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Abstract: We present numerical simulations of the impact of laser beam wavefront aberrations in
cold atom interferometers. We demonstrate that to reach accuracy at the mrad level, simulations
cannot be based on a description of the retroreflection optics only with low-order Zernike
polynomials, as the results will then depend on the decomposition order and the decomposition
technique chosen. Moreover, simulations with high-order Zernike polynomials or equivalently
high spatial frequency components require the propagation of aberrations to be taken into account,
rather than adding them to the ideally propagated beam. Finally, we examine the impact of
the parameters of the atomic source and show that the use of delta-kicked atomic cloud would
efficiently mitigate the impact of this systematic effect.

1. Introduction

Since the first realizations of a gyroscope [1] and a gravimeter [2] with atom interferometers,
significant research efforts have been made to tailor these sensors for a variety of applications [3],
and to improve both their sensitivity and accuracy [4]. Atomic interferometers allow to measure
inertial quantities such as accelerations, like gravity, gravity gradients, and rotations, in laboratory
setups [1, 2, 5–7], on dynamic platforms [8, 9] or on field [10, 11]. They allow for performing
ultrasensitive tests of fundamental physics [12,13] on the ground, and first cold atom experiments
in space [14–16] are paving the way for ambitious missions operating these sensors onboard
satellites [17–19].

Matter-wave interferometers consist in a series of coherent light pulses, separated by free
evolution time, which split, deflect and finally recombine the atomic wavepackets. At each
light-matter interaction, the phase of the light field is imprinted on the wavepacket. As times
and laser frequencies are well defined, so does the scale factor of the interferometric phase. In
addition, many of the systematic effects can be theoretically modeled and then suppressed thanks
to sequences of measurements [5]. Among the remaining systematics, one of the most difficult
to precisely evaluate is the one related to the wavefront aberrations of the lasers [4], which
perturb the laser phases imprinted at the time of the pulses, depending on the position of the
wavepacket in the light field, [5] and modify the trajectories of the atoms [20,21]. The phase shift
resulting from wavefront aberrations has been studied through different approaches in existing
apparatus. For instance, the size of the detection [22] or the size of the Raman beams [20,21,23]
have been modulated, as well as the temperature of the atomic cloud [24]. Moreover, it has
been demonstrated that the bias caused by the introduction of a characterized optics could be
either simulated and retrieved from the measured value [22] or corrected thanks to a deformable
mirror [25]. This systematic effect will also be the subject of future studies for specifications in
the context of state-of-the-art atom interferometers aboard space missions [17, 18].

In this paper, we demonstrate that to accurately calculate the phase bias to better than the
mrad level, we cannot restrict the description of retro-reflecting optics to low order Zernike
polynomials [26]. In addition, we show that considering aberrations described by high Zernike
orders, or equivalently with high spatial frequencies, imposes to take their propagation into
account. We apply these results to the concrete case of a gravimeter experiment [5] with
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characterized, high-quality retro-reflecting mirrors.

2. Description of the gravimeter

The atom interferometer considered here is a gravimeter. It is a two-wave interferometer based
on a 𝜋

2 − 𝜋 − 𝜋
2 sequence of stimulated Raman transitions separated by a free evolution time

𝑇 = 80 ms. Thanks to a sequence of four measurements, most systematic shifts are eliminated [5],
the remaining effects being the Coriolis phase shift, which can be evaluated by rotating the
gravimeter of 180◦ or suppressed by compensating the Earth rotation [27], and the one resulting
from wavefront aberrations. For free-falling atoms in the gravity field 𝑔 and Raman counter-
propagating laser fields aligned along the vertical axis with a linear sweep 𝛼 of their angular
frequency difference, the interferometer phase ΔΦ is given by

ΔΦ = 𝜙1 − 2𝜙2 + 𝜙3 = (𝑘eff𝑔 − 𝛼) 𝑇2 + Δ𝜑. (1)

𝑘eff ≈ 4𝜋
𝜆

is the effective wavevector of the Raman transition, 𝜙𝑖 is the phase difference of the
laser beams at the position of the ith Raman pulse, and Δ𝜑 is the interferometer phase shit caused
by wavefront aberrations. Since the sensitivity factor is 𝑘eff𝑇

2 = 105 rad m−1 s2, a phase shit of
1 mrad corresponds to a bias of 10−8 m s−2 = 1 𝜇Gal in the measured gravity value. To assess
the contribution of this effect and eventually subtract it from the experimental measurements, the
numerical simulation presented thereafter is used.

The simulation consists of a Riemann integral over the 5D phase space of the atomic cloud, with
the initial distribution in longitudinal position disregarded. Assuming initial normal distributions
in each dimension, we define the finite radius of the hyper-sphere on which to integrate by fixing
the weight of the distribution that will be neglected. Choosing a weight of 0.25 % leads to a bias
lower than 5 × 10−2 𝜇Gal in the simulations. The field amplitude corresponds to a Gaussian
distribution of 12 mm waist. It is defined at the collimator output and propagated to the positions
of the four laser pulses used in the experiment, one for the velocity selection and three for the
Raman pulses, by solving the Helmholtz equation with Fourier transforms. These positions
correspond to the classical path of the free-falling atoms despite the separation of the different
momentum components of the wavepackets. This approximation is valid as long as the phase of
the laser field evolves linearly along the separation distance, which is the case for low enough
transverse spatial frequencies of the aberrations as shown below. The propagation length with the
retro-reflection is roughly 1 m, thus the field is represented on a square grid with 84 mm sides
and 2048 points along each transverse dimension to satisfy the sampling condition [28]. The
transition probability is calculated for multiple sweep frequencies 𝛼, and eventually a fit with the
function 𝑃 = 𝑃𝑚 − 𝐶

2 cos (ΔΦ) allows to extract the interferometer phase bias (1) together with
the contrast 𝐶 and the mean value 𝑃𝑚 of the transition probability. With the typical parameters
chosen to run the simulations, the uncertainty obtained on the phase from the fit is typically
6 × 10−3 𝜇Gal. Introducing deviations from the free falling trajectories due to extra-photon
recoil [20] modify the results by quantities that are typically orders of magnitude smaller than the
results without taking it into account, which is consistent with the typical size of the cloud, and
the spatial frequencies and amplitudes of aberrations considered [21]. Hence, for simplicity and
comparison with analytical models the results shown below do not take extra-photon recoil into
account.

3. Mirror with an arbitrary surface

To our knowledge, most studies of the effect of laser wavefront distortions caused by retro-
reflecting optics in atomic interferometers have used low-order Zernike polynomials to describe
the wavefront aberrations [22, 24, 25], as these polynomials are generally used for this purpose
in optics [29, 30] and in particular for the analysis of Shack-Hartmann sensor and optical



interferometers measurements. Though the contribution of high-order Zernike polynomials is
not necessarily zero, even for large atomic clouds [5]. Moreover, propagation is usually not taken
into account: aberrations are simply added to the wavefront of the propagated beam for the ideal
case of a perfectly flat mirror [23, 24].

To examine the effect of each Zernike polynomial, we start by considering mirrors with an
arbitrary surface defined by Zernike polynomials with rotational invariance 𝑍0

𝑛 with 𝑛 even, as
in the case of an atomic cloud with the same symmetry property and coaxially centered, the
contribution of the others Zernike polynomials is null. In Figure 1, the phase shift of the gravimeter
is simulated with an atom source evaporatively cooled in a dipole trap, resulting in an atomic
cloud of size of order of 𝜎𝑥𝑦 = 10 𝜇m and the possibility of adjusting the temperature [5, 24].
Irrespective of the index 𝑛 of the Zernike polynomial, the amplitude of the aberration is set to
𝜆

200 . To consider only the impact of the mirror aberrations, the contribution due to the Gaussian
field propagation, obtained with 𝑍0

0 , is subtracted. Finally, as the Zernike polynomials 𝑍0
𝑛 have

an overall factor (−1)
𝑛
2 , the absolute value of the phase shift is considered for simplicity.

(a) Addition of aberrations (b) Propagation of aberrations

Fig. 1. Absolute phase bias caused by a mirror surface represented by a Zernike
polynomial 𝑍0

𝑛 on a 2𝑅 = 27 mm diameter with an amplitude 𝛾 = 𝜆
200 , for an

interferometer duration 2𝑇 = 160 ms, cloud size 𝜎𝑥𝑦 = 10 𝜇m and temperature
Θ ∈ {30, 125, 500, 2000} nK. Markers corresponds to simulations where the aberrations
have been: (a) added to the beam, (b) propagated with the beam. The continuous black
lines Δ𝜑1D correspond to the 1D integral: (a) for addition (3), (b) for propagation (5)
of the aberrations. Errorbars are smaller than the markers.

The simulations are carried out for a mirror of radius 𝑅 = 13.5 mm and for different atomic
cloud temperatures Θ from 30 nK to 2 𝜇K. Firstly, mirror surface aberrations are added to
the propagated field in the ideal case [23, 24], which corresponds to the markers in Figure 1a.
These results show a maxima for high-order Zernike polynomials and are similar up to a
temperature-dependent scaling factor on the Zernike index 𝑛, detailed hereafter. Secondly, the
mirror aberrations are added to the field at the mirror position and then propagated, corresponding
to the markers in Figure 1b. These second simulations exhibit significant differences at large
Zernike orders when the ratio (𝑛+1)2Δ𝑧1,mir

𝑘eff𝑅2 starts to be of the order of 1, with Δ𝑧1,mir the distance
between the mirror and the position of the first Raman pulse, as explained below. Considering that
the atomic cloud is initially distributed according to a centered normal distribution of standard
deviation 𝜎𝑥𝑦 for its transverse position and according to a centered normal distribution of

standard deviation 𝜎𝑣 =
√︃
𝑘𝐵Θ
𝑚Rb

for its transverse velocity, the atomic distribution along the radial



coordinate 𝜌 after a time 𝑡 is given by

𝑤 (𝜌, 𝑡) 𝑑𝜌 =
𝜌

𝜎2
𝜌 (𝑡)

𝑒
− 𝜌2

2𝜎2
𝜌 (𝑡 ) 𝑑𝜌 with 𝜎2

𝜌 (𝑡) = 𝜎2
𝑥𝑦 + 𝜎2

𝑣 𝑡
2. (2)

For a mirror of radius 𝑅 with a surface described by the Zernike polynomial 𝑍0
𝑛 of amplitude 𝛾,

in the case of added aberrations to an ideally propagated plane wave, the interferometric phase
bias is

Δ𝜑
(𝑛)
add =

∫
4𝜋𝛾
𝜆
𝑍0
𝑛

( 𝜌
𝑅

)
[𝑤 (𝜌, 𝑡0) − 2𝑤 (𝜌, 𝑡0 + 𝑇) + 𝑤 (𝜌, 𝑡0 + 2𝑇)] 𝑑𝜌. (3)

𝑡0 is the time between the beginning of the free fall and the first Raman pulse. This model
based on a 1D integral corresponds to the continuous black lines in Figure 1a and can be solved
analytically by replacing the Zernike polynomial by its Bessel function approximation (A2)

Δ𝜑
(𝑛)
add ≈ 4𝜋𝛾𝑛

𝜆
𝑒
−

𝜎2
𝜌 (𝑡0 )
2𝜌2

𝑛

[
1 − 2𝑒

−
𝜎2
𝑣 (𝑇2+2𝑡0𝑇)

2𝜌2
𝑛 + 𝑒

−
𝜎2
𝑣 (4𝑇2+4𝑡0𝑇)

2𝜌2
𝑛

]
. (4)

𝛾𝑛 = (−1)
𝑛
2 𝛾, 𝜌𝑛 = 𝑅

𝑛+1 is the characteristic length of the oscillation of the Zernike polynomial
close to the center of the mirror. Neglecting the initial size 𝜎𝑥𝑦 with respect to the expansion
term 𝜎𝑣𝑡0 in equation (4) results in an expression that depends on the product (𝑛 + 1) 𝜎𝑣 , which
explains the scaling feature in the index 𝑛 with respect to temperature shown in Figure 1a. In
addition, the averaging of the aberrations over the cloud efficiently suppresses spatial frequencies
greater than the inverse of the atomic cloud size at the first Raman pulse 1

𝜎𝜌 (𝑡0 ) . When decreasing
the temperature the bracketed term tends to zero, such that the unbiased 𝑔 value is obtained [5].
Taking aberration propagation into account, the interferometric phase shift depends on the phase
of𝑈 (𝜌, 𝑧𝑖) the complex amplitude of the laser field at the 𝑖th Raman pulses

Δ𝜑
(𝑛)
prop =

∫
[arg (𝑈 (𝜌, 𝑧1)) 𝑤 (𝜌, 𝑡0) − 2arg (𝑈 (𝜌, 𝑧2)) 𝑤 (𝜌, 𝑡0 + 𝑇)

+ arg (𝑈 (𝜌, 𝑧3)) 𝑤 (𝜌, 𝑡0 + 2𝑇)]𝑑𝜌 − 𝑘eff𝑔𝑇
2.

(5)

This model together with the approximation up to second order of the propagation of the
aberrations presented in the Appendix A: Propagation of aberrated beam, corresponds to the
black lines in Figure 1b. Using the first order correction (A3) of the propagation of the field with
a Zernike wavefront aberration 𝑍0

𝑛 and the same approximations as the ones leading to equation
(4) results in

Δ𝜑
(𝑛)
prop ≈ 4𝜋𝛾𝑛

𝜆
𝑒
−

𝜎2
𝜌 (𝑡0 )
2𝜌2

𝑛

[
cos

(
Δ𝑧1,mir

𝑘eff𝜌
2
𝑛

)
− 2 cos

(
Δ𝑧2,mir

𝑘eff𝜌
2
𝑛

)
𝑒
−

𝜎2
𝑣 (𝑇2+2𝑡0𝑇)

2𝜌2
𝑛

+ cos
(
Δ𝑧3,mir

𝑘eff𝜌
2
𝑛

)
𝑒
−

𝜎2
𝑣 (4𝑇2+4𝑡0𝑇)

2𝜌2
𝑛

]
.

(6)

Δ𝑧𝑖,mir is the distance between the position of the ith Raman pulse and the mirror. This expression
shows a characteristic variation length 𝑙𝑛 = 𝑘eff𝜌

2
𝑛 =

𝑘eff𝑅
2

(𝑛+1)2 . Consequently, propagation is

negligible when 𝑛 ≪
√︃

2𝑘𝑅2

Δ𝑧1,mir
, which corresponds in the gravimeter configuration to 𝑛 ≪ 80.

Furthermore, as long as 𝑛 ≪
√︃

2𝑘𝑅2

Δ𝑧
≈ 1000 corresponding to aberrations of typical variation



length of ≈ 10 𝜇m, where Δ𝑧 ≈ 3 mm is the maximal longitudinal separation of the atomic
wavepackets, the distribution of the cloud’s longitudinal position and the separation of the
components of the wavepackets can be neglected. Finally, when decreasing the temperature, the
expression in brackets in equation (6) does not generally becomes zero, unlike the case where
aberrations are added (4). To reduce the bias on 𝑔, it is necessary either to obtain a better mirror
with smaller aberrations of amplitude 𝛾, or to use an atomic cloud with a larger initial size 𝜎𝑥𝑦
which could be done through delta-kick collimation [31].

4. Specific mirror surface

We now examine the impact on the results, of the simulation of the propagation of the aberrations
and of their representation on the Zernike polynomial basis, in the case of specific mirrors. For
the sake of simplicity, we restrict the problem to the case where the mirror, the atomic cloud and
the laser beams are coaxially centered. The mirrors surface have been analyzed using a Fizeau
interferometer with a 77 𝜇m resolution and are shown in Figure 2. They are characterized on
the central disk of 5 mm radius by a typical peak-to-valley amplitude of ≈ 9 nm and an RMS
value of ≈ 1 nm. Simulations can be carried out directly using the raw mirror surface data, or the

(a) Mirror surface 1 (b) Mirror surface 2

Fig. 2. Available mirrors surface truncated at 22 mm diameter and corrected of piston
and tilt terms. On the central 5 mm radius disk: (a) mirror surface 1, peak-to-valley
amplitude of 9.5 nm and RMS value of 1.5 nm, (b) mirror surface 2 and peak-to-valley
amplitude of 9.2 nm, RMS value of 1.1 nm.

mirror surface can be decomposed on the basis of the Zernike polynomials. The usual method
for performing such a decomposition is based on a least mean squares regression, which will be
referred as LSQR in the following. However, as the Zernike polynomials form an orthogonal
family on a reference disk, the decomposition can also be performed by a scalar product consisting
of an integration over this disk. Using the mirror surface 1 in Figure 2a, simulation with the raw
data yields a gravity bias Δ𝑔Raw

prop = −8.042(5) 𝜇Gal (1 𝜇Gal = 10−8 m s−2), represented by the
red line in Figure 3a. The mirror surface is decomposed over an increasing number of Zernike
polynomials corresponding to the abscissa [32] and gravimeter simulations are performed with
these decomposed surfaces, both for the least mean squares technique (solid blue squares) and for
the scalar product (orange circles) decomposition. In addition, approximate results (green crosses)
labeled 1D Integral, are obtained using the coefficients of the scalar product decomposition
together with the integral (5) and the propagation approximation outlined in the Appendix A:
Propagation of aberrated beam. The simulations resulting from the decomposition show
several 𝜇Gal of difference with the one based on the raw data at low decomposition order



(a) Mirror aberrations propagated with the field (b) Difference for added and propagated aberrations

Fig. 3. Simulation of the gravimeter with the mirror surface 1 shown Figure 2a, for
𝑇 = 80 ms, 𝜎𝑥𝑦 = 300 𝜇m and a temperature Θ = 2 𝜇K. The simulations are done
for a decomposition of the mirror surface, either with least mean square LSQR or the
scalar product, on a growing family of Zernike polynomials, (a) with propagation of
the aberrations (errorbars are smaller than the markers). (b) Difference with the case of
added aberrations to ideally propagated beam. The analytical points are derived from
the 1D integrals (3)-(5) with the coefficients obtained from the integral decomposition
of the mirror surface. The Zernike indexing scheme ISO-14999 is used [32] and
simulation points correspond to rotational invariant Zernike polynomials.

and converge to Δ𝑔Raw
prop when considering sufficiently high-order Zernike polynomials, with the

exception of the values resulting from the approximations for propagation and 1D integral, which
converge to a difference of −0.794(5) 𝜇Gal. The difference between the results of the two
decomposition methods: LSQR and the scalar product, is highlighted at the bottom of Figure 3a
and reaches the 𝜇Gal level for low-order decomposition. Eventually, the simulations were run a
second time with the addition of the aberrations to the ideally propagated beam, with the raw data
and both decomposition methods, the difference with the previous results that take propagation
into account is shown in Figure 3b. For both methods there is initially no significant difference
for decomposition on low-order Zernike polynomials, though the differences converge to that
obtained with the use of the raw data: −0.274(7) 𝜇Gal.

Thus, to simulate the gravimeter to the 𝜇Gal level, describing optical aberrations with low-order
Zernike polynomials is not sufficient, as the result depends on the decomposition order considered
and on the decomposition technique used. It is necessary either to consider high-order Zernike
decomposition, or to use raw data with sufficiently high resolution, which is determined by
the initial size of the cloud and its expansion length through the interferometer, and hence the
propagation of the aberrations during laser beam propagation.

5. Dependence on the atomic cloud initial position

To compare simulations with experimental results, the initial preparation of the atomic cloud
can be modified, for instance a dipole trap can be used after the magneto-optical trap (MOT)
and molasses sequence to lower the initial cloud temperature [24], and delta-kick collimation
technique could be used to obtain a larger cloud with a lower expansion temperature [31].
However, it is also important to be able to position the atomic cloud relative to the mirror and
laser beams, as the spatial dependence of the bias can be significant, as shown below. For sake of



simplicity, the mirror and laser beams are considered to be coaxially centered and only the initial
mean position of the atomic cloud is modified. In Figure 4, simulations are carried out for the
same interferometer sequence with an interval between Raman pulses of 80 ms and for different
configurations of the initial atomic cloud: (4a) in a MOT with a temperature of Θ = 2 𝜇K and an
initial size of 𝜎𝑥𝑦 = 300 𝜇m, (4b) in a dipole trap with a temperature of Θ = 30 nK and an initial
size of 𝜎𝑥𝑦 = 10 𝜇m, (4c) for a delta-kicked cloud with a temperature of Θ = 5 nK and an initial
size of 𝜎𝑥𝑦 = 200 𝜇m.

(a) Cloud in a MOT: Θ = 2 𝜇K, 𝜎𝑥𝑦 =

300 𝜇m
(b) Cloud in a dipolar trap: Θ =

30 nK, 𝜎𝑥𝑦 = 10 𝜇m
(c) Delta-kicked cloud: Θ = 5 nK,
𝜎𝑥𝑦 = 200 𝜇m

Fig. 4. Simulation of the gravimeter bias in 𝜇Gal with the mirror surface 2 represented
in Figure 2b, for an interferometer duration 2𝑇 = 160 ms. The initial mean position of
the atomic cloud is changed over an area [−500 𝜇m, 500 𝜇m] × [−500 𝜇m, 500 𝜇m]
and for three different initial configurations of the atomic cloud.

For the cloud in the MOT or delta-kick configuration in Figures 4a and 4c, the typical variation
lengths correspond to the initial cloud size, which is larger than the 77 𝜇m mirror surface
resolution. Though, in the dipole trap configuration in Figure 4b, where the cloud size at the first
Raman pulse is roughly 30 𝜇m, the typical variation length is close to the mirror resolution. In
the latter case, simulation results are limited by the initial resolution of the mirror surface data.

While the MOT configuration in Figure 4a has a gravity bias gradient of ≈ 10 𝜇Gal mm−1

at the center of the zone of interest, the area for −500 𝜇m ≤ 𝑥 ≤ 500 𝜇m and 200 𝜇m ≤ 𝑦 ≤
500 𝜇m exhibits a typical gradient of ≈ 1 𝜇Gal mm−1 which would enhance the stability of the
apparatus with respect to intensity fluctuations of the MOT laser beams that cause fluctuations in
initial position [5]. Finally, in the delta-kicked cloud configuration of Figure 4c, the gradient is at
maximum of the order of ≈ 1 𝜇Gal mm−1 on the overall represented area, and the gravity bias is
closer to the ideal case of the Gaussian beam reflected on a perfectly flat mirror, which yields
a bias of −0.21(1) 𝜇Gal. This result is consistent with equation (6), as the dependence of the
interferometric phase shift over the initial size is a Gaussian function, increasing the size of the
source should result in bias closer to the ideal case.

6. Conclusion

In this paper, we show that to simulate the effect of wavefront aberrations in a cold-atom
gravimeter at the mrad level, it is not sufficient to represent the wavefront aberrations of the
retro-reflecting optics with low-order Zernike polynomials, as this will lead to errors at the mrad
order depending on the decomposition order and the decomposition method chosen. In addition,
for the distance considered between the retro-reflecting optics and the positions of the Raman



pulses, and the spatial frequencies of the aberrations considered, it is necessary to take into
account the propagation of the aberrations and not simply add them to the beam propagated in the
ideal case. The study of the dependence of the bias on the initial position of the atomic clouds
shows that it would be necessary in a MOT configuration to be able to position the cloud relative
to the mirror and laser beams with an accuracy of the order of 100 𝜇m to reach the mrad level.
Eventually, the use of a delta-kicked atomic source could reduce both the interferometer phase
shift caused by wavefront aberrations and the sensitivity associated with the initial position of
the atomic cloud, as the resulting bias is closer to the ideal case of a beam reflected on a flawless
mirror.

This simulation is not exhaustive and focuses on the effect of wavefront aberrations, it could
be developed in order to take into account additional features, such as the Coriolis effect and the
two-photon light shift which are the next largest contributors to the inaccuracy budget [5, 24],
as well as the residual differential light shift caused by the intensity fluctuations resulting from
the propagation of the aberrations. Moreover, the characterization of the beam at the collimator
output and of the different optics on the beam path, together with the use of an atomic distribution
and detection response closer to experimental conditions [33], could improve the accuracy of this
simulation. In addition, our simulations are based on data acquired with a Fizeau interferometer
with a spatial resolution limited to 77 𝜇m. Accounting for higher spatial frequency components,
which will have an impact in the case of a cloud with a typical size of tens of 𝜇m, would require to
consider the longitudinal distribution of the cloud and to calculate the field along this longitudinal
direction instead of simply using the mean position of the classical path.

Thanks to these simulations and their future comparisons with the experiment, we hope to be
able to improve the characterization of our device and determine the targeted correction at the
𝜇Gal level. More generally, the evaluation of wavefront aberrations will also be necessary to
achieve better accuracy and complement the error budget of other atom interferometry inertial
sensors, such as the ones embarked in space missions, which target beyond state-of-the-art
performances.

Appendix A: Propagation of aberrated beam

The radial part of Zernike polynomials are specific cases of Jacobi polynomials [30]

𝑅𝑚𝑛 (𝑥) = (−1)
𝑛−𝑚

2 𝑥𝑚𝑃
(𝑚,0)
𝑛−𝑚

2

(
1 − 2𝑥2

)
with |𝑥 | ≤ 1. (A1)

Using the Jacobi polynomials convergence property [34] and for |𝑥 | ≪ 1 the radial Zernike
polynomials can be approximated by a Bessel function

𝑅𝑚𝑛 (𝑥) ≈ (−1)
𝑛−𝑚

2

(
𝑛+𝑚

2
)
!(

𝑛−𝑚
2

)
!
(
𝑛+1

2

)𝑚 𝐽𝑚 ((𝑛 + 1) 𝑥) . (A2)

Considering a beam with Gaussian amplitude and a wavefront described by a Zernike polynomial
with its radial part replaced by the Bessel approximation (A2), would lead to first order in
amplitude of wavefront aberration to a generalized Bessel Gauss expression [35]. To have an
analytical expression up to second order, a beam with a flat intensity and a wavefront described
by a Zernike polynomial with rotational invariance is considered
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With 𝜌𝑛 = 𝑅
𝑛+1 . The first two terms can be propagated by solving the paraxial equation using the

closure relation
∫ ∞
0 𝑢𝐽0 (𝑎𝑢) 𝐽0 (𝑏𝑢) 𝑑𝑢 =

𝛿 (𝑎=𝑏)
𝑎

and the Hankel transform. Eventually, using a
continuity argument at 𝑧 = 0, the Bessel function is replaced by the initial Zernike polynomial
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To treat the second order term of expression (A3), the integral of the triple product of 0th order
Bessel function [36] is used∫ ∞

0
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2
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(A5)

Then performing a change of variable 𝑢 = arcsin
(
𝐾

2𝜌𝑛

)
, with 𝐾 the coordinate in recipro-

cal space, the propagated expression of the second order term is derived using the integral∫ 𝜋
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Again, by continuity at 𝑧 = 0, the Bessel function 𝐽0

(
𝜌

𝜌𝑛

)
can be replaced by the initial Zernike

polynomial 𝑍0
𝑛

( 𝜌
𝑅

)
.
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