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Abstract
This paper presents a novel approach to detect deviations in welding trajectory, using a Machine Learning model that predicts
the occurrence of defects during narrow gap operations. A regression model is developed and trained using experimental
data acquired from a number of synchronised sensors used in the TIG process with filler metal. Two primary sources of data
are employed. The voltage, current and other electrical parameters are monitored as well as the changing dynamics of the
weld pool, which are monitored by two cameras stationed behind and in front of it. An image processing algorithm is then
used to extract the contour and geometrical characteristics of the weld pool, including its length, width, and area. The data
is organized, stored, and referenced in a database for swift and easy processing. The database is created to train, test and
validate the Machine Learning (ML) model. During welding, artificial deviations are introduced to examine the ML model’s
ability to predict the welding trajectory deviation. Various training models are evaluated to analyse their predictability within
a defined set of parameters, in order to anticipate the occurrence of defects.

Keywords Welding ·Welding physics · Image processing ·Machine learning · Monitoring

1 Introduction

The safety regulations within the nuclear industry require
thorough monitoring of manufacturing processes and weld
repairs. Currently, non-destructive testing is conducted post-
operation and corrective action must adhere to specific
protocols in the event of non-conformity. The use of an online
welding monitoring system capable of detecting deviations
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would enable identification of changes in the bead geometry
during manufacturing. This would safeguard the assembly’s
integrity from the impact of insufficient fusion or porosity.
It is essential to monitor process parameters, such as heat
input and filler metal rate, to comply with welding procedure
specifications. In reality, alterations to process parameters
will impact how energy is distributed to the component, thus
affecting the shape of the welding pool (length, width, and
penetration).

During on-site welding operations, components may be
large and may have geometric defects, such as inaccu-
rate cylindricity at the bottom of a narrow gap. Distortion
can cause geometric changes and alter the conditions for
deposited material as the weld moves. Applying too much
energy to the edge may cause the bead to move up the groove
(refer to Fig. 1). This defect can lead to problems such as
porosity, cracking, or lack of penetration when subsequent
layers are added.

Various sensors can be used to monitor fusion welding
processes, obtaining information on weld bead profile or
geometry [1, 2], arc variation pressure [3, 4], or arc emission
[5–7]. Currently, industrial welding operations aremonitored
by observing the molten pool through a camera, with the
operator providing feedback on the bead’s regularity.
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Fig. 1 Diagram of arc energy transfer in a narrow gap deviation to the
left

In this paper, a sensor is used for monitoring the weld
pool and for storing the resulting data in a database. Machine
learning (ML) models are trained on, using this database.

Privious research [8–10] has proven the efficacy of using
ML regression algorithms with sensor data to enhance weld-
ing activities.Regressionmodels haveproven to be especially
proficient in predicting intermediate values, specifically for
transient phenomena [8].

Sensor-based monitoring should be supplemented by
experienced welders performing on-line checks. There are
several types of deviations that can occur when welding,
including sub-optimal positioning of the torch electrode in
the narrow gap, resulting in undesirable arc behaviours. It is
particularly important to position the torch correctly when
working with large pipes because this can cause the weld
pool to lose symmetry and modify arc behaviour.

The objective of this study is to accurately detect first
pass deviations in a narrow gap. This is operationalized as
identifying tungsten position deviations in the narrow gap, a
configuration of torch deviation that has not been previously
discussed in the literature. A method utilizing experimental
data and machine learning is outlined in this paper, aimed
at detecting tungsten position deviations using a simplified
geometry in a narrow gap. The process is equipped with mul-
tiple measurements, including process parameters and weld
pool observation. An image processing algorithm detects the
contour of theweldpool in real-time tomeasure its shape.The
database is fed by tests involving programmed torch exit from
the centre of the narrow gap and a deviation to the left and
right. A regressionmodel determines the electrode’s position
in case of any deviations. In order to improve understand-
ing of the database and regression model’s effectiveness, the
experiment aims to evaluate their efficiency. The regression
model used geometrical characteristics of weld pools (ML
features) to predict torch placement.

2 Experimental device

2.1 Sensors

The experimental set-up for this investigation is shown in
Fig. 2. Synchronized data acquisition is carried out using
the acquisition card to be on the same time base. Process
parameters are monitored by sensors attached to the welding
generator. Two cameras capture the dynamics of the weld
pool. One camera is situated so as to observe the weld pool’s
rear due to limited accessibility, while the other captures the
front. All data is recorded and stored in a database to support
input for the machine learning mode.

2.2 Materials, geometry, and dimensions
of the weld test

The metallurgical composition of both the base and filler
metals must conform to construction standards and codes.
316L austenitic stainless steel was used as the base and filler
metals for the welding process with a wire diameter of 1 mm.

To facilitate the study, a simplified narrow gap geome-
try was employed, as illustrated in Fig. 3, which depicts the
welding specimen’s dimensions. The specimen was created
using 150mm in lenght, 70mm inwidth, and 40mm in thick-
ness. The dimensions were selected to illustrate welding on
a large part and to avoid distortion of the part. The depth of
the small gap was determined to ensure easy access for the
welding torch and effective shielding for the weld pool. This
design could potentially enable the deposition of at least five
beads. In this configuration, it is the torch that moves.

Forming the bead in a narrow gap using a torch as a heat
source is complex. To position test specimens in a robotic
reference frame, a device with the male shape of the gap is
placed on the nozzle and electrode. This device, manufac-
tured via additive techniques, ensures accurate positioning
of the component at position 0, the midpoint of the narrow
gap. The torch is positioned at the starting point, followed
by the endpoint to create the trajectory. Next, the part is
clamped, and the positioning is verified before welding to
ensure alignment with the narrow gap, guaranteeing repeat-
able results across tests. Panasonic’s anthropomorphic robot
moves the torch, utilizing its 6-axis capability to maintain a
linear path with an accuracy of less than 0.1 mm between the
two points.

2.3 Choice of variation domain

In order to demonstrate the cumulative impact and establish
the extent of torch deviation, a test was conducted during the
initial phase using a programmed torch deviation of 1 mm.
The cameras are attached to the welding torches. Figure 4
depicts the observations made during the deviation at t = 50
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Fig. 2 Overall wiring diagram
of the experimental set-up

seconds. The weld pool had asymmetric, and the melt zone
was misaligned due to improper arc alignment. The initial
images show a smooth deposition process. However, at t =
78 seconds, the images show changes in the transfer resulting
in the formation of a significant drop. A discontinuity of the
weld pool is formed. The images show that the edge of the
narrow gap has melted much more in this first pass.

Fig. 3 Dimensions of the narrow gap and definition of torch any offset

After the initial bead is created, a second bead is created
at its centre. Figure 5 depicts the macrograph of the sample
and an image of the front face captured at t = 78 seconds. A
lack of fusion is visible between pass 1 and pass 2 at the base
of the bead.

A relationship is identified between the position of the
electrode, energy transfer, and the behaviour of theweld pool.
The objective is to develop a method for determining the
electrode’s value in relation to the narrow gap centre, by
examining weld pool contours.

A parametric domainwill be establishedwith torch offsets
ranging from 0 to 0.6 millimetres in both directions (refer to
Fig. 6) which will serve as the learning base (cf. Section 4).
This domain selection enables the creation of a regression
model that can calculate deviationswithin a rangeof variation
that ensures bead continuity.

The range of parameters is defined by torch deviations
within the range of -0.6 to 0.6 millimetres so as to guarantee
the absence of defects. A database is created which includes
the minimum, maximum and 0 boundaries of the range (see
Fig. 7). A test was conducted to verify the positioning sym-
metry of the robot by introducing right and left deviations.
The wide applicability of the database is an advantage that
takes account of any asymmetry caused by the operational
conditions.
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Fig. 4 Operation with a torch
deflection of 1 mm. (a) Weld
pool rear view at 50 seconds. (b)
Weld pool front view at 50
seconds. (c) Weld pool rear view
at 78 seconds. (d) Weld pool
front view at 78 seconds

2.4 Welding parameters

A TIG welding process was performed and observed as
described previously, with the aim of analysing variations
in the geometry of the weld pool during operation with con-
stant welding parameters (voltage, current, wire feed rate,
gas flow). The welding parameters used are set out in Table
1.

The acquisition card inputs have an acquisition frequency
of 1 kHz for the process parameters, whilst the cameras have
an acquisition frequency of 50 Hz.

3 Method

3.1 Image processing

Figure 8 (a) shows raw image that can be used to extract
various data, including the size of the weld pool. The inves-
tigation of weld pool geometry is essential, as it changes
according to process parameters. Periodic evaluations of the
weld pool’s geometry are necessary to precisely determine
changes and dynamics of its geometrical characteristics.
Also, an algorithm is used to detect the edges of theweld pool

Fig. 5 Weld pool front view and
macrographic section during
welding of the second pass
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Fig. 6 Definition of torch offset

allowing this particular part of the image to be extracted. For
this purpose, an image processing algorithm utilizing con-
tour detection [11] is employed to evaluate the geometry, as
illustrated in Fig. 8. The processing steps for the weld pool
image are also presented in the Fig. 8. The convex hull con-
tour (highlighted in red in Fig. 8 (d)) is subsequently utilized
to extract geometric characteristics.

A polygonal contour is then generated. The geometric
characteristics of the welding process can be captured as a
function of the location of the torch heat input and the filler
metal. Figure 9 (a) illustrates all outline features in a clear
schematic representation. The welding torch has a camera
mounted on it, and the camera frame is aware of the torch
position. Automated systems are used for image acquisition,
processing and extraction of geometric features to ensure
reliable online control [12]. The processing steps and their
respective durations are displayed in Fig. 9 (b).

The algorithm must be adaptable and strong enough to
account for the grey level fluctuations resulting from the arc.
This fluctuation is mainly determined by the programmed
current in the welding generator [12].

3.2 Weld pool features

Figure 9 shows one image whilst Fig. 10 shows three sets of
images (three different operations) of the geometric features
extracted by the image-processing algorithms. These quan-
tities can be used to derive information about the stability
and repeatability of the weld pool. The study of geomet-
ric variation in relation to heat input is facilitated by contour
extraction. The scatter plots shown in Fig. 10 show clear sep-
aration for certain characteristics, including ”weld pool min -
tungsten position”, ”weld pool max - tungsten position” and
area asymmetry, while others are mixed. These deviations
show that the weld pool has different wetting characteristics
in the narrow gap.

Finally, ML algorithms are tested on experimental data
to predict any possible deviations. A new database will be
created based on the geometric features of the weld pool.
This approach helps to streamline the database, reduces stor-
age size, and reduces training time for testing various ML
algorithms.

4 Machine learning

4.1 Regression

A regression model [13, 14] consists of a commonly used
and easily explicable supervised learning approach. The pri-
mary goal of regression is to predict a real valued output (also
known as the target variable: Y) using a real-valued data vec-
tor as input (variable X). When the input is one-dimensional,
the model is approximated by the linear equation 1 that cor-
relates the input to the output.

f (x) = Ax + B (1)

The most commonly used method is the least squares
approach, as applied in this paper. Figure 11 presents a linear
regression, with vertical bars depicting variations between
observed output (blue circle) and expected value (orange
cross) for each input. The optimal line minimises the sum
of the discrepancies.

The fundamentals of machine learning involve the learn-
ing model, also known as the f function, that relies upon a
database. The process of machine learning consists of mul-
tiple stages, including a learning phase designed to train
or modify the model and a test phase to assess the chosen
model’s performance.

4.2 Training, testing

In this study, the geometric properties of the weld pool shape
are utilised as input models to forecast the welding robot’s
trajectory position. The data is labelled with the torch offset
setpoint in the narrow gap. Table 2 provides a summarisation
of the data which is inserted into the ML model.

In order to enhance the visualisation of test data, a single
geometric characteristic from the contour is extracted. This
pertains to the maximum distance between the electrode’s

Fig. 7 Parametric domain without defects for machine learning model
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Table 1 TIG welding
parameters used

Weld Nr. Current Voltage Welding Wire feed Gas flow Torch offset
speed rate

I [A] U [V] Ws [m/min] Wf [m/min] [L/min] [mm]

1 180 9.5 0.08 1.3 12.0 (Ar) 0

2 180 9.5 0.08 1.3 12.0 (Ar) 0.6

3 180 9.5 0.08 1.3 12.0 (Ar) - 0.6

Fig. 8 (a) Image rectification
via a calibration test pattern. (b)
Use of an adaptive threshold
filter. (c) Use of a Canny filter.
(d) Edge detection using the
shape method coupled with a
graph algorithm (blue) and
convex contour (red)

Fig. 9 (a) Extraction of weld
pool contour features. (b) Raw
image processing to extract
geometric features and
processing times
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Fig. 10 Geometric features from weld pool contour feeding the ML models

location and a point on the contour’s end in a direction per-
pendicular to the weld (refer to Fig. 12). This distance allows
to track the torch’s position in the narrow gap, taking into
consideration the inherent fluctuations of the weld pool.

Fig. 11 Simple regression, which consists of minimizing the sum of
the squared residuals [15]

The distances for each programmed offset setpoint (0, -
0.6, 0.6) are illustrated in Fig. 13. The colour of the points
indicates the programmed offset for the linear trajectory.
Each operation consists of 2500 observations to ensure equal
representation of the various classes in the database. The x-
axis indicates the torch position in relation to the contour’s
end, and the y-axis indicates the robot position setpoint.
Notable fluctuations in the weld pool are evident for any
deviation. The variations in the weld pool mainly occur due
to changes in energy transfer, which can cause the estimated
torch position in relation to the contour to vary by up to
0.2 mm. Despite the range of torch positions relative to
the contour, there is a distinct linear relationship between
the programmed position and the associated feature. As a
reminder, the robot’s position between two points is 0.1 mm.
The corresponding data can be labelled using the torch posi-
tion setpoint.

Regression analysis is performed on all data points. The
coefficient of determination is close to one, confirming that
the geometric feature can represent the position of the elec-
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Table 2 ML model input and
output

Characteristics Input Output
number

0 Distance weld pool min - Position tungsten (Dist Ymin - Posi_W) 0

1 Distance weld pool max - Position tungsten (Dist Ymax - Posi_W)

2 Length 0.6

3 Width

4 Area asymmetric left (Area DIssy left)

5 Area asymmetric right (Area DIssy right)

6 Centroid X (gravity centre X)

7 Centroid Y (gravity centre Y) - 0.6

8 Perimeter

9 Area

trode. However, the regression line does not intersect the
origin. This indicates that there is an asymmetry between
right and left. This may be due to the weld pool behaving
differently on each side or the robot not positioning itself
accurately at the intended point.

A simple approach is evaluated given the linear trend
observed in Fig. 13. Multiple linear regression is used, using
the attributes of the input contour (as outlined in Table 2) to
determine the programmed position of the torch.

Fig. 12 Distance between the tungsten position and weld pool extrem-
ity and distance between the tungsten position and top of the narrow
gap for verification purposes

The model is trained using the geometric characteristics
of the weld pool for three categories (Ma1, Ma2 andMa3) as
input, as well as the robot’s trajectory position (0 mm, -0.6
mm, 0.6mm) in output. The regressionmodel achieves a high
accuracy of 98%, suggesting its robustness for predicting
specific configurations. The learning time is 0.64 seconds.

4.3 Prediction

Awelding procedure tests the regression model’s prediction.
The tungsten’s position is altered in both directions in order
to artificially program trajectory deviation during the weld-
ing process. Initially, the torch shows no deviation, but after
about 25 seconds, it moves to the left and then to the right
at approximately 50 seconds. At the end of the procedure,
the robot trajectory returns to its initial position. There could

Fig. 13 Trainingdatabase (only one feature presented) andmodel selec-
tion
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Fig. 14 Deviation of the welding torch during the operation

potentially be a discrepancy between the programmed and
actual position of the electrode. In order to confirm that the
torch was indeed misaligned, the position of the tungsten
electrode relative to the centre of the narrow gap is measured
(see Fig. 14). A slight offset was observed, which could be
attributed to interpolation or a gap in the robot’s swivel.

Figure 15 illustrates the outcome of the linear regression
and the measured distance between the edge of the restricted
gap and the electrode (identified as ”top narrow gap - posi
W” on the illustration). The robot moved 0.6 mm to the left
and 0.6 mm to the right. When the robot moves to the left
of the narrow gap, the model accurately predicts the tran-
sition zone until it anticipates a deviation of approximately
-0.5 mm However, the points captured in the image indicate
a deviation of 0.6 mm. hen the robot moves 1.2 mm (between

Fig. 16 Significance of geometrical characteristics of the regression
model shown as a histogram. Feature numbers are referenced in Table
2

-0.6 and 0.6 mm), it is predicted to deviate by 0.4 mm, but
it actually deviates by 0.5 mm. When the robot then returns
to its original position, the model can predict this condition.
Based on direct observation, this study demonstrates that the
geometrical features of theweld pool can serve as an effective
indicator of welding deviations. The inherent characteristics
of the weld pool and gaps or interpolation in the robot’s joints
are possible sources of underestimation in torch position pre-
diction.

Fig. 15 Prediction of the linear
regression used to detect a
variation in the position of the
tungsten on the left and right.
The images shown are acquired
by the camera with the field of
view of the front panel
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4.4 Significance of geometrical characteristics

The regression model’s training coefficients are shown. Fig-
ure 16 shows the significance features in the tested machine
learning-model using a histogram. Each number on the
abscissa from 0 to 9 corresponds to a weld pool feature and
the corresponding numbers are cross-referenced in Table 2.

It can be observed that for all the models, the distances
between the tungsten and the end of the melt/weld pool have
the highest coefficients. We can also observe that the asym-
metric areas also have high coefficients. The width, length,
centroid (X and Y), areas, and perimeter have very low coef-
ficients, but this is not very surprising. For instance, although
moving the tungsten alters the streamlines of the narrow gap,
thewidth is limited by the gap’s size. Thismodification, how-
ever, affects how far the base metal is penetrated along the
triple lines.

5 Conclusion

This approach employs physical data pertaining to weld pool
dynamics (specifically, theweld pool contour) to forecast any
deviations from a nominal trajectory. Through this study, a
linear regression model designed to identify such deviations
is validated, which further enables us to predict all the inter-
mediate positions. This results in a continuous aspect of the
prediction based on weld pool images. This model can detect
even the slightest disparity of 0.6 mm and every intermediate
position, that is a local data point. It should be acknowledged
that attempting to extrapolate results beyond the ranges of the
training setmay result in significant errors. Implementing this
methodology based on geometrical characteristics has led to
a reduction in storage size, as it is less costly to store a vec-
tor of features over time than complete images. Furthermore,
this approach has shown that geometrical characteristics sup-
port the identification of variations in the welding torch’s
position during operation. Additional regression techniques,
such as GPR or SVR, may yield comparable outcomes, yet
linear models are usually simpler to execute and interpret.
The advantage of this regression model, which relies on the
geometrical features of theweld pool, is that it can be adjusted
to detect alterations in the motion of a carriage or any other
welding method.
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