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Multi-Modal Explainable Machine Learning for Automated Detection of Autistic
Spectrum Disorder

Abstract
Autism Spectrum Disorder (ASD) is a neurode-
velopmental condition characterized by diverse
symptoms affecting social interaction, communi-
cation, and behavior. Diagnosing ASD is chal-
lenging due to variability among individuals and
the lack of clear biomarkers. Although artifi-
cial intelligence (AI) has enhanced diagnostic
accuracy, the “black-box” nature of many mod-
els limits their clinical use. Addressing cur-
rent limitations, this paper introduces a multi-
modal ASD detection framework using deep neu-
ral networks (DNN) with explainable AI (xAI)
to enhance model transparency. Our proposed
approach achieves a mean 5-fold accuracy of
99.66% for the fMRI-based model and 99.83%
for the multimodal-based model, which leverages
both fMRI and phenotypic data, surpassing exist-
ing methods while offering better interpretability.

Keywords: ASD; multimodal diagnostic frame-
works; explainable AI; deterministic brain atlas;
functional connectivity; connectivity matrix; deep
neural network.

1. Introduction
This research journey began with approaching ASD detec-
tion through the lens of a machine learner, rather than a
medical practitioner. Early on, it became clear that before
any solution could be developed, it was essential to define
the problem—a task that often proves as challenging as solv-
ing it. However, the broader research objective extended
well beyond understanding existing approaches to the prob-
lem. It centered on a crucial question: how can the power
of AI be effectively harnessed in medicine, and why has its
deployment been so limited despite its potential?

There were many unknowns when this study effort first
started.It was unclear if machine learning techniques could
detect autistic symptoms reliably. Which data modalities
could be used to detect autism was another unanswered
question. Using a trial-and-error process, we weaved a
web of inquiry and experimentation that gradually revealed
insights. The focus of the endeavor expanded on the study

of the intersection of artificial intelligence and medicine,
the consideration of patients’ individual characteristics, and
uncovering the obstacles that prevent these technologies
from being fully realized in clinical practice.

Machine learning has already shown great promise in psy-
chiatry. For example, studies have demonstrated that al-
gorithms using clinical and neuroimaging data can predict
antidepressant responses with 80% accuracy, outperforming
traditional methods (Chekroud et al., 2016). Similarly, ma-
chine learning models have been used to identify patterns in
brain imaging data, enabling accurate classification of men-
tal health disorders like schizophrenia and bipolar disorder,
with accuracies reaching up to 87% (Vieira et al., 2020).

Despite these advances, the question remains: if machine
learning holds such promise, why isn’t it more widely used
in clinical practice? The answer lies in a significant chal-
lenge—the lack of interpretability in machine learning mod-
els. Clinicians require models that are not only accurate but
also transparent and understandable to ensure patient safety
and informed decision-making (Ghassemi et al., 2021). The
lack of interpretability and the ensuing mistrust are the
main obstacles to the real application of machine learn-
ing in medicine. Moreover, they need technology that is
adaptable and cognizant of many patient-specific variability
in modalities.

Our aim in doing this research was to bridge the gap between
AI’s promise and its practical, dependable applications in
healthcare. The intention was to contribute to making tech-
nology understandable, accessible, and truly transformative
for patient care. To this end, the study is structured to pro-
vide a comprehensive exploration of both the theoretical and
practical dimensions of applying multimodal explainable
machine learning for automated detection of ASD. Section
3 surveys ASD research, covering its historical of its under-
standing and diagnosis, and ASD detection machine learn-
ing models. Section 4 outlines our methodology and model
architecture (Figure 1). Section 6 then provides presents
a SHAP-based analysis comparing multimodal and fMRI
models, with detailed gender-based and subgroup analyses
of brain regions using atlas-based visualizations. Lastly, the
conclusion and future work sections provide a summary of
our findings and suggest avenues for additional research.
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2. Context of the Project
The research project was conducted during a five-month
internship at the Computer Science Research Institute of
Toulouse (IRIT) in France, specifically within the Gener-
alised Information Systems team1 (SIG), one of the most
prominent teams in the institute. The SIG team focuses
on developing methods and tools that enable efficient in-
formation access, simplify analysis, and support decision-
making. This research was supervised by Dr. Moncef
Garouani2, whose work specializes in the automatic selec-
tion and parametrization of machine learning algorithms
and AI explainability, and Dr. Julien Aligon3, who focuses
on post-hoc methods in prediction explanation. The primary
objectives and contributions of this research are detailed in
the subsequent sections.

2.1. Informative Feature Selection

The goal was to develop a feature selection strategy that
prioritizes quality-controlled, informative variables for ef-
fectively differentiating ASD. For this purpose, we used
the Preprocessed Autism Brain Imaging Data Exchange I
(ABIDE I) dataset. Our approach incorporated metrics from
automated and manual assessment protocols to refine and
clean the data. For the fMRI data, Recursive Feature Elim-
ination (RFE) was used to isolate and preserve the most
essential features critical for distinguishing ASD. A detailed
description of the dataset is provided in section 4.1, with a
summary in Table 1.

2.2. Multi-modal Data Fusion

A key objective of our research was to improve ASD di-
agnosis accuracy by incorporating various data types and
accounting for individual variations. We achieved this by
transforming fMRI data and combining it with phenotypic
data into a unified vector for holistic analysis. Details of
this data transformation method are outlined in section 4.3.

2.3. Explainable AI

To ensure that clinicians can trust and comprehend the out-
comes of the automated ASD diagnosis system, a primary
research goal was to offer transparent and comprehensible
insights into the decision-making process. To explain the
output of our machine learning models, we used SHapley
Additive exPlanations (SHAP), a game-theoretic method.
The approach is detailed in Section 6 .

1https://www.irit.fr/en/departement/dep-data-
management/sig-team/

2https://mgarouani.fr/
3https://www.irit.fr/ Julien.Aligon/

3. Literature Review and Survey of the
State-of-the-Art

Throughout history, there has been a major evolution in the
classification and understanding of what is now known as
Autism Spectrum Disorder (Wing, 1997). The first seminal
and systematic description of early infantile autism was put
forth by psychiatrist Leo Kanner in 1943 through meticulous
observations of a group of eleven children (Kanner, 1943).

Following Kanner’s first research, theories were proposed
by the psychiatric literature to account for the basic deficien-
cies in autism, with the majority of these theories treating
the condition as a mental illness. In contrast, today, it is
understood that autism is a complicated neurodevelopmen-
tal disorder that predominantly affects the brain, and other
systems of the body. The discoveries of structural imaging
studies have contributed to the near universal recognition
of autism as a brain-based condition rather than a behav-
ioral one, a distinction that is subtle but important (Minshew
& Williams, 2007). Due to the latter, cognitive and neu-
rological models have been preferred over emotional and
inter-subjective ones in ASD research in recent decades
(Harris, 2018).

Nonetheless, the vast majority of cases (around 85%) of
ASD are classified as non-syndromic4 and idiopathic5,
meaning that the etiology is unknown and they do not fit
into any particular category of recognized genetic and neu-
rological syndromes (National Institute of Health, 2019).

3.1. Autism Disorder Spectrum Diagnosis

Autism Spectrum Disorder encompasses a wide range of
related conditions, including unique symptoms and traits.
It is characterized as “a syndrome composed of subgroups”
rather than a singular disorder, and thus presents differently
across individuals (Maser & Akiskal, 2002). Given the com-
plexity, diversity, lifelong nature, and high prevalence of
ASD, affecting approximately 1 in 36 children (Maenner
et al., 2023), comprehensive diagnostic approaches are cen-
tral to accurately identifying and addressing the symptoms
associated with the disorder.

The contemporary diagnostic approach for ASD primar-
ily involves subjective interviews and a detailed review of
the patient’s behavior and developmental history by the
physician. Tools such as the Autism Diagnostic Interview-
Revised (ADI-R) and the Diagnostic and Statistical Manual

4Non-syndromic refers to a condition that occurs without the
additional presence of other recognizable clinical features that
would typify a specific syndrome.

5Idiopathic describes a condition or disease whose cause is not
known or understood. In medical terms, idiopathic conditions are
those for which the genetic basis remains unclear or unidentifiable
with current technology and knowledge.
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of Mental Disorders, Fifth Edition (DSM-5) are used in the
evaluation process (Lordan et al., 2021). Owing to the over-
reaching range of symptoms, there are no precise diagnostic
standards that apply to every person with ASD. Furthermore,
experts continue to dispute on the most accurate criteria of
making the diagnosis (Hus & Segal, 2021).

In light of these uncertainties, applications of machine learn-
ing to medicine hold significant promise. For example, in
a study by Koutsouleris et al. (2018), machine learning
models trained on functional, neuroimaging, and combined
baseline data to predict social outcomes at 1 year achieved
up to 83% accuracy in patients at high risk for psychosis,
outperforming human prognostication.

3.2. Autism Detection, fMRI and Multi-Modality

The invention and accessibility of non-invasive brain imag-
ing methods has made it possible to gain a deeper compre-
hension of the neuronal circuitry responsible for a variety of
neurological disorders. Magnetic Resonance Imaging (MRI)
has been used to identify a variety of neuropsychiatric and
neurodegenerative disorders, including schizophrenia (Jafri
et al., 2008), Alzheimer’s (Chen et al., 2011), and so forth.

In their 2023 review, Alharthi and Alzahrani conducted a
comprehensive examination of ASD diagnosis using MRI
techniques in scientific literature. Their extensive search
was conducted across various conferences and journals from
2020 to 2023, and was meticulous in gauging the method-
ologies and conclusions related to the diagnosis, detection,
and classification of ASD. The analysis focused on machine
learning-based approaches in ASD diagnosis, particularly
deep learning-based methods such as Multi-Layer Percep-
trons (MLP), Convolutional Neural Networks (CNN), Au-
toencoders (AE), Graph Convolutional Networks (GCN),
and Graph Attention Networks (GAT), among other mod-
els, all utilizing MRI modalities. The maximum accuracy
of the reviewed methods ranged from 54.79% (Sharif &
Khan, 2022) to 99.19% (Kim et al., 2021). Furthermore,
this review played a crucial role in choosing the best method-
ologies. In-depth topic expertise is necessary to select appro-
priate features and data modifications. In fMRI, the brain is
depicted as thousands of voxels—small cubes whose activi-
ties are monitored over time as time series data. Working
with such data is an extraordinarily challenging research
challenge because of the brain’s complex structure, non-
linear separability, high dimensionality, and the sequential
changes in traceable signals inside each voxel.

For this reason, the methodology of our proposed architec-
ture and the data transformation were a combination and
enhancement of state-of-the-art methods. In particular, we
improved upon the DNN architecture outlined “Deep Learn-
ing Approach to Predict Autism Spectrum Disorder Using
Multi-site Resting-State fMRI” by (Subah et al., 2021).

4. Methodological Contribution
In this section, we outline the data preparation and transfor-
mation processes, as well as propose a deep learning method
that integrates phenotypic data with fMRI connectivity mea-
sures from the ABIDE I dataset. The proposed method
effectively integrates multimodal data and employs RFE
to reduce dimensionality, serving as input for our neural
networks. The outputs are interpreted using SHAP-based
visualizations, which offer interpretable insights into the
contributions of various features. The complete methodol-
ogy is illustrated in Figure 1.

4.1. The dataset: Autism Brain Imagine Network
ABIDE I

Our study used data from the Autism Brain Imaging Data
Exchange I, a 2012 initiative involving 17 international sites.
It included 1112 subjects, 539 with ASD and 573 controls,
aged 7 to 64 years (median age 14.7). The dataset and its
data legend is open access and can be found at the following
links: Access Link — Data Legend.

Table 1. Summary of ABIDE I Dataset

Category ABIDE I
Participants 1112 total (539 ASD, 573 controls)
Age Range 7-64 years (median: 14.7)
Number of Sites 17 international sites

Imaging Data - Resting State Functional MRI
- Structural MRI

Phenotypic Data - Composite Phenotypic File
- Phenotypic Data Legend

The phenotypic data, in Table 1, is under a CSV file format
with 106 columns (features), and 1112 rows (subjects).

4.2. Data Cleaning of Phenotypic Data

To maintain dataset integrity, we removed patients with cor-
rupt files or missing FILE ID values, indicative of missing
fMRI scans. Despite these efforts, a sparsity of 32.71% re-
mained. For biological data, traditional imputation methods
for addressing missing values can compromise the valid-
ity of statistical analyses, as highlighted by Sterne et al.
(2009), making them unreliable for accurate data interpreta-
tion. Therefore, to avoid biases and preserve the essential
characteristics of the dataset, we framed the issue of miss-
ing data as an optimization problem, in which we sought
to maximize the feature-to-example ratio while minimizing
missing-example-to-feature ratio.

https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
https://fcon_1000.projects.nitrc.org/indi/abide/ABIDEII_Data_Legend.pdf
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Figure 1. Architecture of the Proposed Method for Autism Spectrum Detection with xAI.

The objective function is defined as follows:

Maximize

L =
num cols
total rows

− num cols
thresh

where:

• num cols: Number of features.
• total rows: Total number of observations.
• thresh: Minimum threshold for the number of non-

missing examples per feature.

Subject to the constraint:

total rows ≥ 2× (num cols − 1)

The optimization process retained 12 columns, as shown in
Table 2.

Furthermore, we eliminated uninformative columns, such
as FIQ, PIQ, and VIQ test types, due to their high levels of
missingness and weak correlation with the corresponding
test scores. The final set of phenotypic features, described
in Table 2 is: AGE AT SCAN, SEX, FIQ, VIQ, and PIQ.
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Table 2. Descriptions, Types, and Coding of Key Features

Feature Description Type Coding
DX
Group

Diagnostic group Categorical 1: ASD, 2:
Control

Age at
scan

Age at the time of the
scan (years)

Numeric N/A

Sex Biological sex Categorical 1: Male,
2: Female

FIQ Full-Scale Intelligence
Quotient

Numeric N/A

VIQ Verbal Intelligence Quo-
tient

Numeric N/A

PIQ Performance Intelligence
Quotient

Numeric N/A

Figure 2. Count of Males and Females in each DX GROUP

Figure 3. Age Distribution by DX GROUP

The final dataset exhibits a pronounced male predominance
in both the ASD and control groups, with 250 males and 37
females in the ASD group, and 235 males and 67 females in
the control group (Figure 2), which aligns with the higher
prevalence of ASD in males in existing epidemiological data
(Fombonne, 2009). Regarding age distribution (Figure 3),
the ASD group is predominantly younger, with a concentra-
tion of individuals between 5 and 15 years old, with peaks
around 10 years, whereas the control group spans a wider
age range, extending from childhood into late adulthood
with peaks with a peak at 15 years.

4.3. Data Transformation of fMRI Data

The study concentrated on specific brain Regions of Interest
(ROIs) rather than analyzing the time series from every
voxel. We leveraged the BASC122 (Bootstrap Analysis of
Stable Clusters) brain atlas6 which defines 122 networks,
to delineate these regions from imaging data (Bellec et al.,
2010; Liu et al., 2009).

Functional connectomes7 were constructed using the tangent
embedding of the Ledoit-Wolf regularized covariance esti-
mator, implemented through the Nilearn library (Nilearn).
This process involves selecting specific voxels at each time
point from 4D fMRI scans using 3D masks, thereby convert-
ing the 4D data into a 2D time-series representation. From
this time-series data, a symmetric tangent connectivity ma-
trix was generated and simplified by retaining only the lower
triangular values. These values were then flattened into a
1D feature vector of size 7,831. Each element in the vector
represents the interaction between a pair of distinct ROIs in
the BASC122 atlas.

Lastly, to diminish dimensionality, RFE was applied with a
logistic regression estimator to obtain the top 500 features.

4.4. Classification Using a Deep Neural Network

The DNN architecture, illustrated in Figure 4, includes two
hidden layers and was adapted for three datasets: pheno-
typic, multimodal, and fMRI. Hyperparameters were fined-
tuned using Random Search and Hyperband, for each modal-
ity used, with the optimal configuration validated via strati-
fied 5-fold cross-validation.

Figure 4. Architecture of the Deep Neural Network Classifier

To prevent overfitting, each hidden layer was followed by
a dropout layer with an optimal rate and used the Rectified
Linear Unit (ReLU) activation function. The output layer

6A brain atlas is a detailed map that identifies and categorizes
different regions and structures of the brain, often used as a refer-
ence in neuroscience for studying brain anatomy and function.

7Functional connectomes are representations of the functional
connections in the brain, illustrating how different regions interact
with one another during rest or task performance.
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employed a sigmoid function, while L2 regularization and
training with a small batch size enhanced generalization and
mitigated overfitting with high-dimensional data.

The network’s parameters, including the weights Wi and
biases bi for each hidden layer i, , were tuned using the
Adam optimizer with an optimal learning rate. The latter
targeted minimizing the loss function, specifically the binary
cross-entropy, defined as follows:

J = − 1

m

m∑
i=1

[yi · log(p(yi)) + (1− yi) · log(1− p(yi))]

where m represents the total number of samples, yi is the
true label, and p(yi) is the predicted probability of yi be-
longing to a specific class (e.g., ASD or control).

4.5. Explainability using SHAP

SHAPley values were first introduced by Shapley et al.
(1953) as a solution in cooperative game theory to fairly
distribute the total gains among players in an alliance. In
machine learning, SHAPley (SHAP) values quantify the
contribution of individual features to a model’s prediction.

In this work, we employed the KernelExplainer (shap-
0.46.0), a model-agnostic method within the SHAP frame-
work, which approximates SHAPley values by treating the
model as a black box and using perturbations to estimate
feature contributions, as shown in Figure 5.

Figure 5. SHAP Values for Model Output Explanation (Lundberg
et al., 2024)

The SHAPley value for a particular feature i is mathemati-
cally defined as (Molnar, 2019):

ϕi =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)]

where:

• N : Set of all features.
• S: Subset of N excluding feature i.
• |S|: Number of elements in subset S.
• f(S): Prediction using only features in S.
• f(S ∪ {i}): Prediction with feature i added to S.
• ϕi: SHAPley value of feature i.

KernelExplainer operates by generating a series of perturbed
instances around the data point of interest, then analyzing
how the model’s predictions change when features are omit-
ted to obtain a detailed breakdown of feature contributions.

5. Model Performance Evaluation
In this section, we present the evaluation of the DNN ar-
chitecture outlined in section 4.4, with their mean accuracy
from 5-fold cross-validation summarized in Table 3.

Table 3. Mean Accuracy across 5-Folds for fMRI, Multimodal and
Phenotypic Models

Fold fMRI Multimodal Phenotypic
1 99.15% 99.15% 68.64%
2 100.00% 100.00% 61.86%
3 100.00% 100.00% 62.39%
4 99.15% 100.00% 62.39%
5 100.00% 100.00% 63.25%

Mean Accuracy 99.66% 99.83% 63.71%
Standard Deviation ±0.42 ±0.34 ±2.51

To assess the performance of our DNN, we evaluated the
fMRI, phenotypic, and multimodal models corresponding
to each fold using 5-fold cross-validation and saved the
one achieving the highest accuracy among all folds as the
best-performing model to use for the performance evalua-
tion. The training and evaluation were conducted on Google
Colab, utilizing an Intel(R) Xeon(R) CPU @ 2.20GHz (8
virtual CPUs), 51 GB of RAM, and an NVIDIA Tesla T4
GPU with 15 GB of GPU memory. The computational setup
substantially expedited the training process, with the maxi-
mum training time across model being at most 60 seconds.

5.1. Phenotypic Model

The phenotypic model, developed using only five features
(AGE AT SCAN, SEX, FIQ, VIQ, PIQ), underperformed
despite extensive fine-tuning, indicating these features were
insufficient for accurate ASD prediction.

Table 4. Classification Report for Phenotypic-based Model

Class Precision Recall F1-Score Support
0 0.49 0.39 0.43 54
1 0.56 0.66 0.60 64
Accuracy 0.53 (118)
Macro Avg 0.52 0.52 0.52 118
Weighted Avg 0.53 0.53 0.53 118

Table 4 shows the model’s accuracy at 53%, akin to random
guessing in binary classification. It has a precision of 0.49,
recall of 0.39, and F1-score of 0.43 for Class 0. The confu-
sion matrix (Figure 6), with 33 false positives and 22 false
negatives, indicates difficulty in distinguishing between the
two classes.



Multi-Modal Explainable Machine Learning for Automated Detection of Autistic Spectrum Disorder

Figure 6. Confusion Matrix for Phenotypic-based Model

The model’s limited performance is attributed to its re-
stricted feature set, which comprises basic demographic
variables that are inherently insufficient for diagnosing any
disorder.

5.2. fMRI Model

The fMRI-based model outperforms the phenotypic model
by far. From the classification report in Table 5, both recall
and precision for each class achieve a perfect score of 1.00,
resulting in an F1-score of 1.00 across all metrics.

Table 5. Classification Report for fMRI-based Model

Class Precision Recall F1-Score Support
0 1.00 1.00 1.00 54
1 1.00 1.00 1.00 64
Accuracy 1.00 (118)
Macro Avg 1.00 1.00 1.00 118
Weighted Avg 1.00 1.00 1.00 118

With no false positives or false negatives, the confusion
matrix (Figure 7) shows that every sample was correctly
classified. The ROC curve (Figure 8) further supports this,
with an Area Under the Curve (AUC) of 1.00.

Figure 7. Confusion Matrix for fMRI-based Model

Figures 9 and 10, depict the accuracy and loss plots during

Figure 8. ROC AUC for fMRI-based Model

training, demonstrate a rapid convergence. The model at-
tains near-perfect accuracy at an early stage and sustains
this performance until the end of the training session.

Figure 9. Training Accuracy for fMRI-based Model

Figure 10. Training Loss for fMRI-based Model

Several factors contribute to our model’s high performance.
Primarily, the CPAC pipeline preprocessing improved scan
quality by reducing artifacts from breathing, head motion,
and heartbeat. Crucially, feature selection significantly im-
proved the model’s performance. Before RFE, the model,
despite fine tuning, achieved a maximum accuracy of 69.8%.
The current fMRI-based model (Table 3) has a 5-fold mean
accuracy of 99.66% with a standard deviation of 0.42.
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5.3. Multimodal Model

The Multimodal approach offers the most stable model, with
an added ability to incorporate a wider variety of features.
As shown in Table 3, the model achieves a mean accuracy
of 99.83% with a standard deviation of 0.34.

Table 6. Classification Report for Multimodal Model

Class Precision Recall F1-Score Support
0 0.98 1.00 0.99 54
1 1.00 0.98 0.99 64
Accuracy 0.99 (118)
Macro Avg 0.99 0.99 0.99 118
Weighted Avg 0.99 0.99 0.99 118

The precision and recall values are nearly perfect for both
classes (Table 6). The ROC curve (Figure 12) further un-
derscores this, with an AUC of 1.00, indicating near-perfect
class discrimination. The confusion matrix (Figure 11) re-
inforces these results, with only one misclassification out
of 118 cases, accurately identifying all Class 0 instances
and only one error in Class 1 predictions, demonstrating the
model’s robustness.

Figure 11. Confusion Matrix for Multimodal Model

Figure 12. ROC AUC for Multimodal Model

6. SHAP Interpretation
In this section, we will showcase the results obtained us-
ing SHAP to interpret the models’ predictions. Given that
the phenotypic model did not perform well, it will not be
discussed further. Rather, the focus will be on comparing
the multimodal and fMRI models, with an emphasis on the
latter one.

For the sake of disclosure and transparency, the brain visu-
alizations in this section should be taken as indicative rather
than definitive. They offer helpful visual support rather than
a precise view of brain region importance. Similarly for the
anatomical and functional labeling of the BASC122, as the
labels are approximated and do not fully capture the ROIs.

The importance of brain regions in visualizing uses SHAP
score estimates obtained by mapping each feature in the
fMRI input vector to its corresponding pair ROIs in
BASC122. Since BASC122 regions lack labels, we ap-
proximated their functional and anatomical designations
by aligning them with regions in established brain atlases,
including Yeo’s networks (Yeo et al., 2011), the AAL at-
las (Rolls et al., 2020), the Harvard-Oxford atlas8, and the
Juelich atlas9.

6.1. Comparison of fMRI and Multimodal SHAP Values

In each figure, we displayed the top 20 features. Begin-
ning with the multimodal model’s global summary (Figure
13), FIQ emerges as the most influential feature, exhibit-
ing the highest SHAP values. PIQ and VIQ also play sig-
nificant roles, though their influence is less pronounced.
From AGE AT SCAN onward, the remaining features show
smaller mean SHAP values, indicating a more moderate
impact on the model’s predictions.

The Beeswarm plot (Figure 14) provides a detailed visual
representation of how each feature contributes to the mul-
timodal model’s output across all instances. Each point
represents a SHAP value for a particular feature. Red values
indicate positive impact on the model predicting the ASD
class, while the blue values indicate a negative contribution
(control class).

FIQ is once again stands out as the most influential feature,
with a wide spread and clear separation of SHAP values,
showing significant contributions both positively and nega-
tively depending on the instance. PIQ and VIQ also show
notable contributions, but with less variance compared to
FIQ. The clustering of points near zero for these features
suggests that while they are important, their impact is more
moderate and consistent across different instances. The re-
maining features exhibit a tighter cluster of SHAP values

8https://neurovault.org/collections/262/
9https://julich-brain-atlas.de/
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Figure 13. Global Summary Plot for Multimodal-based Model

Figure 14. Beeswarm for Multimodal-based Model

Figure 15. Global Summary Plot for fMRI-based Model

Figure 16. Beeswarm for fMRI-based Model
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around zero, indicating that their influence on the model’s
predictions is generally weaker and more stable.

In contrast, the fMRI model’s global summary plot (Figure
15) shows a different set of fMRI dominant features, with
brain regions such as 5580, 2766, and 4359 being the most
influential. Feature 5580 is quite prominent in the fMRI
model, yet it is absent from the top features in the multi-
modal model. It indicates that 5580 is especially significant
when IQ measurements are excluded. When comparing
the global summary plots of the fMRI model (Figure 13)
to those of the multimodal model (Figure 15), the fMRI
model shows a consistent distribution of SHAP values. It
reveals that a larger range of impacts are captured by the
fMRI model from its features, which may be because the
brain imaging data is more variable. We note, however,
that features 2766 and 4533 are included in the top 20 most
influential characteristics of both the fMRI model and the
multimodal model.

In summary, the comparison shows that the multimodal
model is mainly driven by cognitive features like FIQ, PIQ,
and VIQ, while the fMRI model emphasizes specific brain
regions that are less influential in the multimodal analysis.
We hypothesize that FIQ, PIQ, and VIQ can effectively sub-
stitute for the absent regions in the multimodal model, as
these metrics capture a broad range of brain functions that
the fMRI model isolates into specific regions. Additionally,
SHAP results indicate that further refinement, such as reap-
plying RFE, could have further reduced the feature vector
and isolated more informative features.

6.2. Analysis of Influential Features across fMRI and
Multimodal Models

Features 5580, 2766, and 4533 stand out as particularly
significant. Feature 5580 is the most influential in the fMRI-
based model, while feature 2766 appears in both models,
ranking second in the fMRI model and fourth in the multi-
modal model, where it is the highest-ranked non-phenotypic
feature. Although feature 4533 is not as highly ranked, it is
the only other feature present in the top 20 of both models.
Given their prominence, these features warrant further in-
vestigation to better understand their impact on the model’s
predictions. For additional insight, we have visualized fea-
tures 5580, 2766, and 4533, along with their approximate
anatomical and functional mappings, in Figures 18, 19, and
20. In our analysis, we consider these features as activa-
tions, assuming they correspond with the activation of their
respective pairs of regions.

Starting with feature 5580, figure 18 highlights the brain
regions 107 and 15. Region 107 is associated with visual
network10 (shown in 17), while Region 15 linked to the

10The Visual Network is a collection of brain regions involved

default mode network (DMN)11 and prefrontal network12.

Figure 19 highlights the brain regions linked to feature 2766,
focusing on Region 75, part of the frontoparietal and default
mode networks, responsible for cognitive control, and Re-
gion 65, involved in the default mode and executive control
networks. Region 75 includes areas within the left cere-
bral white matter, associated with cognitive functions like
working memory and attention.

Figure 20 highlights the brain regions activated by feature
4533, with Region 96, part of the dorsal attention and de-
fault mode networks, involved in emotional regulation and
cognitive processes, and Region 68, within the somatomotor
network13, crucial for motor control, emotional regulation,
and language processing.

To put it simply, feature 5580 links areas related to visual
processing, executive functioning, and referential reasoning.
While feature 2766’s regions are both linked to cognitive
tasks and working memory. In addition, feature 4533 pairs
a region related to emotional control with another associ-
ated with language processing. All of these areas, assum-
ing that there is atypical activity in them, can be linked to
ASD symptoms. Individuals with ASD often struggle with
maintaining eye contact (related to the visual processing
network), understanding language, and executive function-
ing, which affects impulse control and can lead to repetitive
behaviors (Pelphrey et al., 2011).

Figure 17. The Six Regions of the Visual Cortex (Brain for AI
Wiki, n.d.)

in processing visual information, including areas like the occipital
lobe and calcarine cortex.

11The Default Mode Network is a network of interconnected
brain regions active during rest and involved in self-referential
thinking, memory retrieval, and mind-wandering.

12The Prefrontal Network comprises brain regions within the
prefrontal cortex that are critical for executive functions, decision-
making, and social behavior.

13The somatomotor network is a brain network responsible for
integrating sensory input and coordinating motor activities, includ-
ing voluntary movements and body sensation processing.
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Figure 18. Visualization of Activation 5580

Figure 19. Visualization of Activation 2766

Figure 20. Visualization of Activation 4533



Multi-Modal Explainable Machine Learning for Automated Detection of Autistic Spectrum Disorder

6.3. Analysis by Gender for fMRI-based Model

Research has shown significant sex differences in the brain
processes underlying autism spectrum disorder. In a study
by (Kendall, 1938) analyzed sex-specific changes in intrin-
sic functional connectivity using a multicenter resting-state
fMRI dataset using the same dataset as the one used for this
research, ABIDE. Their findings revealed that ASD-related
alterations in functional connectivity differ markedly be-
tween males and females. Specifically, females with ASD
exhibited patterns of hyper-connectivity that aligned more
closely with the higher connectivity levels typically seen
in males, suggesting neural masculinization14. Conversely,
males with ASD showed patterns of hypo-connectivity that
resembled the lower connectivity levels typically seen in
females, indicating neural feminization15. Therefore, it was
crucial to investigate sex-specific differences in predictions,
as highlighted in the literature. For brevity, this discussion
will focus exclusively on the fMRI-based model.

Figure 21 plot represents the SHAP values for the top fea-
tures in a model trained on male participants (both ASD and
non-ASD) using fMRI data. Feature 5580 is present once
again at the top, along with 2766 and 2761. Features such
as 4533, 4359, and 625 are also influential, although slightly
less than the top three. Instead than mostly depending on
one feature, the model’s predictions appear to be evenly
impacted by a variety of brain regions.

The Beeswarm plot (Figure 22) illustrates the SHAP values
for the top features influencing the fMRI-based model’s
predictions for males. Feature 5580 remains the most in-
fluential, with a wide spread of SHAP values across both
sides of the zero line. Features 2766 and 2761 also show
significant variability, indicating their strong influence on
the model. The red gradient suggests that higher values of
these features tend to push predictions towards the ASD
class. The spread of SHAP values highlight the variable
impact depending on individual differences.

Similar to the male SHAP values, feature 5580 is the most
influential in the female model, suggesting that this brain
region plays a critical role in the model’s predictions for
females as well (Figure 23). Unlike the male group, where
features like 2761 and 4533 were more prominent, the fe-
male model emphasizes different regions, such as 3313 and
4965.

Figure 23 for the female participants provides a more granu-
lar view of how each feature contributes to the fMRI-based

14Neural masculinization is the process where the brain develops
male-typical traits, mainly due to the influence of sex hormones
like testosterone during key stages of brain development.

15Neural feminization is the process where the brain develops
female-typical traits, usually due to lower levels of testosterone
and the influence of hormones like estrogen, during critical periods
of brain development.

Figure 21. Global Summary Plot for Males in the fMRI-based
Model

Figure 22. Beeswarm for Males in the fMRI-based Model
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Figure 23. Global Summary Plot for Females in the fMRI-based
Model

Figure 24. Beeswarm for Females in the fMRI-based Model

model’s predictions. As with the males, Feature 5580 is
highly influential in the females, with SHAP values spread
across both positive and negative impacts. Compared to
the male model, the female model shows different feature
having more impact (e.g., 3313 and 4965) and a wider dis-
tribution of SHAP values for certain features, suggesting
more variability in how these regions influence ASD-related
outcomes in females.

The SHAP analysis of fMRI-based models for males and fe-
males reveals that while some features are influential across
both genders, there are distinct differences in the brain areas
contributing to ASD predictions. In males, regions such
as 2761 and 4533 play a more prominent role, whereas in
females, regions like 3313 and 4965 are key contributors.
The findings suggest that incorporating sex-specific distinc-
tions into predictive models could improve their accuracy
and offer deeper insights into the unique neurobiological
underpinnings of ASD across genders, thereby enhancing
model interpretability.

6.4. Sampling of ASD vs. Non-ASD Subjects

The objective of this sampling is to capture individual vari-
ations in predictions across both ASD and control groups,
accounting for differences in cognitive abilities and sex. The
sample set includes four participants (Table 7): two with
ASD and two controls, each group comprising one male
and one female. The female ASD participant (ID: 50276),
aged 16.8, has exceptionally high cognitive scores, while
the male ASD participant (ID: 50606), aged 16.42, exhibits
extremely low IQ scores. Among the controls, the male
participant, aged 19.75, has IQ scores in the low average
range, whereas the female participant, aged 15.75, has high
average IQ scores.

Table 7. Grouped data by DX GROUP with Autism and Control
categories

Group ID Age Sex FIQ VIQ PIQ
Autism 50276 16.8 Female 146.5 145 148

50606 16.42 Male 41 42 37
Control 50467 19.75 Male 89 89 90

50572 15.75 Female 105 126 82

6.4.1. ASD: MALE VS. FEMALE

The SHAP waterfall plot (Figure 25) and brain region visu-
alization (Figure 26) analyze a 16.8-year-old female with
autism. The waterfall plot identifies features 4965, 3880,
and 2018 as the most significant contributors, with positive
SHAP values driving the prediction toward ASD. Although
features like 3681 and 7372 exert negative SHAP values,
slightly nudging the prediction toward non-ASD, the cu-
mulative positive contributions from other features result
in a high ASD probability (f(x) = 0.952). The aggregation
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Figure 25. Waterfall Plot for Patient 50276

Figure 26. Highlighted Brain Regions for Patient 50276

of the remaining 486 features further reinforces the ASD
prediction. In Figure 26, the predominance of pink regions
signifies a strong influence toward ASD. The blue regions,
although fewer, are highly concentrated, suggesting a signif-
icant counteracting influence concentrated in one region for
a non-ASD prediction. In contrast, the SHAP waterfall plot
(Figure 28) and brain region visualization (Figure 27) for
a 16.42-year-old male reveal a high predicted probability
(f(x) = 0.974) for ASD. Despite five of the top features dis-
playing negative SHAP values, subtly pulling the prediction
away from ASD, the brain visualization is predominantly
pink, indicating a majority of brain regions aligned with an
ASD classification. Thus, it suggests that the aggregation of
all features plays a more decisive role than individual top
features.

Figure 27. Waterfall Plot for Patient 50606

Figure 28. Highlighted Brain Regions for Patient 50606

6.4.2. NON-ASD: MALE VS. FEMALE

The waterfall plot (Figure 31) for the 15.75-year-old female
reveals that the top features are almost evenly split between
negative and positive SHAP values, each exerting nearly
equal influence. Despite this balance, the corresponding
brain visualization (Figure 32) predominantly displays blue
regions. Similarly, the waterfall plot (Figure 30) for the
19.75-year-old male control exhibits a comparable trend, yet
his brain visualization (Figure 31) shows some areas with
concentrated pink regions. In contrast to the ASD sample,
where the top features in the waterfall plots predominantly
were predominantely red, the control sample’s features were
more evenly distributed between red and blue. This pattern
of distribution suggests that the model’s predictions for the
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Figure 29. Waterfall Plot for Patient 50467

Figure 30. Highlighted Brain Regions for Patient 50467

control group rely on a more balanced combination of fMRI
features, rather than being influenced by specific features as
seen in the ASD group.

7. Conclusion and Perspectives
In this study, we explored the interpretability of machine
learning models applied to fMRI, phenotypic, and multi-
modal data, with a focus on SHAP-based interpretability in
predicting ASD. The fMRI and multimodal models achieved
near-perfect accuracy, underscoring their efficacy, while the
phenotypic model underperformed, suggesting that demo-
graphic variables alone are inadequate for reliable ASD
diagnosis. Our findings highlight that integrating multiple
modalities significantly enhances model performance.

Figure 31. Waterfall Plot for Patient 50572

Figure 32. Highlighted Brain Regions for Patient 50572

The SHAP analysis revealed significant variability in feature
importance across the models. In the Multimodal Model,
FIQ, PIQ, and VIQ emerged as dominant contributors, sug-
gesting that these readily accessible cognitive metrics, when
combined with fMRI connectivity features, effectively en-
capsulate brain functions. Conversely, the fMRI model ex-
hibited an evenly distributed pattern of feature importance.

The study acknowledges several shortcomings, particularly
in the interpretation of results. An important limitation lies
in the approximate nature of brain labeling used to inter-
pret SHAP findings, which may impact the precision of the
conclusions. Additionally, the absence of specialized neuro-
logical expertise limited the contextualization of these inter-
pretations. Time constraints further hindered a fine-grained
analysis and the exhaustion of potential experiments.
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8. Future Works
This work serves as a preliminary exploration ahead of a po-
tential research paper. Moving forward, we aim to validate
our methods through expert review and further immersion
in relevant literature to better link our findings to established
brain structures. Additionally, we plan to extend our anal-
ysis by experimenting on atlases with functional labeling.
Enhancing our SHAP analysis will involve exploring feature
interactions, performing dependence versus independence
tests, and conducting detailed subgroup analyses across
variables such as sex, age category, IQ type, and stratified
pairings.
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