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Abstract. Most theoretical studies of Rayleigh- Bénard Convection assume that the velocity boundary layer
develops on the whole width or height H of the convection cell, or that the development length h scale
with H . We argue that it is probably not the case, and examine the consequences of an intermediate
asymptotics hypothesis in the sense of Barenblatt [1], the development length h scaling with the Nusselt
number: h ∝ H Nu−α. This hypothesis is checked through existing experimental data, which show that α
can take several different values. The analysis of Grossmann and Lohse [2] is reexamined with this new point
of view, stressing on pure scaling regimes.

Résumé. La plupart des études théoriques sur la convection de Rayleigh-Bénard supposent que la couche
limite de vitesse se développe sur toute la largeur ou la hauteur H de la cellule de convection, ou que la
longueur de développement h est proportionnel à H . Nous soutenons qu’il est probablement incorrect de
faire cette supposition, et nous examinons les conséquences d’une hypothèse d’asymptotique intermédiaire
au sens de Barenblatt [1], où la longueur de développement h dépend du nombre de Nusselt: h ∝ H Nu−α.
Cette hypothèse est vérifiée à partir de données expérimentales existantes, qui montrent que α peut prendre
plusieurs valeurs différentes. L’analyse de Grossmann et Lohse [2] est réexaminée sous cette nouvelle pers-
pective, en mettant l’accent sur les régimes d’échelle pure.
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1. Introduction.

Convection is ubiquitous. Among other important problems, it governs the behavior of stars, the
climate of planets, or the behavior of the molten core in a damaged nuclear plant. However, the
bridge between these large scale events and their laboratory counter part, the Rayleigh-Bénard
convection cell is not yet firmly set.

The Rayleigh-Bénard convection cell consists in a Newtonian, nearly incompressible, isotropic
fluid, of kinematic viscosity ν, of heat diffusivity κ, of thermal expansion β, put into motion by
a vertical heat flux Q̇. The problem is generally treated within the Boussinesq approximation,
whose equations write:

∂t vi + v j∂ j vi = − 1

ρ
∂i p + giβθ+ν∂ j∂ j vi , (1)

∂ j v j = 0, (2)

∂tθ+ v j∂ jθ = κ∂ j∂ jθ, (3)

where gi and vi are the i components of the gravitational acceleration and the velocity, and θ is
the temperature.

The non dimensional control parameters are the Rayleigh number:

Ra = gβ∆H 3

νκ
(4)

where g is the gravitational acceleration, ∆ the temperature difference between the horizontal
plates, the hot one (generally below) and the cold one, H the vertical distance between these
plates. Of importance are also the Prandtl number:

Pr = ν

κ
(5)

and the parameters specifying the shape of the cell, as the aspect ratio:

Γ= L

H
(6)

where L is the typical horizontal dimension of the plates.
The non dimensional parameters measuring the answer of the cell are the Nusselt number:

Nu = Q̇H

Cpκ∆
(7)

where Cp is the isobaric heat capacity of the fluid per unit volume. The Reynolds number:

Re = U H

ν
(8)

where U is a typical velocity of the fluid, and the relative temperature fluctuations:

F t = Θ

∆
(9)

where Θ2 is the variance of the temperature fluctuations, generally depend on the way and the
point where the measures of U andΘ are made, but are nethertheless precious indications of the
nature of the flow.

During the second half of the past century, many propositions have been made for the Ra
dependence of Nu, most of them as a power law (for a review, see [2], [3], [4] and [5]):

Nu = Raµ (10)
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with occasional logarithmic corrections. Absolute majoration have been derived [6], showing
that, whatever the Prandtl number, in the limit of large Ra:

Nu <C Ra1/2 (11)

where C is a constant.
Within approximately the same period, a great number of experiments ( [2], [3], [4]) have been

performed, including numerical experiments, reaching up to Ra = 1017, generally analyzed as
power laws, equation 10, or a succession of power laws. It results in a wide variety of µ values
proposed, both theoretically and experimentally.

In the past two decades, in a series of seminal papers, S. Grossmann and D. Lohse (GL) [7] have
proposed to rely the predictions to two exact results concerning the viscous (ε) and thermal (ϵT )
dissipations per unit volume:

ε= ν< ∂i v j∂i v j > = κ3

H 4 Ra(Nu −1)Pr, (12)

ϵT = κ< ∂i T∂i T > = κ∆2

H 2 Nu, (13)

Remarking that each dissipation can be dominated either by the boundary layer or by the bulk,
they proposed to classify the flows into four categories:

(I) Both dissipations are dominated
by the boundary layer

(II) Thermal dissipation dominated by the
boundary layer, viscous by the bulk

(III) Viscous dissipation dominated by the
boundary layer, thermal by the bulk

(IV) Both dissipations are dominated
by the bulk

Moreover, each category has the subscript "u" for the large Pr , and "l" for the small ones,
and has a prime "′" if the boundary layer is turbulent. Evaluating the bulk and boundary layer
dissipations, both viscous and thermal, and using the exact relations 12 and 13, GL could obtain
the Nu and Re numbers in a wide range of intermediate values of Ra and Pr . Ad hoc cross-over
functions, and adjustable parameters were necessary, fitted to the existing experimental results.
As a result, as remarked by GL, none of the pure regimes described in the table 1 appears alone,
the combination of two of them being undistinguishable from a pure power law as equation 10.

In this paper, we shall follow the same way, relying to the exact results 12 and 13, and
evaluating the bulk and boundary layer dissipations. However, our approach will differ from the
GL one on the following points:

• We shall take into account the various possible regimes, both in the bulk and in the
boundary layer. We shall stress the influence of the so called mixing transition ( [8], [9])
in the bulk, and we shall reinterpret the mixing buffer zone of Kadanoff et al. [10]

• We renounce to the dogma of single Nu or Re values for given Ra and Pr , even at a
given aspect ratio, recognizing that minute details can select between a wealth of possible
regimes.

• While recognizing the possibility of crossovers we shall stress on pure regimes, finding
evidences of them in published experimental data.
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The paper is organized as follows. In section 2, we shall check an hypothesis made in all
models, that the product of the typical velocity and the typical temperature fluctuations well
represents their cross-correlation, i.e. that their cross-correlation coefficient is constant. In
section 3, we shall introduce the development length of the velocity boundary layer, and make
the hypothesis of a simple scaling of this length with the Nusselt number. We shall examine
how it influences the velocity and thermal boundary layers. In section 4, we shall check the
above hypothesis. In section 5, we shall evaluate the viscous dissipation, in the boundary layer,
distinguishing between Blasius or logarithmic ones, and in the bulk, distinguishing between soft
and hard turbulence. This goes through a determination of the velocity boundary layer width, λ,
which we use in section 6 for determining the thermal one δ. In section 7, we evaluate the thermal
dissipation, particularly in the bulk, where we distinguish between soft and hard turbulence.
In section 8, we use all our results for discussing some remarkable cases, before to conclude in
section 9.

2. The cross-correlation between temperature and vertical velocity

We shall begin examining an assumption made by every model, the proportionality between the
temperature and vertical velocity correlation 〈vzθ〉, and the product of the typical velocity U with
the typical temperature fluctuationΘ. Noting that:

Nu = 〈vzθ〉H

κ∆
(14)

the coefficient of cross-correlation can be obtained as:

χ= 〈vzθ〉
UΘ

= Nu

RePr

∆

Θ
(15)

Unfortunately, very few experimental or numerical work give simultaneous estimations of Nu,
Re and temperature fluctuations for given Ra and Pr numbers. We had access to two of them: the
PhD thesis of XZ Wu [11] and the work of Chavanne et al. [14]. For the later, we used unpublished
complementary materials, namely long simultaneous records of two close by thermometers,
whose cross-correlation allowed to determine the Reynolds number.

For both of these sets of data, we applied a correction to the Nusselt values, to take into account
the finite heat conductivity of the walls. Indeed, Roche et al. [15], and independently Ahlers [16]
realized that the influence of the walls is much larger than previously assumed. Roche et al.
proposed a formula to derive the corrected Nusselt Nu from the raw one Nur aw :

Nu = Nur aw

1+ f
(16)

where:

f = A 2

ΓNur aw
(

√
1+ 2W ΓNur aw

A 2 −1) (17)

with A ≃ 0.8, Γ is the aspect ratio (here Γ= 0.5), and the wall number W depends on the ratio of
the heat conductivities of the wall and the fluid and the geometric dimensions of the wall. Here,
we can use the value W = 0.6 corresponding to the small density He gas (low Nu). For the larger
Nu, f is small: f < 0.1 when Nur aw > 100 (ln(Nur aw ) > 4.6). Then, a 50% error on W would
result in 2% error on Nu.

We also used data from the work of Musilova et al. [17]. We obtained an estimation of F t (9)
for these data using a fit of their results, shown on their figure 6:

F tM = (0.433+0.0125 · log10(Ra))Ra−1/7 (18)
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Figure 1. Open symbols: the “correlation coefficient” χ for the XZ Wu results [11]. Full

symbols: the true correlation coefficient 〈vzθ〉/
√
〈v2

z 〉〈θ2〉 at various places for a numerical
simulation of a rectangular Rayleigh-Bénard cell of dimensions 1,0.25,1 [12, 13]. Black
triangles: point (0.25,0.125,0.5). Red squares: point (0.35,0.125,0.5). Green diamonds:
point (0.5,0.125,0.5) (middle of the cell).

The data of Wu [11], figure 1, show large variations for Ra < 108, and an approximately con-
stant value for larger Ra. We plot on the same figure the values of the local true correlation co-

efficient 〈vzθ〉/
√
〈v2

z 〉〈θ2〉 at various places for a numerical simulation of a rectangular Rayleigh-
Bénard cell of dimensions 1,0.25,1 [12,13]. The simulation again show two regimes, one variable,
and one constant. The apparent agreement of the numerical values for the simulation and the
Wu experiment is probably fortuitous. The succession of regimes in the simulation is more sim-
ilar to the Musilova et al. [17] one (see figure 2). The remarkable point for the simulation is that
the correlation in the center, where the fluctuations are very weak, is approximately the same as
in much more active regions.

The data of Chavanne et al. [14], figure 2, show two plateaus, separated by a transition in the
neighborhood of Ra ≃ 3 ·109. The data of Musilova et al. [17] show large variations at low Ra, but
are in close agreement with Chavanne et al. for Ra > 1010.

We thus have different cases. In some ranges, the cross-correlation coefficient between
velocity and temperature cannot be considered as constant. The basic assumption made in all
the models thus fails. On the other hand, however, there are ranges where the cross-correlation
coefficient is constant. The usual approaches can then be used.
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Figure 2. The correlation coefficient χ for the Chavanne et al. results [14], black diamonds,
and the Musilova et al. ones [17], red circles

3. The thermal boundary layer. Influence of the development length

In this section, our analysis will be at variance with most of previous ones, which consider that
the velocity boundary layers develop on the whole width or height of the cell. We shall explicitly
introduce the development length h as a new parameter, and we shall assume that it is related to
the Nusselt number as:

h

H
= Nu−α (19)

In all this paper, we shall renounce to precisely determine the constant factors, so our equality
rather means proportionality. The above relation is inspired by the idea that the thermal bound-
ary layer in some way governs the velocity one.

3.1. Large Prandtl numbers

To our knowledge, the only work which considers the possibility of a development length which
differs from H is that of ESC Ching [18]. Ching solved the problem of the vertical (z) temperature
profile within the velocity boundary layer, for large Prandtl number. Under some conditions, she
found a self similar solution:

T −Tp =∆ f (z/δ(x)) (20)

Tp being the temperature of the plate (z = 0), and x the velocity direction.
Rather than reproducing her argument, we propose to derive the typical value of δ from

dimensional arguments. The x-component of the velocity has a linear profile:
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ux = γz (21)

The basic dimensions are [x], [z] (which we consider as independent) and the time [t ]. δ

depends on γ, the temperature diffusion coefficient κ, and the development length h. The
dimensions are:

[ux ] = [x]

[t ]
, [γ] = [x]

[t ][z]
, [h] = [x], [κ] = [z]2

[t ]
, [δ] = [z] (22)

Thus, within a numerical factor:

δ=
(
κh

γ

)1/3

(23)

The solution of Ching depends on two parameters, A and K , which are linked through f (∞) =
1/2. For small K , A poorly depends on K , as A = Ao(1−BK 2) with B close to 1:

K = δ′ ≃ δ

h
, A = δ(γδ2)′

2κ
≃ γδ3

κh
(24)

′ means deriving versus x, which is equivalent to divide by h in our approach. We thus agree
with the result of Ching, as far as K is not too large, which means h much larger than δ.

3.2. Low Prandtl numbers

Let us now remark that the above result, equation 23, is equivalent to postulate that a peculiar
Peclet number is 1 at the limit of the thermal boundary layer. Within the velocity boundary layer,
we can determine the vertical velocity component uz through the mass conservation equation 2:

∂z uz =−∂x ux = γ

h
z (25)

Then uz (δ) = γδ2/h (we omit the factor 2), and:

Pe = uzδ

κ
= γδ3

hκ
= 1 (26)

As often postulated, the thermal boundary layer limit is the point where the Peclet number is
1. But we must remember that the velocity which enters this Peclet number is the vertical velocity.

We can apply this idea to the case of small Prandtl numbers, where the thermal boundary layer
extends out of the velocity one. Then, equation 25 writes:

∂z uz =−∂x ux = U

h
(27)

Then uz (δ) =Uδ/h, and:

Pe = uzδ

κ
= Uδ2

hκ
= 1 (28)

At the velocity boundary layer limit, λ, we rather have Uλ2/hν= 1. The consequence is that

λ= δPr 1/2 (29)

if Pr < 1, and

λ= δPr 1/3 (30)

if Pr > 1.



8 Bernard Castaing, Francesca Chillà, Julien Salort, Yann Fraigneau and Anne Sergent

3.3. The transition between Large and Low Prandtl numbers

The results of Ching allow to precisely determine the boundary between low and large Prandtl
numbers. According to the Landau-Lifchitz texbook [34], within the Blasius model, the velocity
gradient at the boundary is:

γ≃ 0.332
√

U 3/νx =U /λ (31)

Then, using equation 24:

2Aκ= δ(
γδ2)′ =−γ′δ3 = ν

0.3322 (
δ

λ
)3 (32)

In the small K limit (where h >> δ), Ching obtains A ≃ 2.136:(
δ

λ

)3

= 2A(0.332)2

Pr
(33)

The extrapolation to δ = λ gives Pr ≃ 0.471 slightly larger than the estimation by Cioni et
al. [21] (Pr ≃ 0.2) or Verzicco et al. [22] (Pr ≃ 0.3).

4. A direct access to the development length

4.1. By direct observation

As many others, Puthenveettil et al. [19] remarked that plumes generally detach from the plates as
vertical sheets, thus appearing as lines in the plates observations. But they were the only ones, to
our knowledge, to measure the length of these lines on a wide range of Ra and Pr . We agree with
them that it is the thin "local natural convection boundary layers" around the plumes "whose
thickness essentially decides the heat flux in turbulent convection". We thus shall assimilate the
mean distance between the plumes with the development length h.

As Puthenveettil et al. [19] remark, this mean distance is related to the total line length Lp they
measured and the area S on which the measure is made through:

h = S

Lp
(34)

We can thus check the relation 19, looking at Lp H/S versus Nu. It is shown on figure 3. Except
for the two smallest Nu values, the results nicely align as a power law. A linear regression on the
data gives α≃ 0.76 [20].

4.2. Through simultaneous Nu and Re measurements

Equations 26, 28, can be written in a different way, if the thermal dissipation is dominated by the
boundary layer, thus in the GL cases (I) and (II). Then Nu = H/δ (we omit the constant factor 2),
and, for Pr < 1:

Uδ2

hκ
= U H

κ

1

Nu2

H

h
= 1 ;

H

h
= Nu2

RePr
(35)

while, for Pr > 1, as γ=U /λ and λ/δ= Pr 1/3:

γδ3

hκ
= δU H

λκ

1

Nu2

H

h
= 1 ;

H

h
= Nu2

RePr 2/3
(36)

Equations 35, 36, give direct access to the behavior of h, independent of our assumption,
equation 19. Figures 4 and 5 show how they apply to the results of respectively XZ Wu, Chavanne
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Figure 3. H/h, where h is the development length of the boundary layer for the Puthen-
veettil et al. results [19], versus the Nusselt number, in a logarithmic plot. It verifies equa-
tion 19 on a large range, with α ≃ 0.76. diamonds: Pr = 0.7, squares: Pr = 6, circles:
Pr = 602.

et al. and Musilova et al. . The former show a power law dependence of H/h versus Nu, on a
large final range, in agreement with the postulated equation 19. A least squares regression for
ln(Nu) > 3.3 gives α≃ 0.48. The Chavanne et al. results show a transition between two such laws.
A least squares regression for the lowest Nusselts gives α ≃ 0.30. A least squares regression for
ln(Nu) > 6 gives α ≃ 0.77, in agreement with the largest Nu values of the Musilova et al. results.
The interest in Chavanne et al. set of data is the large span of Prandtl number values, which shows
that no additional dependence with Pr exists out of the power law versus Nu.

As noted above, the temperature-velocity correlation coefficient χ can be considered as con-
stant, at least within a given regime. In the expressions of H/h, it allows to replace Nu/RePr by
Θ/∆. namely, for small Prandtl numbers:

H

h
= Nu

Θ

∆
(37)

while, for large Prandtl numbers:

H

h
= NuPr 1/3Θ

∆
(38)

When the thermal dissipation is dominated by the boundary layer (cases I and II of GL), equa-
tions 37 and 38 have potentially another interpretation. Letting aside the Prandtl dependence,
it can be written: δ∆ = hΘ, as if the heat content of the thermal boundary layer would mix in a
buffer layer of width h. This is close to the model proposed by Kadanoff et al. [10]. However, the
Prandtl number dependence is hard to justify in this way.
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Figure 4. H/h, where h is the development length of the boundary layer for the XZ Wu
results [11], versus the Nusselt number, in a logarithmic plot. It verifies equation 19 on a
large range, with α≃ 0.48

4.3. The α-spectrum

We thus have an experimental confirmation of the conjecture made, equation 19, but no expla-
nation. Indeed, the arguments presented by Kadanoff et al. [10] suggest thatα should be equal to
0.5. The following discussion mainly reproduce these arguments, which have been extended to
low Prandtl numbers by Cioni et al. [21].

The simplest interpretation of the development length h, is that it represents the mean
distance between plumes. Let us assume with Kadanoff et al. that sheet-like plumes, of thickness
λ develop. Within such a plume, the two last terms of the Navier-Stokes equation 1 should
equilibrate. For small Prandtl numbers, this gives:

gβ∆= νU

λ2 (39)

This is equivalent to write that the buoyancy force gβ∆λ, corresponding to the heat content
∆λ, equilibrates with the viscous force νU /λ. Equation 39 gives:

gβ∆H 3

νκ
= Ra = ν

κ

U H

ν

H 2

λ2 = ReNu2 (40)

where we used the relation 29 between λ and δ for Pr < 1. Assuming that the bulk dominates the
viscous dissipation:

RaNu = ReNu3 = Re3Pr 2 (41)

Using equation 35:
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Figure 5. H/h, where h is the development length of the boundary layer for the Chavanne
et al. results [14], asterisks, and the Musilova et al. ones [17], red circles, versus the Nusselt
number, in a logarithmic plot. For Chavanne et al., we have two regimes verifying equation
19, with respective slopesα≃ 0.30 andα≃ 0.77. The final regime of Musilova et al. is similar
to the Chavanne et al. one

Nu3 = Re2Pr 2 = Nu4−2α (42)

and α= 0.5
The argument differs somewhat for Pr > 1. Then, δ<λ, and the heat content of the plume, of

thickness λ, is only ∆δ. Equation 39 becomes:

gβ∆δ= νU

λ
(43)

Then:

gβ∆H 3

νκ
= Ra = ν

κ

U H

ν

H

λ

H

δ
= Pr 2/3ReNu2 (44)

where we used the relation 30 between λ and δ for Pr > 1. Assuming again that the bulk
dominates the viscous dissipation:

RaNu = Pr 2/3ReNu3 = Re3Pr 2 (45)

Using equation 36:

Nu3 = Re2Pr 4/3 = Nu4−2α (46)

and α= 0.5. Moreover, in both cases, this model agrees with our assumption, equation 19.
The following argument could give an idea on the spectrum of other possible α values.
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Let us call α1 the first possible value for α. Above the transition from α = 0 to α = α1, as
Nu increases, and δ goes down, the development length h could act as an effective large scale,
the flow being confined between two neighboring plumes. Then, a new step of the instability of
the thermal boundary layer could develop, yielding a new development length h′. The relation
between h and h′ would then write:

h

h′ =
(

h

δ

)α1

(47)

or:

h

H

H

h′ = Nu−αn−1
H

h′ =
(

h

H

H

δ

)α1

= (
Nu1−αn−1

)α1 (48)

It gives the following recursion formula:

(1−αn) = (1−αn−1)(1−α1) (49)

Identifying the Kadanoff α value, 0.5, with α1, the following value would be 0.75, very close
to the observed ones, 0.77 for the Chavanne et al. [14] or Musilova et al. [17] data, or 0.76 for the
Puthenveettil et al. [19] ones .

Note that for the lowest α value observed, 0.30, the viscous dissipation is dominated by the
boundary layer, in contradiction with the hypothesis of the Kadanoff et al. model [10], [21].

5. The viscous dissipation

In this section we shall determine the viscous dissipation in the velocity boundary layer, and in
the bulk. Using then equation 12, we shall identify (Nu −1) with Nu, as the difference is smaller
than the error bar in the experimental or numerical studies of the concerned regimes. A constant
reference for the mean viscous dissipation per unit mass will be:

U 3

H
= κ3

H 4 Re3Pr 3 (50)

5.1. The boundary layer contribution

We have here to distinguish between a Blasius type boundary layer and a logarithmic one.

5.1.1. The Blasius case

Then, λ, the width of the velocity boundary layer, is the momentum diffusion length during a
time h/U :

λ =
√
νh

U
= H Nu−α/2Re−1/2 (51)

γ = U

λ
= ν

H 2 Nuα/2Re3/2 (52)

The boundary layer contribution to the viscous dissipation per unit mass will thus be:

εbl =
λ

H
νγ2 = ν3

H 4 Nuα/2Re5/2 (53)

When this contribution dominates, comparing with equation 12 gives:

RaNu = Nuα/2Re5/2Pr 2 (54)
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Another expression can be derived in this Blasius case. Namely:

εbl =
λ

H
ν

U 2

λ2 = ν3

H 4 Re2 H

λ
(55)

Assuming that both the thermal and the viscous dissipations are dominated by the boundary
layer, and using equations 12, 29 and 30, it gives, for small Prandtl numbers:

RaNu = NuRe2Pr 3/2 (56)

and for large Prandtl numbers:

RaNu = NuRe2Pr 5/3. (57)

These expressions have the advantage to be independent of α.

5.1.2. The logarithmic case

Again, we have to take into account the development length h. In the viscous sublayer, the
horizontal velocity component is ux = γz, with:

γ= v2
∗/ν, (58)

the transverse momentum flux being ρv2∗ by definition of v∗. As above, the vertical velocity
component uz can be derived from the incompressibility relation 2:

∂z uz =−∂x ux = γz

h
; uz = γz2

h
(59)

(we omit the factor 2).
In the logarithmic range (see, for instance, [23]),

∂z ux = v∗
z

; ux = v∗ ln
( v∗z

ν

)
; U = v∗ ln(Re) (60)

(we omit the von Karman constant).
The velocity sublayer limit z = λ corresponds to the transition viscous-convective for the

momentum flux. In the convective region, 〈ux uz〉 = v2∗ ≃
√
〈u2

x〉〈u2
z〉, assuming again a constant

correlation coefficient. In the viscous region,
√

〈u2
x〉 ≃ γz,

√
〈u2

z〉 ≃ γz2/h. Thus, at the transition:

v2
∗ = γ2λ3

h
;

v3∗λ3

ν3 = y3
+(λ) = v∗h

ν
= ReNu−α

ln(Re)
= D (61)

y+ = v∗z/ν being the traditional notation for the reduced distance to the plate [23].
The above result strongly suggest that D = 1. Indeed, to our knowledge, no experimental

results show a dependence of the reduced distance y+ at the top of the viscous sublayer with
the Reynolds number. This is the option we shall take.

Then the contribution of the viscous sublayer to the viscous dissipation is:

λ

H
νγ2 = v3∗

H
= U 3

H(lnRe)3 (62)

while that of the logarithmic part is:

1

H

∫ H

λ
〈ux uz〉∂z ux d z = v3∗

H
lnRe = U 3

H(lnRe)2 (63)

The later being larger, we shall take it as the contribution of the logarithmic boundary layer. If
it dominates the total viscous dissipation, we have:
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Figure 6. The respective parts of the viscous dissipation in the bulk (DV B , squares), and in
the boundary layer (DV L, circles), for the X.Z. Wu results, using the value of α determined
above. A vertical shift has been applied for clarity.

RaNu = Re3Pr 2

(lnRe)2 (64)

5.2. The bulk contribution

In the bulk, we shall follow the estimation by GL [7] and determine the bulk contribution as U 3/H ,
both in the Blasius and in the logarithmic cases. It comes from the interaction between rising and
falling plumes. If this contribution dominates, we have:

RaNu = Re3Pr 2 (65)

We can now compare with the experimental results. Indeed, the quantity:

DV B = Re3Pr 2

RaNu
(66)

represents, within a constant factor, the part of the viscous dissipation which is due to the bulk,
while the quantity:

DV L = Nuα/2Re5/2Pr 2

RaNu
(67)

represents, again within a constant factor, the part of the viscous dissipation which is due to the
boundary layer. We let aside, for the moment, the logarithmic boundary layer case.
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Figure 7. The respective parts of the viscous dissipation in the bulk (DV B , squares), and in
the boundary layer (DV L, circles), for the Chavanne et al. results, using the two values of
α determined above. The full symbols underline the two respective ranges. A vertical shift
has been applied for clarity.

On figure 6, we show these two quantities, versus the Nusselt number, in logarithmic scales,
for the X.Z. Wu results. None of these quantity shows a plateau. The part of the bulk dissipation
increases with Nu, while the part of the boundary layer decreases. This is an excellent illustration
of the GL point of view, a slow cross-over between the two regimes.

On figure 7, we show the same quantities, versus the Nusselt number, in logarithmic scales,
for the Chavanne et al. results. While it is clear that the first regime, with α= 0.30, is dominated
by the boundary layer, the second regime seems to give a plateau in both cases. We are unable to
decide between the bulk or the boundary layer dominating the viscous dissipation. This will be
possible only later, considering the consequences for the temperature fluctuations.

6. The thermal boundary layer δ

Indeed, the determination of λ in the previous section gives the thermal boundary layer δ as a
by-product. Let us first recall the results for λ. In the Blasius case:

λ= H Nu−α/2Re−1/2 (68)

while, in the logarithmic boundary layer case:

λ= ν

v∗
= H

ln(Re)

Re
(69)

Following our previous analysis, for small Prandtl numbers:
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δ= λ

Pr 1/2
(70)

while, for large Prandtl numbers:

δ= λ

Pr 1/3
(71)

Some caution, however, must be taken in the logarithmic case (and if α ≃ 1). As remarked
above, our analysis is valid only if h >> δ. In the logarithmic case, the velocity vertical component
fluctuation does not grow when z > λ, and remains of order v∗. For low Prandtl numbers in the
logarithmic case, it implies:

δ= λ

Pr
(72)

For large Prandtl numbers in the same case, let us remark that equation 23 implies, when h ≃ δ:

δ2 = κ

γ
(73)

Then, using equation 58:

δ2 = κν

v2∗
= λ2

Pr
(74)

Note that Kraichnan [24] obtained the same relation, assuming that the vertical velocity
fluctuation is linear in z for z <λ, at least for not too small z.

7. The thermal dissipation

7.1. The boundary layer contribution

When the thermal dissipation is dominated by the boundary layer, equation 13 yield to an
identity. We could refer to our determination of the boundary layer δ, for instance through
equation 35 or 36, but we must remember that we used it to determineα, and thus it is identically
verified.

The only check we have is thus to look at the bulk contribution. If the bulk contribution is
constant, we shall conclude that it dominates the thermal dissipation. If it is not constant, we
shall conclude that a significant boundary layer contribution exists. We have no possible cross-
check.

7.1.1. The temperature profile

Moreover, considering that the boundary layer contribution is only part of the total thermal
dissipation implies that the temperature difference across the boundary layer, ∆∗/2, differs from
∆/2. Let us call Nu∗ the boundary layer contribution to the thermal dissipation Bth normalised
by κ(∆/H)2:

Bth = κ

4

(
∆∗

H

)2 2δ

H
= κ∆2

H 2

(
∆∗

∆

)2 H

2δ
(75)

As:

∆∗

∆
= 2δ

H
Nu (76)

we have:
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Nu∗ = ∆∗

∆
Nu (77)

which means that the boundary layer contribution is in the same proportion as the temperature
differences. It is then interesting to look at the temperature profile in the convective part of the
convection cell.

The situation is indeed very similar to that yielding to the turbulent logarithmic velocity
profile. Θ = ∆Nu/RePr acts as a typical temperature difference, while, at a distance z from the
plate, there is no other characteristic length than z. From dimensional analysis, the mean vertical
temperature gradient must write:

〈∂T

∂z
〉 =ϖΘ

z
(78)

where ϖ is a universal constant, similar to the von Karman constant. Then 〈T 〉 = ϖΘ ln(z)+ cst
and ∆−∆∗ ≃ ϖΘ ln(Nu). Note that such a logarithmic temperature profile has been effectively
observed in some studies [25].

Thus, the evolution is slow, and∆ cannot be much larger than∆∗ before extremely large values
of Nu be reached. In practical situations, the boundary layer contribution is always a noticeable
part of the total thermal dissipation. Rather than a dissipation "dominated" by the bulk, we
should speak of a dissipation "driven" by the bulk, as the boundary layer adapts to follow the
bulk contribution.

7.2. The bulk contribution

Following the approach of [9], we shall determine the bulk contribution to the thermal dissipation
through:

κ〈∂i T∂i T 〉 ≃ κ
(
ϑ

σ

)2

(79)

where ϑ is the temperature fluctuation at the thermal dissipative scale σ. As in [9], we have to
distinguish between hard and soft turbulence, and large or small Prandtl numbers.

7.2.1. Small Prandtl numbers. Hard turbulence.

When the inertial turbulent cascade is sufficiently developed, the thermal dissipative scale σ,
while larger than the viscous one η (Pr < 1), is in the inertial range: H >σ> η. At the scale σ, the
thermal diffusion time is equal to the stretching time. Put in other words, the Peclet number is 1:

κ

σ2 = vσ
σ

(80)

Using the Kolmogorov 41 theory [26]:

H

σ
= H

κ
U

( σ
H

)1/3
;

H

σ
=

(
U H

κ

)3/4

= (RePr )3/4 (81)

As for the temperature fluctuations:

ϑ=Θ
( σ

H

)1/3
=Θ(RePr )−1/4 (82)

Using equations 79 and 15, the bulk contribution to the thermal dissipation is then:
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κ

(
∆

H

)2 (
Θ

∆

)2

(RePr )−1/2(RePr )3/2 =

= κ

(
∆

H

)2 Nu2

RePr
(83)

Note that we could have obtained this result, identifying the thermal dissipation ϵT with
UΘ2/H , as GL did [7]. UΘ2/H is the large scale expression of ϵT , and the cascade ensures the
conservation of ϵT :

UΘ2

H
= κ

(
∆

H

)2 U H

ν

ν

κ

Θ2

∆2 (84)

If this contribution dominates, using equation 13 gives:

Nu = RePr ;
Θ

∆
= cst (85)

7.2.2. Small Prandtl numbers. Intermediate turbulence.

For smaller Reynolds numbers, the thermal dissipative scale σ is out of the inertial range.
Then, we must identify it with H . The bulk contribution to the thermal dissipation is then:

κ

(
Θ

H

)2

= κ
(
∆

H

)2 (
Θ

∆

)2

= κ
(
∆

H

)2 (
Nu

RePr

)2

(86)

If this contribution dominates, using equations 13 gives:

Nu = (RePr )2 = (RaPr )2 ;
Θ

∆
= RePr (87)

7.2.3. Large Prandtl numbers. Hard turbulence.

In this case, an inertial range exists, but the thermal dissipative scale σ is smaller than the
viscous dissipation scale η. These scales are related through:

κ

σ2 = vσ
σ

= vη
η

= ν

η2 (88)

This regime is known as the Batchelor regime [9]. The temperature fluctuation at the thermal
dissipative scale σ is the same as at the viscous dissipative scale η:

ϑ=Θ
( η

H

)1/3
=ΘRe−1/4 (89)

The bulk contribution to the thermal dissipation is then:

κ

(
ϑ

σ

)2

= κ

(
∆

H

)2 (
Θ

∆

)2 (
ϑ

Θ

)2 (
H

η

)2 ( η
σ

)2

= κ

(
∆

H

)2 (
Θ

∆

)2

RePr (90)

This result is identical to what we obtained in the low Prandtl numbers case, equation 84,
for the same reasons. It then raises a problem when both dissipations, thermal and viscous, are
dominated by the bulk (GL case IV). The two equations 85 and 65 then give:

Re = Ra1/2Pr−1/2 ; Nu = Ra1/2Pr 1/2 (91)

This cannot be true, as it violates, for sufficiently large Prandtl number, the result of Doering
and Constantin [6]. These authors have derived an absolute majoration of the Nusselt number:
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Nu <C Ra1/2 (92)

where C is a constant.
We think that the solution of this paradox is as follows:
At large Prandtl numbers, the heat diffusivity is smaller than the velocity one. When a plume

raises, generally having a sheet shape, it drags the fluid on a width larger than the plume one.
The width of the velocity profile is Pr 1/2 times larger than the temperature one. Let us call θm

the average temperature on the width of the temperature profile. The average temperature in
the whole dragged fluid will be < θ >= θm/Pr 1/2. In the same way, the average temperature
squared in the whole dragged fluid will be < θ2 >= θ2

m/Pr 1/2 =< θ >2 Pr 1/2. As the relation
Θ=∆Nu/(RePr ) seems firmly established, we must consider that, at large Prandtl numbers:

〈θ2〉
∆2 = Nu2

Re2Pr 3/2
(93)

and the bulk thermal dissipation is:

κ

(
∆

H

)2 Nu2

Re2Pr 3/2
RePr = κ

(
∆

H

)2 Nu2

RePr 1/2
(94)

Note that Lohse and Shishkina [5] solve the same paradox in an apparently different way. If
this contribution dominates, we have:

Nu = RePr 1/2 ;
Θ

∆
= Pr−1/2 (95)

and the two equations 95 and 65 give:

Re = Ra1/2Pr−3/4 ; Nu = Ra1/2Pr−1/4 (96)

now in agreement with the Doering and Constantin majoration [6].

7.2.4. Arbitrary Prandtl numbers. Soft turbulence.

In this case, while turbulent, the bulk has no inertial energy cascade. As in [9], we then
determine the temperature dissipation scale σ, writing that the inverse temperature diffusion
time is equal to the velocity gradient, itself determined through the dissipation:

κ

σ2 =
√
ε

ν
(97)

The bulk contribution to the thermal dissipation is then, for large Prandtl numbers:

κ
〈θ2〉
σ2 = 〈θ2〉

√
ε

ν

= ∆2 Nu2

Re2Pr 3/2

√
κ3Re3Pr 3

H 4ν

= κ

(
∆

H

)2 Nu2

Re1/2Pr 1/2
(98)

and for small Prandtl numbers:

κ
〈θ2〉
σ2 = κ

(
∆

H

)2 Nu2

Re1/2Pr
(99)

If this contribution dominates, we have:
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Nu = Re1/2Pr 1/2 ;
Θ

∆
= Nu−1 (100)

for large Prandtl numbers, and:

Nu = Re1/2Pr ;
Θ

∆
= Pr Nu−1 (101)

for small Prandtl numbers. If the bulk viscous dissipation also dominates (GL case IVu), the
equations 100 , 101 and 65 give:

Re = Ra2/5Pr−3/5 ; Nu = Ra1/5Pr 1/5 (102)

for large Prandtl numbers, and:

Re = Ra2/5Pr−2/5 ; Nu = Ra1/5Pr 4/5 (103)

for small Prandtl numbers.

8. Discussion

We can now obtain the scalings of Nu, Re, and Θ/∆ in all "pure" regimes. Such an enumeration
would however be tedious, as we have to distinguish not only all the GL regimes, but also if
the Prandtl number is large or small, if the boundary layer is Blasius or logarithmic, and if the
turbulence in the bulk is hard or soft. We prefer to detail some remarkable cases, to show how
these scalings can be obtained.

8.0.1. The Kadanoff solution.

This case corresponds to a bulk dominated viscous dissipation, and a thermal dissipation
dominated by a Blasius boundary layer. The value of α is α= 1/2.

Equation 65 gives:

RaNu = Re3Pr 2 (104)

At large Prandtl number, equations 68 and 71 give:

Nu = H

δ
= Nuα/2Re1/2Pr 1/3

Nu = Re1/(2−α)Pr 2/3(2−α) (105)

Then:

Re = Ra(2−α)/(5−3α)Pr−2/3 (106)

Nu = Ra1/(5−3α) (107)
Θ

∆
= Ra(α−1)/(5−3α)Pr−1/3 (108)

which, for α= 1/2, gives:

Re = Ra3/7Pr−2/3 ; Nu = Ra2/7 ;
Θ

∆
= Ra−1/7Pr−1/3 (109)

The Cioni et al. [21] extension of this regime to small Prandtl numbers corresponds to using
equation 70 instead of 71:
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Nu = H

δ
= Nuα/2Re1/2Pr 1/2

Nu = Re1/(2−α)Pr 1/(2−α) (110)

Then:

Re = Ra(2−α)/(5−3α)Pr−(3−2α)/(5−3α) (111)

Nu = Ra1/(5−3α)Pr 1/(5−3α) (112)
Θ

∆
= Ra(α−1)/(5−3α)Pr (5α−1)/(5−3α) (113)

which, for α= 1/2, gives:

Re = Ra3/7Pr−4/7 ; Nu = Ra2/7Pr 2/7 ;
Θ

∆
= Ra−1/7Pr 3/7 (114)

8.0.2. The Kraichnan solution.

In a celebrated paper [24], R. Kraichnan proposed a large Rayleigh numbers regime for mod-
erately large Prandtl numbers, which has long been understood as the "ultimate" regime. How-
ever, as each thermal boundary layer is supposed to have half the total temperature difference ∆
across it, this regime corresponds to IIu in the GL classification, with logarithmic velocity bound-
ary layers.

On the one hand, we again have, using equation 65:

RaNu = Re3Pr 2 (115)

On the other hand, using equations 74 and 69 we obtain:

Nu = H

δ
= RePr 1/2

ln(Re)
(116)

It gives:

Re = Ra1/2Pr−3/4

(ln(Re))1/2
(117)

Nu = Ra1/2Pr−1/4

(ln(Re))3/2
(118)

Θ

∆
= Pr−1/2

ln(Re)
(119)

which is the result of Kraichnan.

8.0.3. The observation of Cioni et al..

During one of the runs of their mercury experiment, Cioni et al. [21] observed a rapid increase
of the Nusselt number on a limited range of Rayleigh numbers. Their interpretation was a
transition between two regimes. However, as shown on the figure 8, this rapid increase nicely
fits with the predicted behavior, equation 87, in a GL case IVl , and intermediate turbulence.

This regime would be much better characterized if Cioni et al. could have measured the
Reynolds number or/and the temperature fluctuations simultaneously with these observations.
A behavior Nu ∝ Ra2 is however sufficiently unusual. Moreover, just before this rapid increase,
Cioni et al. observed a regime Nu ∝ Ra1/5, which agrees with the low Prandtl number soft
turbulence, equation 103. The transition between this regime and the rapid increase of Nu would
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Figure 8. Part of the Cioni et al. results [21], corresponding to their "rapid increase" in
Nusselt number, in logarithmic coordinates. The continuous line has a slope 2.

thus correspond to the transition soft to hard turbulence i.e. the apparition of an inertial cascade.
It strongly suggest that the Cioni et al. observation is the only known observed regime of type IV
in the GL classification.

8.0.4. The observation of Chavanne et al..

Except the Cioni et al. observation discussed above, Chavanne et al. [14] were the first to
observe a logarithmic slope µ of Nu versus Ra larger than 1/3. As a tentative interpretation, they
assimilated this regime with the Kraichnan regime. However, the observed µ was smaller than
1/2, which could be attributed to the logarithmic corrections. Later, other authors [27] observed
a transition toward a regime with a similar value for µ, larger than 1/3 but smaller than 1/2, while
at much higher Rayleigh number.

Indeed, a logarithmic correction is hardly distinguishable from a power law with a small
exponent, and even the power law observed on figure 5 for the second regime could dissimulate
a logarithmic correction. Let us however look at equations 105 and 116. They both give Nu as the
product of a function of Re and a power of Pr . As ln(Re) mimics a power law, the behavior of the
different functions of Re should be close. For the final regime of Chavanne et al., the exponent of
Re, 1/(2−α) ≃ 0.81, and Nu/Re0.81 should be poorly dependent on Re at constant Pr .

We then select the data for which 3 ·105 < Re < 6 ·105, and plot:

Nu

Re0.81Pr 1/2
(120)

versus the Prandtl number, in logarithmic coordinates (see figure 9). It would give a constant
value if the original result of Kraichnan is the good candidate. It would give an ascending slope:
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Figure 9. Dependence of the Nusselt number at "constant" Reynolds number(3·105 < Re <
6 · 105), for the Chavanne et al. results [14]. The constant dotted line corresponds to the
Kraichnan [24] solution. The continuous line corresponds to the Blasius boundary layer,
with α= 0.77 (see text).

2

3(2−α)
− 1

2
≃ 0.042 (121)

in the Blasius case. The results seem to favor the last case.
Does the more recent results [27] correspond to the Blasius or the logarithmic case? It can only

be decided through a similar test, involving a large range of Prandtl numbers.

9. Conclusion

According to the present work, the various Rayleigh-Bénard convection regimes can be separated
in two kinds:

• The unscaling ones. Either because of a transition between two scaling regimes, or due
to a special organization of the flow to be elucidated, the cross-correlation coefficient
between velocity and temperature cannot be considered as constant. A fundamental
hypothesis of most of the proposed models then fails. One can then only rely to the GL
theory [7] . Even if their estimation of the boundary layer viscous dissipation appears as
too crude, the more elaborated evaluations, like equation 53, are always intermediate
between the crude estimation and the bulk dissipation. Thus, estimating the total
dissipation as a pondered mean of these two extremes should correctly capture the
physics.

• The scaling ones. Then, the cross-correlation coefficient between velocity and temper-
ature can be considered as constant, and a deeper analysis can be performed. It reveals
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that different regimes are possible, even for the same Rayleigh number Ra, Prandtl num-
ber Pr , and aspect ratio Γ. It also reveals that the evolution of the viscous boundary layer
proceeds through a succession of steps toward the turbulent state, rather than through
an abrupt and single transition.

One could wonder why we mainly used relatively old experimental results, while more recent,
often more precise works exist [27], [28], [29], including numerical ones [30], [31]. The reason
is that these works do not provide simultaneous measurements of Nu, Re and Θ. Different
regimes have been observed, at the same Rayleigh and Prandtl numbers, even in the same cell.
So, simultaneous measurements are essentials. Except in very special cases, as the rapid increase
observed by Cioni et al. [21], the behavior of the Nusselt number alone cannot allow to conclude.

The numerical works have the advantage to give access to all the possible measurements.
However, for obvious reasons, they hardly give dense series in the Ra, Pr plane. As different
regimes rapidly succeed each other, isolated measurements again cannot allow to conclude.

Let us enumerate some aspects of Rayleigh-Bénard convection on which our study gives a new
point of view:

• Several studies on two dimensional (2D) Rayleigh-Bénard convection have pointed the
remarkable similitude with three dimensions (3D). Indeed, up to the Soft Turbulence
included, there are no real difference between 2D and 3D. Only in the Hard Turbulence
regime, the energy or enstrophy cascades are dramatically different in 2D and in 3D. In
particular, equations 12 and 13 are valid in 2D. The fact that similar high Rayleigh number
regimes have been observed both in 2D numerical studies [32] and in 3D experimental
ones [14], [27], strongly suggests that all these regimes rely to the category II in the GL
classification, and not to an "ultimate" regime.

• In our point of view, most of the transitions in the cell behavior result from an abrupt
change in the structure of the boundary layer. This is exactly the conclusion of Gauthier
et. al. [33] about the Chavanne observation. They observe that, after the transition, the
spectrum of plate temperature fluctuations extends to much higher frequencies, which
is coherent with a much smaller development length h.

• Temperature fluctuations measurements are generally easier and more reliable than ve-
locity measurements. Assuming the constancy of the cross-correlation coefficient be-
tween vertical velocity and temperature (an assumption implicitely made in all models)
gives indirectly access to the Reynolds number through temperature measurements. We
urge all experimentalists to include these temperature fluctuations in their data.
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