
HAL Id: hal-04725232
https://hal.science/hal-04725232v1

Submitted on 8 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation Offloading on 5G Core Network for a
Highly Delay Sensitive Real Time App

Pierre Domachowski, Haga Randrianaly, Marie-Jose Montpetit, Noel Crespi

To cite this version:
Pierre Domachowski, Haga Randrianaly, Marie-Jose Montpetit, Noel Crespi. Computation Offloading
on 5G Core Network for a Highly Delay Sensitive Real Time App. 7th edition of Conference on Cloud
and Internet of Things 2024 (CIoT’24), Oct 2024, Montreal, Canada. �hal-04725232�

https://hal.science/hal-04725232v1
https://hal.archives-ouvertes.fr


Computation Offloading on 5G Core Network for a
Highly Delay Sensitive Real Time App

DOMACHOWSKI
Pierre

Msc DANI
Télécom SudParis

Evry, France

RANDRIANALY
Haga

Msc DANI
Télécom SudParis

Evry, France

MONTPETIT
Marie-José

Adjunct Professor
Ecole de Technologie Supérieure

Montréal, Canada

CRESPI
Noel

Msc DANI Coordinator
Télécom SudParis

Evry, France

Abstract—In a landscape where the Internet of Things (IoT) is
rising, its application in diverse scenarios, including emergency
situations, becomes crucial. Considering the necessity for precise,
quick and adaptive actions when it comes to emergencies, IoT-
collected data and data-driven tools occur to be relevant solutions
to save lives.Building from the description of a first-aid tool
based on augmented reality (AR) and computer vision, this paper
explores a possible solution to extend its geographic mobility and
reducing latency. We propose to combine a task division and
allocation strategy with the use of edge computing leveraging
Edge and 5G Network, in order to address the high latency issue
when it comes to cloud computing.

Index Terms—Low Latency, Edge Computing, Augmented
Reality, 5G

I. INTRODUCTION AND DESCRIPTION

A. Introduction

As illustrated in recent demonstration video 1, the potential
of connected defibrillators combined with smart glasses in
public spaces to save lives is undeniable.

These glasses offer a complete guidance to individuals on
how to rescue a potential victim in need of assistance enabling
any person to become a far better rescuer.

Nevertheless, implementing such solutions necessitates high
computational power and minimal latency, as we are told
in [1], maintaining an end-to-end latency of no more than
20 milliseconds is crucial to prevent discomfort and motion
sickness in users.

While cloud computing is commonly used, it cannot pro-
vide significantly low latency mainly because of the distance
between the user equipment (UE) and the computing servers.

Moreover, emergencies can occur everywhere including
areas with limited bandwidth and considerably far from tradi-
tional cloud computing resources. Heavy resources consuming
applications designed to deal with emergencies, such as the
one we study in this article accumulate two main issues:

• they need a very high responsiveness and minimal la-
tency,

• they need to cover the largest possible zone to save a
maximum number of lives

1LinkedIn post with a video description of the first-aid smart glasses:
https://www.linkedin.com/feed/update/urn:li:activity:
7092724445252898817/?utm_source=share&utm_medium=mem

Therefore, this paper aims to explore one approach to
compute closer to the location of the emergency using Edge
resources and wireless communications to offload the com-
putation part of the application closer from the UE. This
approach capitalizes on the reduced latency, efficient video
transmission, and enhanced monitoring capabilities that opti-
mal utilization of the 5G Core (5GC) can offer. We leverage
these functionalities by addressing two key issues:

• Network-induced latency
• Computation time
To tackle these challenges, we propose to offload the com-

putation tasks to the equipments within the 5G core network
(5GC).

B. Description

Our emergency involves a rescuer and a victim. The rescuer
uses our Emergency kit, also called UE which is composed of
an on-battery Box with an antenna, wired to the AR display
device, also called glasses. These glasses also hold a camera,
recording what the rescuer sees.

The central box contains a local storage and a modem that
converts the recorded video into radio signal. The inputs of
the application are the frames of the recorded video content
given by the camera on the glasses.

As illustrated in Fig.1 the computation steps of the applica-
tion’s execution consist in live video object detection tasks and
are done in the network thanks to the computational power of
Edge resources.

More precisely, On each frame recorded by the camera,
many elements such as electrodes and sternum are to be
recognized and numerically highlighted on the glasses in a
precise order to clearly explain to the rescuer how to proceed.

Finally, the Edge computation servers send back the compu-
tational results, also called annotations, to the Emergency kit
to display them on AR glasses. The practical considerations
on how to display the annotations on the glasses is out of the
scope of our article and is already addressed in works such as
[6].



Fig. 1. General Workflow of the Application

C. Definitions

• Application Client (AC): application resident in the UE
performing the classical client function of a three tier
application.

• Edge Enabler Client (EEC): provides supporting func-
tions needed to enable AC(s) to communicate with the
Edge servers.

• Edge Application Server (EAS): application server res-
ident in the EDN (Edge Data network), performing the
server computation functions.

• Edge Configuration Server (ECS): provides configuration
functions needed for the EEC to connect with EES(s).

• Edge Enabler Server (EES): provides supporting func-
tions needed to link EAS(s) and AC through EEC.

II. ARCHITECTURE : REDUCING NETWORK LATENCY

As mentioned in [2], our AR application can benefit signifi-
cantly from the reduced latency, improved video transmission,
and enhanced monitoring capabilities provided by optimal
utilization of 5GC.

In this section, we describe how we will leverage edge
architecture in our application. Building on the equipment
and connection definitions in [3], we detail the entire process
that enables the AC of the defined emergency kit to connect
with the appropriate EAS(s). Communications between edge
servers and clients will be facilitated through various APIs and
reference points, organized into edges ranging from 1 to 9.

A. Preliminary step

The first step is the setup of the EEC of the defibrillator. We
initialize the EEC, such that its look for and find the addresses
of the reachable ECSs before the first use of the defibrillator.
This part enables the defibrillator to connect to the EASs faster
when it will be used for the first time.

B. Connection to the EASs

As illustrated in Fig 2. the first step for the UE’s EEC
is to connect to the most suitable EES. To do so, the EEC
authenticates itself to the chosen ECS and sends information.
Based on this information, the ECS will choose the best EES

and send back its address to the EEC. The second step for
the EEC is to send a service provisioning request to the
chosen EES. This will allow our AC to connect to the EASs
for a certain time. Then, the EEC sends an EAS discovery
request to the EES. The answer to this request contains a
list of the available EASs and KPIs such as the available
resources (RAM, computing power. . . ). Now that information
to enable the data traffic between the AC and the EASs are
well known, we perform a selection of the best EASs, this
part is detailed in part III. As the volume of data exchanged
is very high in our case, the available bandwidth must be very
high between the AC and the chosen EAS(s). That is why,
the session establishment includes with a specific Quality of
Service (QoS) in terms of Bandwidth.

C. Final step

At the end of the process, when the glasses will be turned
off, the session will shut down and the EEC will unregister
from the ECS, allowing the selected EAS(s) to release the
allocated resources.

Fig. 2. Connection to the EASs process chart

III. REDUCING COMPUTING TIME

A. Object detection model

To get relevant annotations displayed on the user’s glasses,
we must use an object detection model which takes images as
an input and sends back annotations as an output.Therefore,
one way to reduce computing time is reducing the inference
of the object detection model.



In [4], Haogang et Al. did a comparative analysis of
YOLO about many metrics such as model accuracy, frames-
per-second (FPS), memory usage, CPU usage, and energy
consumption depending on hardware characteristics, inputted
video frame size, and the SxS grid in which each frame
is divided (written S value). According to their results, the
version of YOLO is the “main factor affecting performances.”
In contrast “the influence of the size of input data on inference
performance is quite slight.” Considering those insights, we
choose to work on model choice only among the previously
cited metrics to reduce latency.

Especially, YOLOv8 is likely to be the most relevant model
in our use case to reduce computation time, as it can work up
to 70 FPS according to [5] which is above the minimum of
60 fps usually considered for AR applications, and the 41fps
reached by former YOLO versions mentioned in [4].

Furthermore, [6] provides an example of YOLO usage for
object detection using Microsoft HoloLens. The best perfor-
mances are reached with YOLOv3, with a precision of 96.27%
under real-time constraints.

YOLO has also been used a lot in medical imaging and in
particular in Personal Protective Equipments as mentioned in
[7] despite some limitations. In fact it is explained in [7] that
YOLO requires a large dataset to be fine-tuned on in order
to fit our needs in terms of object detection. We need a very
good precision but on a very small number of objects. YOLO’s
precision is also affected by object scale and occulted objects.
These situations may often occur in emergency situations such
as those our YOLO’s implementation may deal with.

Eventually, even if YOLO seems to fit our first constraints
in terms of latency and precision, we may face different issues
while implementing it for our use case. These problems may
result into a substantial work on the model’s fine-tuning and
general implementation which is out of scope for this article.

B. Task division

When the data traffic is ready to be established, we must
select the best EASs considering their available resources in
order to run the different tasks of the defined object detection
model, to reduce the computation time of our application.
The first step is to decompose our application in tasks that
have to be executed either sequentially or in parallel. Our
application can be divided into many object detection ones,
for example, detection of the victim’s sternum, detection of
the electrodes. . . And in this example, these tasks must be
done after the victim’s shirt is torn apart. Shirt detection and
sternum detection are then tasks to be executed sequentially.
By applying the same logic to all the tasks of the application,
we can build a planning of our application’s execution such as
the one in Fig.3. where horizontal tasks (T1 and T2A) must be
done sequentially, one after the other, and vertical tasks (T2A
and T2B) can be done in parallel.

C. Task allocation

When the EEC receives the list of all available EAS(s), their
routing information and their available resources, it determines

Fig. 3. Example of application’s task scheduling

the optimal task allocation to minimize overall latency based
on the previously constructed schedule. The overall latency is
written:

L = max(Li) (1)

where Li is the latency between the glasses and the EASi,
Particularly:

Li = LNi + LCi (2)

where LCi is the latency induced by the computation time
and LNi is the latency induced by the network. We have
two options for sending data traffic across the network: either
send the entire data set or send compressed video. The choice
between these methods will depend on the available bandwidth
(Bw), selecting the one that induces the least latency.

Consequently,

LNi = min(Lcomp, Ldecomp) (3)

where

Lcomp = Lcompression + Ldist + Ldecompression +
flowcomp

Bw
(4)

and
Ldecomp = Ldist +

flowdecomp

Bw (5)

And,
LCi = max(tCj), (6)

where tCj is the computation time of all the tasks executed in
parallel on the EASi at a given time.

To find the best method, the EEC will give to the AC the
routing information of the EAS(s) to evaluate the available
bandwidth between them by setting a UDP connection and
will evaluate the latency induced by the distance between the
AC and the EAS by pinging it. We assume that Lcompression

and Ldecompression are known from previous tests. Next, we
compute the uncompressed data flow in bytes using the image
definitions and frame rate. We also assume the compression
rate is known from prior tests.

Finally, to select the most relevant EAS for each task, we
propose to follow the steps outlined below, which we also
implemented in Python2.

2Code available in this repository: https://github.com/holygramp/CIOT-
2024/blob/main/Task_allocation.py



Step 1: Sort each EAS
• Pinging and setting up a UDP connection between all

reachable EASs and the AC, in order to evaluate the
available bandwidth and the latency induced by the
network between the AC and all the EASs.

• sort each EAS in ascending order depending on the ping
latency between AC and each EAS

Step 2: Optimize task execution
• Allocating to the closest EAS as many tasks as possible

considering its available resources.
• Considering the resources needed to perform task A and

B:
– If A and B have to be executed sequentially, the

resources required are the sum of the resources for
task A and task B.

– If A and B have to be executed in parallel, the
resources required are the maximum of the resources
for task A and task B.

Step 3: Continue and Repeat steps

If the closest EAS cannot perform all the application computa-
tion, the residual tasks are allocated to the next closest EASs.
Then, this process continue until all the computation of the
application can be performed.

Other algorithms for task allocation may be more general
and optimized, such as the one proposed in [8] but in our case,
we deal with a very specific application and not a general one.
Furthermore, some of the hypothesis they make are not verified
in our case such as the independence of the tasks.

Therefore, we propose the algorithm detailed above that
better suits our requirements.

D. Default functioning mode

We also propose a backup solution in order to guarantee a
minimum functioning state of our defibrillator. If in a specific
emergency, despite all the work that we have done to reduce
the overall latency of the system, the latency becomes too
high, we will be able to detect it and switch our glasses into
a default minimum functioning mode with the functionalities
that don’t require real-time treatment. In other terms, the one
that require fewer resources and no connection to external
computing servers such as massage rhythm or instruction lists
for example.

As mentioned before and in [1] an overall latency of
20 milliseconds is required, therefore, our glasses will be
continuously computing the actual latency in order to raise a
warning when it exceeds 20 milliseconds for too much time.

When the warning is raised, the glasses will stop the display
of the bounding boxes and other annotations that require a low
latency to be wisely displayed to enter a mode where only the
basic and non real-time annotations will be displayed, such as
instructions for example.

This mode shall remain until the overall latency goes under
the 20 milliseconds threshold for a significant time.

IV. DISCUSSION AND FUTURE WORK

The next step that we will work on will be to have a sim-
ulation of our application. We will be working with simu5G,
an ETSI compliant emulation and simulation framework based
on OMNeT++ for MEC applications. We will then compare
our simulation with results obtained by using cloud computing
in terms of overall latency. We are currently working on this
simulation we expect to get these results by the beginning of
the conference, in October. Another very important work that
has to be done in order to confirm the validity of our approach
will be to validate the performances of YOLO considering
our tasks. In fact, if YOLO is not precise enough or too slow
computationally speaking, we will need to look for or build
a better model, specialized for our application. And finally,
another very important task to validate our approach will be
to study the augmented reality part and how to tackle 2 issues:

• how to record the input video
• how to display the annotations on the glasses

These are two practical issues that need to be tackled in order
to ensure that our application will be usable in reality.

REFERENCES

[1] M. Torres Vega, et al. ”Immersive Interconnected Virtual and Augmented
Reality: A 5G and IoT Pespective”, in Journal of Network and Systems
Management, 1963, October 2020,pp 1–2.

[2] I. Kunze, K. Wehrle, D. Trossen and M.J. Montpetit “ Use Cases for
In-Network Computing draft-irtf-coinrg-use-cases-00”.

[3] ETSI TS 123.558 version 17.3.0 release 17: ”5G System Enhancements
for Edge Computing”.

[4] Benchmark Analysis of YOLO Performance on Edge Intelligence De-
vices, Haogang Feng, Gaoze Mu, Shida Zhong, Peichang Zhang 1and
Tao Yuan, MDPI

[5] Houda Orchi, Mohamed Sadik, Mohammed Khaldoun, Essaid Sabir:
”Real-Time Detection of Crop Leaf Diseases Using Enhanced YOLOv8
algorithm”

[6] Haythem Bahri; David Krčmařı́k; Jan Kočı́ Accurate Object Detection
System on HoloLens Using YOLO Algorithm

[7] A Comprehensive Systematic Review of YOLO for Medical Object
Detection (2018 to 2023) Mohammed Gamal Ragab; Said Jadid Ab-
dulkadir; Amgad Muneer; Alawi Alqushaibi; Ebrahim Hamid Sumiea;
Rizwan Qureshi; Safwan Mahmood Al-Selwi ; Hitham Alhussian

[8] Anamaria-Raluca Oncioiu1, Florin Pop1, and Christian Esposito Asymp-
totic Load Balancing Algorithm for Many Task Scheduling


