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ABSTRACT

Solving differential equations is one of the most computationally expensive problems in classical
computing, occupying the vast majority of high-performance computing resources devoted towards
practical applications in various fields of science and engineering. Despite recent progress made in
the field of quantum computing and quantum algorithms, its end-to-end application towards practical
realization still remains unattainable. In this article, we tackle one of the primary obstacles towards
this ultimate objective, specifically the encoding of matrices derived via finite difference method
solving Poisson partial differential equations in simple boundary-value problems. To that end, we
propose a novel methodology called block-diagonalization, which provides a common decomposition
form for our matrices, and similarly a common procedure for block-encoding these matrices inside a
unitary operator of a quantum circuit. The depth of these circuits is double-logarithmic in the matrix
size, which is an exponential improvement over existing quantum methods and a superexponential
improvement over existing classical methods. These improvements come at the price of a constant
multiplicative overhead on the number of qubits and the number of gates. Combined with quantum
linear solver algorithms, we can utilize these quantum circuit to produce a quantum state representation
of the solution to the Poisson partial differential equations and their boundary-value problems.

Keywords Double-Logarithmic Depth Block-Encodings, Quantum Linear Solver, Finite Difference Method

1 Introduction

Differential equations are ubiquitous in the vast majority of science and engineering fields, with an extensive number of
practical applications such that a significant research-and-development in high-performance computing field are devoted
towards solving these problems. Unsurprisingly, there have been several proposals for the uses of quantum computing
to solve such important problems. There are several different categories and classes of differential equations depending
on the fields and applications of the problem. In this article, we are interested in linear partial differential equations [1],
which constitute the majority of practical applications. More specifically, we are interested in the boundary-value
problems comprising a second-order linear partial differential equation called Poisson’s equation within hypercube
domains and a number of different boundary conditions. And although, such problems might be solved via analytical
method, we are interested in the solution via a numerical method called finite difference [2–4], as it can serve as the
foundation for other numerical methods such as finite element method and finite volume method. Basically, finite
difference method transforms the boundary-value problem, a continuous problem, into a system of linear equations, a



discrete problem, by discretizing the continuous domain into a collection of grid points, and approximating the partial
derivative of the solution locally at each grid point. The derived system of linear equations is generally sparse and can
be solved using classical linear solver algorithms [5,6], such as conjugate gradient method. Its time complexity is linear
in the number of grid points or the matrix size, and logarithmic in the inverse of solution error. Note that the number of
grid points, and therefore the matrix size, is related to the discretization error introduced by the method; thus, the time
complexity is dependent on both errors. The solution from the linear solver is the discretized solution of the differential
equation at each grid point. Generally, for practical applications, the number of grid points required are significant,
such that high-performance computing resources are required; thus, providing the motivation for further research.

Recently, with the advances of quantum computing [7], and quantum algorithms [8] in particular, there have been a surge
of research-and-development focusing on the application of these advances towards some of the most computationally
expensive problems in classical computing. These include problems in the field of condensed matter physics, nuclear
and particle physics, quantum chemistry, differential equations, combinatorial optimization, continuous optimization,
and machine learning. Solving a single problem in a particular field generally requires a combination of several quantum
algorithmic primitives to compose an overall quantum algorithm, and incorporate into it quantum error correction
and fault tolerance in order to correctly implement it on a quantum computer. In this article, we are interested in the
quantum algorithmic primitives for solving differential equations, in particular those by means of quantum linear solver
algorithms [9–22], i.e., those that transformed differential equations into a system of linear equations, such as finite
difference method. These algorithms [9–22] have been improved over the years using various different techniques, from
quantum phase estimation to quantum singular value transformation. Currently, the best known quantum linear solver
is [18] using the adiabatic theorem, whose time complexity is linear in the matrix’s condition number and logarithmic
in the inverse of solution error. Denote L |u⟩ = |f⟩ as the system of linear equations. It requires two quantum primitive
inputs: a block-encoding quantum circuit of L, and a quantum state preparation of |f⟩, and it produces a quantum state
representation of |u⟩ as an output. To take full advantage of this algorithm, five efficient quantum algorithmic primitives
are required [23]: a quantum linear solver itself, a quantum preconditioner, an encoding of L, an encoding of |f⟩, and a
decoding of quantum state representation of |u⟩. Each of these five primitives presents its own challenges, and can
depend upon the intended applications. In this article, we are tackling the third obstacle: the encoding of matrices
derived via finite difference method solving Poisson partial differential equations in boundary-value problems, with the
hope that it can play an important role in the ultimate objective of an end-to-end application of quantum computing.

Main Contributions The main contribution of this article is the block-diagonalization methodology, which describes
a common decomposition form for the matrices derived by the discretization via finite difference method of boundary-
value problems described by a Poisson partial differential equation in a hypercube domain of an arbitrary dimension,
and four different boundary conditions: periodic, Dirichlet, Neumann, and Robin, which are typical study cases in
both academic and industry. The primary benefit of this common decomposition form is that it also leads to a common
procedure for the construction of quantum circuits block-encoding each of these matrices inside a unitary operator.
Thus, avoiding the need to construct a quantum oracle which can compute the entries of the matrices given its row
and column position; such oracle is much harder to construct. Another main benefit of block-diagonalization is that
their block-encoding quantum circuits are simple. In fact, they are simple enough such that we are able to derive their
simplifications directly without using any sophisticated circuit optimization software. Moreover, the simplified quantum
circuits comprise only a few ancilla qubit, elementary quantum gates and circuits. Using existing quantum gate and
circuit implementation techniques, especially the families of classical reversible circuits including arithmetic circuits,
we are able to show that these elementary gates and circuits can be implemented in logarithmic depth in the number of
qubit. These come at the price of a constant multiplicative overhead on the number of qubits and gates. Therefore, the
implementations of our block-encoding quantum circuits also have double-logarithmic depth in the matrix size.

Unfortunately, existing quantum methods, such as the aforementioned quantum oracle, have polylogarithmic depth,
while existing classical methods have linear depth. Combine these with quantum and classical linear solver algorithms,
we find our method’s dependencies to be exponentially better than existing quantum methods, and superexponentially
better than existing classical methods in terms of matrix size, for solving our boundary-value problems. However, note
that the matrix size has a dependency in the discretization error. Assuming this error is of the same order as the solution
error of the quantum linear solver, our method is still polynomially and exponentially better than existing quantum and
classical methods, respectively. These improvements are based on the assumption that the quantum state preparation
subroutine has at most the same complexity as our block-encoding. Another caveat is that like all quantum methods, we
keep the solution as a quantum state, rather than a classical state; otherwise, most of the quantum speedup are lost.

Content Outline This article is divided into six sections. Section 1 introduces the state-of-the-art in the uses of
quantum computing for solving differential equations, by presenting the advantages of quantum computing, and
identifying the challenges of its application to this problem domain. It also describes the main contribution of the article,
outlines its structure, and reviews related works. Section 2 provides background information about the boundary-value
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problems discussed in this article. It comprises the Poisson partial differential equation, the four boundary conditions,
i.e., periodic, Dirichlet, Neumann, and Robin, and their extensions to higher dimensional problems. For each problem,
its discretization as a system of linear equations via finite difference method is presented. Section 3 presents the main
contribution of the article. It begins with a definition of a block-diagonalizable matrix, and shows that the discretized
boundary-value problems’ matrices presented in the preceding section are all block-diagonalizable, i.e., they can all be
put into a common form. Section 4 takes advantages of this common form, to construct quantum circuits which can
block-encode each of the aforementioned matrices inside a unitary operator. For each quantum circuit, a decomposition
into elementary quantum gates and circuits is also provided. Section 5 analyses the computational resources required to
construct such block-encoding quantum circuits, and the time complexity of their applications with quantum linear
solver algorithms to solve our boundary-value problems. Section 6 completes the article by reiterating the main
contribution of the article, discussing its overall impact on the quantum computing domain for solving differential
equations and beyond, and outlining some future research directions regarding the block-diagonalization methodology.

Related Works Since the inception of the first quantum linear solver algorithm, there have been several proposals
regarding their application towards finite difference method and other numerical methods in general. [24–27] are some
proposals for finite difference method and spectral method solving Poisson equations, using various quantum linear
solver algorithms, discretization schemes, and matrix encoding techniques. [28] proposes a quantum preconditioner
and demonstrates its application for finite element method, while [29] provides the first end-to-end time complexity
analysis by including the dependencies between the matrix size and the discretization error for finite element method.
Other works focus on the differential equations themselves, including wave equation [30], heat equation [31], linear and
non-linear ordinary differential equations [32–39], and non-linear partial differential equations [40–42]. And finally,
there are also works related to the block-encoding of both dense and sparse matrices with special structures [43–47].

In this work, we are particularly interested in works related to the encoding of finite difference method’s matrices of our
boundary-value problems using (1) the conventional quantum oracles [8, superexponential], capable of computing the
entries of the matrix given their row and column indices, (2) sparse matrices derived by adaptive central-difference
approximation scheme [25], and (3) sparse matrices derived by 3-points central-difference approximation scheme [27],
similar to our matrices in this article. For each of these encoding techniques, we provide analyses of these encoding
techniques, using either the prescribed quantum linear solver algorithm provided by each of the article, or the quantum
linear solver from [18] which is used in this article, to ensure fair comparisons. Other encoding techniques of finite
difference method matrices include [24, 26]; however, they can be subsumed by [25, 27] due to their similarities.

2 Preliminaries

A boundary-value problem comprises two components: a differential equation and a boundary condition. In this article,
we study a typical second-order linear partial differential equation called Poisson’s equation as given in eq. (1), and a
periodic boundary condition as given in eq. (2), where u, f : [0, 1] → R are solution and data function, respectively.

− d2

dx2
u(x) = f(x) for all x ∈ (0, 1) (1)

u(0) = u(1) (2)

Such problem can be solved numerically by finite difference method, whereby the solutions are the discretized values
of u at some particular grid points. In this article, we use uniform discretization of N grid points and define h := 1/N
as the grid size. Then, using a 3-points central-difference approximation scheme, we derive a system of linear equations
eq. (3), where (uj , fj) := (u(jh), f(jh)) for all j ∈ {0, . . . , N − 1}, are the discretized values of u and f at grid point
j, respectively. Finally, the discretized solutions uj are obtained, by solving the system of linear equations eq. (3).

1

h2



2 −1 −1
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
−1 −1 2


︸ ︷︷ ︸

Lp

·



u0

u1

u2

u3

uN−3

uN−2

uN−1


︸ ︷︷ ︸

|u⟩p

=



f0
f1
f2
f3

fN−3

fN−2

fN−1


︸ ︷︷ ︸

|f⟩p

(3)
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2.1 Boundary Conditions

Similarly, we can form different boundary-value problems by replacing the periodic boundary condition in eq. (2)
by other boundary conditions including Dirichlet, Neumann, and Robin as given in eqs. (4) to (6) respectively, with
a, b, c, d, A,B ∈ R such that the problems are stable, consistent, and thus converged to the actual solution for large
N . Their corresponding systems of linear equations are given in eqs. (7) to (9) using the same discretization grid and
approximation scheme, except in the Dirichlet case, which use N + 2 gird points and h := 1/(N + 2) grid size instead.

u(0) = a and u(1) = b (4)

u′(0) = a and u′(1) = b (5)

au(0) + bu′(0) = A and cu(1) + du′(1) = B (6)

1

h2



2 −1 0
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
0 −1 2


︸ ︷︷ ︸

LD

·



u1

u2

u3

u4

uN−2

uN−1

uN


︸ ︷︷ ︸

|u⟩D

=



f1 − a/h2

f2
f3
f4

fN−2

fN−1

fN − b/h2


︸ ︷︷ ︸

|f⟩D

(7)

1

h2



1 −1 0
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
0 −1 1


︸ ︷︷ ︸

LN

·



u0

u1

u2

u3

uN−3

uN−2

uN−1


︸ ︷︷ ︸

|u⟩N

=



−a/h
f1
f2
f3

fN−3

fN−2

b/h


︸ ︷︷ ︸

|f⟩N

(8)

1

h2



C −1 0
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
0 −1 D


︸ ︷︷ ︸

LR

·



u0

u1

u2

u3

uN−3

uN−2

uN−1


︸ ︷︷ ︸

|u⟩R

=



−A/b
f1
f2
f3

fN−3

fN−2

B/d


︸ ︷︷ ︸

|f⟩R

(9)

where
C := 1 + ah/b and D := 1 + ch/d (10)

and the subscripts p, D, N , and R stand for periodic, Dirichlet, Neumann, and Robin, respectively.

2.2 Higher Dimensions

Additionally, we can also extend the boundary-value problem to an arbitrary dimension d ∈ N, by replacing eq. (1) with
a generalized Poisson’s equation in eq. (11) where u, f : [0, 1]d → R, and imposing the same boundary condition in
each dimension. Note that we also assume that the boundary condition in each dimension is separable from each other.

Using the same discretization grid and approximation scheme in each dimension, we derive a system of linear equations
L |u⟩ = |f⟩, where |u⟩ and |f⟩ comprises the discretized values of u and f at grid point j for all j ∈ {0, . . . , N − 1}d.
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Equations (12) and (13) give the definition of L, as a function of a one-dimensional matrix L ∈ {Lp,LD,LN ,LR}.

−
d∑

k=1

∂2

∂x2
k

u(x) = f(x) for all x ∈ (0, 1)d (11)

L :=

d∑
k=1

Lk (12)

where
Lk := I

⊗(k−1)
N ⊗ L⊗ I

⊗(d−k)
N and L ∈ {Lp,LD,LN ,LR} (13)

It is also possible to have a mixed boundary condition, e.g., a Dirichlet boundary condition on one side of the boundary
in a particular dimension, and a Neumann boundary condition on the other side of the boundary in the same dimension
or a different dimension. However, the domain may become hyper-rectangular instead of the hypercube that we have.

Additionally, note that all the matrices Lp, LD, LN , LR and L are all Hermitian and positive definite, which means that
they are invertible, and their corresponding systems of linear equations have a unique solution.

3 Block-Diagonalization

The primary objective of this article is to show that the matrices Lp, LD, LN and LR which are derived using finite
difference method for some boundary-value problems, can be block-encoded inside a unitary operator with a double-
logarithmic depth O(log(log(N))) in their matrix size N . To achieve such objective, we introduce the concept of a
block-diagonalizable matrix in definition 3.1, and show that all the aforementioned matrices are block-diagonalizable.

Definition 3.1 (Block-Diagonalizable Matrix).
An N ×N matrix L is block-diagonalizable if

L =
∑

c∈{0,1}

∑
σ̂∈{I,X,Y,Z}

χσ̂ · Lc,σ̂ (14)

for some

χσ̂ ∈ R (15)

Lc,σ̂ := Pc ·Dσ̂ ·P†
c (16)

Dσ̂ := diag(α0, . . . , αN/2−1)N/2 ⊗ σ̂ (17)

Pc :=

N−1∑
i=0

|i+ c mod N⟩⟨i| (18)

where Dσ̂ and Pc are called Pauli-block-diagonal matrix and permutation matrix, respectively. ■

In summary, a block-diagonalizable matrix L can be decomposed as a linear combination of linear operators Lc,σ̂ , for
some c ∈ {0, 1} and Pauli matrix σ̂; each of which is composed of a Pauli-block-diagonal matrix Dσ̂ that is left and
right multiplied by a permutation matrix Pc and its conjugate transpose P†

c, respectively. Such a matrix decomposition
process is called block-diagonalization; from which a procedure for constructing a block-encoding matrix is derived.

This methodology is inspired by the combinatorially block-diagonal matrix definition of [48], since each of our linear
operators Lc,σ̂ is in fact a 2× 2 combinatorially block-diagonal matrix, where the permutation matrices Pc and P†

c are
the combinatorial permutations. Our block-diagonalizable matrix definition is basically a linear combination of 2× 2
combinatorially block-diagonal matrices; each of which is a tensor-product of a diagonal matrix and a Pauli matrix.

This section is divided into five subsections, which describe the block-diagonalization of Lp with periodic boundary
condition in section 3.1, LD with Dirichlet boundary condition in section 3.2, LN with Neumann boundary condition in
section 3.3, LR with Robin boundary condition in section 3.4, and L from higher dimensional problems in section 3.5.
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3.1 Periodic

We begin by decomposing Lp as a sum of two matrices L0 and L1 as shown in eq. (19).

2 −1 −1
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
−1 −1 2


︸ ︷︷ ︸

Lp

=



1 −1
−1 1

1 −1
−1 1

1 −1
−1 1


︸ ︷︷ ︸

L0

+



1 −1
1 −1

−1 1

1 −1
−1 1

−1 1


︸ ︷︷ ︸

L1

(19)

We define a 2× 2 block-diagonal matrix B as shown in eq. (20). Then, we show that it can be transformed into L0 and
L1 as in eq. (21), where P0 and P1 are permutation matrices as defined in eq. (22). As in [48], we say that L0 and L1

are 2× 2 combinatorially block-diagonal matrices, i.e., block-diagonal given some row and column rearrangements.

B :=



1 −1
−1 1

1 −1
−1 1

1 −1
−1 1


(20)

L0 = P0 ·B ·P†
0 and L1 = P1 ·B ·P†

1 (21)

P0 :=

N−1∑
i=0

|i⟩⟨i| and P1 :=

N−1∑
i=0

|i+ 1 mod N⟩⟨i| (22)

We decompose the 2× 2 block-matrix ((1,−1), (−1, 1)) as a sum of Pauli matrices I and X as in eq. (23). Substituting
that into eq. (20), we can rewrite B as the sum of two Pauli-block-diagonal matrices DI and DX as in eq. (24).(

1 −1
−1 1

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

I

−
(
0 1
1 0

)
︸ ︷︷ ︸

X

(23)

B = diag(1, . . . , 1)N/2 ⊗ I︸ ︷︷ ︸
DI

−diag(1, . . . , 1)N/2 ⊗X︸ ︷︷ ︸
DX

(24)

Finally, substituting eq. (24) into eq. (21), and again into eq. (19), we obtain a block-diagonalization of Lp in theorem 3.1.

Theorem 3.1 (Block-Diagonalization, Periodic).

Lp =
∑

c∈{0,1}

∑
σ̂∈{I,X}

χσ̂ · Lc,σ̂ (25)

where

χσ̂ :=

{
1, σ̂ = I

−1, σ̂ = X
(26)

Lc,σ̂ := Pc ·Dσ̂ ·P†
c (27)

Dσ̂ := diag(1, . . . , 1)N/2 ⊗ σ̂ (28)
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Pc :=

N−1∑
i=0

|i+ c mod N⟩⟨i| (29)

■

3.2 Dirichlet

The following derives block-diagonalization of LD as in theorem 3.2, using similar procedures as those of the periodic
case. However, instead of defining a single 2×2 block-diagonal matrix B, we use two such matrices B0 and B1 instead.
Additionally, one of the 2× 2 block matrices ((1, 0), (0, 1)) is different, and also has a different Pauli decomposition.

2 −1 0
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
0 −1 2


︸ ︷︷ ︸

LD

=



1 −1
−1 1

1 −1
−1 1

1 −1
−1 1


︸ ︷︷ ︸

L0

+



1 0
1 −1

−1 1

1 −1
−1 1

0 1


︸ ︷︷ ︸

L1

(30)

B0 :=



1 −1
−1 1

1 −1
−1 1

1 −1
−1 1


B1 :=



1 −1
−1 1

1 −1
−1 1

1 0
0 1


(31)

L0 = P0 ·B0 ·P†
0 and L1 = P1 ·B1 ·P†

1 (32)

B0 = diag(1, . . . , 1, 1)N/2 ⊗ I︸ ︷︷ ︸
D0,I

−diag(1, . . . , 1, 1)N/2 ⊗X︸ ︷︷ ︸
D0,X

B1 = diag(1, . . . , 1, 1)N/2 ⊗ I︸ ︷︷ ︸
D1,I

−diag(1, . . . , 1, 0)N/2 ⊗X︸ ︷︷ ︸
D1,X

(33)

Theorem 3.2 (Block-Diagonalization, Dirichlet).

LD =
∑

c∈{0,1}

∑
σ̂∈{I,X}

χσ̂ · Lc,σ̂ (34)

where

Lc,σ̂ := Pc ·Dc,σ̂ ·P†
c (35)

Dc,σ̂ :=

{
diag(1, . . . , 1, 1)N/2 ⊗ σ̂, (c, σ̂) ̸= (1,X)

diag(1, . . . , 1, 0)N/2 ⊗ σ̂, (c, σ̂) = (1,X)
(36)

■

3.3 Neumann

The following derives block-diagonalization of LN as in theorem 3.3, using similar procedures as those of the periodic
case. However, instead of defining a single 2×2 block-diagonal matrix B, we use two such matrices B0 and B1 instead.
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Additionally, one of the 2× 2 block matrix ((0, 0), (0, 0)) is different, and also has a different Pauli decomposition.

1 −1 0
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
0 −1 1


︸ ︷︷ ︸

LN

=



1 −1
−1 1

1 −1
−1 1

1 −1
−1 1


︸ ︷︷ ︸

L0

+



0 0
1 −1

−1 1

1 −1
−1 1

0 0


︸ ︷︷ ︸

L1

(37)

B0 :=



1 −1
−1 1

1 −1
−1 1

1 −1
−1 1


B1 :=



1 −1
−1 1

1 −1
−1 1

0 0
0 0


(38)

L0 = P0 ·B0 ·P†
0 and L1 = P1 ·B1 ·P†

1 (39)

B0 = diag(1, . . . , 1, 1)N/2 ⊗ I︸ ︷︷ ︸
D0,I

−diag(1, . . . , 1, 1)N/2 ⊗X︸ ︷︷ ︸
D0,X

B1 = diag(1, . . . , 1, 0)N/2 ⊗ I︸ ︷︷ ︸
D1,I

−diag(1, . . . , 1, 0)N/2 ⊗X︸ ︷︷ ︸
D1,X

(40)

Theorem 3.3 (Block-Diagonalization, Neumann).

LD =
∑

c∈{0,1}

∑
σ̂∈{I,X}

χσ̂ · Lc,σ̂ (41)

where

Lc,σ̂ := Pc ·Dc,σ̂ ·P†
c (42)

Dc,σ̂ :=

{
diag(1, . . . , 1, 1)N/2 ⊗ σ̂, c = 0

diag(1, . . . , 1, 0)N/2 ⊗ σ̂, c = 1
(43)

■

3.4 Robin

The following derives block-diagonalization of LR as in theorem 3.4, using similar procedures as those of the periodic
case. However, instead of defining a single 2×2 block-diagonal matrix B, we use two such matrices B0 and B1 instead.
Additionally, two of the 2× 2 block matrices are different, and thus have different Pauli decompositions, as in eq. (48).

C −1 0
−1 2 −1

−1 2

2 −1
−1 2 −1

−1 2 −1
0 −1 D


︸ ︷︷ ︸

LR

=



1 −1
−1 1

1 −1
−1 1

2 −1
−1 D′


︸ ︷︷ ︸

L0

+



C ′ 0
1 −1

−1 1

1 −1
−1 1

0 1


︸ ︷︷ ︸

L1

(44)
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where
C ′ := C − 1 and D′ := D − 1 (45)

B0 :=



1 −1
−1 1

1 −1
−1 1

1 −1
−1 D′


B1 :=



1 −1
−1 1

1 −1
−1 1

1 0
0 C ′


(46)

L0 = P0 ·B0 ·P†
0 and L1 = P1 ·B1 ·P†

1 (47)

(
1 −1

−1 D′

)
=

D

2

(
1 0
0 1

)
︸ ︷︷ ︸

I

+

(
1− D

2

)(
1 0
0 −1

)
︸ ︷︷ ︸

Z

−
(
0 1
1 0

)
︸ ︷︷ ︸

X(
1 0
0 C ′

)
=

C

2

(
1 0
0 1

)
︸ ︷︷ ︸

I

+

(
1− C

2

)(
1 0
0 −1

)
︸ ︷︷ ︸

Z

(48)

B0 = diag(1, . . . , 1,
D

2
)N/2 ⊗ I︸ ︷︷ ︸

D0,I

+diag(0, . . . , 0, 1− D

2
)N/2 ⊗ Z︸ ︷︷ ︸

D0,Z

−diag(1, . . . , 1, 1)N/2 ⊗X︸ ︷︷ ︸
D0,X

B1 = diag(1, . . . , 1,
C

2
)N/2 ⊗ I︸ ︷︷ ︸

D1,I

+diag(0, . . . , 0, 1− C

2
)N/2 ⊗ Z︸ ︷︷ ︸

D1,Z

−diag(1, . . . , 1, 0)N/2 ⊗X︸ ︷︷ ︸
D1,X

(49)

Theorem 3.4 (Block-Diagonalization, Robin).

LR =
∑

c∈{0,1}

∑
σ̂∈{I,X,Z}

χσ̂ · Lc,σ̂ (50)

where

χσ̂ :=

{
1, σ̂ ∈ {I,Z}

−1, σ̂ = X
(51)

Lc,σ̂ := Pc ·Dc,σ̂ ·P†
c (52)

Dc,σ̂ :=



diag(1, . . . , 1, D/2)⊗ σ̂, (c, σ̂) = (0, I)

diag(1, . . . , 1, C/2)⊗ σ̂, (c, σ̂) = (1, I)

diag(0, . . . , 0, 1−D/2)⊗ σ̂, (c, σ̂) = (0,Z)

diag(0, . . . , 0, 1− C/2)⊗ σ̂, (c, σ̂) = (1,Z)

diag(1, . . . , 1, 1)⊗ σ̂, (c, σ̂) = (0,X)

diag(1, . . . , 1, 0)⊗ σ̂, (c, σ̂) = (1,X)

(53)

■

3.5 Higher Dimensions

For higher dimensional problems, L is strictly speaking not block-diagonalizable by definition 3.1. However, L which is
a dependency of L is block-diagonalizable, as in theorems 3.1 to 3.4. Therefore, we substitute its block-diagonalization
into eq. (13), then into eq. (12), and called the resulting form a block-diagonalization of L, by abuse of definition.
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4 Block-Encoding

With Lp, LD, LN , LR and L in block-diagonalization forms as in theorems 3.1 to 3.4 and section 3.5, we are ready to
construct their respective block-encoding unitary operators using these forms. Several variations of block-encoding
definition exist in the literature. In this article, we define block-encoding as in definition 4.1, where L(H⊗n) is a space
of linear operator mapping a Hilbert space H⊗n := (C2)⊗n onto itself, for some n ∈ N. By isomorphism and abuse of
notation, we say that all the aforementioned N ×N matrices are also linear operators of L(H⊗n), where n := log(N).

Definition 4.1 (Block-Encoding).
A unitary operator L̄ ∈ L(H⊗n+m) is a block-encoding of L ∈ L(H⊗n), if there exists η ∈ R+ such that

L = η ·Π · L̄ ·Π† where Π := ⟨0|⊗m ⊗ I⊗n (54)

More succinctly, we say that L̄ block-encode L/η as its upper-left block-matrix as in

L̄ :=

( Π Π̃
Π† L/η ·
Π̃† · ·

)
(55)

where Π̃ is a projection operator, which is orthogonal complement to Π. ■

In this work, all the block-encoding contain an exact subnormalized matrix L/η, rather than an approximation by some
precision error ε. Moreover, all the matrices are not only square, but also Hermitian and positive definite. And finally,
they can all be decomposed as a linear combination of unitary (LCU) operators with efficient implementations, which
become evident later. Therefore, the majority of block-encodings used in this article is via LCU technique as in [11].

This section is also divided into five subsections, which describe the block-encoding of Lp with periodic boundary
condition in section 3.1, LD with Dirichlet boundary condition in section 4.2, LN with Neumann boundary condition in
section 4.3, LR with Robin boundary condition in section 4.4, and L from higher dimensional problems in section 4.5.

4.1 Periodic

We begin by rewriting each linear operator Lc,σ̂ from eq. (27), in terms of elementary quantum gates and circuits, as in
eq. (56), where ADD1 is a modulo-2n incrementation operation, which is one of the quantum arithmetic operations.

L0,I = L1,I = I⊗n, L0,X = I⊗n−1 ⊗X

L1,X = ADD1 ·
(
I⊗n−1 ⊗X

)
·ADD1†

ADD1 :=

2n−1∑
i=0

|i+ 1 mod 2n⟩⟨i|
(56)

Since each Lc,σ̂ is a unitary operator, we can directly represent it using quantum circuit notation as in eq. (57). Then,
we construct a unitary operator L̄p as in eq. (58), which block-encode Lp/4 via LCU technique using 2 ancilla qubits.
Equation (59) provides a simplified version of eq. (58), in terms of elementary quantum gates and quantum circuits.

L0,I := L1,I :=

u

wwwwwwww
v

···

n n

}

��������
~

, L0,X :=

u

wwwwwwww
v

···

X

n n

}

��������
~

, L1,X :=

u

wwwwwwww
v

···

X

A
D
D
1
†

A
D
D
1

n n

}

��������
~

(57)

L̄p :=

u

wwwww
v

H H

H H

+L0,I −L0,X +L1,I −L1,X|
n

|
n

}

�����
~

(58)
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L̄p =

u

wwwwwwwwwwwwwwww
v

H X X H

H Z H

··· ··· ··· ···

A
D
D
1
†

A
D
D
1

n n

}

����������������
~

(59)

4.2 Dirichlet

The following block-encodes LD using similar procedures to those of the periodic case. However, not all Lc,σ̂ terms
from eq. (35) are unitary operators as in periodic case. Hence, an additional ancilla qubit is required to block-encode
such term via LCU technique, while unitary terms can be block-encoded trivially via a single ancilla qubit concatenation.
The unitary operator which block-encodes each Lc,σ̂ is denoted L̄c,σ̂ to differentiate between the two operators.

L0,I = L1,I = I⊗n, L0,X = I⊗n−1 ⊗X

L1,X = ADD1 ·
((

1

2
· I⊗n−1 +

1

2
·Cn−2Z

)
⊗X

)
·ADD1† (60)

L̄0,I := L̄1,I :=

u

wwwwwwwwwwww
v

···

n n

}

������������
~

, L̄0,X :=

u

wwwwwwwwwwww
v

···

X

n n

}

������������
~

, L̄1,X :=

u

wwwwwwwwwwww
v

H H

···
X

A
D
D
1
†

A
D
D
1

n n

}

������������
~

(61)

L̄D :=

u

wwwww
v

H H

H H

+L̄0,I −L̄0,X +L̄1,I −L̄1,X|
n+1

|
n+1

}

�����
~

(62)

L̄D =

u

wwwwwwwwwwwwwwwwwwww
v

H X X H

H Z H

H H

··· ··· ··· ··· ···

A
D
D
1
†

A
D
D
1

n n

}

��������������������
~

(63)
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4.3 Neumann

The following block-encodes LN using similar procedures to those of the periodic case. However, not all Lc,σ̂ terms
from eq. (42) are unitary operators as in periodic case. Hence, an additional ancilla qubit is required to block-encode
such term via LCU technique, while unitary terms can be block-encoded trivially via a single ancilla qubit concatenation.
The unitary operator which block-encodes each Lc,σ̂ is denoted L̄c,σ̂ to differentiate between the two operators.

L0,I = I⊗n, L0,X = I⊗n−1 ⊗X

L1,I = ADD1 ·
((

1

2
· I⊗n−1 +

1

2
·Cn−2Z

)
⊗ I

)
·ADD1†

L1,X = ADD1 ·
((

1

2
· I⊗n−1 +

1

2
·Cn−2Z

)
⊗X

)
·ADD1†

(64)

L̄0,I :=

u

wwwwwwwwwwww
v

···

n n

}

������������
~

, L̄0,X :=

u

wwwwwwwwwwww
v

···

X

n n

}

������������
~

L̄1,I :=

u

wwwwwwwwwwww
v

H H

···

A
D
D
1
†

A
D
D
1

n n

}

������������
~

, L̄1,X :=

u

wwwwwwwwwwww
v

H H

···

X

A
D
D
1
†

A
D
D
1

n n

}

������������
~

(65)

L̄N :=

u

wwwww
v

H H

H H

+L̄0,I −L̄0,X +L̄1,I −L̄1,X|
n+1

|
n+1

}

�����
~

(66)

L̄N =

u

wwwwwwwwwwwwwwwwwwww
v

H X X H

H Z H

H H

··· ··· ··· ··· ···

A
D
D
1
†

A
D
D
1

n n

}

��������������������
~

(67)
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4.4 Robin

The following block-encodes LR using similar procedures to those of the periodic case. However, not all Lc,σ̂ terms
from eq. (52) are unitary operators as in periodic case. Hence, an additional ancilla qubit is required to block-encode
such term via LCU technique, while unitary terms can be block-encoded trivially via a single ancilla qubit concatenation.
The unitary operator which block-encodes each Lc,σ̂ is denoted L̄c,σ̂ to differentiate between the two operators.

L0,I =

(
1

2
(1 +

D

2
) · I⊗n−1 +

1

2
(1− D

2
) ·Cn−2Z

)
⊗ I

L0,Z =

(
1

2
(1− D

2
) · I⊗n−1 − 1

2
(1− D

2
) ·Cn−2Z

)
⊗ Z

L0,X = I⊗n−1 ⊗X

L1,I = ADD1 ·
((

1

2
(1 +

C

2
) · I⊗n−1 +

1

2
(1− C

2
) ·Cn−2Z

)
⊗ I

)
·ADD1†

L1,Z = ADD1 ·
((

1

2
(1− C

2
) · I⊗n−1 − 1

2
(1− C

2
) ·Cn−2Z

)
⊗ Z

)
·ADD1†

L1,X = ADD1 ·
((

1

2
· I⊗n−1 +

1

2
·Cn−2Z

)
⊗X

)
·ADD1†

(68)

L̄0,I :=

u

wwwwwwwwwwww
v

+θD −θD

··· ··· ···

n n

}

������������
~

, L̄1,I :=

u

wwwwwwwwwwww
v

+θC −θC

···

A
D
D
1
†

A
D
D
1

n n

}

������������
~

,

L̄0,Z :=

u

wwwwwwwwwwww
v

H Z H

··· ··· ··· ···

Z

n n

}

������������
~

, L̄1,Z :=

u

wwwwwwwwwwww
v

H Z H

··· ···

Z

A
D
D
1
†

A
D
D
1

n n

}

������������
~

,

L̄0,X :=

u

wwwwwwwwwwww
v

···

X

n n

}

������������
~

, L̄1,X :=

u

wwwwwwwwwwww
v

H H

···

X

A
D
D
1
†

A
D
D
1

n n

}

������������
~

, 0̄ :=

u

wwwwwwwwwwww
v

X

···

n n

}

������������
~

(69)

where

RY (θ) :=

s
θ

{
, θD := 2 · arccos

(√
1

2
(1 +

D

2
)

)
and θC := 2 · arccos

(√
1

2
(1 +

C

2
)

)
(70)
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L̄R :=

u

wwwwwwwwwwww
v

φD φC

H H

H H

H H

+L̄0,I +L̄0,Z +0̄ −L̄0,X +L̄1,I +L̄1,Z +0̄ −L̄1,X|
n+1

|
n+1

}

������������
~

(71)

where

φD := 2 · arccos
(
1− D

2

)
and φC := 2 · arccos

(
1− C

2

)
(72)

L̄R =

u

wwwwwwwwwwwwwwwwwwwwwwwwwww
v

−φD/2 +φD/2 ···

H X ···

H X X ···

H X X ···

+θD −θD H ···

···

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···

···

···

n

··· −φC/2 +φC/2

··· X H

··· X X X X H

··· X X H

··· H +θC −θC

···

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···

···

···

A
D
D
1
†

A
D
D
1

n

}

���������������������������
~

(73)

One caveat regarding the Robin boundary condition in comparison to previous cases, is that the number of Lc,σ̂ terms is
6 rather than 4, which is not a power of 2. To circumvent this issue, we construct a block-encoding of a zero operator 0,
denoted 0̄ in eq. (69), and think of LR as a linear combination of 8 terms: six Lc,σ̂ and two 0 terms of coefficient 1.

Another caveat is that the block-encoding quantum circuits of L0,I, L0,Z and L1,I, L1,Z can change, depending on the
values of D and C, respectively. In this work, we choose D,C ∈ [0, 2) so that the coefficients 1±D/2 and 1±C/2 are
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positive. This leads to block-encodings with subnormalization constant 1 for L0,I, L1,I, and 1−D/2 and 1− C/2 for
L0,Z and L1,Z, respectively. Conventionally, to further block-encode L0,Z and L1,Z as a linear combination terms of
LR with coefficient 1 as in eq. (50), we need a quantum state preparation subroutine that encode 1−D/2 and 1−C/2.
In this work, we keep the previous uniform quantum state preparation, and instead use controlled-RY gates to encode
1−D/2 and 1− C/2 on another ancilla, as in eq. (71). This results in a quantum circuit L̄R block-encoding LR/8. A
similar block-encoding can be constructed for other D,C values, using at most a constant number of additional gates.

4.5 Higher Dimensions

For higher-dimensional cases, i.e., d > 1, we provide two alternative block-encoding schemes. The first scheme is given
by a unitary operator L̄ as in eq. (74). It block-enocdes L/d via LCU technique using ⌈log(d)⌉ additional ancilla qubits.
The original O(1) ancilla qubits used by block-encoding L̄1, . . . , L̄d can be shared together. In case that log(d) ̸∈ N,
we need to construct additional block-encodings of a zero operator 0 for the remaining controls, as in the Robin case.

L̄ :=

u

wwwwwwwwwwwwwwwwwwwwww
v

H ··· H

··· ··· ··· ··· ··· ···

H ··· H

L̄1 ···

L̄2 ···

··· ··· ··· ··· ··· ···
··· L̄d

⌈log(d)⌉ ⌈log(d)⌉

d

|
O(n)

|
O(n)

d

|
O(n)

|
O(n)

|
O(n)

|
O(n)

}

����������������������
~

(74)

The second scheme is given by a unitary operator L̄′ as in eq. (75). It block-encodes L/d via LCU technique using
⌈log(d)⌉+ d additional ancilla qubits. Unlike previous scheme, the original O(1) ancilla qubits from block-encodings
L̄1, . . . , L̄d cannot be shared together. Therefore, the total number of ancillae is ⌈log(n)⌉+O(d). In case log(d) ̸∈ N,
additional block-encodings of a zero operator 0 can be similarly added, as in the previous scheme and the Robin case.

L̄′ :=

u

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
v

H ··· H

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···

H ··· H

···

···

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···

···

L̄1 ···

L̄2 ···

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···

··· L̄d

⌈log(d)⌉ ⌈log(d)⌉

d d

d

|
O(n)

|
O(n)

d

|
O(n)

|
O(n)

|
O(n)

|
O(n)

}

��������������������������������������
~

(75)
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5 Analyses

This section is divided into two parts. Section 5.1 analyses the computational resources, which include the number of
ancilla qubits, gate count, and gate depth, required for the block-encoding quantum circuit of our block-diagonalization
method. Section 5.2 analyses the time complexity for solving boundary-value problems, by utilizing the block-encoding
quantum circuits and quantum linear solver algorithms to prepare the quantum state representation of the solution.

5.1 Block-Encoding

Table 1a shows the computational resources required for the block-encoding quantum circuits L̄p, L̄D, L̄N and L̄R,
respectively. These resources include the number of ancilla qubits, quantum gates, and quantum circuits. For brevity,
we count ADD1† as the same quantum circuit as ADD1. Table 1b provides the description of each quantum gate. As
observed, the computational complexities are dominated by quantum gate CO(n)σ̂ and quantum circuit ADD1, whose
complexities depend on the number of qubit n := log(N) and their implementations in terms of simple quantum gates.

Single-Qubit Gates Multiple-Qubit Gates

Ancillae H σ̂ Rσ̂ CO(1)σ̂ CO(n)σ̂ ADD1

Periodic L̄p 2 4 3 0 2 0 2

Dirichlet L̄D 3 6 3 0 2 1 2

Neumann L̄N 3 6 3 0 2 1 2

Robin L̄R 5 8 12 8 11 4 2

(a) Ancilla qubit, quantum gates, and quantum circuits count

Gate Description
H Hadamard Gate

σ̂ Pauli-σ̂ Gate

Rσ̂ Pauli-σ̂ Rotation Gate

CO(1)σ̂ O(1)-Controlled Pauli-σ̂ Gate

CO(n)σ̂ O(n)-Controlled Pauli-σ̂ Gate

(b) Quantum gates description

Table 1: Computational resources required for the block-encoding quantum circuits L̄p, L̄D, L̄N and L̄R

Tables 2a and 2b show the computational resource required to implement quantum gate CO(n)σ̂ and quantum circuit
ADD1, respectively. Because these implementations consist solely of classical reversible gates, they are given by the
depth and count of Toffoli gate used; note that, the depth and count of smaller gates cannot exceed those of Toffoli gate.

We present two implementations of CO(n)σ̂. The first implementation [14] has O(n) depth and count. This is achieved
by borrowing one qubit which is not part of the quantum gate from the circuit, and thus does not require any additional
ancilla qubit. Unfortunately, the second implementation [49] does not provide their complexities. However, our analysis,
denoted by * in table 2a, suggests that they have O(log(n)) depth and O(n) count, using some O(n) additional ancillae.

For ADD1, we present 8 alternative implementations. The first [14] once again has O(n) depth and count, and intro-
duce no additional ancilla qubit by borrowing one existing qubit from the circuit. The rest [50–55] are implementations
of quantum addition circuit, which are specialized as a quantum modulo incrementation circuit instead. Unfortunately,
except [50], the complexities are given for addition instead of modular incrementation. We denote this by * in table 2b.
They have O(log(n)) depth, and O(n) or O(n log(n)) count, using O(n), O(n log(n)), or O(n/ log(n)) ancillae. The
best overall implementations are [50, 53, 54], whose complexities are O(log(n)) depth, O(n) count, and O(n) ancillae.

Substituting n by log(N), we can achieve a double-logarithmic depth O(log(log(N))) and a logarithmic O(log(N))
size implementation of our block-encoding quantum circuit, using implementations [49, 50, 53, 54] and O(log(N))
ancilla qubits. Together with the original qubits, the total number of qubits is c log(N) +O(1) for some c ≤ 12.
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References Additional
Ancillae

Toffoli
Depth

Toffoli
Count

[14] 0 O(n) O(n)

[49]* O(n) O(log(n)) O(n)

(a) CO(n)σ̂

References Additional Ancillae Toffoli Depth Toffoli Count
[14] 0 O(n) O(n)

[50] 2n− 2 log(n) 2 log(n) + 1 5n− 6 log(n)− 3

[51]* 3n/ log(n) + n 30 log(n) 28n

[52]* 3n/ log(n) + n 18 log(n) 7n

[53]* 6n− log(n) +O(1) 4 log(n) +O(1) 8n− 3 log(n) +O(1)

[54]* 12n− 6 log(n) +O(1) 4 log(n) +O(1) 13n− 6 log(n) +O(1)

[55]* n log(n) + n+ log(n) + 2 2 log(n) + 1 1.5n log(n)− n− 6 log(n)

[55]* n log(n) + n+ log(n) + 2 log(n) + 1 0.5n log(n)

(b) ADD1

Table 2: Computational resources required for the implementation of CO(n)σ̂ and ADD1

Table 3 shows the circuit depth, size, and number of ancillae of the block-encoding L̄ and L̄′ in higher dimensional
cases. Both have roughly the same number of gate. However, L̄′ has lower depth and requires more ancilla qubits.

Total Ancillae Toffoli Depth Toffoli Count

Higher Dimensions L̄ O(log(d)) O(d log(log(N))) O(d log(dN))

Higher Dimensions L̄′ O(d+ log(dN)) O(d+ log(log(N))) O(d log(dN))

Table 3: Computational resources required for the block-encoding quantum circuit L̄ and L̄′

5.2 Boundary-Value Problems

With our block-encoding quantum circuits, we are ready to solve our boundary-value problems. This is achieved by
solving a system of linear equations L |u⟩ = |f⟩ via quantum linear solver algorithms [9–22]. In this article, we use the
quantum linear solver from [18], which at present has the best time complexity. It requires two quantum oracles: one
block-encoding L, and one preparing a quantum state encoding of |f⟩. It produces a quantum state encoding of L−1 |f⟩
to within ϵ error, using O(κ log(1/ϵ)) calls to both oracles, where the condition number κ := ||L−1|| and ||L|| = 1.

Table 4 shows the time complexities of quantum linear solver [18], when applied to our boundary-value problems using
our block-diagonalization block-encoding L̄ and L̄′. We compare our analyses against those of classical linear solvers,
i.e., the conjugate gradient method [5, 6], and quantum linear solvers using other matrix encoding methods [8, 25, 27].

Basically, [8, §7 solving differential equations] refers to the conventional quantum oracle which computes the entries
of the matrix given the row and column index, which we use together with quantum linear solver [18]. While, [25]
refers to the adaptive finite difference method, with quantum linear solver [10]. And, [27] refers to the block-encoding
technique using matrix decomposition similar to our block-diagonalization, with quantum linear solver [18]. There are
also several other quantum methods [24, 26] as well; however, their techniques are similar to the aforementioned.

Table 4a shows the time complexities with dependencies in κ the matrix’s condition number, the number of grid point in
one-dimension N , the dimension d, and the linear solver’s solution error ϵ. The primary observation is the dependency
in N , where our method is exponentially better than existing quantum methods [8, 25, 27] and superexponentially better
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than classical method [5, 6]. For other dependencies, the classical method is quadratically better than all quantum
methods in κ, the quantum method [25] is polynomially worse than others in d, and dependency in ϵ is the same for all.

Table 4b shows the time complexities with dependencies in d, α, δ, ϵ, where δ is the grid discretization error of the
domain [0, 1]d, and α = 0.5 represents a second-order approximation of the 3-points central difference approximation
scheme. They are derived by substituting κ = O(d) and N = h−1 = O((1/δ)αd) into the complexities of table 4a.

The primary dependency is δ, where our methods are exponentially better than existing quantum methods [8, 25, 27],
and superexponentially better than existing classical methods [5, 6]. The classical method is polynomially better than
other methods by a small degree in d. Our methods are exponentially better in α and slightly better in d than other
quantum methods. The dependency in ϵ is once again the same for all. In the end-to-end analysis, we take δ = O(ϵ) [8],
i.e., we assume that both errors are of the same order; in which case, our dependencies in 1/ϵ are still polynomially
better than [25], almost quadratically better than [27], and exponentially better than existing classical methods [5, 6].

Despite the quantum advantages, there are several caveats in these analyses. First, we assume there exists a quantum
state preparation of |f⟩ with at worst O(log(log(N))) time complexity. As far as we know, except for some trivial cases,
such quantum subroutine does not exist for general |f⟩ [8]. Secondly, we produce the quantum state representation
of |u⟩, rather than the classical state representation, which requires quantum state tomography with O(N) or O(

√
N)

multiplicative overhead [8]. Similarly, estimating a linear functional of |u⟩ to within ϵ error, requires quantum amplitude
estimation with O(||u||/ϵ) multiplicative overhead [8]. In either case, any gained quantum speedup diminishes.

References Dependencies in κ,N, d, ϵ

Classical [5, 6] O(
√
κdNd log(1/ϵ))

Quantum [8, 25, 27] O(κpoly(d, log(N)) log(1/ϵ))

Block-Diagonalization L̄ O(κd log(log(N)) log(1/ϵ))

Block-Diagonalization L̄′ O(κ log(log(N)) log(1/ϵ) + κd log(1/ϵ))

(a) κ,N, d, ϵ

References Dependencies in d, α, δ, ϵ

Classical [5, 6] O(d1.5(1/δ)αd log(1/ϵ))

Quantum [8, 25, 27] O(dpoly(αd, log(1/δ)) log(1/ϵ))

Block-Diagonalization L̄ O(d2 log(αd log(1/δ)) log(1/ϵ))

Block-Diagonalization L̄′ O(d log(αd log(1/δ)) log(1/ϵ) + d2 log(1/ϵ))

(b) d, α, δ, ϵ

Table 4: Time complexity of boundary-value problems solved using classical and quantum linear solver algorithms

6 Discussion

Solving differential equations is one of the primary applications of quantum computing; however, in spite of great
advances towards a practical realization of an end-to-end application, several critical obstacles still remain. In this
work, we address one of these obstacles, namely the encoding of the matrices representing the discretized forms of a
Poisson partial differential equation within a quantum computer as quantum circuits. More specifically, this equation
is given within the setting of boundary-value problems with hypercube domains and a number of different boundary
conditions, i.e., periodic, Dirichlet, Neumann, and Robin, while the matrices are derived via finite difference method.
The primary contribution of our work is the block-diagonalization methodology. It provides a common decomposition
form for all our matrices, whereby a common procedure for constructing quantum circuits, each of which encoding one
of our matrices via the block-encoding technique. Additionally, a simplification of these quantum circuits in terms of
elementary quantum gates and circuits can be trivially derived without the use of a sophisticated circuit optimization
software, which shows the level of simplicities of these circuits. From the analyses and existing implementation
techniques, we show that the computational resources required to construct each of these circuits are very efficient in
terms of matrix size. Particularly, in conjunction with quantum linear solver algorithm, we can produce a quantum state
solution of our boundary-value problems in time complexity double-logarithmic in the matrix size, using no more than
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a constant multiplicative overhead on the number of qubits and the number of gates. This represents an exponential and
a superexponential improvement over existing quantum and classical methods, respectively. In terms of the inverse of
solution error, it is at least polynomially and exponentially better than quantum and classical methods, respectively.

Our work represents an important step towards a practical realization of the uses of quantum computing for solving
differential equations, by tackling one of the major obstacles in achieving this goal. We show that our methodology
improves upon the existing methods in the literature, in terms of time complexity. In fact, as far as we know, this
is the first method, which shows a double-logarithmic time complexity in the problem of encoding matrices from
finite difference method. Several existing works are shown to have similar matrix decompositions or quantum circuits;
however, our analyses are the first to show that a quantum circuit with a double-logarithmic depth in terms of matrix
size, can be implemented with a small overhead in the number of ancilla qubits. Finally, this is but a first step for
block-diagonalization methodology. We believe that it has the potential to be extended towards more complicated
problems, or at least inspire a similar methodology to be developed, catering towards the specificities and complexities
of each problem. These problems are not limited to solving differential equations; they can also include other quantum
computing applications such as physics, chemistry, machine learning, continuous and combinatorial optimization.

The followings are the primary directions of future works, which are related to our block-diagonalization methodology.

Finite Difference Method The first obvious extension of block-diagonalization is to study its applications towards
more complicated discretization schemes, or boundary-value problems, within the framework of finite difference
method. For instance, it would be interesting to see whether it is possible to derive the block-diagonalization form for
other discretization schemes, especially for higher-order schemes; or whether such derived forms, if found, also lead to
a double-logarithmic depth quantum circuit implementation. Another interesting extension is for more complicated
domains and domain boundaries, because the structure of their corresponding matrices are not as simple as those of
hypercube domains, where we are able to derive the block-diagonalization form quite easily. And, the most important
extensions are towards more complicated equations, including elliptic equations, hyperbolic equations, parabolic
equations, and non-linear ordinary and partial differential equations, which are generally more difficult to solve.

General Numerical Methods Another line of extensions is towards other numerical methods for solving differential
equations, such as finite element method, finite volume method, and spectral method. All these methods have a long
history, and are developed to compensate for the weaknesses of finite difference method; for instance, for problems
with domains of complex geometries. However, the majority of them results in a system of linear equations much like
finite difference method, albeit one with a completely different structure. Then, the question is again whether it is also
possible to derive a similar decomposition as block-diagonalization of these matrices, or whether such decomposition
has a double-logarithmic depth implementation. Generally, these matrices are more complicated than those of finite
difference method, especially their higher dimensional extensions. Together, they represent the majority of use cases in
all the science and engineering fields; thus, their studies would greatly benefit a significant number of applications.

Solving Differential Equations Rather than extending the methodology towards other use cases, it is also imperative
to study other quantum computing problems that can greatly aid in the practical realization of a complete end-to-end
application of quantum algorithms towards solving differential equations. As pointed out several times throughout this
article, the encoding of problem matrices is but one of the major obstacle towards this goal. For instance, to achieve an
end-to-end double-logarithmic time complexity, we also need a quantum state preparation with a double-logarithmic
depth in the matrix size, or a quantum linear solver algorithm with a double-logarithmic depth in the inverse of solution
error. Similarly, the study of a quantum preconditioner would also greatly benefit the quantum linear solver algorithm.
However, the most difficult challenge, we believe, is the measurement of the quantum state solution to obtain either
the classical state solution or one of its properties, which has a linear depth in either the matrix size or the inverse of
solution error. Together, they represent the primary obstacles towards a complete end-to-end practical realization.
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