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The defocusing Calogero—Moser
derivative nonlinear Schrodinger equation
with a nonvanishing condition at infinity

Xi Chen

Abstract
We consider the defocusing Calogero—Moser derivative nonlinear Schrodinger
equation

iOpu 4 9%u — 211D (|u\2) u=0, (t,x)eRxR

posed on E := {u € L*(R):u € L*(R),u” € L*(R), [u]* =1 € L*(R)}. We
prove the global well-posedness of this equation in E. Moreover, we give an
explicit formula for the chiral solution to this equation.

Keywords Calogero—Moser derivative nonlinear Schrédinger equation, Global well-posedness,
Explicit formula.
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1 Introduction

We consider the following defocusing Calogero—Moser derivative nonlinear Schrédinger
equation
iOpu+ 02w — 21D (jul*) u =0, (t,z) e RxR. (1.1)

In [9], Gérard and Lenzmann considered the focusing Calogero-Moser derivative nonlinear
Schrédinger equation
iOu + 92u + 211D (|ul*) u = 0 (1.2)

on the line. They derived that for any solution u € H7(R) with s sufficiently large, the
equation (1.2) enjoys a Lax pair structure and infinite conservation laws. Based on the con-
servation laws, they showed the global well-posedness of (1.2) in H3 (R) for any s > 3 with
small mass initial data ([lugl|7. < 2m). Killip, Laurens and Visan combined the explicit
formulae of (1.1) and (1.2) with the tools and techniques of commuting flows to deduce the
global well-posedness of (1.1) and (1.2) (with small mass initial data) in H{(R) (s > 0)
[13]. Hogan and Kowalski showed that for arbitrarily small € > 0 there exists initial data
up € HS® of mass 27 + ¢ to the equation (1.2) such that the corresponding maximal lifes-

pan solution u : (T_,T}) x R — C satisfies limy_,7, |[u(t)||gs = oo for all s > 0 [10]. K.
Kim, T. Kim and Kwon constructed smooth, chiral, and finite energy finite-time blow-up
solutions to (1.2) with mass arbitrarily close to 27 [11]. Badreddine characterized the zero

dispersion limit solution to (1.1) and (1.2) with initial data ug € L2 (R) N L>°(R) by ex-
plicit formulae, and she identified the zero dispersion limit in terms of the branches of the
multivalued solution of the inviscid Burgers—Hopf equation [3]. Badreddine also showed
the global well-posedness of (1.1) and (1.2) (with small mass initial data) on the circle in
H*(T) for any s > 0 [1], and she characterized the traveling wave solutions to (1.1) and
(1.2) on the circle [2].

In this paper, we study the Cauchy problem of (1.1) defined on the space
E:={uel™®R):u € L*(R),u" € L*[R),|ul* —1 € L* (R)}. (1.3)

It is easy to endow the space E with a structure of complete metric space by introducing
the following distance function,

A, @) = lu— @l + o — @l + " — @ o + ol = 3Pl e . (1)
We also introduce the following Zhidkov space (see also [19, 20])
X?(R):={ueLl®R):u € L*(R),u" € L*(R)}, (1.5)



equipped with the norm
lullxz = llullzee + [0/l 2 + [lu” 2.
It is obvious that F' = X2?(R) N {|u|?> — 1 € L?(R)}. However, E is not a vector space.
Furthermore, we introduce the following Hardy—Zhidkov space
X2 (R):={uel?R):v e€LiR),u €Li(R)} C X*R), (1.6)

equipped with the same norm as || - || x2. In this paper, we also study the explicit formula
of the solution to (1.1) in

Ey = X2 (R)n{ul®> -1 e LA(R)}, (1.7)
where £, C E.

In [15], Matsuno presented the multiperiodic solutions to (1.1) and then derived the mul-
tisoliton solutions. Also, Matsuno established the linear stability of the solitary wave
solutions [16] and studied the linear spectral problems of (1.1) [17].

Zhidkov introduced the space
X'(R) = {ue L®°R): v € L*(R)}
in [19] and obtained the global well-posedness results [19, 20] of the Gross—Pitaevskii equa-
tion
i0u + Au = (|u|2 —1Du (1.8)
in the space

{ue X'(R): [u]* —1€ L*(R)}.

Using the strategy of Kato [11], Béthuel and Saut derived the global well-posedness of (1.8)
inl1+H! (Rd) for d = 2,3. Also, Gérard used the Strichartz estimates to obtain the global
well-posedness of (1.8) in the space

{uéf&JR%:VuGL%R%JMZ—leL%R%}

for d = 2,3 [7].



1.1 Main results

In this paper, we first study the Cauchy problem of (1.1) defined on E and we obtain the
following global well-posedness result.

Theorem 1.1. Given uy € E, there ezists a unique solution u € C (R; E) of (1.1) with
u(0) = ug. Moreover, for every T > 0, the flow map uop € E — u € C([-T,T); E) is
continuous.

In [8], Gérard established an explicit formula for the H2 (R) solution to the Ben-
jamin—Ono equation on the line. According to his method, Killip, Laurens and Vigan also
obtained an explicit formula for the H3 (R)(s > 0) solution to (1.1) [13]. In this paper, we

establish an explicit formula for the solution to (1.1) in E.

Theorem 1.2. Given ug € Ey, let u € C (R; E4) be the corresponding solution of (1.1).
Then we give the following explicit formula: For everyt € R and for every z € C4 :={z €
C : Im(z) > 0}, u(t, z) identifies to

4 it03 _ itd?
(G + 2tLy, — 21d) " (TuoTuoe—zt@% (e uo() —e U0(2)>>]
xr—z

; t
e”aguo(z) - —1I
im

_ eit@g ug (Z)

2192
9 x) — %y (2)

r—z

) ) -1 . ) itd2
(Id + 2t T, T 1% (G — 21 d)_l) S0P, Ty~ 110 (e “
» (1.9]
7

Here u(t, z) and "% uy(z) are defined by the Poisson’s formulation (2.6), and the operators
G, Ly,, Ty, are defined in the subsection 2.5.

2 Preliminaries

2.1 The space E and the Sobolev spaces
Firstly, we give the following estimate.
Lemma 2.1. For any u € E, we have
lull oo < 34 C(llfuf® = 1Uf72 + [[Jul® = 172> |«[172)"? (2.1)
forany%<s§l.

Proof. Let x € C§°(C) suchthat 0 < x < 1,x(2) =1 for |2| < 2, and x(z) =0 for |2 > 3.
Let us decompose

u=u; +uz, ur=xwu, uz=(1-x(u)u.

] (2)-



We have
e < 3.
Since |u| > 2 on the support of ug, we have
luzllzz < [[lul® = 1| 15 -
On the other hand,
uy = (1= x(u) — udx(u))u' — udx(u)a
This implies easily, for some A = A(x),

[ud][ 12 < Alled|| 2.

Hence
ullLoe < flutl|zee + [[uallLee
< uallzee + |luzl| s
<3+ C(ll[ul® = 1172 + [[Juf® — 125 ||u/]|35) "/
forany%<s§1. O

Then we introduce the following lemma which will be useful in the sequel.
Lemma 2.2. We have E + H?(R) C E, and for every v € E,w € H*(R),
o+ wf2 = 1] 1o < |llof? = 1]|,2 + 2ol oo Jaell 2 + fw]2. (2.2)
Moreover, for everyv € E,9 € E and w € H*,w € H?, we have

dp(v+w,0+w) < C(1+ ||w|z2 + ||@||z2)dE(v, D) (2.3)
+ O+ Jvllze + [[0llzee + [wl g + @] 1) [w — @] 2. '
Proof. Given v € E,w € H?, we expand
v +w? —1=|v]* =1+ 2Re(tw) + |w|?,

we get the corresponding estimates (2.2) since we have v € L®°(R) and w € L?*(R) N L*(R).
Then we can easily deduce that E + H?(R) C E.

Also, the estimate of H|v +w|? — |7+ 1I)|2HL2 can be established along the same line as
(2.2), so we can easily deduce (2.3). O



2.2 Action of the linear Schrodinger group on the space E

We start with the following lemma.
Lemma 2.3. For any f € E, we have eitagf — f € H*(R). Moreover, we have
92
1e™% f = fll2 < CIIY2 £l 2 (2.4)

and .
€% f — fllgz — 0 as t — 0. (2.5)

Proof. Let x € C°(R) such that x = 1 near the origin, we can write

e e 1 = g(t, )¢

with

g@@z—mﬁﬁmélmﬁdﬁf‘ﬁ@%@%@—Q=OWW3.

Consequently,
"% f — f = —ig(t,D)f € I* (R)
and this yields (2.4).

Also, we can easily observe that

combined with (2.4), we infer (2.5). O

— 0,
L2 t—0

OX" %]~ f)

SO and |

OX %S f)

Combining the previous lemmas, it is now possible to show that the space E is kept
invariant by the Schrédinger group.

Lemma 2.4. For every t € R, oitd: (E) C E and for every ug € E, the map
teR - "y e B

s continuous. Moreover, for every R, for every T > 0, there exists C > 0 such that, for
every ug, g € E such that ||ugl|x2 < R and ||tg||x2 < R,

o o 3
sup dg (eztaxuo,e’tawuo) < Cdg (ug, up) -
t|<T



Proof. We write

52 52
e“aﬁc Uy = Ug + <e”890 Uy — u0> .

By using Lemma 2.2 and Lemma 2.3, we can easily see that eita%(E) C FE, while the

continuity property

o )
%y —s uy  in E.
t—0

is a consequence of (2.3) and (2.5). The last argument in Lemma 2.4 also comes from (2.3)
and (2.5). O

Remark 2.5. The argument in Lemma 2.4 is also valid for ug € X%(R).

2.3 The Lax pair

We denote by L (R)(1 < p < oo) the Hardy space corresponding to LP(R) functions
having a Fourier transform supported in the domain & > 0. Equivalently, the space Lﬁ(R)
comprised of f € LP(R) whose Poisson integral

1) = [ s (26)

is holomorphic in the upper half-plane C; := {z € C : Im(z) > 0}. With the Poisson’s
formulation (2.6), the Holder’s inequality implies

1£(2)] S (Im2) "7 || £l 10

The Riesz-Szegd projector II is the orthogonal projector from L?(R) onto L% (R). It is
given by

1 fy)

2w Jpy— 2

Vi€ IX(R), VeeCy, Mf(s)=— /O o€ fe)de = dy. (2.7)

o
The Toeplitz operator T}, on L?(R) associated to a function b € L*(R) is defined by
Tpf =T11(bf), fe€L*R).
For u € F, the operator L, is defined by

1d
Vf € Dom (L,) = HY(R), Lyf:=Df +uTyf with D := oo

We also consider, for u € E, the bounded operator defined by

By = —uTy,q + 0puTy + i (uTy)* .



Also, we recall the definition of G in [3],
v € Dom (G) = {f € LA(R): f € H'(0,00)},  GI() =i [f(©)]Leso.

Here G is the adjoint of the operator of multiplication by z on L2 (R), and (Dom (G) , —iG)
is maximally dissipative. Notice that —iG is the infinitesimal generator of the adjoint
semi-group of contractions (5(n)*), >, with

Yn >0, Sn)*= e MG
We also notice that

Vf € Dom (G), |f (07)

f — —drTm (G | f) < 4ml|GFl| 2| f ] 2-

Therefore, we can define

Vf € Dom (G), Ii(f):=f(0").

In fact, as observed in [12, Lemma 3.4], the resolvent of G is given by
veeC., VfELA®), (G- z1a) fla)= 1O ZIE) (2.5)

and we have

1
2

VzeCy, VfeLi(R), f(2) I ((G—zI1d)7'f). (2.9)

3 Well-posedness and conservation laws

3.1 Local well-posedness

In this subsection, we consider the local well-posedness of (1.1) with initial data in E,
where Kato’s classical iterative scheme for quasilinear evolution equations can be utilized.

We first write (1.1) as
Opu = 10%u — 4uTl(R(ud,u)). (3.1)

In view of (3.1), we consider the following iteration scheme
Opuf 1l = 92kt — 4uFTI(R(TF 0, uF ) (3.2)

with initial datum «*+1(0,2) = ug(x) € E. A standard energy method yields the following
result.



Lemma 3.1. Let w € C([-T,T], E)) with some T > 0 and wo € E. Then there exists a
unique solution w € C ([-T,T); E) such that

dyw = 102w — 4ull(R(ad,w)), w(0,z) = wo(x).

Furthermore, if we write

w = eitagwo + v,
then we have
C [T ulZpde (11, T2
sup [[v(t)]|g2 < Ce™ =TT (lwg g + [ lullse [[wpllgadt ) (3.3)
[t|<T -T *

Proof. By Duhamel’s formula, we have
o(t) = /0 t e (=02 (_4uII(R(adyw)))ds,
so we can deduce that
lo@)z2 < C/Ot [ullZee (1050]] 2 + 1wl z2)ds (3-4)

Also, a standard energy method yields (see [0, Lemma 5.4])

t
102w(®)| . < [l i +C/0 lull %2 10zw]l 1 ds,

which implies

t
lo(®)llm2 < Cllwgllm + C/O (Il ez Toll g2 + lullies [wh]] 1) ds, (3.5)

Combining (3.4) and (3.5), by Gronwall’s inequality, we can deduce that

T
c [ 2 d
up o) < €7 o et (uwaum + [ ) HUH?préHHldt> ,
t|< _

which yields (3.3). O
Now we can introduce the following local well-posedness result.

Proposition 3.2. For any R > 0, there is some T = T(R) > 0 such that, for everyug € E
with |Juo||32 < R, there ezists a unique solution u € C ([T, T); E) of (1.1) with uw(0) = u.
Moreover, the flow map ug € E+— u € C ([-T,T]; E) is continuous.

9



Proof. We consider the iteration scheme
Opultl = 92kt — 4 TI(R (TP O, uF ) (3.6)

with initial datum «*+1(0,2) = ug(x) € E. Lemma 3.1 allows us to construct by induction
a sequence uf with u0(¢, z) = el%yg(x).

We write
k 192

uF = ety + ok,

From Lemma 3.1, we have

T
T k112
sup [+ ()| g2 < Ce© = 1 2t (Hua}lm + / § ||Uk||§(2||U6\H1dt> . (3.7)
t|< _

Given ug € E such that ||up| x2 < R, by Lemma 2.3, for "= T'(R) with respect to R,

02
%y H < 2R.
X2

Assume that supy<r |u¥|| x> < R1, and the size of Ry will be determined later. By (3.7),
we have

2 |05+ g2 < C1e2O TR (R 4 2T R2R) := R,.
t<T

By the triangle inequality, we know that

sup HukHH < 2R+ C3R;.
[t|<T Xz

Let Ry = (3 + C1C2)R, then we can choose T'= T'(R) such that
2R+ C2Ry < Ry

Then by an elementary induction argument, we find that supj<r |u¥]| x2 < Ry for all k
and supjy<r |vF || g2 < Ry for all k.

Next, we show that we have a contraction property of the sequence vy in L?(R). Ob-
serve that

Oy (WM — ¥y =002 (WM — ) — 4T (R(aF0, (uF T — uh)))
+4uF T (R(aP10,ub)) — 4T (R(aF0,uk))

10



A standard energy method yields

sup Huk+1(t) - uk(t)H < KT sup H )‘
t|<T [t|<T

L2’

So we take T small enough to ensure that KT < 1, and we then we can deduce that
SUDP|¢|<T(R) H“kﬂ(t) - uk(t)HL2 = SUDP|y<7(R) Hvk“(t) — vk(t)HL2 is geometrically conver-
gent.

Finally, the sequence vj(t) is uniformly weakly convergent in C ([-T,T]; H*(R)) and
strongly convergent in C' ([—T, T; L2(R)). We note the limit of v(t) as v(t). By adapting
an argument due to Bona-Smith [5](or Tao’s frequency envelope method [18]), we can de-
duce that the limit v(¢) actually belongs to C ([T, T]; H*(R)). Thus u(t) = P ug+u(t) €
C([-T,T]; E) solves (1.1).

Uniqueness and continuity of the flow map follow along the same lines as the contrac-
tion property in L?(R). The proof of Proposition 3.2 is complete. O

Remark 3.3. In fact, by adapting the same argument used in the proof of Proposition 3.2,
we can also deduce the local well-posedness of (1.1) in {u € E : u® € L*(R)}.

3.2 Conservation laws

For u € E, we recall the operators L, and B, acting on L?(R),
L,=D+uly and B, =—uTyg+ 0uuTy+i(uly)>.
We infer the following Lax equation for (1.1).

Lemma 3.4. (Laz Equation) If u € C ([0,T]; E) solves (1.1), then it holds

d
2 L = [Bu, L] - 3.8
L= [Bu L (3.5)
Proof. We refer to [9, Lemma 2.3] for the proof. O

As a consequence of the Lax equation, we obtain a hierarchy of conservation laws of
(1.1), and this implies the a-priori bound on the solution.

Lemma 3.5. Let ug € E and uw € C(I,E) be the correspoding solution of (1.1) with
u(0,z) = ug(x), where I C R denotes the mazimal time interval of existence of the solution.
Then the quantities

I(u) == || Du + Tl (Ju)?> = 1)]| .2

11



and

Ir(u) == HD2u +uTyD (u) + D(ull((Ju|? = 1))) + Du 4 wII(|u|?TI(|u* — 1)) + wll(|u|* — I)HL2

are conserved.
Also, we have the following a-priori bound on the solution u,
Sup [ull x2 < C(uo).
Proof. We observe that (1.1) can be written as
dyu = —iD*u — 2iuIlD(|ul?)

Let

then we have

O¢(uxe) = X0pu,

—iD*(ux.) = i02(ux.) = ixe02u + 2i0,udyXe + 1ud>xe

and

—2iuHD(!u\2X5) = —2iuH(D(|u]2)X6) — 2iuH(|u!2D(X€)).

So we have

re = Op(uxe) — Bu(uxe) +i(Ly)? (uxe)
= Oy(ux:) + iD?*(ux.) + 2itullD(|u)?x.)

(3.9)

(3.10)

(3.11)

= —2i0,u0z X — iua;)@ + 2iun(|u‘2D(Xs)) + QiUH(D(|u’2)XE) - 2iX€uH(D(|u|2)).

We can easily observe that

g1 — 0.
el 1 0
T'hen we have

d
at <UX67 UX6> =2 <8tuXEa UX5>

= 2% <(Bu — iLi)(qu), ux€> + 2R (re, uxe)

= 2R (re, uxe) -

12



Also, by the Lax pair equation (3.8) and (3.10), we have

o {Lu(wxe), wxc)

= (Lu(uxe), Or(uxe)) + (Lu(Or(uxe)), uxe) + (O(Lu)(uxe), uXxe)
= (Lu(uxe), (Bu — iL2)(uxe)) + (Lu(By — iL%)(uxe), uxe)
+ <(B L, LuBu)(UXa)a UX&) + 2R <Lu (uXa) 7Ta>
= 2%< (UXE) 77"a>
= 2R (D (uxe) + ull(|ul*xe), 7<)
= 2R (D (uxe) + oIl (([ul* = 1)xe) ,7e) + 2R (uxe, 7e)
where

2R (D (ux:) + ull ((Ju]® = 1)x:) ,7) — 0.

Similarly, we have

i(L (uxe), uxe)

= (L2(uxe), O (uxe)) + (L2 (at(qu)) qu—:> + (04 (L2) (uxe), uxe)
= (L2 (uxe), (B —iL%)(uxe)) + (Lo (Bu — iLy) (uxe), uxe)
+ ((B,L% - )(uxe), uxs) + 2%<L2 (uxe) ,7e)

=28 (L, (uxe) L u(re))
= 2R (D (uxe), Lu(re)) + 2R <UH (|u|2X€) aLu(T€)>

where

Thus we infer that
% (<Lz(uxs),uxs> — 2(Ly(uxe),uxe) + <UX57UX5>) ;}> 0. (3.12)
In fact,
<L12;(UXE)7 UX€> — 2 (Lu(uxe), uxe) + (uxe, uxe)

= (Lu(uxe), Lu(uxe)) — 2 (Lu(uxe), uxe) + (uxe, uxe)

= ((D + uTg)(uxe), (D + uls)(uxe)) — 2 (D + uly)(uxe), uxe) + (uxe, uxe)

= (D(uxe) + ull ((Jul* = 1)xe) + uxe, D(uxe) + ull ((Jul* — 1)xe) + ux.)

— 2 (D(uxe) + ull ((Jul* = 1)xz) + uxe, uxe) + (uxe, ux:)

= ”D(UXE) + ull ((|’LL|2 - 1)X€) H%?

13



Then by (3.12), we can deduce that

ID(u(t)xe) + utTT (([u(t)* = Dxe) 72 — 1D (woxe) + uoll ((uol* = 1)xe) 172 — 0,
and thus

() = || Du(t) + u®)I (Ju(®)* = 1) |2 = [[Duo + uoll (|uo|* — 1) || 2 = I1(uo),
which yields the first conservation law in Lemma 3.5.
Following the modified gauge transform
V= u(x)e% fox(IU(y)\Qfl)dy,

we know that

1
I(u) = || Du + ull (]u\Q — 1) lr2 = ||0zv — ivH (MQ — 1) lr2-

From [9, Appendix C] we infer
R (0p0, H (|o]* — 1) v)
= (R[0:0]  H (juf* - 1))
Lo, (o - 1) B (2 - 1)

{lv[* = 1,H8, (Jv]* — 1))

1
_?
= —5 (P = 1,1DI (jol* - 1))
and
(H (Jol* = 1) v, H (jo* = 1) v)
= (0P (8 (bl - 1))°)
= (Jof? = 1. (B (Jof? = 1)) + (1. (H (jo]* = 1))°)
= (JoP? = 1, (B (o = 1)) + {1, (1 (o -~ 1))?)

1
= 3 [0l = 1+ 1o ~ 1],

14



so we have

1
180 = 5B (jo* = 1) |3

1 1
1900122 + S llef? = 112,y +

1
2 3 2 2
D R(\v! = 1%z + 2 llvl” — 172

v

1 1 1
1 wﬁ—mm+/ (of?2 — 1)3dz + ~|||of? — 1]]2
12 Jjp>1 12 Jvj<a 4 L

1 1
> / (|v2—1)2dm+/ (Jv|* = 1)%dx
4 [v|>1 6 lv]<1

1
> Zlof” ~ 1]
Thus
L(uo)? = I (w)? = 1950 — ~oH (ol — 1) |22 > Slllof = 1) = [lJuf? - 1)
1(u0)® = Ni(w)* = 100w — 5vH (Jo* = 1) 172 = glllof* = 17z = gllul® = Iz,
which infers that sup,c; |[|u(t)]* = 1||,, < C (uo).

According to Lemma 2.1, for every % < s < 1, we have

| Du + Il (\u\z — 1) | L2
2
> [|0pull72 — 2|00l ullos T (Juf® = 1) || 72
2
> [|0zull72 — 6 [|0zull 2 T (Jul® — 1) || 2

2—2s

1/2
7o w72 ) I (= 1) ) e

= Cl0wul 2 (|1l = 175 + [l ~ 1

From the a-priori bound on ||[uf* — 1| ,, we readily infer that sup;; [|0,u(t)]| 2 < C (uo).
Again by Lemma 2.1, we can deduce that sup,c; [|u(t)]| 00 < C (uo).

Now we assume moreover that u((]?’) € L?(R). By Remark 3.3, we know that d2u(t) € L*(R),
and then we can easily observe that

Il —3 0

in this case.
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Now we have

d
dt <L4 (uxe), UX£>

<L4 (ux:), (atUX6)> + <Li(8t(uXa)) UX8> + <8t )(uxe), uXa>
= (Ly(uxe), (B —iL3)(uxe)) + (Ly(Bu —ZLi)(uxs%UXQ
+ ((BuLy — Ly By)(uxe), uxe) + 2R (Ly, (uxe) , =)
=28 <L2 (uxe) L2 (re >
=28 <D2 (uxe) >
+ 2R (ull (Jul*II (|u]2 -1
+ 2R (Ly (uxe) , Lu (1e))

+ 2R (T D (uxe), L2(re)) + 2R (D (uTy (ux:)) , L2(re))
)Xe)) s La(re)) + 2R (uIl((Jul* — 1)xc), L2 (re))

where

2% <D2 (uxe) ,Lu(r5)> + 2R <uTaD (xe) ,Li(ra» + 2R <D (uTg (uxe)) 7Lﬁ(r5)>
+ 21 <uH (]u\QH (|u]2 — 1)X5)) ,Li(ra)> + 2R <uH((|u!2 —1)xe), Li(r5)> — 0.

e—0

Then we infer that

(<L (uxe), UXE> - 2<L (uxe) UX5> + UXeaUX€>) 0 — 0.
We also observe that

(Lyy (uxe) s uxe) — 2(L3 (uxe) , uxe) + (uxe, uxe)
= [|D*(uxz) 4+ uTaD (uxe) + D(ull((jul* = 1)x)) + D(uxz) + wll(jul*TI((Ju]* - 1)x.))
+ull((Jul® = Dxe) 72
= Ig7g(u)2.

Then we can deduce that

IQ,E(u<t))2 - IQ,&(“O)Z 5—>—>0 0,

which implies that
Ig(u(t)) = IQ(U()). (3.13)

By the density and the continuity of the flow map, we can deduce (3.13) for ug € E, which
yields the second conservation law in Lemma 3.5.

Then from the a-priori bounds on ||u(t)| e, ||0zu(t)|z2 and |[|u|?> — 1|72, we can infer

that sup;c; H@%u(t)HL2 < C (ug), thus we have (3.9).

The proof is complete. O

16



3.3 Global well-posedness

As an application of Lemma 3.5, we deduce the following global well-posedness result.

Theorem 3.6. Given uy € E, there exists a unique solution u € C (R; E) of (1.1) with
u(0) = wg. Moreover, for every T > 0, the flow map ug € E — u € C([-T,T; E) is
continuous.

Proof. From Lemma 3.5, we know that |[u(t)| x2 is uniformly bounded in ¢, then by the
classical bootstrap argument, we infer that the solution exists globally in time, which yields
the global well-posedness of (1.1) in E. O

4 Explicit formula

In [13], Killip, Laurens and Visan established an explicit formula of the H{(R)(s > 0)
solution to (1.1). In this section, we establish an explicit formula of the solution to (1.1)
in E+.

Theorem 4.1. Given ug € E4, let u € C (R; E}) be the corresponding solution of (1.1).
Then we give the following explicit formula: For everyt € R and for every z € Cy, u(t, z)

identifies to
4 itd; _ itd2
(G + 2tLu0 _ Z:[d)fl (TUOTuerta‘% (e ’LL(](x) € UO(Z) ) )]

xr—Zz

. ¢
02y (2) — —1¢
im

= ey, (2)

— 2t

‘ ' 1 ) ito2 _ it
(Id 4 2telt8%TuOTﬂ()ef’Lta§ (G o Z.[d)71> eltagTUOT’aoefztag (e UO(ZUJ): - z UO(Z))] (Z)

(4.1)
Here u(t, z) and €% ug(2) are defined by the Poisson’s formulation (2.6).

Proof. We satrt with the derivation method as in [%, Section 3]. For every f € L2 (R),
from (2.7) we know that

VieCy, f(z)= & /0 o€ f(£)de.

- 2
While, in view of the Plancherel theorem, we have, in L?(0, +00),

C e f@) .
f(f)—gg% a Hmd:ﬂ—yg})@(f) fixs),
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where

1
X5(@) = 1—idz

Plugging the second formula into the first one, we infer

£(2) = lim = /O G (5(6)" f, ) de

5—0 27
1 [ . A
— lim — zz§<—z§G >
tim o )0 (o
) 1 1
= lim o (G =217 xs)

We then use the family U(t) of unitary operators defined by the linear initial value problem
in 2 (12 (B)),

U'(t) = By U(t),U(0) = 1d.

For every z € C,, we have

(uxe) (1, 2) = lim —— (U()*(G — 21d)~ (uxe) (1), U (1) xe)

5—0 217
T 1 * —1 * *
= lim —— ((U()"GU(t) — 21d) ™ U )" (wxe) (). U () x5 )
It is not difficult to see that
(G, By] = 2Ly + [G, (Lu)z} , (4.2)

then we calculate
%U(t)*GU(t) =U@t)* [G, Bu(t)] )
= U@ (2Lu +1 |G, L2 | ) U
= 2Ly, +i [U#)GU(1), Ly, ] -
Integrating this ODE, we get
U(t)*GU (t) = 2t Ly, + oL (1eitlig

Let us determine the other terms in the inner product. We have

Lyt (uxe) = U (Duluxe) — Bug(ux-))

dt
- —iLiOU(t)*(uxg) + U(t)"re,
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from which we infer

R.:=U(t)" (uxe) — el (uoxe) —>0 0

E—r
in L2 (R).
Moreover, we can easily observe that

Buxs —iLixs — 0
0—0

in L2 (R).
So we have
d * *
LUt xs = U Buxs
— i lm U (1) (L2xs)
6—0
= —ilim L2 U(t)*
7]61—13(1) uoU( ) Xé

By integrating in time, we infer
U(t)xs — e "Hoxs — 0
6—0

in L2 (R). Plugging these informations into the formula which gives ux., we infer

(uxe)(t, 2)

= lim o (U CU() — 210) U0 (o) (1), U 1) x )

1 . . -1 . .
= %in(l) 5 <<e_”Lio Geitliug +2tLy, — zId) (e_’tLio (upxe) + RE) ,e itLi, X5>
=0 20T

1 .
= lim — <(G + 2tL,, — zId)_1 (uox6 + el Rs) 7X5>
§—0 291
1 .
S [(G 4 2Ly, — 21d) ! (uoxg + eithi Rgﬂ

2
We can easily see that
(U’Xé‘)(tv Z) - U(t, 2)7 Vz € C-‘r
e—0
and

1
=y [(G +2tLy, — 21d) " Be| —0, VzeCy,

20T e—
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so we only need to give the limit of 51 |(G + 2tLy, — 21d) ™ (ugxe)| as e tends to 0.

In fact, we have
G+ 2Ly, — 2 = G+ 2tD + 2T, Tay — 21d
= e M2 GeOZ L UT, Ty, — 21d
— o i3 (G + 2teit8£TuOTﬂ0e_ita£ — zId) etz
Combining the above formula and (2.9), we infer

1 .

5L [(G+2tLy, — 1) (uox)|
1 ‘ . 1

= oL [(G + 2T, Ty e~ 0% — zId) itd: (uoxa)]

. . -1 .
- [(Id + 22T, Ty e 0% (G — zId)’l) e/10: (UOXE)] (2).

From the identity
(Id+ A~ =1d— (Id + A) 7' A,

we know that

(Id + 2teitaﬂ%TuOTa0e_itaﬂ% (G — zId)_1>
. . -1 . .
= Id -2t (Id + 2T, Ty e 103 (G — zld)_l) ST, Ty e ™% (G — 21d) 2.
Then we infer

. . -1 .
(Id + 2T, Th e~ 102 (G — zfd)—1> % (ugx.)

1092
= et (uoXe)

, . -1 . 4 ,
-2t <Id + 2te“‘/aﬂ%TuOTaoe*’wg (G — zId)A) e’tagTuoTﬁoe*”ag (G — zId)*le“faﬂZZ (uoxe)

it02 (

= "% (ugxe)

; ) -1 . . it02 _ itd2
— 9 (Id + 2telt8%Tu0Tﬂ0e—ltag (G _ ZId)_l) eltag TuoTﬁoe_Ztag <e (UOXE)(m.i - z (UOXE)(Z)) .

The second equality above comes from (2.8).

Let ¢ tend to 0, we know that

ugXe — ug pointwisely
e—0
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and
(uoxe)' =3 ug in Hi (R).

By Lemma 2.3, we infer
e 52
eltaz ( Ztaz'

UgXe) = UoXe + (e (upxe) — U0X5> jg ug + (eitaﬁ ug — uo) — ¢it0: ug pointwisely.
€

Then from the Poisson’s formulation (2.6) and the dominated convergence theorem, we
can deduce that

o o
S (uoxe)(2) e——>0> elta””uo(z), Vze C,.

Again by the dominated convergence theorem, we can deduce that, for every z € C,,

it07 ( it07 ug(z) — itz uo

upXe) (@) — P (uoxe)(2)

(2) . 2
L5 (R).
T —z e—0 T —z m +( )

Thus we have

1
lim 1 [(G 4 2Ly, — 21d)"! (uoxg)}

e—0 21
= itz up(2)
4 . -1 . it03 _ oito3
— 9 (Id + QteztagTuoTﬂOef'Ltag (G . ZId)71> ezthTuoTﬁoe—ztag <e UO(SU:z - z UO(Z) >] (Z)
) + ) it02 _ itd2
_ eztﬁgu[}(z) _ '7[_’_ (G + 2tLuO i ZId)_l (TuoTuoeltag <e UD(ﬂf) € UO(Z) .
im r—z
The proof is complete. O

Remark 4.2. In fact, the formula (4.1) is also valid for the HI(R)(s > 1) solution to
(1.1).

Remark 4.3. From Theorem 4.1, if we write u(t,x) = eitaﬂguo(m) +v(t,z) as in the proof
of Proposition 3.2, we can also establish an explicit formula for v(t,z) € C (R; H_%(R))
For every t € R and for every z € C4, v(t, z) identifies to

A it0} _ itd?2
(G + 2tLy, — zId)_1 (TUOTqu—nag (e ug(z) —e uo(z)>>]

r—z

t
— I,
i

= 2t

r—z

A A 1 . it032 _ pitd2
(Id+zteztagTuoTﬁoe—ztag(G_zld)—l) GO, Ty o102 <e up(x) — e uo(z)>] (2).
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