Supporting Information

Impact of methylthioxylose substituents on the biological activities of lipomannan and lipoarabinomannan in *Mycobacterium tuberculosis*

Zuzana Palčeková^{1#}, Kavita De^{1#}, Shiva Kumar Angala¹, Martine Gilleron², Sophie Zuberogoitia², Lucie Gouxette², Maritza Soto-Ojeda¹, Mercedes Gonzalez-Juarrero¹, Andrés Obregón-Henao¹, Jérôme Nigou², William H. Wheat^{1*} and Mary Jackson^{1*}

¹Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA; ²Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France

These authors contributed equally to the work

*Co-corresponding authors: E-mail: <u>William.Wheat@colostate.edu</u>; <u>Mary.Jackson@colostate.edu</u>

List of Content

<u>Table S1</u>: Monosaccharide composition of LM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant ($Mtb\Delta mtxT/pMV306H-mtxT$ [$Mtb\Delta mtxT$ comp]).

<u>Table S2</u>: Glycosyl linkage analysis of per-*O*-methylated LM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant ($Mtb\Delta mtxT/pMV306H-mtxT[Mtb\Delta mtxT comp]$).

<u>Table S3</u>: Monosaccharide composition of LAM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant (*Mtb* Δ *mtxT*/pMV306H-*mtxT* [*Mtb* Δ *mtxT* comp]).

<u>Table S4</u>: Glycosyl linkage analysis of per-*O*-methylated LAM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant ($Mtb\Delta mtxT/pMV306H-mtxT[Mtb\Delta mtxT comp]$).

<u>Figure S1</u>: 2D 1 H- 13 C HMQC NMR spectrum of LAM purified from the *Mtb capA* transposon mutant.

<u>Figure S2</u>: Quantification of mannooligosaccharide caps in the LAM from WT *Mtb* CDC1551, WT *Mtb* H37Rv, the *Mtb* H37Rv *mtxT* mutant and the *Mtb* CDC1551 *capA* transposon mutant.

Figure S3: Evaluation of chemokine and cytokine secretion by THP-1 cells treated with purified LM and LAM from wild-type Mtb H37Rv, the Mtb H37Rv mtxT mutant and the complemented mtxT mutant.

<u>Table S1</u>. Monosaccharide composition of LM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant (*Mtb* Δ *mtxT*/pMV306H-*mtxT* [*Mtb* Δ *mtxT* comp]).

The reported values are averages \pm SD of three technical repeats and show relative distribution in %. No statistically significant differences were found between WT and mutant or complemented mutant LM pursuant to the Student's *t*-test.

	Ino	Man <i>p</i>
WT H37Rv	2.6 ± 0.2	97.4 ± 0.2
$\Delta m t x T$	2.3 ± 0.2	97.7 ± 0.2
∆ <i>mtxT</i> comp	3.5 ± 1.3	96.5 ± 1.3

<u>Table S2</u>. Glycosyl linkage analysis of per-O-methylated LM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant (*Mtb*\Delta*mtxT*/pMV306H-*mtxT* [*Mtb*\Delta*mtxT* comp]).

The reported values are averages \pm SD of three technical repeats and show relative distribution in %. Asterisks denote statistically significant differences between WT and mutant or complemented mutant LM pursuant to the Student's *t*-test; *p<0.05.

	t-Manp	6-Manp	2,6-Man <i>p</i>	2-Manp
WT H37Rv	44.8 ± 0.3	22.5 ± 1.8	29.5 ± 2.2	3.2 ± 0.3
$\Delta m t x T$	42.4 ± 1.0*	$25.7 \pm 0.4^*$	28.2 ± 1.0	3.7 ± 0.3
∆ <i>mtxT</i> comp	$42.6 \pm 0.2^*$	19.7 ± 2.0	33.7 ± 2.1	$4.0 \pm 0.3^{*}$

<u>Table S3</u>. Monosaccharide composition of LAM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant (*Mtb mtxT*/pMV306H-*mtxT* [*Mtb mtxT* comp]).

The reported values are averages \pm SD of three technical repeats and show relative distribution in %. Asterisks denote statistically significant differences between WT and mutant or complemented mutant LAM pursuant to the Student's *t*-test; *p<0.05.

	Araf	Ino	Man <i>p</i>	Ara//Manp
WT H37Rv	47.3 ± 0.5	0.7 ± 0.1	52.0 ± 0.6	0.9 ± 0.0
$\Delta m t x T$	50.1 ± 0.9*	1.0 ± 0.2	48.9 ± 1.0*	$1.0 \pm 0.0^{*}$
∆ <i>mtxT</i> comp	48.0 ± 1.0	$1.7 \pm 0.5^{*}$	50.3 ± 0.8	1.0 ± 0.0

<u>Table S4</u>. Glycosyl linkage analysis of per-O-methylated LAM from WT *Mtb* H37Rv, the *mtxT* mutant and the *mtxT* complemented mutant (*Mtb* Δ *mtxT*/pMV306H-*mtxT* [*Mtb* Δ *mtxT* comp]).

The reported values are averages \pm SD of three technical repeats and show relative distribution in %. Asterisks denote statistically significant differences between WT and mutant or complemented mutant LAM pursuant to the Student's *t*-test; *p<0.05.

	t-Ara <i>f</i>	2-Araf	5-Araf	3,5-Ara <i>f</i>	t-Man <i>p</i>	6-Man <i>p</i>	2,6-Man <i>p</i>	2-Manp
WT H37Rv	1.0 ± 0.0	4.9 ± 0.2	34.3 ± 1.4	8.6 ± 0.1	21.3 ± 1.0	6.2 ± 0.0	13.7 ± 0.2	10.0 ± 0.4
$\Delta m t x T$	0.8 ± 0.0	4.9 ± 0.6	35.1 ± 2.6	$10.0 \pm 0.4^*$	18.6 ± 0.3	7.3 ± 0.6	14.4 ± 0.8	8.9 ± 0.4
∆ <i>mtxT</i> comp	0.7 ± 0.2	5.1 ± 0.6	32.5 ± 2.2	9.0 ± 0.5	20.7 ± 0.8	6.7 ± 0.5	14.5 ± 0.7	10.8 ± 0.8

<u>Figure S1</u>: 2D ¹H-¹³C HMQC NMR spectrum of LAM purified from the *Mtb capA* transposon mutant.

Red asterisks indicate the expected positions of the signals typifying the MTX motif based on the LM spectrum presented in Fig. 4A.

Figure S2: Quantification of mannooligosaccharide caps in the LAM from WT *Mtb* CDC1551, WT *Mtb* H37Rv, the *Mtb* H37Rv *mtxT* mutant and the *Mtb* CDC1551 *capA* transposon mutant.

(A) Capillary electrophoresis cap profile of LAM prepared from the different strains.

(B) Abundance of the different cap motifs per LAM molecule. IS, internal standard, mannoheptose-APTS; AM, Manp-($\alpha 1 \rightarrow 5$)-Ara-APTS (mono-mannoside cap); AMM, Manp-($\alpha 1 \rightarrow 2$)-Manp-($\alpha 1 \rightarrow 5$)-Ara-APTS (di-mannoside cap); AMMM, Manp-($\alpha 1 \rightarrow 2$)-Manp-($\alpha 1 \rightarrow 5$)-Ara-APTS (tri-mannoside cap). The results are shown are averages and standard deviations from two technical replicates. Statistical differences between mutant strains and corresponding wild-type parent (*Mtb* H37Rv or *Mtb* CDC1551) were obtained using a two-way ANOVA with Tukey's multiple comparisons test with, **** $p \leq 0.001$. The *capA* transposon mutant is devoid of mannoside capping as expected.

Figure S3: Evaluation of chemokine and cytokine secretion by THP-1 cells treated with purified LM and LAM from wild-type *Mtb* H37Rv, the *Mtb* H37Rv *mtxT* mutant and the complemented *mtxT* mutant.

THP-1 cells were treated with purified LAM or LM (10 µg mL⁻¹) from either WT *Mtb* H37Rv, *Mtb*\Delta*mtxT* and *Mtb*\Delta*mtxT*/pMV306H-*mtxT* for a total of 48 h in the absence of LPS. Supernatants were analyzed for the indicated cytokines/chemokines using Luminex® multiplex assay. Statistical differences were obtained using a two-way ANOVA with Tukey's multiple comparisons test with, **** $p \le 0.0001$; *** $p \le 0.005$; ** $p \le 0.01$ and * $p \le 0.05$.

