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Figure 1: Overview of the fair gender generative model: (1) From a video corpus, (2) extraction of verbal and non-verbal features. (3)
Classifier to verify the feasibility of gender identification based on non-verbal features extracted from the corpus. (4) Evaluation of the gender
identification of a facial generation model based on an adversarial approach (FaceGen). (5) Introduction of a model to mitigate the gender bias in
facial generation (FairGenderGen). (6) Comparison of the generated behavior of the two models (FaceGen and FairGenderGen) through objective
and subjective studies, employing various SIAs.

ABSTRACT
Research on non-verbal behavior generation for social interactive
agents focuses mainly on the believability and synchronization
of non-verbal cues with speech. However, existing models, pre-
dominantly based on deep learning architectures, often perpetuate
biases inherent in the training data. This raises ethical concerns,
depending on the intended application of these agents. This paper
addresses these issues by first examining the influence of gender on
facial non-verbal behaviors. We concentrate on gaze, head move-
ments, and facial expressions. We introduce a classifier capable
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of discerning the gender of a speaker from their non-verbal cues.
This classifier achieves high accuracy on both real behavior data,
extracted using state-of-the-art tools, and synthetic data, gener-
ated from a model developed in previous work. Building upon this
work, we present a new model, FairGenderGen, which integrates a
gender discriminator and a gradient reversal layer into our previ-
ous behavior generation model. This new model generates facial
non-verbal behaviors from speech features, mitigating gender sen-
sitivity in the generated behaviors. Our experiments demonstrate
that the classifier, developed in the initial phase, is no longer effec-
tive in distinguishing the gender of the speaker from the generated
non-verbal behaviors.

CCS CONCEPTS
• Computing methodologies → Neural networks; Animation.

KEYWORDS
Non-verbal behavior; behavior generation; bias mitigation; ethics,
neural networks; adversarial learning, gradient reversal layer; SIA
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1 INTRODUCTION
Socially Interactive Agents (SIAs) are virtual agents that simulate
key properties of face-to-face human conversation, such as verbal
and non-verbal behaviors. A number of studies have been carried
out to simulate role-playing with SIAs to train one’s own skills [4],
for example for training doctors to break bad news [31], job inter-
views [1], negotiation [14], or conflict management [23]. A crucial
aspect for the widespread acceptance and use of these applications
lies in the believability of the non-verbal behaviors exhibited by
the SIAs. The SIAs’ non-verbal behavior is particularly important,
since several studies underline the positive impact of non-verbal
behaviors on knowledge transmission and information retention
[7]. In addition, studies indicate that appropriate head movements
enhance the overall perception of SIAs, while inappropriate facial
expressions can increase their sense of “uncanniness” [37]. Early ap-
proaches explored for the automatic generation of SIA’s behaviors
were based on sets of rules [5, 19]. The rules describe the mapping of
words or speech to a facial expression or gesture. These approaches
present advantages in terms of communication and control but lack
naturalness and variability in behavior generation [30]. Nowadays,
most of the research works on behavior generation are based on
data-driven approaches [16]. These approaches do not depend on
experts in animation and linguistics. They learn the relationships
between speech andmovements, or facial expressions, directly from
data. Among data-driven approaches, deep neural networks have
demonstrated their superiority in this task. The commonly em-
ployed methodological approach is to extract verbal and non-verbal
features from recorded real-world human interactions, and to train
a generative model using these real-world datasets [8, 16, 17, 20].
Two key aspects are often evaluated to determine the performance
of these models: the human-likeness and the appropriateness of
the non-verbal behaviors with speech [21]. However, the presence
of possible bias in such models is rarely considered a criterion for
evaluating the quality of the model.

Indeed, real-world datasets are often biased [6]. The most fre-
quently identified biases come from key demographic factors like
gender. We know, for instance, that men and women differ in their
non-verbal behaviors [22]. As generative models learn from our
data, most contain biases by simply reproducing those that have
been passed to them [11]. This may raise ethical concerns, depend-
ing on the intended use of these agents. While it might be wanted
to reproduce societal norms and behaviors in SIAs, e.g. for better
cultural understanding and acceptability, reproducing gender biases
can perpetuate harmful stereotypes and inequalities, contributing
to the normalization of discriminatory attitudes and behaviors in
society. Indeed, a recent study shows that humans inherit the biases
of the artificial intelligence they use [38]. Moreover, biased SIAs
may make users who don’t conform to traditional gender norms

or identities feel marginalized or different. Allowing SIAs to per-
petuate biases raises ethical questions about the responsibilities of
technology creators to promote fairness, equity, and inclusion.

This work addresses this issue of bias and fairness in models
of facial non-verbal behavior generation, focusing on gender bias.
In the field of generative models, fairness is generally defined as
equal generative quality or equal representation [36], for instance
of men and women in generated images. In our context, we define
fairness as the absence of distinction in the generated non-verbal
behaviors, whatever the gender of the speaker. We aim to avoid
the perpetuation of gender stereotypes and biases in non-verbal
behavior, by adopting an approach in which the generated non-
verbal behaviors are not differentiated according to gender. In this
article, as a first step, we focus on the gaze, the head movements
and the facial expressions. The research questions addressed are:

• Do generative models reproduce potential differences in non-
verbal behavior between the genders?

• Can we modify the model to mitigate the gender differences
in non-verbal behavior generation without compromising
the perceived naturalness and appropriateness of these be-
haviors with speech?

The paper is organized as follows: we first provide an overview
of existing works on fairness in generative models in Section 2.
The corpus and feature extraction are presented in Section 3. The
baseline generative model is introduced Section 4. The gender clas-
sifier and the results of the classification are described in Section 5.
Section 6 is devoted to the architecture of the FairGenderGenmodel
to generate non-verbal behaviors with mitigation of gender bias.
Section 7 is dedicated to the evaluation of the models. Finally, we
conclude the paper and introduce perspectives in Section 8. The
workflow is illustrated Figure 1.

2 RELATEDWORK
Research on bias and fairness has a long history in philosophy,
psychology, and in recent years in machine learning [28]. While
machine learning ethics often focuses on classification problems,
such as gender-neutral hiring [36], recent attention has turned
towards the ethical implications of generative models [6, 11, 24].

For these models to be practically viable, they must meet ethical
standards and be free from biases that may perpetuate human
prejudices. This work contributes to the ethical development of
SIAs by addressing gender bias in this domain. To our knowledge,
no other research on automatic non-verbal behavior generation
has addressed such an ethical dimension.

To effectively rectify these biases and achieve fairness, it is imper-
ative to first establish clear definitions of what constitutes fairness
and identify existing discrimination.

2.1 Definition of fairness
The definition of fairness varies according to the context in which it
is applied. Some definitions of fairness focus on equal representations
of certain sensible attributes, for example, a generative model that
has equal probabilities of producing male or female examples [36].

In our study, we focus on the generation of non-verbal behaviors
from speech. While biases in non-verbal behaviors can be addressed
by balancing sensitive attributes in datasets, the concept of fairness
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related to equal gender representation is not our focus. We wish
to concentrate on the intrinsic differences in non-verbal patterns
exhibited by individuals of different gender identities.

In the context of generative models, some definitions emphasize
performance fairness [26]. These approaches seek consistency in
generation quality, whatever the sensitive attribute considered,
such as gender. Although this approach may apply to our particular
situation, generating behaviors with the same performance for men
and women in no way ensures that these behaviors do not depend
on the gender of the speaker. It is therefore not suitable for working
on the generation of non-stereotyped behaviors.

One of the definitions explored in the survey by Mehrabi et al.
[28] is: “an algorithm is fair as long as any protected attributes are not
explicitly used in the decision-making process”. We adapt this defini-
tion to the generation of non-verbal behaviors and define fairness
as “the absence of distinction in the generated non-verbal behaviors,
whatever the gender of the speaker”. We aim to avoid the perpetua-
tion of gender stereotypes and biases in the non-verbal behavior
and to generate non-verbal behaviors that are not differentiated
according to gender.

2.2 Approaches to mitigate bias
Biases in model-generated data come mainly from two sources: the
dataset and the models themselves. Dataset bias is the main cause
of unfairness in generative models. One solution is to work with
unbiased data. Practical limitations such as time, resources, and
the complex nature of non-verbal behavior, render this approach
difficult. We cannot simply balance datasets on the basis of the
distribution of sensitive attributes, since bias comes from the fact
that individuals have different non-verbal behaviors depending on
their gender identity [22].

Models can perpetuate and even amplify biases in the data [6].
Generative Adversarial Networks (GANs), for instance, are trained
in an unsupervised way to capture the underlying distribution of
the dataset, then generate new data from the same distribution [36].

To address these issues, researchers have explored various tech-
niques, including pre-processing, in-processing, and post-processing
[3]. While pre-processing and post-processing methods directly
manipulate data, in-processing approaches modify the model dur-
ing training. Despite advancements in bias mitigation, there is a
paucity of research specifically addressing bias in generated non-
verbal behaviors. We investigate this aspect from the perspective
of generation models in general.

Pre-processing attempts to transform data to remove distribution
bias, and post-processing involves modifying the generated data
after themodel has been trained. Xu et al. [39] workwith adversarial
networks, trying to generate new data free of the discriminant
attribute. They generate new datasets similar to real data that are
debiased and preserve good data utility. We felt that it was more
effective to operate at the learning stage, building a model that
learns from our “biased” data “non-biased” non-verbal behaviors
whatever the speaker’s gender is.

Several methods have been proposed to mitigate biases in genera-
tive models with an in-processing approach. In the context of image
generation, Choi et al. [6], Teo et al. [36] use a complementary un-
biased dataset as a supervisory signal to detect bias in the baseline

data and bring the distribution of the baseline data closer to the ref-
erence data. In these works, it is assumed that an unbiased dataset
can be accessed or constructed. Zhang et al. [40] employ adversarial
learning by presenting a model in which they try to maximize the
accuracy of a predictor and at the same time minimize the ability
of an adversary to predict the sensitive variable. They use adver-
sarial learning to mitigate sensitive attributes, a method noted by
Frankel and Vendrow [11] as costly to train. Frankel and Vendrow
[11] develop a method that uses a small neural network ahead of
the existing generator to perturb the latent variables. While this
approach effectively addresses fairness, it increases both training
and inference times due to the additional network layer.

Similarly, some studies seek to learn latent representations that
remain invariant with respect to a given variable. One example
is the Variational Fair Autoencoder [25], which extends the semi-
supervised variational autoencoder to acquire representations ex-
plicitly invariant to known dataset attributes. By employing a Max-
imum Mean Discrepancy regularizer, they promote invariant latent
variable distributions. This approach necessitates the use of a spe-
cialized variational encoder architecture.

The field of domain adaptation, for example the work of Ganin
and Lempitsky [12], closely relates to this approach by seeking
to minimize the discrepancy between feature distributions of two
domains. Their findings demonstrate that adaptation can be inte-
grated into nearly any feed-forward model by adding a small set of
standard layers along with a novel gradient reversal layer. Unlike
previous methods, this technique enables iterative training, reduc-
ing computational costs, and the gradient reversal layer is only
active during training, not affecting inference. Furthermore, this
approach permanently modifies the latent representation, eliminat-
ing the need for an additional neural network before the generator.
We propose adapting the approach of Ganin and Lempitsky [12] to
mitigate gender bias in non-verbal behavior generation.

3 FACIAL BEHAVIORS CORPUS
Focusing on the automatic generation of facial expressions, head
movements and gaze, a corpus that emphasizes facial recordings
with a balanced representation of male and female speakers is
required. For this purpose, we use the Trueness corpus [32].

3.1 Presentation and splitting
Trueness is a corpus of scenes of ordinary discrimination, of sexism
and of racism [32]. It also includes interactions between authors
of discriminatory behavior and witnesses, attempting to sensitize
them by acting out various socio-affective behaviors such as aggres-
sion, conciliation or denial. These scenes originate from a French
forum theater focused on discrimination, with professional actors
trained in this domain. Each scene is divided into two videos, rep-
resenting the perspectives of the first and second persons in the
interaction. An essential quality aspect of the facial non-verbal
behaviors is the camera’s field of view, carefully maintained to
capture only the face and torso.

The dataset is divided into two parts, each recorded separately
with different actors. The first part comprises a training set, SetGen,
and a test set, TestSet, used for training and evaluating generative
models. The second part, SetClassif, is dedicated to train the gender
classifier. To ensure dataset diversity and prevent data overlap,
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individuals are exclusively included in either SetGen, SetClassif, or
TestSet. Specifically, SetClassif contains approximately 4 hours and
30 minutes of recordings from two male and two female speakers.
SetGen includes about 2 hours and 57 minutes of recordings from
two male and two female speakers. TestSet comprises around 41
minutes of recordings, featuring one male and one female speaker.

3.2 Extraction and processing
We automatically extract behavioral features from the existing
videos usingOpenface [2] and speech features using the self-supervised
speech model Hubert [18].
Behavioral features. Openface extracts, among others, 28 features
characterizing the head, gaze, and facial behaviors of a person on
a video at a frequency of 25 fps (frames per second). The eye gaze
position is represented in world coordinates, the eye gaze direction
in radians, the head rotation in radians, and 17 facial action units in
intensity from 1 to 5 (AU01-02, AU04-07, AU09-10, AU12, AU14-15,
AU17, AU20, AU23, AU25-26, AU45) based on the Facial Action
Coding System [10]. We point out that these features are designed
to capture non-verbal facial behaviors, but do not offer precise
lip-synchronization.

To ensure that our model learns from clean, plausible data, we
filter out images that have been incorrectly processed by OpenFace.
These include images in which faces are obscured by hands or hair.
We then interpolate the transitions between the remaining images.
In addition, two further processing steps are applied to head and
gaze features. Firstly, the features are smoothed using amedian filter
with a window size of 7. Secondly, the head and gaze coordinates
are centered to ensure that the SIA is facing the user. Finally, as
our focus in this project is solely on generating speaking behaviors
(and not listening behaviors), we set the behavioral features to zero
when the protagonist is not speaking.

These features, noted 𝐹𝑏 ∈ R28, are used for the training. 𝐹𝑏
consists of 𝐹ℎ𝑒𝑎𝑑 , 𝐹𝑔𝑎𝑧𝑒 , and 𝐹𝐴𝑈 , representing respectively head
movements, gaze orientation, and facial expressions.
Speech features. Drawing on Haque and Yumak [17] work on
non-verbal facial behavior generation, we use Hubert to extract the
speech features. In response to various analyses of different layers
of self-supervised speech models [33, 34], we compare the model’s
objective performances using different layers of Hubert (Section
7 for more details on the computation of objective performances),
and choose to use the twelfth layer to extract the speech features. In
Hubert, speech features are extracted at a frequency of 50 fps. The
speech features extracted from human speech are noted 𝐹𝑠 ∈ R1024.
Sliding window. Human behaviors are primarily generated by an-
alyzing short segments with a sliding window approach, spanning
from seconds to minutes, based on the socio-emotional phenomena
studied [29]. We segment the videos into 4-second segments with a
0.4-second overlap. Since the speech data has a frame rate of 50 fps,
and the behavior data has a frame rate of 25 fps, we use a speech
segment length of 200 frames and a behavior segment length of 100
frames, they are aligned during training.

This segmentation process yields 3590 segments for SetClassif,
comprising 1429 female, 1459 male, and 702 silent segments (where
no speech occurs within the 4-second window). SetGen consists of
2940 segments, including 1352 female, 1002 male, and 586 silent

segments. TestSet comprises 676 segments, divided into 267 female,
344 male, and 65 silent segments. No segment appears in more than
one set.

The extracted and processed data, forming SetClassif, SetGen, and
TestSet, are part of the ground truth data. These datasets underpin all
the processes outlined in Figure 1.We develop a behavior generation
model using standard techniques and an existing model, FaceGen
(detailed in Section 4). This model is refined to address gender
bias, resulting in FairGenderGen (described in Section 6). SetGen is
employed for training both FaceGen and FairGenderGen. The gender
classifier (described in Section 5) is trained using SetClassif. It is
used for inference on ground truth data from TestSet, as well as
data generated by both FaceGen and FairGenderGen (using speech
features from TestSet).

4 THE FACE-GEN MODEL
We aim to generate non-verbal facial behaviors for SIAs while
they speak. We can formulate the goal as follows: given a set of
speech features 𝐹𝑠 [0 : 𝑇 ], taken from a particular speech segment at
constant frame intervals of length 𝑇 = 200, the goal is to generate
the sequence of behaviors 𝑌𝑏 [0 : 𝑇

2 ] that a SIA is expected to
perform during its speech. The distribution of 𝑌𝑏 must be as close
as possible to the one of 𝐹𝑏 .

Our model is build upon the work of Delbosc et al. [8], who
introduced an open-source framework for the automatic generation
of non-verbal facial behaviors using action units. We implemented a
number of adjustments, including: the audio features extracted with
Hubert, the reduction of discriminator capacity, the noise formation,
and the model hyperparameters. In this section, we present this
transformed architecture1. This model will serve as the reference
“biased” generative model, which we call FaceGen.

4.1 Architecture
Like the original model presented in [8], FaceGen adopts the struc-
ture of an adversarial encoder-decoder. It is termed "adversarial"
because it comprises two modules, a generator and a discrimina-
tor, mirroring the architecture of a GAN [13]. The term "encoder-
decoder" is employed because the generator operates on the prin-
ciples of a 1D encoder-decoder. Again, as in the original model,
both modules receive speech features 𝐹𝑠 [0 : 𝑇 ], allowing the dis-
criminator to evaluate the believability of the temporal alignment
between behavioral and speech features. Preserving this property
of the basic model, the discriminator receives (in addition to ground
truth and generated examples) examples that help it discriminate
between speaking and listening phases. These examples associate
features of listening behavior with features of speaking, and vice
versa. A simplified architecture is shown in the green frame of
Figure 2. To describe each module, we use the following notations:
Conv and DoubleConv. A Conv block is composed of a convolution
1D, dropout, batch normalization 1D, and Relu. A DoubleConv block
is the concatenation of two Conv blocks.
The generator. The generator generates data by sampling from
a noise 𝑧 and speech features 𝐹𝑠 . The features received by the en-
coder are not the same as in the original model, so we adapted the
architecture, maintaining the main modules. The encoder initially

1https://github.com/aldelb/FairGenderGen
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learns 𝐹𝑠 representations using two Conv blocks followed by three
DoubleConv blocks. Each DoubleConv is preceded by a maxPool
layer. Unlike the original model, this representation is added with
noise, not concatenated. The noise is generated by creating two
random digits for each channel of 𝐹𝑠 representation, and using
these values to create a noise matching the length of 𝐹𝑠 represen-
tation, with transition digits following one another progressively.
Following this, three additional DoubleConv blocks, each preceded
by a maxPool layer, are applied. The output of the encoder consti-
tutes the latent representation of our data. The decoder consists
of three decoding modules to generate non-verbal behaviors, each
associated with an output type with different value intervals: a
decoder for head movements, a decoder for eye movements, and
a decoder for AUs. They consist of five DoubleConv blocks and an
upSampling layer before each. It uses skip-connectivity with the
corresponding layers of the encoder. It ends with a convolution 1D
and a tanh activation layer.

The discriminator. In parallel to the generator, the discriminator
learns separate representations for 𝐹𝑠 and 𝐹𝑏 . These representations
are learned with three 𝐶𝑜𝑛𝑣 blocks for 𝐹𝑠 and two 𝐶𝑜𝑛𝑣 blocks for
𝐹𝑏 , with a maxPool layer after each block. These representations are
then concatenated and processed through one 𝐶𝑜𝑛𝑣 block and two
linear layers, followed by a sigmoid activation layer. To enhance
computational efficiency without compromising performance, we
significantly reduced the network architecture compared to the
original model based on evaluation results.

4.2 Training
FaceGen is optimized with a Wasserstein loss with gradient penalty
[15]. The generator 𝐺 , with the parameters of the encoder 𝜃𝑒 , and
the parameters of the decoders 𝜃𝑑 , is supervised with the following
loss function:

L𝐺 (𝜃𝑒 , 𝜃𝑑 ) = L𝑔𝑎𝑧𝑒 (𝜃𝑒 , 𝜃𝑑 ) + Lℎ𝑒𝑎𝑑 (𝜃𝑒 , 𝜃𝑑 ) + L𝐴𝑈 (𝜃𝑒 , 𝜃𝑑 )

where L𝑔𝑎𝑧𝑒 , Lℎ𝑒𝑎𝑑 and L𝐴𝑈 are the root mean square errors
(RMSEs) of the gaze orientation, head movement, and AUs features.

L𝑚𝑜𝑑 (𝜃𝑒 , 𝜃𝑑 ) =
𝑇
2 −1∑︁
𝑡=0

(𝐹𝑚𝑜𝑑 [𝑡] − 𝑌𝑚𝑜𝑑 [𝑡])2

with 𝑚𝑜𝑑 ∈ {𝑔𝑎𝑧𝑒, ℎ𝑒𝑎𝑑,𝐴𝑈 }. The discriminator 𝐷 , with the pa-
rameters 𝜃𝑎 , is optimized through the adversarial loss function:

𝐿𝑎𝑑𝑣 (𝜃𝑒 , 𝜃𝑑 , 𝜃𝑎) =E�̃�∼P𝑔 [𝐷 (𝐹𝑠 , 𝑥)] − E𝑥∼P𝑟 [𝐷 (𝐹𝑠 , 𝑥)]

+ 𝜙 E
𝑥∼P�̂�

[( | |∇𝑥𝐷 (𝐹𝑠 , 𝑥) | |2 − 1)2]

with P𝑟 the ground truth distribution and P𝑔 the generated distri-
bution defined by 𝑥 = 𝐺 (𝑧, 𝐹𝑠 ), 𝑧 ∼ 𝑝 (𝑧). P𝑥 , used to calculate the
gradient norm, samples uniformly between pairs of points sampled
from the data distribution P𝑟 and the generator distribution P𝑔 ,
𝑥 = (𝑙)𝐹𝑏 + (1 − 𝑙)𝑌𝑏 with 0 ≤ 𝑙 ≤ 1. We use 𝜙 = 10. By integrating
adversarial loss with direct supervisory loss, our objective is the
following:

L𝑦 (𝜃𝑒 , 𝜃𝑑 , 𝜃𝑎) = L𝐺 (𝜃𝑒 , 𝜃𝑑 ) + 𝛽.L𝑎𝑑𝑣 (𝜃𝑒 , 𝜃𝑑 , 𝜃𝑎)

we set 𝛽 = 1. We use Adam optimizer for training, with a learning
rate of 10−4 for the generator and the discriminator. Our batch is
size 32. This model was trained for 1200 epochs on a v100 Nvidia
GPU, for approximately 14 hours.

5 INVESTIGATING GENDER BIAS
We assess the presence of gender bias in both ground truth and
FaceGen-generated non-verbal facial behaviors. Following our fair-
ness definition (Section 2.1), a bias is present in non-verbal features
if we can identify them as coming from a female or male speaker.
For this purpose, we build a gender classifier, trained on SetClassif
(detailed in Section 3). This classifier predicts the speaker’s gender
based on input non-verbal behavior features, excluding segments
of complete silence.

Architecture and training. The gender classifier is a compact
neural network composed of two Conv blocks (see Section 4), each
followed by a maxPool operation. Subsequently, there is a linear
layer, a ReLU activation function, another linear layer, and finally
a log softmax activation layer. The model is trained using cross-
entropy loss and the Adam optimizer with a learning rate of 10−3
for 10 epochs.

Evaluation and interpretation. We train the classifier 10 times to
capture variability in the training process, such as random weight
initialization and optimization algorithm stochasticity. We train
it on a large subset of SetClassif (1394 female segments and 1423
male segments) and validate its performances on a smaller subset
(35 female segments and 36 male segments). The classifier achieved
a mean accuracy of 85.92% with a standard deviation of 4.20%.

Randomly selecting one of the trained classifiers, we classified
ground truth data from TestSet. The resulting accuracy is 90.18%
(Table 1) with 4 misclassifications out of 267 for female speakers
and 56 misclassifications out of 344 for male speakers. These results
indicate that non-verbal behaviors extracted from the dataset ex-
hibit discernible gender patterns, suggesting that gender influences
the ground truth non-verbal behavior. With this established, we can
now explore our initial research question: ’Do generative models
reproduce potential differences in non-verbal behavior between the
genders?’.

We classified data generated by FaceGen. The resulting accuracy
is 80.69% (Table 1) with 44 misclassifications out of 267 for female
speakers and 74 misclassifications out of 344 for male speakers.The
influence of the speaker’s gender is evident in both the ground truth
data and those generated by FaceGen. This finding answers our
first research question, confirming that gender influence persists in
automatically generated behaviors, despite being less pronounced
than in ground truth data. Therefore, we aim to explore our second
research question: "Can we modify the [FaceGen] model to mitigate
the gender differences in non-verbal behavior generation without
compromising the perceived naturalness and appropriateness of
these behaviors with speech?".

6 THE FAIR-GENDER-GEN MODEL
We introduce a new model called FairGenderGen, designed to gen-
erate facial non-verbal behaviors from speech, while also aiming to
mitigate gender bias by producing behaviors that are independent
of the speaker’s gender.
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6.1 Architecture
The model work with speech features 𝐹𝑠 [0 : 𝑇 ] as inputs, and
label from the label space {𝑓 𝑒𝑚𝑎𝑙𝑒 , 𝑚𝑎𝑙𝑒 , 𝑠𝑖𝑙𝑒𝑛𝑐𝑒}. The approach
will nevertheless be generic and can handle any labels. We assume
the existence of three distributions: P𝑓 , P𝑚 and P𝑠 , which will be
referred as the Female, the Male and the Silence distributions. All
distribution are unknown. We don’t deal with the silence labels as
we aim to maintain the Silence distribution unchanged.

Our goal is to achieve a latent representation of our data that
is invariant with respect to gender, meaning we aim to make the
distributions P𝑓 and P𝑚 as similar as possible. At training time, we
have access to labeled examples from both distributions. Measuring
the dissimilarity of the distributions is however non trivial as they
are consistently changing during the training process.

Building on prior research presented in Section 2, we propose
to adapt the approach of Ganin and Lempitsky [12] to mitigate
gender bias through domain adaptation with backpropagation. The
proposed architecture includes all themodules of the FaceGenmodel
(green in Figure 2); the generator with encoding and decoding
parts, and the discriminator, which together form a standard feed-
forward architecture. Unsupervised domain adaptation is achieved
by incorporating a gender classifier (orange in Figure 2).

This gender classifier takes as input the latent representation of
FaceGen data, and classifies them according to the speaker’s gender,
male or female. It does not receive the silent sequence representa-
tions. It is connected to the encoder via a gradient reversal layer.
This layer multiplies the gradient by a negative constant during
the backpropagation-based training, known as the adaptation fac-
tor 𝜆. Similar to the original paper [12], we gradually change the
adaptation factor from 0 to 1 during the training process.

Figure 2: Overall architecture of FairGenderGen – The gender
classifier (represented in orange) interacting with FaceGen (repre-
sented in green).

The gender classifier is a small neural network, consisting of
two Conv blocks (see Section 4), with maxPool after the first block,
followed by a linear layer, a ReLU activation function, another
linear layer and a log softmax activation layer. Figure 2 illustrates
the integration of this classifier with the FaceGen model to form
the FairGenderGen model.

Gradient reversal ensures that the distributions over the two
genders are made as indistinguishable as possible for the gender

classifier, thereby resulting in gender-invariant features. This dis-
criminative classifier is only used during training and does not
increase inference time. The modified generator operates identi-
cally to the original, except with different outputs, modifying the
latent variables for a fair generation.

6.2 Training
To avoid starting from scratch and leverage the learning achieved
with the FaceGen training, we initialize our discriminator and gen-
erator with the FaceGen weights.

During the learning stage, we optimize the parameters of the
encoder 𝜃𝑒 that maximize the loss of the gender classifier, while
simultaneously optimizing the parameters 𝜃𝑐 that minimize the
loss of the gender classifier. The gender classifier uses binary cross-
entropy as loss function. Otherwise, the training proceeds in a
standard manner, minimizing the overall objective 𝐿𝑦 with the pa-
rameters of the decoders 𝜃𝑑 and the parameters of the discriminator
𝜃𝑎 . By integrating the loss of the gender classifier L𝑔𝑒𝑛𝑑𝑒𝑟 and its
parameters 𝜃𝑐 , our objective becomes:

L𝑓 𝑎𝑖𝑟 (𝜃𝑒 , 𝜃𝑑 , 𝜃𝑎, 𝜃𝑐 ) = L𝑦 (𝜃𝑒 , 𝜃𝑑 , 𝜃𝑎) + 𝛼.L𝑔𝑒𝑛𝑑𝑒𝑟 (𝜃𝑒 , 𝜃𝑐 )

with 𝛼 set to 0.1. We utilize the Adam optimizer for training, with a
learning rate of 10−4 for the generator and the discriminator. Our
batch is size 32. This model was trained for 500 epochs on a v100
Nvidia GPU, requiring approximately 6 hours.

Figure 3 displays the generator’s outputs on TestSet in three
dimensions using UMAP visualization [27], with the Male and Fe-
male distributions undeniably closer together for the FairGenderGen
model. To confirm the visualization results showing that the two
distributions are closer together, we conduct an objective and sub-
jective evaluation to assess not only the mitigation of bias, but also
the consistency of performances (Section 7).

7 EVALUATION
It is equally important to verify that our non-verbal male and female
behaviors are now closer, as it is to ensure that the mitigation of
bias has not reduced the quality of the generated behaviors.

To address the first point, we use the gender classifier pretrained
on the SetClassif data (Section 5). This allows us to assess whether
the gender differences in non-verbal behaviors have beenminimized
in the generated data.

For the second point, we objectively and subjectively evaluate
the model’s performances. We compare these metrics with those
of the FaceGen model to ensure that the quality of the generated
non-verbal behaviors has been maintained (maintained, improved
or slightly degraded).

7.1 Gender bias
While the gender classifier (Section 5) was able to discriminate be-
tween the non-verbal male and female behaviors generated by the
FaceGen model with an accuracy of 80.69%, its performance signifi-
cantly dropped to 48.61% when applied to behaviors produced by
FairGenderGen (Table 1). A closer examination reveals 90 misclassi-
fications out of 267 for female speakers and 224 misclassifications
out of 344 for male speakers.

To eliminate gender-based distinctions in generated non-verbal
behaviors, the distributions of male and female behaviors were
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Figure 3: UMAP visualization of the non-verbal behaviors - (a) ground truth behaviors, (b) FaceGen-generated behaviors, and (c)
FairGenderGen-generated behaviors. Red and green points represent male and female behaviors, respectively.

Table 1: Results of the gender classification of ground truth
behaviors (Ground truth), FaceGen generated behaviors and
FairGenderGen generated behaviors –We report results for all
features in terms of accuracy (Acc.) and F1 scores (F1).

Ground truth FaceGen FairGenderGen

Acc. / F1 90.18% / 90.21% 80.69% / 80.76% 48.61% / 47.55%

brought closer together. As a consequence, our classifier is now
less effective at distinguishing between the two, misclassifying a
significant proportion of male behaviors as female. The following
section examines the proximity of these distributions and quantifies
the performance difference between FaceGen and FairGenderGen.

7.2 Performance evaluations
To evaluate the FairGenderGen model, we generate videos for the
two individuals, male and female, who compose the TestSet. This
involves generating all the segments and averaging overlapping
image frames. Our evaluation is based on eight full videos for the
objective evaluation (Section 7.3) and four 30-second portions for
the subjective evaluation (Section 7.4).

7.3 Objective evaluation
Objective measurements, relying on algorithmic methodologies,
provide numerical performance indicators. We use mainly Dynamic
TimeWarpingDTW, an algorithm for measuring similarity between
two temporal sequences, which may vary in speed.
Distance between males and females. First, DTW is employed
to assess the similarity between the distributions of male and female
non-verbal features across ground truth data, FaceGen-generated
data, and FairGenderGen-generated data. For each feature, the DTW
is computed between the corresponding male and female distri-
butions. An overall gender bias measure is obtained by averaging
these DTW distances.

Table 2 confirms that the gender bias, i.e. the distance between
the two distributions, is increased using the FaceGen model com-
pared to the ground truth. Generative models are capable of am-
plifying biases existing in the data they are trained on. However,
we manage to reduce the distance between these two distributions
using the FairGenderGen model.

Table 2: DTW distance between males and females across
Ground truth, FaceGen and FairGenderGen – The global average.

Ground truth FaceGen FairGenderGen

DTW 31.58 32.37 24.70

Distance between the ground truth and the generated be-
haviors. Second, DTW is used to assess the distance between the
ground truth distributions and the generated distributions. Table 3
indicates that the distributions of FairGenderGen are slightly further
away from the ground truth than those of FaceGen, which may lead
to a reduction in quality. We add the DTW between a static SIA
(central position, AUs at intensity 0) and ground truth for additional
comparison.

Table 3: DTW distance between ground truth and a static SIA,
generated distributions for FaceGen and FairGenderGen– The
global average.

Static SIA FaceGen FairGenderGen

DTW 29.00 14.18 14.98

While divergence between generated distributions and ground
truth was expected due to the intended transformation, we have to
estimate whether such divergence remains within acceptable lim-
its. Objective measures, while valuable, are insufficient since they
neglect the coherence between behaviors and speech, privileging
statistical similarity over contextual relevance [21]. Consequently,
to evaluate the acceptability of this divergence revealed in objective
measures, subjective evaluations play a crucial role.

7.4 Subjective evaluation
To conduct subjective studies, we selected four approximately 30-
second speech sequences, two featuring a female and two featuring
a male speaker. These sequences were chosen semi-randomly, en-
suring coherence in speech over the 30-second duration. Utilizing
theGreta platform [35], we played these sequences on SIAs, employ-
ing a male agent for non-verbal behaviors accompanying a male
speech and a female agent for those accompanying a female speech.
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For the study setup, we employ the interface of Delbosc et al. [8],
inspired by other interfaces widely used in the field of behavior
generation. Participants were tasked with evaluating two criteria
across the four sequences: believability and temporal coordination
with speech of the SIAs’ behaviors. Thirty French participants, re-
cruited on social media (15 males, 15 females, mean age 42.7, std
13.4), evaluated the two criteria through direct questions:

o believability: how human-like do the behaviors appear?
o temporal coordination: how well does the agent’s behavior
match the speech? (In terms of rhythm and intonation)

Participants rated each video on a scale from 0 (worst) to 100
(best) for both criteria. The believability criterion was evaluated
without sound, while the temporal coordination criterion was evalu-
ated with sound. The results are presented in Table 4. The spectrum
of responses reflects variances not just between conditions, but also
includes external factors like variations in individual preferences.

Statistical analysis is carried out to examine significant differ-
ences between the FaceGen and FairGenderGen models, but also
between male and female behaviors in these models. Initially, the
normality of the data is evaluated using the Shapiro-Wilk test,
confirming that the data originate from a normally distributed
population. Consequently, a repeated ANOVA is used.

Table 4: Results for the believability (Bel.) and coordination
(Coo.) criteria – Average score and standard deviation: mean (std).

All Female Male

Ground truth Bel. 53.70 (15.39) 55.27 (15.59) 52.13 (18.76)
FaceGen Bel. 46.31 (15.71) 49.88 (15.70) 42.73 (19.36)
FairGenderGen Bel. 49.63 (14.65) 45.43 (15.94) 53.83 (16.46)

Ground truth Coo. 47.42 (16.05) 51.42 (18.27) 43.42 (15.84)
FaceGen Coo. 43.33 (14.23) 42.85 (16.84) 43.81 (15.82)
FairGenderGen Coo. 54.22 (17.69) 54.32 (18.84) 54.13 (18.57)

Perceived believability. There is no evidence of a decline in
perceived believability of non-verbal behaviors generated by Fair-
GenderGen (Table 4). Statistical analysis indicates no significant
difference in perceived believability with FaceGen (𝑝 > 0.1).

However, FairGenderGen’s male non-verbal behaviors are sig-
nificantly rated higher than FaceGen’s male non-verbal behaviors
(𝑝 = 0.008). FairGenderGen improves the perceived believability of
male behavior. Without being significant, FairGenderGen’s female
non-verbal behaviors tends to be rated lower than FaceGen’s female
non-verbal behaviors (𝑝 > 0.1).

In addition, by looking at the contrast in perceived believability
between males and females, there is no significant difference in the
perceived believability of male and female non-verbal behaviors for
the ground truth and FaceGen. But there is significant differences
for FairGenderGen’s: where male non-verbal behaviors are rated
significantly higher than their female counterparts (𝑝 = 0.029).
Perceived coordination. FairGenderGen is significantly better
than FaceGen (𝑝 < 0.001). We also note that, ground truth female’s
behaviors are perceived more coordinated than male’s (𝑝 = 0.011),
a difference that disappeared in the generated behaviors for both

FaceGen and FairGenderGen (Table 4). This result shows that there
is no decline in performance in terms of coordination of the non-
verbal behaviors generated with FairGenderGen.

8 DISCUSSION AND FUTUREWORK
Our study highlights a new issue in the field of automatic gener-
ation of facial non-verbal behaviors: gender bias. While previous
work focused mainly on the believability and coordination of these
behaviors with speech, our research highlights the importance of
considering the differences in non-verbal behaviors between males
and females, differences already observed in real life.

We confirmed, through our analysis with a real-world dataset
and the training of a state-of-the-art model in the domain, that
gender biases are present in ground truth behaviors, as well as
in generated behaviors. In this paper, we have proposed a new
model, FairGenderGen, aiming to mitigate these biases and create
non-verbal behaviors independent of the speaker’s gender.

Our results show that FairGenderGen effectively reduces the
gender bias present in the data, even fooling a gender classifier that
now recognizes much non-verbal behaviors as female’s ones. The
subjective evaluation shows that there is no performance loss for
this model in terms of perceived coordination. However, our study
also reveals a major challenge: the perception of the believability
of the generated non-verbal behaviors.

Society has higher expectations of women when it comes to
non-verbal behavior. For example, Deutsch et al. [9] revealed that
the absence of a smile can be detrimental to a woman’s image
compared with that of a man, while there is no significant difference
in image perception between smiling men and smiling women.
Society’s expectations of non-verbal behaviors negatively influence
the perception of women who don’t adopt them.

Our efforts to mitigate gender bias in generated non-verbal be-
haviors resulted in a notable disparity in perceived believability
performance between males and females. Female non-verbal behav-
iors, generally considered more believable than male ones, became
significantly less believable compared to their male counterparts.
We believe that these results are due to the higher stereotypical
expectations placed on female non-verbal behaviors.

The disparity in perception between males and females raises
essential questions for the future of research in this field. Should we
direct our efforts towards maintaining stereotypes of non-verbal
behaviors to preserve equivalent perceived believability and coordi-
nation between men and women, thus reflecting reality? Or should
we prioritize an approach aimed at reducing these biases, even at
the risk of diminishing the perception of believability?

These reflections are not limited solely to gender biases but
could be extended to other sensitive variables such as cultural or
racial differences. Exploring these questions more deeply could
one day enable us to find answers and develop more equitable and
inclusive solutions in the field of automatic generation of non-verbal
behaviors.
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