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Abstract

When a fast kinetic natural disaster occurs, it is crucial that crisis managers quickly under-

stand the extent of the situation, especially through the development of “big picture” maps.

For many years, great efforts have been made to use social networks to help build this situa-

tional awareness. While there are many models for automatically extracting information

from posts, the difficulty remains in detecting and geolocating this information on the fly so

that it can be placed on maps. Whilst most of the work carried out to date on this subject has

been based on data in English, we tackle the problem of detecting and geolocating natural

disasters from French messages posted on the Twitter platform (now renamed “X”). To this

end, we first build an appropriate dataset comprised of documents from the French Wikipe-

dia corpus, the dataset from the CAp 2017 challenge, and a homemade annotated Twitter

dataset extracted during French natural disasters. We then developed an Entity-Linking

pipeline in adequacy with our end-application use case: real-time prediction and peak resil-

iency. We show that despite these two additional constraints, our system’s performances

are on par with state-of-the-art systems. Moreover, the entities geolocated by our model

show a strong coherence with the spatiotemporal signature of the natural disasters consid-

ered, which suggests that it could usefully contribute to automatic social network analysis

for crisis managers.

1 Introduction

Crisis situations are characterised by a collapse of meaning and by the disorientation of actors.

Crisis management, therefore, consists, first and foremost, in re-establishing this meaning by

understanding the situation and building “situational awareness”. As this “sensemaking” pro-

cess is a necessary prerequisite for the construction of an appropriate response, it takes place

under a strong time constraint and therefore requires the activation of all information chan-

nels that can be used to gather reliable elements that describe the situation as quickly as possi-

ble [1]. In addition to traditional actionable channels, which often take time to gather

consolidated information from the field, it has become common practice over the past 10
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years for crisis practitioners to try to capture the information circulating on social media.

Among all social media platforms, Twitter (now renamed “X”) proposes particularly useful

features in a monitoring crisis situation: publication in real time of short messages, streaming

API that makes it possible to automate monitoring tasks (free until the beginning of 2023, the

Twitter / X streaming API is now fee-based, with exemptions granted to certain applications

broadcasting emergency notifications), ability to join images, etc. Although Twitter is not the

most widely used social media, its user community remains significant: in the case of France,

which is considered in this study, the number of active users is estimated at around 10 million

i.e., almost 15% of the total population. Therefore, the occurrence of natural disasters often

results in massive and immediate spread of tweets [2] that leads to the consideration of the

Twitter platform as valuable “Distributed Sensor System” [3]. In practice, the richest informa-

tion generally comes from the citizens closest to the disaster area. Because natural disasters

affect their immediate environment, these local citizens [4] are indeed more inclined, both in

the physical and digital sphere, to help or exchange objective information about the situation

on the ground [5]. Thus, after the occurrence of natural disasters, many users of social net-

works concerned by the situation massively exchange information concerning the intensity of

the events as they perceive them: either via a description of the phenomena themselves (sever-

ity of earthquakes, the extension of flooded areas, wind strength, etc.) or via a description of

their effects (damage to buildings and infrastructure, shutdown in transport, energy or tele-

communications networks, victims, etc.).

In practice, social network monitoring in support of crisis management is often carried out

by dedicated Virtual Operations Support Teams (known as “VOST”) [6]. In the absence of

dedicated tools, VOST members usually carry out this monitoring work “manually” via the

public search interfaces provided by platforms. From this perspective, it would be particularly

useful to develop tools able to automatically extract actionable information from large quanti-

ties of messages: VOST members could then focus on validating and analyzing the automati-

cally extracted information, rather than wasting time extracting this information on their own

message by message. One of the main issues of these automatic analyses is the ability to cor-

rectly place the information extracted on a map to make it actionable [7] and thus reduce

information overload. Because a very low proportion of tweets have intrinsic geolocation (less

than 1%), such as GPS coordinates [8, 9] or geotags [10], geolocation of the information should

be inferred from the information present in the text and/or the metadata of the tweet itself.

In view of supporting crisis management practitioners in France and in French-speaking

countries, the SURICATE-Nat platform (https://www.suricatenat.fr/) allows for the continuous

monitoring and analysis of original tweets (i.e. excluding retweets) written in French after the

occurrence of natural disasters (earthquakes and floods) [11]. Each tweet captured thanks to

the Twitter streaming API is processed to extract thematic information, as well as a preferred

geolocation. The geographic inference module implemented on the SURICATE-Nat platform

is based on a Named Entity Recognition (NER) tool developed natively to handle the French

language [12], supplemented by the use of OpenStreetMap Web services to obtain the coordi-

nates of recognised geographic entities. Although this approach has shown its usefulness by

detecting relatively well the mentions of French municipalities in the event of a natural disaster

[13], it often fails and does not allow one to recognise points of interest [11].

Meanwhile, recent advances in natural language processing (NLP) and deep learning

allowed significant improvements in the recognition and disambiguation of spatial named

entities using geographic coordinates prediction, geographic region classification, gazetteer-

based approaches, or, as explored in this work, entity-linking (see [14] for a review). Entity

linking gave very promising results in the prediction of entities from knowledge bases such as

Wikipedia/Wikidata [15]. In particular, this approach comes out to be effective in zero-shot
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classification, hence allowing the prediction of accurate locations of places that did not yet

exist at training time. Furthermore, precise geographic coordinates of spatial entities can be

extracted from Wikidata, as well as many other features, such as OpenStreetMap identifiers.

However, using this strategy requires appropriate corpora to train models, which can be chal-

lenging for applications based on non-English-speaking social media data.

In this context, our key contributions are threefold: we first extend the work done by [14]

by producing a French Entity-Linking dataset covering (most of) the French Wikipedia corpus

as well as annotated tweets collected during major crises in France. Then, our main contribu-

tion is an innovative pipeline to geolocate places impacted by natural disasters from tweets

automatically. This pipeline implements the entity-linking framework, while unusual, it fixes

lots of precision issues traditional geolocation systems. It relies on a custom bi-encoder that

simultaneously recognises all spatial named entity mentions in a text and generates entity can-

didates from Wikidata at the same time, while existing EL pipeline usually rely on two differ-

ent models processing one entity at once. We also rely on an optimized cross-encoder to

rerank the entity candidates. Geolocation is then done by querying spatial information, such

as GPS coordinates, from the predicted Wikidata entities. This model avoids the shortcomings

of the methods from the literature: spatial (im)precision, the ambiguity between spatial entity

names, or the need for a specific gazetteer, and the scores obtained on the Entity Linking task

are better than the literature. Codes and models are available online (https://github.com/

gcaillaut/geoloc-entity-linking). The last contribution is a geography-oriented qualitative eval-

uation method for the problem of geo-locating tweets about natural disasters. We applied this

method on two datasets of tweets emitted during two natural disasters and found out that the

model predictions can be used to have a clear spatiotemporal description of each event.

2 Task description and related works

The geolocation problem that we are considering consists in assigning coordinates or a geome-

try (point, polyline, or polygon) described as a set of coordinates expressed in a well-known

coordinate reference system to a civic location (e.g. a place name or a geographic identifier

such as a post-code) captured via social media and, more particularly, via the Twitter platform.

Consequently, it is necessary first to define precisely which place we are trying to locate. In

fact, there are methods to locate the place where tweets are sent, the place of residence of their

sender, or the place(s) mentioned in the tweets [16]. As our goal is to capture the maximum

amount of information describing the situation related to the ongoing natural disaster, it is

clear that the important thing is to localise the information contained in the messages (i.e.,

potentially several civic locations per tweet), which corresponds to a “mentioned location pre-

diction”, or geoparsing, problem [16]. Although the locations mentioned in a tweet regularly

differ from the location of the user [17], we are interested in tweets from both direct and indi-

rect witnesses of the disaster. In addition, [18] showed that there is a strong correlation

between the locations mentioned in tweets and the location of their author in natural disaster

situations. Several different methods have been proposed in the past ten years to solve this

location prediction task on Twitter [16, 19], and this section does not have the ambition to dis-

cuss them all, but we will focus more on methods addressing a similar crisis management con-

text. Then, we present how entity linking can be used to predict locations and lastly, we review

the available training datasets.

2.1 Location prediction with tweets in crisis management context

Many of the first attempts modelled this task as a grid-based geolocation problem, where a

grid is superimposed on the geographic space and the geolocation consists in inferring which
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cell or portion of space is referred to in the tweet (e.g. [20]). We voluntarily leave these

approaches aside because they predict locations whose planimetric accuracy is not sufficient

for our use case; i.e. the cells are too large, or it is too complex when cells are small. We are

interested in methods that are able to infer more precise geolocations from the tweets, to really

help the crisis management. Hybrid approaches have been developed to overcome this limita-

tion, but even the best ones cannot reach the level of precision expected, and required, in our

context. Indeed, places are often geolocalised within a margin of multiple hundred kilometres.

Recent approaches have achieved better mean and median distance scores by feeding deep

learning models with more spatial knowledge like geophysical information about cells. Their

results still fall short of those obtained by approaches based on gazetteers [21]. Furthermore,

these approaches tend to output raw coordinates, which are usually not meaningful to people.

For instance, the coordinates (48.86382, 2.30202) are probably not meaningful to most people,

while referring to “the Zouave” (https://en.wikipedia.org/wiki/Zouave_(Pont_de_l’Alma)), the

famous statue located on the Alma Bridge in Paris is. We hence need a method that can both

predict precise coordinates and associate them with familiar place names. An effective way to

achieve that is to geolocate geographic mentions in texts through Entity Linking. This

approach has been adopted in many tweets geolocalization projects, whether for messages

dealing with natural disasters or not, for example [22]. These works differ from one another in

the approaches implemented to solve the tasks of recognizing spatial named entities and link-

ing recognized mentions.

Usually, the first task is to recognise the spatial named entities. In the literature on practical

applications of tweet content geolocation for crisis or emergency management, this recogni-

tion is a matching task between elements in a spatial, sometimes hierarchical, gazetteer and the

words in the text [23–28]. There are two main problems with this frequently used matching

approach: (1) some names are ambiguous because used to describe several geographic features,

and the ambiguity is even higher with the language used in tweets; (2) the gazetteer might not

contain all the place names required to geolocate the tweets. For instance, some methods

require prior knowledge of the region of the event to collect the appropriate gazetteer [26],

which is not possible for us. Based on the observation that there is little training data available

for recognising and disambiguating spatial named entities in tweets, especially in a multilin-

gual context, [29] investigates several training strategies on a BERT-based language model to

improve spatial named entities recognition in tweets dealing with natural disasters. [30, 31]

match place names extracted from tweets by BERT-based pre-trained models, with a gazetteer

(GeoNames and OpenStreetMap), which does not require any manual annotation step.

Although the named entity recognition task can be complex with the size and language

used in tweets, location inference disambiguation is considered the most difficult task [24, 32].

[33] uses four existing semantic annotation tools, namely DBPedia spotlight, TagMe, Dexter

2.0 and Dandelion, to recognize place name mentions in tweets dealing with natural disaster

events. Coordinates are then retrieved by the system using spatial properties associated with

the gazetteer entries provided by the semantic annotators, and their equivalent resources. A

SVM classifier is finally trained to decide which coordinates are the best for each mention,

based on criteria such as textual features (POS tags or case), string similarity between mentions

and gazetteer labels, etc. This approach combines the results of several semantic annotation

tools to select only the best. As such, it highly depends on the performance of the chosen

semantic annotation tools, and especially on their ability to process a given language. Rather

than just using the text content of the tweet, the strategy proposed by [34] compares the con-

tent of the tweet to the others and uses a majority vote based on the most similar tweets to dis-

ambiguate the mentioned locations, and that described in [35] proposes to use the Twitter

user social network. Others use the general context of the tweet, such as the history of the
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user’s tweets [27, 36]. Though these approaches are theoretically interesting, they are not appli-

cable to us because we target a real-time geolocation inference while parsing the history of the

social network is computationally intensive. Moreover, the two latter strategies tend to locate

the place where Twitter users live, not the tweet content itself. The strategy proposed by [37]

uses both tweet’s textual and image content. Place names are recognized in tweets textual con-

tent using NeuroNER, a LSTM model for natural language processing. Their geographic coor-

dinates are then retrieved by matching place name mentions with toponyms from a gazetteer

built from GeoNames and US Census data TIGER (road network). Tweets are then filtered by

keeping only those containing images classified as showing “Impact” flooding phase events

and referring to road-level locations as they are supposed to be the most useful for emergency

services. This approach seems relevant to filter tweets that are very relevant. Still, the named

entity mentions linking step with the gazetteer is not described in detail and may be based on a

simple comparison of character strings. In the case of homonyms, only the presence of a pho-

tograph classified as representing a natural disaster can distinguish between two candidate

locations. Another strategy for this disambiguation problem is to use knowledge graphs that

describe the semantic proximity of the named entities [25]. In this last paper, the knowledge

graph is very detailed, but created in a small region, which is not possible for us as we target

geolocation in the whole French territory. Building such a detailed resource on the whole

French territory would be very costly. But providing the model with knowledge about the type

of named spatial entities to be located, their neighbourhood (nearby points of interest likely to

be mentioned) and their type of environment (urban, rural, etc.) is a promising avenue. Lastly,

[38] analyses tweets sent by people calling for help during Harvey hurricane.As people were

trying to reach the emergency services for help, they wrote down their addresses. This study

therefore aims to extract a very specific category of named spatial entities in tweets: addresses.

The approach adopted is based on rules, because addresses are highly structured named enti-

ties. They are then located using the Google Geocoding API. This is a very specific use case

which does not reflect the diversity of geographic entity types mentioned in tweets about natu-

ral disasters.

One final issue is the visualisation of the locations mentioned in the tweets in order to help

experts browse and analyse the information from the tweets [39]. This issue is not addressed in

this article.

2.2 Location prediction as an Entity Linking task

The Entity Linking (EL) task consists in linking an entity mention found in a document to its

corresponding entity in a Knowledge Base (KB). The notion of entity mention has to be distin-

guished from the notion of entity: an entity is a unique and normalized instance correspond-

ing to an entry in the targeted KB, while an entity mention is a small chunk of text in a

document referring to an entity. For instance, Paris is the entity corresponding to the capital

of France and “Paris”, “City of light” or “capital city of France” are mentions referring to it.

Entity Linking often relies on three sub-tasks: mentions detection, candidate generation

and candidate filtering (or ranking).

Thementions detection (MD) task consists in detecting the entity mentions, that is to say,

extracting spans of text referencing entities. For instance, given the sentence “Paris is the capi-

tal of France”, a mention detector could extract three mentions: “Paris”, “capital of France”

and “France”. This task is very similar to the NER task, where mentions are detected and classi-

fied. Typically, a NER classifier would classify the three previous entity mentions as GEOLOC
entities.
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The MD task is critical in the EL pipeline since mentions must obviously have been detected

prior to the linking step. Fortunately, approaches tend to solve the NER and MD tasks

extremely efficiently by fine-tuning large pre-trained language models on a token classification

task, where token labels are usually following the BIO scheme, where starts of mentions are

labelled with B-X labels (X being the type of the entity), in-mention tokens with I-X labels

and other tokens with O. However, neither nested (as in the previous example) nor discontinu-

ous entity mentions can be detected in this way due to the limitations of the BIO format. Natu-

rally, this theoretical limitation has been tackled by many researchers [40, 41] while, in

practice, this limitation does not really impact EL models, since the main dataset for training

EL systems, Wikipedia, does not contain these types of annotations.

Candidates generation relies on the previous step to generate a set of potential entity candi-

dates for each detected entity mention. For example, the mention “France” can refer to

France, the country, or France Gall, the famous French singer. Most recent approaches

to candidates generation tend to expect a sentence with a single annotated mention as input

[15, 42, 43], which means that sentences containing multiple entity mentions must be fed mul-

tiple times in the system, thus decreasing the throughput of the overall EL pipeline. An excep-

tion is the GENRE model [44] which relies on a sequence-to-sequence architecture to enrich

the input sentence with annotations about the mention and the entity.

Finally, the candidates filtering step aims to accurately filter, or rank, the set of candidates

previously generated. This step generally requires much more computational power than the

candidates generation step and hence cannot be used to rank the whole set of entities in the

considered KB, which is usually very large.

2.3 Training corpora for spatial named entity linking

Training an EL system requires a corpus annotated with both entity mention spans and target

entities. Few gold standard datasets are available, and the ones that are released are outdated,

hence missing many recent entities. For example, both the AIDA CoNLL-YAGO dataset [45]

and the TAC 2010 datasets are more than 10 years old as of writing this paper. Thus, a model

trained on these datasets probably cannot capture the current state of the world, or only par-

tially. For example, French’s administrative regions have been reformed in 2016. Since those

changes are posterior to the training dataset creation, a model trained on it would probably

not be able to link a mention of a new region to the right entity. The same reasoning applies to

new facilities that can be used to anchor an event to a location. Although this may not be dra-

matic in most applications, incorrectly or not predicting a location could have many severe

repercussions in the application we are targeting in this work.

As a consequence, most works rely on crowd-sourced datasets that are continuously

updated and maintained by people all over the world. Wiki-like corpora have gained a lot of

interest in the EL community since users are spontaneously and massively writing and anno-

tating wiki pages, where mentions are identified by links to other wiki pages and target entities

correspond to the target pages. For instance, [15] are relying on WikiNews (https://www.

wikinews.org/) and [42] on Fandom (https://www.fandom.com/) (formerly called Wikia).

However, such crowd-sourced datasets are often written in a formal language level differing

from the level of language used on social networks, making it difficult to train a model that fits

the posts on social networks. Furthermore, such documents lack crisis-related annotations,

such as assessments of damages, which are extremely valuable in the event of a natural disaster.

Some crisis-related corpora have been extracted from Twitter [46, 47], unfortunately, they gen-

erally target exclusively English tweets, making them unusable to deal with a French crisis.
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3 The Entity-Linking framework

Detecting and geolocating the effects of natural disasters must be done in real time to provide

useful and up-to-date insights to crisis managers and emergency teams. As such, our work has

been guided by the multiple requirements of our application context: low latency, since the sit-

uational knowledge must not be outdated, and resiliency to peaks of data reception, since the

starts of events are often correlated with a surge of tweets emission.

While entity-linking has already been studied for a long time [48–52], it is quite uncommon

to see this approach applied on the automatic geolocation task. Yet, most geolocation methods

are not precise enough to be used during emergencies, while entity-linking allows the mapping

of a given text mention to a unique entity, from which on can extract precise coordinates or

geographic region. In this section, we will describe our own original approach addressing the

aforementioned requirements using an original and efficient entity-linking pipeline composed

of a two-in-one bi-encoder detecting and classifying mentions, and an optimized cross-

encoder trained on realistic data.

Modern approaches to solving the EL task tend to expect a document where a single men-

tion to link to the target knowledge base has already been annotated, supposedly by a NER sys-

tem. This requires first processing the input document to detect entity mentions and then

feeding these annotated mentions to the EL system. A significant drawback of this approach is

that detecting mentions beforehand adds a serious overhead to the whole EL process, espe-

cially considering that both the MD and EL models tend to rely on similar large pre-trained

language models.

Furthermore, few works propose a solution to handle multiple mentions in the same docu-

ment. As a consequence, documents containing several mentions need to be duplicated and

each mention must be processed separately, which necessarily has a negative impact on the

whole EL process throughput.

In this work, we propose a novel approach mitigating the overhead of modern EL systems

by not relying on a prior mentions detection step and by enabling linking of multiple men-

tions simultaneously at the same time. Our framework is composed of two main components:

(1) a bi-encoder that encodes in parallel the geo-location mentions, and the entity definition

from Wikipedia (see Section 3.1), and (2) a cross-encoder that links the detected mentions

with the good entity definition from Wikipedia (see Section 3.2).

3.1 Multi-tasks bi-encoder

The bi-encoder architecture [15, 53] has been designed to map inputs of different nature to the

same latent space. It relies on two different encoders (which may share their parameters)

trained to produce similar embeddings given different flavors of the same object. In this work,

we trained a bi-encoder to build similar embeddings for an entity mention and its correspond-

ing Wikipedia definition.

We propose an evolution of the bi-encoder model allowing to, simultaneously, detect entity

mentions in an input document and producing embeddings for all of them in a single forward

pass. The overall architecture is illustrated in Fig 1.

The bi-encoder architecture has been designed to map entity mentions and entities to the

same latent space. It is compounded of two encoders producing embeddings in parallel. The

first encoder is called theMention Encoder and produces mention embeddings given an input

sentence. The sentence is processed by a language model, and the resulting word embeddings

are forwarded to two small feed-forward neural networks to detect entity mentions (the NER

classifier) and to produce their embeddings.
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The second encoder is the Entity Encoder which produces entity embeddings given a short

description of the entity. We rely on the [CLS] token to build a representation of the input

entity and then we mapped it to the same latent space as the Mention Encoder thanks to a

small feed-forward neural network.

These encoders are trained to output similar representations for the given in-context men-

tions and their target entity descriptions. As described in [54], Both the Mention Encoder and

the Entity Encoder correspond to the first four layers of a CamemBERT model, initialised fol-

lowing the recommendations of [15].

Entity embeddings can be, and should be, pre-computed before inference, by feeding all

known entities’ descriptions to the Entity Encoder. As such, only mention embeddings need to

be computed, by the Entity Encode, during inference. This enable fast and efficient retrieval of

candidates by comparing mention embeddings to pre-computed entity embeddings. Similarity

between embeddings is often computed with dot product or cosine similarity. In this work, we

rely on dot product.

Some works [15] rely on the special CLS token to produce an embedding from a single

annotated entity mention and its context. We first propose to remove the need to annotate

mentions beforehand by enabling the Mention-Encoder to detect mention spans. This is sim-

ply done by appending a token classifier head on top of the Mention-Encoder. Then, we pro-

pose to rely on the first token, instead of the CLS token, of an entity mention to produce

Fig 1. Architecture of the bi-encoder model. TheMention Encoder processes the input sentence to detect entity mentions

(here “Eiffel Tower” and “Paris”) and uses the first tokens of the detected mentions to produce embeddings. The Entity
Encoder is trained to produce embeddings from the descriptions of the entities referenced by the mentions in the input

sentence. Both encoders are trained to output similar embeddings.

https://doi.org/10.1371/journal.pone.0307254.g001
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mention embeddings, thus allowing to embed all the entity mentions of a document at the

same time. At training time, since the start position of each mention is known, the output of

the NER classifier is not used to select the entity embeddings. However, the output of the NER

classifier is crucial at inference time since it is the only way to know the positions of entity

embeddings. So, each token embedding classified as B-X (where X is one of the considered

entity types) gives rise to an output mention embeddings. Each token embedding classified as

B-X is given to the last feed-forward neural network to produce the final mention embedding.

This embedding selection process is illustrated in Fig 2. It may be possible to improve our

architecture by introducing an additional cross-attention layer merging all the tokens of a

given mention into one single mention embedding, but we argue that this cross-attention can

already be performed in the previous attention layers of the encoder, without requiring to

complexify further the current architecture.

The model is trained to minimize conjointly the loss LNER associated to the NER task and

the loss LEL associated to the EL task:

LNERðoner; ynerÞ þ LELðmel; eelÞ ð1Þ

Where oner are the predicted NER labels, yner are the expected NER labels,mel are the output

entity representations from the mention encoder and eel are the output entity representation

from the entity encoder. The LNER function is the classical cross-entropy loss and LEL is the in-

batch cross-entropy loss [55], which is computed on the dot-product between the mention

embeddings and the entity embeddings.

After training, the encoders can be separated and the Entity-Encoder should be used to pre-

compute embeddings from the descriptions of the set of all known entities. Since the Entity-

Encoder has been trained from textual descriptions, it can also produce embeddings of entities

not seen during training time in a Zero-Shot learning fashion. Entity embeddings will be com-

pared to outputs produced by the Mention-Encoder to generate a set of candidate entities for

each mention detected in the input sentence. However, the true target entity is not necessarily

included in the set of candidates, either because the model is wrong or because the target entity

does not exist in the target knowledge base. In the first case, the error can be coming from an

erroneous NER prediction or from an inadequate mention or entity embedding. The second

case could occur when trying to map a mention to an entity that was not in the knowledge

base at the time when entity embeddings were pre-computed. To prevent these kinds of errors,

we rely on a cross-encoder to compute matching scores between an in-context mention and

the selected candidates.

Fig 2. At inference time, the NER outputs are used to mask the non-entity embeddings produced by the mention-encoder. Only the first token (B
tokens) of each mention is kept and compared to the embeddings pre-computed by the Entity Encoder. For simplicity’s sake, we suppose that each word

engenders exactly one token.

https://doi.org/10.1371/journal.pone.0307254.g002
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3.2 The cross-encoder

A cross-encoder is a language model trained on sentence pairs, allowing to compute cross-

attention between tokens of the two input sentences. It is particularly useful to predict a

matching score between sentences, as required, for instance, by the Next Sentence Prediction

task used to train the BERT model [56]. [42] propose to rely on this architecture to compute

similarities between an in-context mention and candidate descriptions.

Our model has been trained on sentence pairs where the first one contains an annotated

mention and the second one is the description of a candidate entity. The mention in the first

sentence is annotated using special <start> and <end> tokens to delimit the mention

tokens. The second sentence is the concatenation of the target entity name and a textual

description, separated by the special token <title>. In our experiments we used the Wikipe-

dia titles as entity names and the descriptions are the first sentence of each Wikipedia page,

since Wikipedia’s guidelines instruct authors to write a short and descriptive first sentence to

introduce the page’s subject. An input of the Cross-Encoder could hence be:

• in-context mention: “The <start>” Eiffel Tower <end> is located in Paris.

• candidate description: “Eiffel Tower <title>” The Eiffel Tower is a wrought iron lattice

tower on the Champ de Mars in Paris, France.

4 Data and training materials

Most of the previous works rely on Wikipedia to train Entity-Linking systems. Indeed, Wiki-

pedia offers various benefits: being a large multilingual encyclopedia, Wikipedia is a key

resource for many NLP tasks since it is a massive corpus dealing with an extensive set of topics.

It is particularly precious for the Entity-Linking task because it is one of the few corpora to

have mention annotations and links to their corresponding entities. Mention annotations are

materialized by internal links between Wikipedia pages (the <a> HTML tag), and their associ-

ated entity is the link’s target page (the href attribute). Moreover, Wikipedia pages are associ-

ated with a node in the Wikidata ontology, simplifying the collection of information about a

particular entity. For instance, GPS coordinates are available for most of the geographic enti-

ties as well as links to gazetteers (such as OpenStreetMap), which is particularly helpful for our

target application.

However, models trained on Wikipedia may not be well-suited to deal with social network

data, since Wikipedia pages and social network posts generally do not share the same writing

style nor the same vocabulary. Yet, the lack of annotated social network corpora, especially in

French, will inevitably force us to rely on the Wikipedia dataset, since it is the only publicly

available corpus with direct mappings between entities and mentions spans. Nevertheless,

Wikipedia is insufficient on its own. As pointed out by [57], better performances are obtained

with a combination of the Wikipedia dataset and a small social network dataset, WNUT2017
[58]. We took these findings into account and we build a natural risk aware entity-linking data-
set by merging the following datasets:

• The French Wikipedia corpus

• The HIPE-2022 dataset

• The CAp2017 dataset

• Our own annotated Twitter dataset extracted during a major French natural crisis
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4.1 The French Wikipedia dataset

The Wikimedia Foundation regularly publishes dumps of the current state of their encyclope-

dia (https://dumps.wikimedia.org/). Until recently, Wikipedia articles were available only as

wikitext, the markup language in which Wikipedia pages are written. This language is known

to have no clearly defined syntax and extensively relies on (nested) template expansions, mak-

ing it extremely difficult to write a reliable parser. Indeed, previous work shows that standard

parsing methods could not reproduce the expected Wikipedia output [59].

Fortunately, this era has ended since the release of the Wikipedia Enterprise HTML dumps

in 2021, providing easy access to the whole Wikipedia corpus as it is available online, without

the need for a tedious an unreliable parsing step.

Even though parsing wikitext is no longer required, pages must be processed in order to

remove HTML markups and do some light cleaning. We removed all headings, figures, tables

and equations as well as some noisy sections: bibliography, references, see also, appendix and

external links. Hyperlinks targeting another Wikipedia page have been considered as mention

span annotations and the target has been used as the target entity. We also extracted the first

sentence of each page to produce a dictionary-like dataset mapping entities to their descrip-

tions, as well as other information such as their Wikipedia and Wikidata identifiers. Finally,

we kept only the first section of each Wikipedia page, in order to keep the dataset’s size

reasonable.

While such a dataset would probably be sufficient to train a generic Entity-Linking system,

it does not fulfil all of our application requirements. First, we need a mapping between Wikipe-

dia titles and Wikidata identifiers, in order to be able to extract GPS coordinates from the

Wikidata knowledge base. Second, as is, the dataset does not give any clue on the type of anno-

tated mentions, such as the ones used in NER. Indeed, we need to know whether a mention

refers to a location, a facility, or a natural hazard or if it describes the effects of a natural hazard

on goods or people.

Mapping between Wikipedia and Wikidata. Many data related to Wikipedia pages are

stored in a relational database. In addition to the Wikipedia dumps mentioned beforehand,

the Wikimedia Foundation publishes a set of SQL dumps from which one can load all the

data stored in their databases. In particular, they store page properties in an SQL table called

page_props, page redirects in a table called redirect and, finally, pages are stored in the page
table. Extensive documentation of the database layout is available on the MediaWiki wiki

(https://www.mediawiki.org/wiki/Manual:Database_layout).

Many Wikipedia pages are redirect pages. From the user’s point of view, redirects are

almost invisible and a page and any of its redirects are interchangeable. For instance, the page

Leucetia automatically redirects to Paris. Redirect pages can also redirect to other redirect

pages, but these pages are not associated with any Wikidata entities, only the real pages are.

Hence, computing all the redirect paths is required in order to link mentions to their real tar-

get Wikipedia pages and, consequently, get the target Wikidata identifiers.

Redirect paths can be computed from the redirect table. Then, Wikidata identifiers can be

retrieved from the page_props table. We also retrieve additional information, such as Wikipe-

dia identifiers and page names from the page table.

Annotating mentions with types. We considered a set of nine NER labels that focus on

the types of information sought in tweets during natural disasters, following the recommenda-

tions of real practitioners. Where possible, NER labels were defined with enough overlap with

standard NER labels such that existing datasets can be used to train our model with minimal

effort as in the case of geographic information. The other labels correspond to entities specific

to natural disaster management, that are well represented in the tweets. Plus, even though
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PERSON and ORG labels might seem unnecessary at first sight, they do convey geographical

knowledge since they may refer to local representatives (e.g. the mayor of a municipality or

associations established in a well-known area).

PERSON real or fictive characters

ORG organization, such that press organisms, companies or association

GEOLOC geographic entities

TRANSPORT lines such as roads, railways or rivers

EVENT events such as a festival

FACILITY facilities such as a nuclear power plant

RISKNAT mentions identifying natural hazards, such as their manifestations (wind, rain,

flooding, ground motion, etc.), their intensity and magnitude, or their forecast (early

warnings)

DAMAGES effects of natural hazards on goods (destruction, damage, malfunction, closure,

etc.) or people victims, missing persons, etc.)

OTHER mentions that do not fall in any of the previous categories

Since links in Wikipedia pages do not have any sort of label attached to them, it is not possi-

ble to train a NER model on the raw Wikipedia corpus. We decided not to rely on off-the-shelf

NER models, since they were not trained to detect some kind of entity mentions, especially

RISKNAT and DAMAGES, which are crucial for our end application. Furthermore, mentions

of the same entity used in different contexts could be given different labels since NER models

are not necessarily consistent, even if they are generally very effective. Instead, we manually

annotated few Wikipedia pages and fine-tuned a pre-trained CamemBERT model to classify a

Wikipedia entity according to the description given by the first sentence of its Wikipedia page.

We found out that annotating no more than a thousand entities was sufficient. More precisely,

1192 pages were manually annotated. We first build a test set with 10% of the annotated data

and found out that the model trained on the remaining 90% achieved around 0.75 Fscore (pre-

cision was 0.8 and recall 0.76). We then trained a classifier on the whole dataset and applied it

to classify all the French Wikipedia entities. Finally, we updated our EL dataset accordingly. A

summary of the mentions present in the corpus is given in Table 1.

Table 1. An overview of the mentions annotated in the Wikipedia dataset. #Mentions shows the total number of mentions per label, #Linked the number of mentions

linked to an entity and #Entities the number of distinct entities per label present in the dataset.

Labels #Mentions #Linked #Entities

PERSON 1098143 1098143 557561

ORG 748714 748714 130113

GEOLOC 2724062 2724062 215223

TRANSPORT 160284 160284 53304

EVENT 798230 798230 86455

FACILITY 258419 258419 109818

RISKNAT 0 0 0

DAMAGES 0 0 0

OTHER 4339458 4339458 682412

Total 10127310 10127310 1834886

https://doi.org/10.1371/journal.pone.0307254.t001
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While the data offered by Wikipedia is extremely precious, it is actually not sufficient for

many use cases, especially when the target application consists of dealing with specific or tech-

nical documents. In our case, training a model on Wikipedia does not allow the model to

understand tweets, since messages posted on Twitter do not share the same structure as Wiki-

pedia sentences nor use the same vocabulary. Furthermore, tweets are often full of misspelling

errors and can be redacted using slang unseen on Wikipedia. As such, the Wikipedia corpus

can be used as a strong foundation to train generic models but is not sufficient to deal with

more specific content. As such, we considered extending the Wikipedia corpus with more spe-

cific corpora.

4.2 The HIPE-2022 dataset

The HIPE-2022 task aims at identifying entities from historical documents. As part of the chal-

lenge, a multilingual corpus with mention annotations has been released. The corpus has been

created by merging six annotated datasets: AjMC [60], CLEF-HIPE-2020 [61], LeTemps [62],

TopRes19th [63], NewsEye [64] and Sonar [65]. As our work focuses specifically on French,

we consider only the French part of the whole dataset, hence discarding TopRes19th and

Sonar as well as the non-French documents of the four others. Mentions are annotated both

for the NER and the EL tasks, making the dataset particularly suitable to train our dual-task

model. An overview of the mentions annotated in the dataset is given in Table 2.

Some adjustments to the dataset have been required because the HIPE-2022 NER labels do

not match ours. Thus, we mapped the HIPE-2022 labels to the ones presented earlier in the

paper. The mapping is given in Supporting Information.

While the dataset focus is absolutely not relevant to our target application, we do think that

diversifying the training data should help the model to better handle real-world data. Further-

more, considering the HIPE-2022 dataset allows us to compare our model with the models

submitted as part of the HIPE-2022 challenge.

4.3 The CAp 2017 NER dataset

The CAp 2017 challenge concerns the problem of Named Entity Recognition for tweets writ-

ten in French [66]. An overview of the released dataset is shown in Table 3.

Labels used in this dataset are relatively fine-grained and not necessarily relevant to our use

case, hence we replaced them with the same set of labels defined in the previous section. The

complete mapping is given in Supporting Information.

Table 2. An overview of the mentions annotated in the French subset of the HIPE-2022 dataset. #Mentions shows the total number of mentions per label, #Linked the

number of mentions linked to an entity and #Entities the number of distinct entities per label present in the dataset.

Labels #Mentions #Linked #Entities

PERSON 14325 5096 1678

ORG 3922 1845 510

GEOLOC 15020 8540 1658

TRANSPORT 195 68 30

EVENT 0 0 0

FACILITY 293 80 29

RISKNAT 0 0 0

DAMAGES 0 0 0

OTHER 2918 870 118

Total 36673 16499 4023

https://doi.org/10.1371/journal.pone.0307254.t002
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Since the challenge focuses on the NER task, mentions were not linked to their correspond-

ing Wikipedia entities. Hence, it will not be helpful with regard to the EL task. Nonetheless,

our proposed model aims at both detecting and classifying mention (NER) and linking them

to a target knowledge base (EL), hence it could benefit from being trained on the CAp2017

dataset. Indeed, the dataset has been built such that it contains a broad diversity of tweets, it

then should be extremely valuable and should help the model build coherent representations

for tweets, as well as detecting and classifying mention spans in tweets, which is the first step to

a good EL model. Yet, the lack of crisis-related information and EL annotations will bound us

to build our own dataset.

4.4 The RéSoCIO dataset

The three datasets presented in the previous sections are not particularly adapted to our target

application: geolocate tweet content when related to a natural disaster. First, social network

posts are largely underrepresented in these datasets, and the only Twitter dataset lacks Entity-

Linking annotations. Second, none of the datasets focuses on a crisis or natural disaster event.

To mitigate these issues, we extracted a collection of French tweets written during earth-

quakes and major floods that have occurred in France in recent years. We set up Label-Studio

[67] in order to annotate these tweets. A total of 4617 tweets were annotated, including 1678

tweets posted during earthquakes and 2939 during floods. For each annotated tweet, mentions

were annotated using the set of labels described earlier in the paper as well as, when possible,

the target Wikipedia title.

Named “RéSoCIO” in reference to the research project in which it was carried out, the data-

set resulting from this work contains a total of 12828 annotated mentions and 1513 distinct

Wikipedia entities. The data collection and analysis method used to compile this dataset—

which is available on the ZENODO platform (https://doi.org/10.5281/zenodo.7767294)—com-

plies with the data usage terms and conditions defined for the Academic Research access to the

Twitter API.

In this dataset, 85% of mentions were associated with a Wikipedia page and 94% if we

ignore the RISKNAT and DAMAGES labels, which are often difficult to map to an existing

entity. The precise breakdown of the number of mentions per label is given in Table 4.

Finally, we build our training dataset by concatenating all the datasets presented in this sec-

tion. An overview of this dataset is given in Table 5.

Table 3. An overview of the mentions annotated in the CAp 2017 dataset. #Mentions shows the total number of

mentions per label.

Labels #Mentions

PERSON 1644

ORG 1348

GEOLOC 1265

TRANSPORT 1005

EVENT 168

FACILITY 287

RISKNAT 0

DAMAGES 0

OTHER 940

Total 6657

https://doi.org/10.1371/journal.pone.0307254.t003
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5 Entity-linking pipeline evaluation

5.1 Experimental setup

The bi-encoder architecture has to detect mentions of interest in tweets and associate them

with the right corresponding Wikidata entity. To evaluate the model’s performance on these

two tasks, an additional set of 339 tweets was manually annotated considering the same

instructions used for labelling the RéSoCIO dataset. Half of these tweets were written during a

storm affecting Corsica, and the other half during The Teil earthquake. Table 6 shows an over-

view of these data, restricted to the most impactful classes of this study.

Both mention and entity encoders have been preloaded with CamemBERT’s pre-trained

weights [68]. However, as proposed by [15], we only loaded the first four layers, instead of all

the twelve layers, making our model smaller while being finetuned to solve multiple tasks at

once. The model has been trained using the AdamW optimizer with a batch size of 32 on a sin-

gle NVidia Tesla V100 GPU. The model may benefit from being trained with larger batch size

as well as with hard-negatives mining [69].

The Entity-Encoder (in the bi-encoder model) has been trained with entity descriptions

from Wikipedia. We assumed that the Wikipedia guideline stating that the first sentence of an

article should be a short description (https://en.wikipedia.org/wiki/Wikipedia:Manual_of_

Style/Lead_section) of the topic is followed by most articles. We thus consider only the first

Table 4. An overview of the mentions annotated in the Twitter dataset. #Mentions shows the total number of mentions per label, #Linked the number of mentions linked

to an entity and #Entities the number of distinct entities per label present in the dataset.

Labels #Mentions #Linked #Entities

PERSON 315 263 136

ORG 863 790 281

GEOLOC 4375 4234 701

TRANSPORT 250 203 101

EVENT 35 21 16

FACILITY 129 94 49

RISKNAT 5502 4994 128

DAMAGES 1136 121 56

OTHER 223 200 46

Total 12828 1322 1513

https://doi.org/10.1371/journal.pone.0307254.t004

Table 5. An overview of the mentions annotated in the full dataset. #Mentions shows the total number of mentions per label, #Linked the number of mentions linked to

an entity and #Entities the number of distinct entities per label present in the dataset.

Labels #Mentions #Linked #Entities

PERSON 1100102 1098406 557697

ORG 750925 749504 130394

GEOLOC 2729702 2728296 215924

TRANSPORT 161539 160487 53405

EVENT 798433 798251 86471

FACILITY 258835 258513 109867

RISKNAT 5502 4994 127

DAMAGES 1136 121 56

OTHER 4340621 4339658 682458

Total 10146795 10138230 1836399

https://doi.org/10.1371/journal.pone.0307254.t005
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sentence to describe entities instead of the ten first as proposed by [43]. For instance, the entity

Paris would be described by the following sentence: “Paris is the capital and most populous

city of France, with an estimated population of 2165423 residents in 2019 in an area of more

than 105 km2, making it the 30th most densely populated city in the world in 2020.”.

The cross-encoder has been trained on negative examples, or erroneous candidates, gener-

ated by the bi-encoder. We built a training dataset of (mention, entity) pairs by predicting can-

didates entities of an annotated mentions. For each annotated mention, we retrieved the top

10 candidates and kept the wrong ones as negative examples. We still included the positive

pair even if the bi-encoder was not able to retrieve the target entity. This kind of models are

usually trained using contrastive learning methods, by relying on the other samples in the

batch to generate negative examples. We found out that training our cross-encoder this way

was particularly ineffective, since the training setup deviate too much from the real application

setup. Indeed, the cross-encoder should be able to select the right entity among a set of very

similar candidates generated by the bi-encoder. Yet, the entities sharing the same batch are,

most of the time, very different, making the training task too easy and actually extremely dif-

ferent from the target task. As a consequence, the cross-encoder trained on negative samples

generated by the bi-encoder was a lot better than the one trained using contrastive learning.

5.2 Results

When the strong imbalance observed between the different categories of entities is taken into

account, performances on the NER task are good with an F1 score at 0.83 (see micro scoring

in Table 7). Although there is no benchmark on French tweets on which to base the results of

this work, it is possible to consider state-of-the-art performances on NER on English tweets to

position the performance of the Bi-Encoder for the NER task. Indeed, a cross-language study

on Wikipedia showed that NER results do not vary so much between French and English [70].

Recently, a comparison of several NER models showed that state-of-the-art F1 scores are

smaller than 75% for tweets [71], meaning that the results of the Bi-Encoder are excellent. The

scores by class show contrasted predicting performances between the different types of entities

(Table 8. Unsurprisingly, the RISKNAT and GEOLOC classes, which are the most represented

in the training set, are the best predicted, with F1 scores of 0.82 and 0.70 respectively. The low

recall observed for the DAMAGES class may be related to the complexity of the mentions in

Table 6. An overview of the mentions annotated in the test dataset. #Mentions shows the total number of mentions per label, #Linked the number of mentions linked to

an entity and #Entities the number of distinct entities per label present in the dataset.

Labels #Mentions #Linked #Entities

GEOLOC 384 365 107

RISKNAT 477 380 29

DAMAGES 124 8 6

Total 985 753 142

https://doi.org/10.1371/journal.pone.0307254.t006

Table 7. Micro and macro scores of our model on the NER task and performances on the EL task. R@1, R@5, R@10 and R@100 indicate the proportion of relevant pre-

dictions in the 1, 5, 10 and 100 candidate entities whose representations are the closest to the one of the related mention.

Metrics NER Entity linking

Precision Recall Fscore R@1 R@5 R@10 R@100

Micro 0.83 0.83 0.83 0.63 0.81 0.84 0.84

Macro 0.63 0.39 0.56

https://doi.org/10.1371/journal.pone.0307254.t007
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this class, whose structure can vary greatly (words, number of words, etc.) making them poten-

tially difficult to identify for the model. The relatively low recall score for GEOLOC can be

explained by the complexity of tweets where GEOLOC mentions are often abbreviated or nick-

named. For instance, in our tweets, “stras” is a GEOLOC mention that refers to the city of

Strasbourg, and this mention is not detected by our model.

Performances on the EL task were evaluated using the metric Recall@k (R@k) which usually

indicates the proportion of relevant predictions in the first k results. In the EL task, for any

mentionm, there is at most one relevant entity among a set of k candidate entities. These can-

didate entities correspond to k entities whose representations, computed by the Entity

Decoder, are the closest to the representation ofm produced by the Mention Encoder. In these

conditions, a R@100 value of 0.81 indicates that in 81% of cases, the entity to be predicted

appears in the first 100 candidates returned by the model. Worth noting that the representa-

tions for the entities are calculated beforehand, by providing textual descriptions to the Entity

Encoder, once it has been once it has been trained. The Entity Encoder is thus not used to link

an entry to its entity. However, it remains indispensable to calculate the representations of any

new entities.

The evaluation of the performance of the EL task is less well standardised than that for the

NER task. Thus, while it is possible to give an order of magnitude of the state of the art on the

EL task based on the EL work carried out on English tweets and that carried out on the recog-

nition of spatial entities, metrics in those papers may differ somehow from the ones used in

this work. For example, Hebert and his collaborators assessed recently the robustness of several

approaches on an entity linking benchmark constituted of English tweets [72]. For an

approach similar to our Bi-Encoder, they presented an R@16 of 0.759, which was level up to

0.887, by hybridising the model with a sparse retrieval strategy. Performances obtained on

French tweets with the Bi-Encoder, i.e. R@10 of 0.84 are thus very competitive (Table 7).

R@1 scores show that more than two-thirds of mentions are associated with the right entity.

It is interesting to note that the entity to be found is, in 81% of cases, one of the first five candi-

date entities, which suggests that in case of misleading location/results, the exploration of the

first five candidate entities returned by the model may be sufficient to find the right result in

an applicative context.

Finally, regarding the by-class performances (Table 8), the more representative results on

the EL task are supported by the GEOLOC label. Indeed, almost all mentions related to DAM-

AGES cannot be linked to any Wikipedia entity because of their nature, which explains the

results observed for this label. The case of the RISKNAT label is a little bit different because

mentions related to this label correspond to information describing the phenomenon (e.g.

“heavy rain”, “strong gusts of wind”, “magnitude of 4.5” etc.) which could be linked to very

general French Wikipedia entities such as “Rain”, “Thunderstorm” and so on, explaining

goods results on this label. A recent paper assessed the performances of several BERT-based

language models used for geo-entity linking [73], which aim to link mentions similar to the

Table 8. Per-class performances of the Bi-encoder model on the NER and EL tasks. R@1, R@5, R@10 and R@100 indicate the proportion of relevant predictions in the

1, 5, 10 and 100 candidate entities whose representations are the closest to the one of the related mention.

Labels NER Entity-linking

Precision Recall Fscore R@1 R@5 R@10 R@100

GEOLOC 0.80 0.63 0.70 0.66 0.85 0.88 0.88

RISKNAT 0.87 0.77 0.82 0.66 0.84 0.86 0.86

DAMAGES 0.86 0.29 0.43 0 0 0 0

https://doi.org/10.1371/journal.pone.0307254.t008
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ones associated with the GEOLOC label. Authors of this work reported R@1, R@5 and R@10

scores of 0.402, 0.744 and 0.864 respectively, showing the results of the Bi-Encoder on the EL

task are systematically better.

6 Geo-location of the effects of natural disasters

To evaluate the behaviour of our model in real-world situations, we selected two major natural

disasters that hit France very recently: namely the Le Teil earthquake and storm Alex. We

extracted for both crises a set of tweets emitted throughout a period of one month centred on

each event. The tweets were collected using the Twitter Academic API using the query given in

Supporting Information. An overview of the collected tweets is given in Table 9.

Since no ground truth is available to quantitatively assess the performances of our model,

we prefer to propose, in this section, a qualitative analysis of the geolocation predictions made

by the model. We will mostly verify that the predictions match an expected behaviour, which

can be summarised by the following pattern:

Before events: Low number of tweets using the lexical fields of earthquakes or floods/storms,

and high geographical dispersion of toponyms mentioned in these messages.

During / right after events: Spike in Twitter activity and concentration of detected toponyms

around the impacted areas.

After events: Decrease in the number of tweets and increase in the geographical dispersion of

detected toponyms, towards the restoration of the initial state.

In other words, in the absence of natural events, we expect Twitter activity to remain calm

and noisy, and conversely, when an event occurs, we suppose that the Twitter activity will sud-

denly peak and focus on the impacted area.

In the following, we will consider only the predictions made by Model C, described in the

previous section. Our model predicts mention spans, with labels, as well as target entities, but

not GPS coordinates. However, coordinates can be easily drawn from Wikidata entities by

extracting the P625 Wikidata property (https://www.wikidata.org/wiki/Property:P625),

namely the “coordinate location” property. Since our model detects non-geographical entities

too, we filtered its predictions to keep only the mentions classified as one of GEOLOC.

6.1 Teil earthquake

6.1.1 Event presentation. With a magnitude Mw of 4.9 according to the European-Medi-

terranean Seismological Centre (EMSC), the Teil earthquake on the 11th November of 2019 is

the most powerful earthquake having occurred in mainland France for over 20 years, and the

most destructive for 50 years. Located in the east of the Ardèche department, this earthquake,

which generated very significant damages at the epicentre, was felt in a large part of south-east-

ern France.

Table 9. Total number of tweets and number of tweets, mentions and entities predicted by our model. The number between parenthesis indicates the number of

tweets, mentions or entities which have been localized inside the area impacted by the earthquake/storm.

Event #Tweets Geolocalized

Tweets Mentions Distinct entity

Teil 17599 10673 (4791) 15341 (6732) 895 (99)

Alex 15874 9349 (2961) 14643 (3618) 1223 (150)

https://doi.org/10.1371/journal.pone.0307254.t009
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6.1.2 Analysis of the geographical signature from the tweets. We first examined the evo-

lution over time of the frequency of tweets mentioning keywords from the French lexical field

related to earthquakes, before, during and after the Le Teil earthquake (from November 1st to

30th). For each of the five earthquakes that occurred during the study period (on November

2nd, 11th, 12th, 13th and 16th), we delineated the areas within which the seismic shaking was felt

by the population. To do this, we analysed the data provided by the French Central Seismologi-

cal Office (BCSF), linking together localities with a macro-seismic intensity value greater than

or equal to 3 according to the EMS-98 scale [74]. In particular, this allows us to discriminate

the spatial entities identified in the tweets according to whether or not they are located in the

perception zone of the Le Teil earthquake. As clearly shown in Fig 3, a massive spike in Twitter

activity occurred immediately after the Le Teil earthquake, essentially within the perception

zone of the earthquake: a detailed examination shows that this activity peak is recorded at

10:55, only 3 minutes after the occurrence of the earthquake at 10:52. Beyond the case of the Le

Teil earthquake, we also observe a non-negligible increase in the frequency of tweets after each

of the four earthquakes that hit France during the period studied (Fig 3). This observation

tends to validate the hypothesis that monitoring the frequency of tweets alone could be almost

sufficient to detect such fast kinetic events [75], especially in densely populated areas such as

Lyon (where the shaking from the Le Teil earthquake was weakly felt and reported on Twitter)

and Strasbourg (where two small earthquakes induced by geothermal activity were felt succes-

sively on November 12th and 13th 2019). In addition to these peaks of activity, it is also interest-

ing to note in Fig 3 a peak of activity on November 26th, when no earthquake occurred in

France: these tweets signal the occurrence of a powerful earthquake which caused considerable

damage in Albania.

Fig 3. Geolocalized mentions count over time in November 2019. The plain red line represents mentions localized in the Teil earthquake felt area.

Earthquakes seem to trigger peaks of Twitter activity.

https://doi.org/10.1371/journal.pone.0307254.g003
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Hence, according to our model, a large majority of tweets issued immediately after the Le

Teil earthquake mentioned locations in the perception area, while almost none referred to

such locations before. This suggests that our model’s predictions are coherent with reality

since the Teil and the other perception areas are mentioned only after the earthquakes hap-

pened and during a relatively short time.

In order to validate this second observation, we first represent the map of place names

detected by our model within the tweets written before the Teil earthquake. Maps in Fig 4a–4e

show that tweets seem to be located relatively randomly with a slight concentration near Paris,

the French capital and the most populated city, and in the south-west, where the Mauléon-

Licharre earthquake happened on November 2nd. In contrast to this “quiet” period, during

which Twitter activity highlights widely dispersed localities, a massive concentration of

tweets localized near the felt area can be observed in less than 10 minutes after the earth-

quake has been felt, as shown in Fig 4b–4f. In agreement with Fayjaloun et al. [13] who sug-

gest that the information exchanged on Twitter in the first ten minutes after an earthquake is

most often sufficient to characterise its spatial footprint, half of the impacted area is covered by

our model predictions after 10 minutes and almost the entire is covered after only one day (in

fact, this is already the case after 1 hour). After one day, the locations predicted are more sparse

and random, while forming clear clusters near areas impacted by other earthquakes, such as

Strasbourg (Fig 4d–4h) and Saumur (Fig 4d–4i).

While this last analysis does not prove that our model predictions are correct, it does show

that they are at least coherent with what really happened, especially considering that very few

Fig 4. Geo-localized mentions detected in tweets issued one month before the Teil earthquake (a,e), then in the first hour (b,f)/ day (c,g)/ week (d,h)

after the earthquake. Also shown are the epicentres of significant earthquakes that occurred during each period (red circles proportional to the magnitude

of each earthquake) as well as the areas in which the ground motions were felt by the population for each earthquake (blue polygons), estimated from BCSF

data. Outline of French departments from OpenStreetMap contributors under ODbL license.

https://doi.org/10.1371/journal.pone.0307254.g004

PLOS ONE Geolocation of natural disasters from social media

PLOS ONE | https://doi.org/10.1371/journal.pone.0307254 October 7, 2024 20 / 29

https://doi.org/10.1371/journal.pone.0307254.g004
https://doi.org/10.1371/journal.pone.0307254


predictions are localized outside the felt area once the Teil earthquake happens. Indeed, less

than 10% of the model’s predictions on tweets written at most 10 minutes after the earthquake

is outside the impacted area. The ratio of tweets outside the impacted area increases to 15%

when considering the tweets written between 10 and 60 minutes after the earthquake.

6.2 Alex storm

6.2.1 Event presentation. The Alex storm hit France from Brittany on 1st to 2nd October

2020. Then it moved southwards on 2nd October, bringing intense and stormy rainfall until 3rd

October, mainly in the Alpes-Maritimes department. This storm caused flash flooding, result-

ing in exceptional damage and numerous victims in the high valleys above the city of Nice.

Storm Alex also affected other departments in the east and southwest of France, as well as Italy

and Switzerland.

6.2.2 Analysis of the geographical signature from the tweets. As for the Teil earthquake,

we analysed the frequency of tweets mentioning keywords from the French lexical field related

to floods (i.e. the most devastating effect from the storm), as shown in Supporting Informa-

tion, over a one-month window centred on the Alex storm. During this time span, major

floods happened in the Gard department between 19 and 20 September 2020. In a similar way

to the seismic phenomenon for which we delimited the perception area of shaking from

macroseismic intensity data, for the floods, we instead considered the areas with high rainfall

accumulation, as calculated by Météo France. Thus, areas, where a cumulative rainfall of more

than 80 mm was recorded in 72 hours between 2 and 5 October, were considered to be

impacted by the Alex storm.

As can be seen in Fig 5, spikes in Twitter activity occurred after the Alex storm and the

floods in Gard. In particular, we observe a notable increase of tweets referring to toponyms

Fig 5. Geolocalized mentions count over time from September to October 2019. The plain red line represents mentions localized near areas impacted by

the Alex storm.

https://doi.org/10.1371/journal.pone.0307254.g005
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geolocated near the area impacted by the Alex storm after it hit France, while those locations

were almost never mentioned during the previous event on September 19th, which match,

once again, our expectations.

However, the behaviour of Twitter users seems to differ from what we observed previously.

Indeed, spikes occur as soon as an earthquake is felt by the population, and the activity fades

quickly. This is probably due to the sudden and unpredictable nature of earthquakes. Con-

versely, while properly speaking weather conditions cannot be truly predicted, they can be

forecasted. As a result, the Alex storm was discussed on Twitter before it actually hit the terri-

tory, and the Twitter activity reached its peak when the Alex storm did actually happen, as

shown in Fig 5.

The analysis of the corresponding maps shows first of all in Fig 6a that, as in the case of the

earthquakes, the activity is very dispersed before the event occurs, but with a higher level of

“noise”. Moreover, the flooding episode of 19 and 20 September 2020 in the Gard department

is reflected in this background noise by a greater geographical concentration of toponyms

used in tweets in the south of France (Fig 6a–6d). Between October 2nd and 5th, at the height of

the passage of storm Alex in France, and while a high level of noise remains in the geolocation

Fig 6. Geo-localized mentions detected in tweets issued one month before the Alex storm (a,d), then during (b,e,f,g) and after (c) the storm. Also

shown are the areas with the highest rainfall recorded by Météo France during the peak of the Alex storm (cumulative rainfall from 2 October 6h to 5

October 6h) and during a previous episode of heavy rains that led to flooding in the South of France (cumulative rainfall from 18 September 6h to 21

September 6h): over 80 mm—light blue polygons, over 100 mm—dark blue polygons, over 160 mm—purple polygons. Outline of French departments from

OpenStreetMap contributors under ODbL license.

https://doi.org/10.1371/journal.pone.0307254.g006
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data extracted by our models, geographical concentrations appear in the different areas most

affected, mainly in the south-east (Fig 6b–6e), the south-west (Fig 6b–6f) and the north of Brit-

tany (Fig 6b–6g). After 5 October, this geographical concentration diminished, although there

was still marked activity in the southeast (Fig 6c), while a wave of solidarity for the victims was

felt throughout France.

6.3 Discussion

Our model seems to be able to capture coherent representations of real natural disasters.

Hence, in the absence of an event, Twitter activity remains relatively flat and the few location

predictions are randomly located, albeit with an over-representation of densely populated

areas. In the event of a fast kinetic event such as a rapid flood or earthquake, activity on Twitter

increases dramatically, with the focus of messages on the affected areas. This behaviour is

clearly well characterised by our model.

Table 10 provides a quantitative illustration of this trend. It shows a significant increase in

the spatial density of mentions in areas affected by earthquakes or heavy rain. In the case of

Table 10. Comparison, for the earthquake and heavy rainfall events considered in figure #, between the density of geo-localized mentions inside and outside the

affected areas. For earthquakes, the analyses were made considering all tweets captured during the calendar day of the earthquake (i.e. November 11, 2019 for the Teil

earthquake). For episodes of heavy rainfall, tweet exports correspond strictly to the time windows of cumulative rainfall.

Event Period Area Mentions Area

(km2)

Density (mentions/

km2)

Ratio relative to background noise in

unaffected area

Earthquake 2 Nov. Unaffected area 54 547133 9.9E-05 1.0

Felt area 45 1728 2.6E-02 263.9

11 Nov. Unaffected area 840 498689 1.7E-03 1.0

Felt area (Teil EQ) 2991 50171 6.0E-02 35.4

12 Nov. Unaffected area 520 498234 1.0E-03 1.0

Felt area—Teil

EQ

1396 50171 2.8E-02 26.7

Felt area 825 456 1.8E+00 1734.7

13 Nov. Unaffected area 284 498668 5.7E-04 1.0

Felt area—Teil

EQ

356 50171 7.1E-03 12.5

Felt area 4 22 1.8E-01 323.5

16 Nov. Unaffected area 119 541910 2.2E-04 1.0

Felt area—Teil

EQ

133 50171 2.7E-03 12.1

Felt area 23 6950 3.3E-03 15.1

Heavy

rains

From 2020–09-18 06:00 to 2020–

09-21 06:00

Unaffected area 1651 543320 3.0E-03 1.0

Cum.

rainfall� 80

9 2689 3.3E-03 1.1

Cum.

rainfall� 100

399 1672 2.4E-01 78.5

Cum.

rainfall� 160

223 1180 1.9E-01 62.2

From 2020–10-02 06:00 to 2020–

10-05 06:00

Unaffected area 1499 479289 3.1E-03 1.0

Cum.

rainfall� 80

488 47489 1.0E-02 3.3

Cum.

rainfall� 100

1006 18111 5.6E-02 17.8

Cum.

rainfall� 160

333 3972 8.4E-02 26.8

https://doi.org/10.1371/journal.pone.0307254.t010
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earthquakes, the density of mentions is much higher in the areas where the seismic shakings

are felt, with an amplification factor ranging from 15.1 for the earthquake of November 16,

2019, to 1734.7 for the earthquake of November 12, 2019. The latter case, which shows particu-

larly strong activity around the epicenter in the city of Strasbourg, cannot however be

explained only by the posts sent by direct witnesses of the earthquake. It seems to have

“benefited” from particular attention for two reasons. Firstly, it occurred the day after the Le

Teil earthquake, at a time when the French population was particularly attentive to the subject

of seismic risk: indeed, a high level of activity is still being observed in the area affected by the

Le Teil earthquake on November 12 and 13, 2019. In addition, the question of the human ori-

gin of the November 12 earthquake was quickly raised, with the hypothesis of a trigger due to

geothermal pumping in the area: this led to the publication of numerous messages on Twitter.

In the case of the heavy rainfall events of September and October 2020, the spatial density of

mentions increases with very significant cumulative rainfalls. Thus, while areas affected by

cumulative rainfalls ranging between 80 and 100 mm show no noticeable increase in the num-

ber of mentions, areas with values over 100 mm show, on the contrary, much higher densities

of mentions than elsewhere, with an amplification factor varying between 17.8 and 78.5. These

very marked trends reflect a good match between the spatial severity of events and the density

of geolocated entities within tweets, which is particularly interesting for crisis managers.

Nonetheless, some aspects of our model need improvement. First, tweets are processed

independently, hence preventing the model from building a macro-representation of the over-

all situation. This has a strong negative impact on ambiguous tweets and/or entities, where

more contextual information is required. Let us consider the following two tweets as examples:

• “Tremblement de terre de Valence à Lyon. Vous l’avez senti aussi?” (English translation:

“Earthquake from Valence to Lyon. Did you feel it too?”)

• “Il vient d’y avoir un tremblement de terre à Valence” (English translation: “There has just

been an earthquake in Valencia”)

In French, “Valence” may refer to several municipalities located in France, or to Valencia, a

city in Spain. Hence, in the original French version of the second tweet, it is not obvious which

city is mentioned. However, in the first tweet, it is much more likely that “Valence” is referring

to Valence in France because Lyon, one of the largest French cities, is also mentioned. As a

consequence, our model did predict accurately the location of Valence in the first tweet, but

not in the second. Such an error could have been avoided by remembering that previous tweets

were talking about an earthquake in France, near Valence, instead of considering each tweet

independently.

Switching to a multilingual model, instead of a pure French one, could also unlock new pos-

sibilities. The first obvious advantage would be to detect and geolocate any crisis without lan-

guage limitation. But, more critically, this could enable the model to leverage all the available

data in case of cross-border crises, such as the Alex storm that impacted both France and Italy.

Our current model can process only French tweets, while many tweets have been posted by

Italian people in distress.

7 Conclusion and perspectives

We propose a new bi-encoder architecture that simultaneously detects entity mentions in a

document and links them to a knowledge base, instead of relying on two different models as

commonly done. This allows us not only to fasten the entity-linking process but also to lever-

age existing NER annotated datasets to train our model to produce better representations

while competing approaches are constrained to rely only on EL-annotated datasets. As such,
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our approach is more suitable to deal with domain-specific datasets since it is not limited to

being trained on the few EL datasets available.

We showed that training this architecture using publicly available data from Wikipedia in

addition to a small specialized dataset allows efficient and accurate retrieval of locations men-

tioned in tweets. Beyond the general performance of the model to link the tweets to geo-

located entities, it is clear with our qualitative evaluation that the model is able to capture the

overall footprint of earthquakes and flash floods (thanks to messages exchanged by direct wit-

nesses, but also because of related discussions), which is critical for crisis managers to build

their common operational picture. While we focus, in this study, on the geolocation of infor-

mation related to earthquakes and floods, our approach can be extended with minor changes

to any crisis event such as, without limitation, forest fire, traffic accidents or terrorist attacks.

Our geolocation system can probably be improved by taking into consideration the state of

the current situation. For instance, if an event has already been detected in a certain area, then

this information should be used to improve the geolocation of future tweets. This could, for

instance, be achieved by sharing a global situational embedding or by updating the attention

mechanism of the Transformer model [76–78]. Furthermore, external expert knowledge, such

as maps, could help the system to select the right candidates, for instance by favouring a city

next to a river in case of flooding or a region known for its recurrent seismic activity to geolo-

cate the damages caused by an earthquake.

We also plan to produce a multilingual version of this model in order to enable the moni-

toring of international crises, which is particularly critical to dealing with a cross-frontier cri-

sis, such as, for example, the Alex storm that hit both France and Italy. It will require the

annotation of tweets related to natural disasters in different languages.

Finally, the model actually links location mentions in the tweets with Wikidata features, but

it is rare to get complex geometries such as polylines or polygons in Wikidata. A final step

would be to link our entities to OpenStreetMap or another authoritative source of vector spa-

tial data, via the Wikidata linking.
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