω represents a realization
of a random event in Ω.

In practice, because computers are deterministic and cannot generate true randomness, the inherent random-
ness of the systems is represented using the so-called latent variables Z. Then, every evaluation of g(x)
is associated to a different realization of Z. In this sense, calling g(x) multiple times yields different real
values g(x, z1), g(x, z2), which mimics the stochastic behavior of the model.

Reliability analysis for stochastic simulators is not yet a mature field, and it currently lacks a standardized
approach in the literature. Recently, [15, 16] have used quantile functions derived from these simulators to
estimate reliability. These are deterministic functions obtained from the simulators that depend on a user-
defined quantile. The advantage of this approach is that the stochastic model is simplified into a deterministic



one, so that the stochasticity does not need to be taken into account explicitly. Conversely, [17] suggested
directly quantifying the stochasticity effects on the problem, even if it is not controllable. This is also the
approach we follow, which can be cast as:

Pf = P (g (X,Z) ⩽ 0) . (3)

Similarly to the deterministic case, it is possible to estimate the Pf , defined in Eq. (3), using Monte Carlo
simulation (MCS) [1, 18].

MCS provides an unbiased Pf estimate, and its extensively documented properties directly apply to the
stochastic problem. Consequently, due to its slow convergence rate, estimating rare events requires, in
general, an unfeasibly large amount of calls to the possibly expensive-to-evaluate computational model.

When it comes to deterministic models, many approaches exist to bypass the shortcomings of MCS. In
general, they can be split into three categories: (i) approximation methods, where the limit-state function
is locally approximated using Taylor expansion (e.g., the first-order reliability method) [19]; (ii) variance-
reduction techniques, which are sampling approaches that aim at reducing the number of calls to the limit-
state function [20, 21] and (iii) surrogate-based approaches, that use inexpensive mathematical models as
proxies of the limit-state functions, providing a more efficient alternative [22].

Since reliability analysis for stochastic simulators is still in its infancy, only a handful of estimation methods
are available beyond classical MCS. In fact, to the best of the authors’ knowledge, the only exception is
stochastic importance sampling developed by [17].

Due to the growing interest in stochastic models within the field of uncertainty quantification over the past
few years, stochastic emulators, i.e., surrogate models for stochastic simulators, have been introduced in
the literature [23, 24, 25]. These emulators generally focus on predicting the conditional distribution of
the model response given a particular input realization x. Other approaches rather estimate summarizing
statistics such as mean and variance or quantiles. The use of emulators in the context of reliability analysis
is yet to be thoroughly explored. In this project, we build on existing stochastic emulators to propose novel
approaches for reliability analysis for stochastic simulators. Specifically, we consider here the Generalized
Lambda Model (GLaM) first introduced by [14, 25].

2.2 Reliability analysis of noise-corrupted models

The notation introduced in Eq. (2) can be further simplified for noisy models. In this context, we assume that
an underlying deterministic limit-state function g exists, but also that its values are not directly accessible.
Instead, only the values of the noise-corrupted limit-state function g̃ can be observed, which include the noise
component ε, as follows:

g̃(x, ω) = g(x) + ε(x, ω). (4)

Since ε(x, ω) represents the noise component, it is unbiased by definition. Additionally, although not neces-
sary, it is commonly assumed to be homoskedastic (i.e., it does not depend on x) and normally distributed.
Formally, it can be simplified as ε ∼ N (0, σ2ε).

In this context, we are interested in the probability of failure of the underlying noise-free limit-state function
since the noise is extrinsic to the limit-state function. Therefore, the sought failure probability is the one
defined in Eq. (1). We refer to it as the noise-free probability of failure. In contrast, the noisy probability of
failure is defined from the noisy limit-state function g̃ as follows:

P̃f = P(g̃(X, ω) ⩽ 0) = P(g(X) + ε(X, ω) ⩽ 0). (5)

Despite the unbiasedness of the noise, the probability of failure in Eq. (5) is different from the one in Eq. (1),
more precisely P̃f ⩾ Pf .

Obtaining the noise-free probability of failure requires denoising the noise-corrupted limit-state function.
Due to the unbiasedness property of the noise, it can be shown that:

g(x) = Eω[g̃(x, ω)]. (6)



The noise-free limit-state response can be estimated via replication, where the limit-state function is evalu-
ated repeatedly for identical input parameters, and the mean of these replicated responses is computed. Then,
Pf can be calculated via MCS, utilizing the smoothed estimates from the replications. However, due to the
need for many replications over multiple realizations of X to estimate reliability, this approach leads to a
prohibitive computational burden.

An affordable solution to this problem is to directly denoise the noisy limit-state function. Here, we propose
using regression-based surrogate models, specifically Gaussian process regression (GPR) [26], as a denoising
method. The benefit of this approach is twofold: the surrogate denoises the problem, and simultaneously
enables performing reliability analysis more efficiently. Using the surrogate model ĝ, the approximated
probability of failure becomes:

P̂f =

∫

{x:ĝ(x)⩽0}
fX(x) dx. (7)

Assuming that ĝ is a good approximation of g close to the limit-state surface, P̂f converges to Pf .

3 Surrogate models

3.1 Generalized Lambda Model

The Generalized Lambda Model (GLaM) is a surrogate model designed for stochastic simulators [14, 25].
It aims to approximate the PDF of the output for a given x0, denoted as Y | X = x0. To achieve this, it
assumes that the PDF fY |X can be well-approximated by a generalized lambda distribution (GLD) [27]. The
GLD is a parametric distribution known for its flexibility, capable of producing a wide range of unimodal
distribution shapes, such as uniform, Weibull, and Gaussian distributions.

The GLD is defined through its quantile function Q(u;λ), where u is in the interval [0, 1], and λ =
(λ1, λ2, λ3, λ4) represents the parameters of the distribution:

Q(u;λ) = λ1 +
1

λ2

(
uλ3 − 1

λ3
− (1− u)λ4 − 1

λ4

)
. (8)

Here, λ1 is the location parameter, λ2 is the scale parameter, and λ3 and λ4 are shape parameters. Since
obtaining a closed-form solution for the PDF of the GLD is not feasible, the PDF is numerically derived
from its quantile function when necessary.

In the generalized lambda model, the λ parameters are assumed to be deterministic functions of the input
parameters x. Thus, the conditional distribution at a given location can be expressed as:

Y (x) ∼ GLD(λ1(x), λ2(x), λ3(x), λ4(x)) . (9)

Given a data set
{(

x(i)
)
,λ

(
x(i

)
, i = 1, . . . , N

}
, the lambda functions can be approximated using standard

surrogate models. Under the mild assumption that λ1(X), ..., λ4(X) have finite variances, they can be
efficiently approximated by adaptive sparse polynomial chaos expansions (PCE) [28], as follows:

λl(x) ≈ λPCl (x; c) =
∑

α∈Al

cl,αψα(x), l = 1, 3, 4,

λ2(x) ≈ λPC2 (x; c) = exp


 ∑

α∈A2

c2,αψα(x)


 ,

(10)

where cα are real coefficients, and ψα(x) are multivariate polynomials orthonormal with respect to fX . A
corresponds to the truncation set of the α multi-index, identifying the degree of the multivariate polynomial
along each input variable. Additionally, since λ2(x) must be positive, its associated expansion is constructed
in a transformed space to ensure this constraint is satisfied.



There are two approaches to constructing the GLaM emulator. The first relies on replications where each
λ
(
x(i)

)
is estimated by maximum likelihood considering R replications of the limit-state evaluations at x(i)

[14]. This step is then followed by the PCE approximation of the lambda functions. A second generally
more efficient approach consists in building a global model for the joint distribution of the inputs and outputs
[25]:

fX,Y (x, y) = fY |X (y|x) · fX(x), (11)

and approximating the conditional distribution by a generalized lambda distribution:

fGLD
X,Y (x, y; c) = fGLD

Y |X
(
y; λPC(x; c)

)
· fX(x). (12)

Given a training set X =
{
x(1), . . . ,x(N)

}
and Y =

{
y(1), . . . , y(N)

}
, this approach entails estimating the

coefficients using maximum likelihood. The equivalent maximum log-likelihood estimation problem reads:

ĉ = argmax
c∈C

log
(
fGLD

(
y(i);λPC

(
x(i); c

)))
. (13)

3.2 Gaussian process regression basics

In the case of noise-corrupted limit-states, the experimental design is defined as:

E =
{(

x(i), ỹ(i)
)
: ỹ(i) = g̃

(
x(i), ω(i)

)
∈ R,x(i) ∈ DX , i = 1, . . . , n

}
. (14)

When deploying Gaussian process regression (GPR), we assume that the expensive simulator is a realization
of an unknown Gaussian process (GP), generally represented as:

MGP(x) = µ(x) + σ2Z(x;ω), (15)

where µ(x) is the mean function, σ2 is the process variance, Z(x;ω) is a zero-mean, unit-variance stationary
process characterized by its auto-correlation R(x, x′; θ) with hyperparameters θ.

Aiming to derive an explicit analytical solution for the GPR predictions, we assume that the data is corrupted
with additive homoskedastic Gaussian noise. In this case, the covariance matrix of the noise component can
be written as Σ2

n = σ2nI , where σ2n is the noise variance and I is the identity matrix of size N × N . The
covariance matrix Σ of the GP described in Eq. (15) reads:

Σ = σ2R+ σ2nI. (16)

where R is the correlation matrix computed using a given autocorrelation function. Additionally, by intro-
ducing the following change of variables σ2total = σ2 + σ2n and τ = σ2

n

σ2
total

, Σ can be cast as:

Σ = σ2total (R+ τI) . (17)

In this work, we consider the Matérn 5/2 autocorrelation function. The multi-dimensional version is con-
structed using the ellipsoidal formulation [26]. Additionally, we consider the mean function of the GPR µ (x)
known and equal to 0, leading to the so-called simple Kriging approach. Consequently, the joint Gaussian
distribution between the observations and predictions can be cast as:

{
ĝ(x)

Ỹ

}
∼ NN+1

(
0,

{
σ2 rT (x)
r(x) σ2R+ σ2nI

})
, (18)

The denoised prediction ĝ(x) is obtained by conditioning the GP on the observations, yielding a normal
distribution with mean µĝ(x) and variance σ2ĝ(x):

µĝ(x) = r(x)T R̃−1Ỹ , (19)



σ2ĝ(x) = σ2total

(
1− r(x)T R̃−1r(x)

)
. (20)

An analytical estimate of the total variance σ2total, which is a function of the auto-correlation hyperparameters
θ, is derived by maximum likelihood:

σ2total = σ2total(θ) =
1

N
ỹT R̃−1ỹ. (21)

The hyperparameters θ and τ are estimated using maximum likelihood estimation (MLE), by solving:
(
θ̂, τ̂

)
= argmin

θ,τ

1

2

[
log∥R̃∥+ n log

(
σ2total

)
+ n

]
. (22)

For optimization, we employ the Hybrid Covariance Matrix Adaptation-Evolution Strategy (HCMA-ES)
[29], implemented in UQLab [30].

4 Results

4.1 Stochastic simulators

To demonstrate how to perform reliability analysis using stochastic emulators and show their convergence to
the associated probability of failure, we convert the well-known R−S reliability analysis problem [1] into a
stochastic simulator. This is achieved by introducing latent variables into the limit-state function, defined as:

g(X,Z) = Z1 ·R− S

Z2
(23)

where X = {R,S} represents the input random vector containing two random variables: R, the capacity of
the system, and S, the demand on the system. Z = {Z1, Z2} are the latent variables introduced to emulate
the desired stochastic behavior. The moments, distributions, and parameters associated with these variables
are shown in Table 1.

Table 1: Moments, distributions, and parameters of the considered variables.

Variable Distribution Mean Std. Deviation λ ζ

R Lognormal 5.0 0.8 1.5968 0.1590
S Lognormal 2.0 0.6 0.6501 0.2936
Z1 Lognormal 1.0 0.028 -0.0004 0.0280
Z2 Lognormal 1.0 0.096 -0.0046 0.0958

By applying a logarithmic transformation to the two components of (23), we can analytically compute the
associated probability of failure, which is expressed as:

Pf = Φ


 λZ1 + λR + λZ2 − λS√

ζ2Z1
+ ζ2R + ζ2Z2

+ ζ2S


 = 3.438× 10−3. (24)

To solve this problem we approximate the stochastic simulator with a generalized lambda model using var-
ious experimental designs of increasing sizes: N = {100; 500; 1,000; 5,000; 10,000}. The probability of
failure is estimated using MCS on the resulting emulators with 1× 106 samples.

Figure 1 shows box plots of the corresponding Pf estimates considering 50 repetitions of the analysis. The
reference probability of failure is depicted by the horizontal dashed line.
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Figure 1: Stochastic R − S problem – Estimation of the Pf of a stochastic model using GLaM as surrogate
model. The emulator is trained on N points obtained from Eq. (23).

From Figure 1, the convergence behavior of the emulator is evident: as the size of the experimental design
increases, the estimated probability of failure approaches the reference value, and the width of the boxplots
decreases. Notably, even with as few as 5,000 points in the experimental design, an unbiased and accurate
estimation of the probability of failure can be achieved. In comparison, a direct MCS with NMCS = 5,000
samples would result in an estimation with a coefficient of variation larger than 25%, well over one order of
magnitude larger.

4.2 Noise-corrupted limit-state function

To illustrate the effectiveness of the proposed method, we again consider the R − S problem, but now we
cast it as a noisy model. The noise-free and noisy limit-state functions are defined as:

g(X) = R− S and g̃(X) = R− S + ε. (25)

As in the previous example, the random input vector comprises the two variables: X = {R,S}, correspond-
ing to the resistance and demand, respectively. To derive a closed-form solution to this problem, we now
consider both variables to be normally distributed, i.e. R ∼ N (µR, σ

2
R), and S ∼ N (µS , σ

2
S). The noise

term ε is assumed to be independent of R and S, homoskedastic, and Gaussian. The analytical probabilities
of failure for these limit-state functions are given by:

Pf = Φ


− µR − µS√

σ2R + σ2S


 , (26)

and

P̃f = Φ


− µR − µS√

σ2R + σ2S + σ2ε


 , (27)

respectively. These equations show that the variance introduced by the noise term σ2ε increases the probability
of failure P̃f relative to the noise-free probability Pf .

To denoise the model, we train a Gaussian process regression model as described in Sec. 3.2. Its mean
predictor µĝ serves as a denoised version of the limit-state function g̃.

For numerical solutions, we assume that R ∼ N (5, 0.82) and S ∼ N (2, 0.62). The noise term is para-
metrically defined as ε ∼ N (0, σ2ε), enabling us to test the robustness of the method as the noise level σ2ε
increases. In this example, P̂f is evaluated using MCS.



Figure 2 presents the probability of failure P̂f for different noise levels σ2ε ∈ {0, 0.25, 0.5, 1} and varying
sizes N of the experimental design used to fit the Gaussian process ĝ(r, s). The reference value, Pf =

Φ
(
− 5−2√

0.82+0.62

)
= Φ(−3) = 1.35 × 10−3, is indicated by the horizontal dashed line. All results are

depicted as box plots, with the entire procedure replicated 50 times to account for statistical uncertainty.

The noise-free probability of failure is recovered for each noise level when N is sufficiently large. The
size N required for accurate Pf estimates increases with σε; 100 points suffice when σε = 0 (noise-free
limit-state function), while 1,000 to 10,000 points are necessary for higher noise levels.

0:00 0:25 0:50 1:00

Noise variance (<2
")

10!5

100

P̂
f

N = 10
N = 100
N = 1;000
N = 10;000
Noise-free Pf

Figure 2: Noisy R − S problem – Estimation of the noise-free Pf using a Gaussian process model based
on N points (obtained from the noisy limit-state function g̃) and for different values of the noise variance.
Results obtained from [13].

5 Conclusions

In this contribution, we discussed performing reliability analysis on non-deterministic models. Two distinct
types of problems arise, depending on the source of the non-deterministic behavior. Therefore, we present
two perspectives on the problem. First, when stochasticity is intrinsic to the problem, and second, when it
is introduced by an external source of noise. In the first scenario, it is essential to consider how the intrinsic
stochasticity affects the problem, as it is a fundamental aspect of the system. On the other hand, when the
stochasticity is introduced by an external source, it is not inherent to the problem and should be removed.

We demonstrate that performing reliability analysis using simulation methods is feasible for both perspec-
tives. However, this approach can lead to a high computational burden. To circumvent this issue, we use
surrogate models. In the first case, we show that stochastic emulators can accurately mimic the stochasticity
of the original model and ultimately converge to the reference probability of failure. In the second case,
we show that Gaussian process regression can be used to denoise the problem and estimate the underlying
noise-free probability of failure.
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