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Uniqueness for Quasilinear Elliptic Problems in a
Two-Component Domain with L1 data

Rheadel G. Fulgencio∗ and Olivier Guibé†

Abstract

In the present paper, we prove the uniqueness of the renormalized
solution of the class of quasilinear elliptic problems with L1 data given by





−div(B(x, u1)∇u1) = f in Ω1,

−div(B(x, u2)∇u2) = f in Ω2,

u1 = 0 on ∂Ω,

(B(x, u1)∇u1)ν1 = (B(x, u2)∇u2)ν1 on Γ,

(B(x, u1)∇u1)ν1 = −h(x)(u1 − u2) on Γ.

The open sets Ω1 and Ω2, with Γ as the interface between them, are the
two components of the domain Ω. The data f is in L1(Ω). In addition to
uniform ellipticity, we also prescribe the assumption that the matrix field
B is locally Lipschitz continuous with respect to the second variable.

1 Introduction

In the present paper, we study the uniqueness of the renormalized solution of
the following class of quasilinear elliptic problems:





− div(B(x, u1)∇u1) = f in Ω1,

− div(B(x, u2)∇u2) = f in Ω2,

u1 = 0 on ∂Ω,

(B(x, u1)∇u1)ν1 = (B(x, u2)∇u2)ν1 on Γ,

(B(x, u1)∇u1)ν1 = −h(x)(u1 − u2) on Γ.

(1.1)

The domain Ω can be written as the disjoint union of Ω1, Ω2 and Γ, where Ω1

and Ω2 are the two open components of Ω, and Γ is the interface between them.
The matrix field B is a Carathéodory function that is uniformly elliptic (see
assumption (A3)). The function h is in L∞(Γ) while f belongs to L1(Ω).

When f belongs to L2(Ω) and the domain is composed of only one compo-
nent, that is, −div(B(x, u)∇u) = f in Ω with Dirichlet boundary conditions, the
uniqueness of the solution was obtained in [1] and [6] under a global Lipschitz-
kind condition on B with respect to the second variable. Some generalizations
to nonlinear elliptic problems were addressed in [5], [7] and [8].

As far as the two-component domain is concerned, additional difficulties
arise due to the jump at the interface. When f ∈ L2(Ω), the uniqueness of
the variational solution was proved in [2] by adapting the method of Chipot
introduced in [7] (see also [12] for (1.1) with a singular term).
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Elliptic problems in the usual one component domain and L1 data, that
is, −div(B(x, u)∇u) = f in Ω with Dirichlet boundary conditions, are not in
the standard variational setting. Furthermore, in the sense of distribution, we
do not have uniqueness of the solution (see [17]). Thus, we need a convenient
framework to prove the uniqueness of the solution.

Uniqueness results were proved by using the notion of entropy solutions (see
[16]) or by using the (equivalent) notion of renormalized solutions (see [3], [10],
and [13]).

Since we consider L1 data, we choose the appropriate framework of renor-
malized solutions (see [9, 15]). The existence of a renormalized solution (which is
motivated by homogenization, see [11]) has been obtained in [14] (see Definition
2.2).

The main novelty of the present paper is the uniqueness of the renormalized
solution under a fairly used assumption on the matrix field B(x, s) in s (similar
to [10], see assumption (A4)). With respect to the already mentioned references,
let us point out that mixing technical test functions developed in [3] for L1

problem and the jump give additional difficulties.
In particular, we cannot expect to control the sign of the contribution of the

interface terms. To overcome this, we first prove in Lemma 3.3 that if u and v
are two renormalized solutions of (1.1), then u1− v1 and u2− v2 have the same
sign on the interface Γ. This sign property is crucial to prove the uniqueness
result, Theorem 4.2, which we accomplish by adapting the method of [10].

The present paper is organized as follows. The next section is devoted to the
assumptions and the definitions that are necessary to achieve our aim. Here,
we present the definition of a renormalized solution of (1.1) (see Definition 2.2).
Section 3 is devoted to prove some properties of the renormalized solution to
(1.1), in particular, the sign property (see Lemma 3.3) mentioned above. Our
uniqueness result (see Theorem 4.2) is proved in Section 4.

2 Assumptions and Definitions

We now present the assumptions and some definitions for our problem. The
domain Ω is a connected bounded open set in RN with its boundary ∂Ω. We
can write Ω as the disjoint union Ω = Ω1 ∪ Ω2 ∪ Γ, where Ω2 is an open set
such that Ω2 ⊂ Ω with a Lipschitz continuous boundary Γ and Ω1 = Ω\Ω2 (see
figure below).

We denote by ui = u|Ωi
the restriction of u in Ωi, where u is any measurable

function defined on Ω \ Γ.
We prescribe the following assumptions on f , h and B:

(A1) The function f is in L1(Ω).

(A2) The function h belongs to L∞(Γ) and for some h0 > 0,

h(y) ≥ h0 for a.e. y ∈ Γ. (2.1)

(A3) The matrix field B is a Carathéodory function, that is,

(a) the map r 7→ B(x, r) is continuous for a.e. x ∈ Ω;

(b) the map x 7→ B(x, r) is measurable for every r ∈ R,
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Figure 1: The two-component domain Ω

and it satisfies the following properties:

(a) B(x, r)ξ · ξ ≥ α|ξ|2, for some α > 0 a.e. x ∈ Ω, ∀r ∈ R, ∀ξ ∈ RN ;

(b) for any k > 0, B(x, r) ∈ L∞(Ω× (−k, k))N×N ;

(A4) B(x, r) is Locally Lipschitz with respect to r, that is, for any compact
subset K of R, there exists MK > 0 such that

|B(x, r)−B(x, s)| ≤MK |r − s|, ∀r, s ∈ K, a.e. x ∈ Ω. (2.2)

Due to the jump of a solution on the interface Γ, the usual Sobolev spaces
are not suitable to work with for our problem. Hence, we need to define a special
normed space V .

Let V1 be the normed space defined as

V1 = {v ∈ H1(Ω1) : v = 0 on ∂Ω} with ‖v‖V1 := ‖∇v‖L2(Ω1).

The space V is defined as

V := {v ≡ (v1, v2) : v1 ∈ V1 and v2 ∈ H1(Ω2)},
equipped with the norm

‖v‖2V := ‖∇v1‖2L2(Ω1) + ‖∇v2‖2L2(Ω2) + ‖v1 − v2‖2L2(Γ). (2.3)

As presented in [14], since the data f is in L1(Ω), we do not expect a solution
u of (1.1) to be in any Lp-space. Moreover, it is also not expected to have
the regularity required to have a gradient and trace in the usual sense. The
following proposition was proved in [14] to give a definition for the gradient and
trace of any measurable function. This proposition made use of the truncation
function Tk : R −→ R, given by

Tk(t) =





−k, if t ≤ k,
t, if − k ≤ t ≤ k,
k, if t ≥ k.

(2.4)
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Proposition 2.1 ([14]). Let u = (u1, u2) : Ω\Γ −→ R be a measurable function
such that Tk(u) ∈ V for every k > 0.

1. For i = 1, 2, there exists a unique measurable function Gi : Ωi −→ RN
such that for all k > 0,

∇Tk(ui) = Giχ{|ui|<k} a.e. in Ωi, (2.5)

where χ{|ui|<k} denotes the characteristic function of

{x ∈ Ωi : |ui(x)| < k}.
We define Gi as the gradient of ui and write Gi = ∇ui.

2. If

sup
k≥1

1

k
‖Tk(u)‖2V <∞, (2.6)

then there exists a unique measurable function wi : Γ −→ R, for i = 1, 2,
such that for all k > 0

γi(Tk(ui)) = Tk(wi) a.e. in Γ, (2.7)

where γi : H1(Ωi) −→ L2(Γ) is the trace operator. We define the function
wi as the trace of ui on Γ and set

γi(ui) = wi.

With this proposition, we can now present the definition of a renormalized
solution of (1.1) given in [14].

Definition 2.2. Let u = (u1, u2) : Ω \Γ −→ R be a measurable function. Then
u is a renormalized solution of (1.1) if

Tk(u) ∈ V, ∀k > 0; (2.8a)

(u1 − u2)(Tk(u1)− Tk(u2)) ∈ L1(Γ), ∀k > 0; (2.8b)

lim
n→∞

1

n

∫

{|u|<n}
B(x, u)∇u · ∇u dx = 0; (2.9a)

lim
n→∞

1

n

∫

Γ

(u1 − u2)(Tn(u1)− Tn(u2)) dσ = 0; (2.9b)

and for any S1, S2 ∈ C1(R) (or equivalently for any S1, S2 ∈ W 1,∞(R)) with
compact support, u satisfies

∫

Ω1

S1(u1)B(x, u1)∇u1 · ∇ψ1 dx+

∫

Ω1

S′1(u1)B(x, u1)∇u1 · ∇u1 ψ1 dx

+

∫

Ω2

S2(u2)B(x, u2)∇u2 · ∇ψ2 dx+

∫

Ω2

S′2(u2)B(x, u2)∇u2 · ∇u2 ψ2 dx

+

∫

Γ

h(x)(u1 − u2)(ψ1S1(u1)− ψ2S2(u2)) dσ

=

∫

Ω1

fψ1S1(u1) dx+

∫

Ω2

fψ2S2(u2) dx, (2.10)

for all ψ ∈ V ∩ (L∞(Ω1)× L∞(Ω2)).
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Remark 2.3. In the previous definition, conditions (2.8a) and (2.9a) are stan-
dard in the definition of renormalized solution. However, due to the presence of
the boundary integral on Γ, (2.8b) and (2.9b) have to be added. In particular,
since γi(ui) ∈ L1(Γ) is not an assumption in Definition 2.2, we need (2.8b) to
give sense to the integral on Γ in (2.10) (see [14, Remark 2]).

We can avoid introducing this extra regularity condition on Γ by using the
Boccardo-Gallouët estimates presented in [4] (see also Proposition 3.2). How-
ever, these estimates are heavily dependent on the Sobolev constants. With the
final aim of doing the homogenization process (see [11]) or of considering more
general nonlinear equations we chose not to impose it in the definition.

As presented in [14], assumptions (A1)-(A3) are enough to show the exis-
tence of a renormalized solution of (1.1) in the sense of this previous definition.
However, to have uniqueness of the solution, an additional assumption on matrix
B must be added (see (A4)), as will be seen in the next section.

3 Preliminary Results

In this section, we prove some properties on renormalized solutions of (1.1)
(see Lemma 3.1 and Proposition 3.2), which are standard in the L1 framework.
Moreover, we prove Lemma 3.3, which states that if u and v are two renormalized
solutions of (1.1) for the same data f , then we have the sign condition on the
interface Γ, that is sgn(u1 − v1) = sgn(u2 − v2) on Γ. This result is crucial for
the proof of our uniqueness result (see Theorem 4.2).

Lemma 3.1. Let u be a renormalized solution of (1.1). If ϕ is a bounded and
increasing function belonging in C1(R) such that ϕ(0) = 0, then

ϕ′(ui)B(x, ui)∇ui · ∇ui ∈ L1(Ωi), i = 1, 2, (3.1)

(u1 − u2)
(
ϕ(u1)− ϕ(u2)

)
∈ L1(Γ). (3.2)

Proof. Let ϕ be a bounded increasing function that belongs in C1(R) such that
ϕ(0) = 0. Let n > 0. Define the function θn : R −→ R by

θn(s) =





0, if s ≤ −2n

s

n
+ 2, if − 2n ≤ s ≤ −n

1, if − n ≤ s ≤ n

− s
n

+ 2, if n ≤ s ≤ 2n

0, if s ≥ 2n.

(3.3)

We can clearly see from the definition of θn that it is a continuous Lipschitz
function verifying

|θn(r)| ≤ 1 and |θ′n(r)| ≤ 1

n
, a.e. in R. (3.4)

Substituting S1 = S2 = θn and ψ = ϕ(T2n(u)) in (2.10) of Definition 2.2, we
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have
∫

Ω1

θn(u1)ϕ′(u1)B(x, u1)∇u1∇u1 dx+

∫

Ω2

θn(u2)ϕ′(u2)B(x, u2)∇u2∇u2 dx

+

∫

Ω1

θ′n(u1)ϕ(u1)B(x, u1)∇u1∇u1 dx+

∫

Ω2

θ′n(u2)ϕ(u2)B(x, u2)∇u2∇u2 dx

+

∫

Γ

h(x)(u1 − u2)(θn(u1)ϕ(u1)− θn(u2)ϕ(u2)) dσ =

∫

Ω

fθn(u)ϕ(u) dx.

(3.5)

We now study the terms in (3.5) to pass to the limit as n goes to infinity.
Regarding the third and fourth terms we have, for i = 1, 2,

∣∣∣
∫

Ωi

θ′n(ui)ϕ(ui)B(x, ui)∇ui∇uidx
∣∣∣

≤ ‖ϕ‖L∞(R)

n

∫

{n<|ui|<2n}
B(x, ui)∇ui∇uidx,

so that the decay of the energy of the truncates (2.9a) implies that

lim
n→+∞

∣∣∣
∫

Ωi

θ′n(ui)ϕ(ui)B(x, ui)∇ui∇uidx
∣∣∣ = 0, for i = 1, 2. (3.6)

As far as the fifth term of (3.5) is concerned, we have in view of the definition
of θn,

h(x)(u1 − u2)(θn(u1)ϕ(u1)− θn(u2)ϕ(u2))

= h(x)(u1 − u2)θn(u1)
(
θ2n(u1)− θ2n(u2)

)
ϕ(u1)

+ h(x)(u1 − u2)θn(u1)θ2n(u2)
(
ϕ(u1)− ϕ(u2)

)

− h(x)(u1 − u2)θ2n(u2)
(
θn(u1)− θn(u2)

)
ϕ(u2).

(3.7)

Since the functions θn and θ2n are Lipschitz continuous and recalling that ϕ is
bounded, we deduce that
∣∣∣h(x)(u1 − u2)θn(u1)

(
θ2n(u1)− θ2n(u2)

)
ϕ(u1)

∣∣∣

≤ ‖h‖L∞(Γ)

2n
(u1 − u2)(T4n(u1)− T4n(u2))‖ϕ‖L∞(R),

∣∣∣h(x)(u1 − u2)θ2n(u2)
(
θn(u1)− θn(u2)

)
ϕ(u2)

∣∣∣

≤ ‖h‖L∞(Γ)

2n
(u1 − u2)(T2n(u1)− T2n(u2))‖ϕ‖L∞(R),

so that condition (2.9b) leads to

lim
n→+∞

∫

Ω

∣∣∣h(x)(u1 − u2)θn(u1)
(
θ2n(u1)− θ2n(u2)

)
ϕ(u1)

∣∣∣dx = 0, (3.8)

lim
n→+∞

∫

Ω

∣∣∣h(x)(u1 − u2)θ2n(u2)
(
θn(u1)− θn(u2)

)
ϕ(u2)

∣∣∣dx = 0. (3.9)

At last, the integral on the right-hand side of (3.5), by (3.4), is bounded by
∣∣∣∣
∫

Ω

fθn(u)ϕ(u) dx

∣∣∣∣ ≤ ‖f‖L1(Ω)‖ϕ‖L∞(R). (3.10)
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Combining (3.5)-(3.10), we obtain

∫

Ω1

θn(u1)ϕ′(u1)B(x, u1)∇u1∇u1 dx+

∫

Ω2

θn(u2)ϕ′(u2)B(x, u2)∇u2∇u2 dx

+

∫

Γ

h(x)(u1 − u2)θn(u1)θ2n(u2)
(
ϕ(u1)− ϕ(u2)

)
dσ

≤ ω(n) + ‖f‖L1(Ω)‖ϕ‖L∞(R),

where w(n)→ 0 as n goes to infinity.
Since u1 (resp. u2) is finite almost everywhere in Ω1 (resp. Ω2), the definition

of θn and Fatou’s Lemma allow one to deduce that

∫

Ω1

B(x, u1)ϕ′(u1)∇u1∇u1 dx+

∫

Ω2

B(x, u2)ϕ′(u2)∇u2∇u2 dx

+

∫

Γ

h(x)(u1 − u2)
(
ϕ(u1)− ϕ(u2)

)
dσ ≤ ‖f‖L1(Ω)‖ϕ‖L∞(R). (3.11)

This gives (3.1) and (3.2).

As mentioned in Remark 2.3, we do not impose in Definition 2.2 that γi(ui)
(i = 1, 2) belongs to L1(Γ). However, having no regularity on γi(ui), for i = 1, 2,
seems to be an obstacle to prove Theorem 4.2. By adapting the estimates of
Boccardo-Gallouët (see [4]) to our two-component domain, we are able to prove
in Proposition 3.2 that γi(ui) belongs to L1(Γ), for i = 1, 2.

Proposition 3.2. For i = 1, 2, let γi be the trace function defined on H1(Ωi).
If u is a renormalized solution of (1.1), then γi(ui) ∈ L1(Γ), i = 1, 2.

Proof. By taking ϕ = Tk in Lemma 3.1, and by observing the precise estimate
(3.11) at the end of the proof of Lemma 3.1, we have

‖Tk(u)‖2V ≤ k‖f‖L1(Ω), ∀k > 0.

Since on V , the norm ‖ · ‖V is equivalent to the norm of H1(Ω1)×H1(Ω2), the
Boccardo-Gallouët estimates hold true, so that ui ∈W 1,p(Ωi), i = 1, 2, for any
p < N

N−1 . We are then able to conclude that γi(ui) ∈ L1(Γ), i = 1, 2.

In proving the uniqueness result, one of the main difficulties we encountered
is managing the integral on the interface Γ with test functions which are nonlin-
ear with respect to the unknown. The very first step to overcome this difficulty
is the following lemma which establishes a sign property of the difference of any
two renormalized solutions of (1.1) on the interface. We will denote by sgn the
usual sign function (sgn(r) = r/|r| if r 6= 0 and sgn(0) = 0).

Lemma 3.3. Suppose (A1)–(A4) hold. If u and v are two renormalized solu-
tions of (1.1), then sgn(u1 − v1) = sgn(u2 − v2) a.e. on Γ.

Proof. Let u and v be renormalized solutions of (1.1). Writing (2.10) of Defini-

tion 2.2 for S1 = S2 = θn and ψ =
1

k
Tk(u − v), where 0 < k < 1, for u and v,

and subtracting the resulting equations, we have

Ik,n1 + Ik,n2 + Jk,n1 + Jk,n2 + Lk,n = Mk,n, (3.12)
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where for i = 1, 2,

Ik,ni =
1

k

∫

Ωi

(θn(ui)B(x, ui)∇ui − θn(vi)B(x, vi)∇vi)∇Tk(ui − vi) dx,

Jk,ni =
1

k

∫

Ωi

(θ′n(ui)B(x, ui)∇ui∇ui − θ′n(vi)B(x, vi)∇vi∇vi)Tk(ui − vi) dx,

Lk,n =
1

k

∫

Γ

h(x)(u1 − u2)(θn(u1)Tk(u1 − v1)− θn(u2)Tk(u2 − v2)) dσ

− 1

k

∫

Γ

h(x)(v1 − v2)(θn(v1)Tk(u1 − v1)− θn(v2)Tk(u2 − v2)) dσ,

Mk,n =
1

k

∫

Ω

f(θn(u)− θn(v))Tk(u− v) dx.

We study the behavior of each term first as k −→ 0 and then as n −→∞.
We can write Ik,ni , i = 1, 2, as

Ik,ni = Ik,ni,1 + Ik,ni,2 + Ik,ni,3 ,

where

Ik,ni,1 =
1

k

∫

Ωi

θn(ui)B(x, ui)∇Tk(ui − vi)∇Tk(ui − vi) dx, i = 1, 2,

Ik,ni,2 =
1

k

∫

Ωi

θn(ui)(B(x, ui)−B(x, vi))∇vi∇Tk(ui − vi) dx, i = 1, 2,

Ik,ni,3 =
1

k

∫

Ωi

(θn(ui)− θn(vi))B(x, vi)∇vi∇Tk(ui − vi) dx, i = 1, 2.

Clearly, Ik,ni,1 ≥ 0, i = 1, 2. For Ik,ni,2 , i = 1, 2, we use (2.2) and (3.4) to obtain

|Ik,ni,2 | =
∣∣∣∣
1

k

∫

Ωi

θn(ui)(B(x, ui)−B(x, vi))∇vi∇Tk(ui − vi) dx
∣∣∣∣

≤ 1

k

∫
{0<|ui−vi|<k}
∩{|ui|≤2n}
∩{|vi|≤2n+1}

|θn(ui)||B(x, ui)−B(x, vi)||∇vi||∇Tk(ui − vi)| dx

≤ 1

k

∫
{0<|ui−vi|<k}
∩{|ui|≤2n}
∩{|vi|≤2n+1}

C|ui − vi||∇vi∇Tk(ui − vi)| dx

≤ C
∫

{0<|ui−vi|<k}
|∇T2n+1(vi)∇Tk(ui − vi)| dx.

From (2.8a) of Definition 2.2, we know that for any 0 < k < 1, i = 1, 2,

|∇T2n+1(vi)∇Tk(ui − vi)χ{0<|ui−vi|<k}| ≤ |∇T2n+1(vi)∇T1(ui − vi)| ∈ L1(Ωi).

In addition, we have,

∇Tk(ui − vi)χ{0<|ui−vi|<k} −→ 0 as k → 0, a.e. in Ωi, i = 1, 2.

By Lebesgue Dominated Convergence Theorem, we conclude that

C

∫

{0<|ui−vi|<k}
|∇T2n+1(vi)∇Tk(ui − vi)| dx −→ 0 as k −→ 0, i = 1, 2,
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which gives
lim
n→∞

lim
k→0

Ik,ni,2 = 0, i = 1, 2. (3.13)

For Ik,ni,3 , noting that θn is Lipschitz continuous with (3.4), we have for i = 1, 2,

|Ik,ni,3 | =
∣∣∣∣
1

k

∫

Ωi

(θn(ui)− θn(vi))B(x, vi)∇vi∇Tk(ui − vi) dx
∣∣∣∣

≤ 1

k

∫
{0<|ui−vi|<k}
∩{|ui|<2n+1}
∩{|vi|<2n+1}

|θn(ui)− θn(vi)||B(x, ui)∇vi∇(ui − vi)| dx

≤ 1

n

∫
{0<|ui−vi|<k}
∩{|ui|<2n+1}
∩{|vi|<2n+1}

|B(x, ui)∇vi∇(ui − vi)| dx

≤ 1

n

∫
{0<|ui−vi|<k}
∩{|u|<2n+1}
∩{|vi|<2n+1}

|B(x, vi)∇ui∇vi| dx

+
1

n

∫
{0<|ui−vi|<k}
∩{|ui|<2n+1}
∩{|vi|<2n+1}

B(x, vi)∇vi∇vi dx

≤ 1

n

∫

{0<|ui−vi|<k}
|B(x, vi)∇T2n+1(ui)∇T2n+1(vi)| dx

+
1

n

∫

{0<|ui−vi|<k}
B(x, vi)∇T2n+1(vi)∇T2n+1(vi) dx.

Again, from (2.8a) of Definition 2.2, we deduce that for i = 1, 2,

|∇T2n+1(ui)∇T2n+1(vi)|χ{0<|ui−vi|<k} ≤ |∇T2n+1(ui)∇T2n+1(vi)| ∈ L1(Ωi)

and
|∇T2n+1(vi)|2χ{0<|ui−vi|<k} ≤ |∇T2n+1(vi)|2 ∈ L1(Ωi).

Furthermore,

∇T2n+1(ui)∇T2n+1(vi)χ{0<|ui−vi|<k} −→ 0 as k → 0, a.e. in Ωi, i = 1, 2,

and

|∇T2n+1(vi)|2χ{0<|ui−vi|<k} −→ 0 as k → 0, a.e. in Ωi, i = 1, 2.

Using the Lebesgue Dominated Convergence Theorem, we have

1

n

∫

{0<|ui−vi|<k}
|B(x, vi)∇T2n+1(ui)∇T2n+1(vi)| dx

+
1

n

∫

{0<|ui−vi|<k}
B(x, vi)|∇T2n+1(vi)|2 dx −→ 0 as k → 0.

Hence,
lim
n→∞

lim
k→0

Ik,ni,3 = 0, i = 1, 2. (3.14)

For Jk,ni , i = 1, 2, since we have (3.4) and

|Tk(r)| ≤ k, ∀r ∈ R, ∀k > 0, (3.15)
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we obtain for i = 1, 2,

|Jk,ni | =
∣∣∣∣
1

k

∫

Ωi

(θ′n(ui)B(x, ui)∇ui∇ui − θ′n(vi)B(x, vi)∇vi∇vi)Tk(ui − vi) dx
∣∣∣∣

≤
∫

Ωi

|θ′n(ui)B(x, ui)∇ui∇ui| dx+

∫

Ωi

|θ′n(vi)B(x, vi)∇vi∇vi| dx

≤ 1

n

∫

{|ui|<2n}
B(x, ui)∇ui∇ui dx+

1

n

∫

{|vi|<2n}
B(x, vi)∇vi∇vi dx.

By (2.9a) of Definition 2.2, it follows that

lim
n→∞

lim
k→0

Jk,ni = 0, i = 1, 2. (3.16)

For the integral on the boundary, we use Proposition 3.2 to pass to the limit.
Note that by (3.4) and (3.15), we have

∣∣∣∣
1

k
h(x)(u1 − u2)θn(u1)Tk(u1 − v1)

∣∣∣∣ ≤ ‖h‖L∞(Γ)|u1 − u2| ∈ L1(Γ).

Furthermore,

1

k
h(x)(u1 − u2)θn(u1)Tk(u1 − v1) −−−→

k→0
h(x)(u1 − u2)θn(u1) sgn(u1 − v1)

a.e. on Γ, and

h(x)(u1 − u2)θn(u1) sgn(u1 − v1) −−−−→
n→∞

h(x)(u1 − u2) sgn(u1 − v1),

a.e. on Γ. The Lebesgue Dominated Convergence Theorem implies

lim
n→∞

lim
k→0

1

k

∫

Γ

h(x)(u1 − u2)θn(u1)Tk(u1 − v1) dσ

=

∫

Γ

h(x)(u1 − u2) sgn(u1 − v1) dσ,

Similarly, we obtain

lim
n→∞

lim
k→0

1

k

∫

Γ

h(x)(u1 − u2)θn(u2)Tk(u2 − v2) dσ

=

∫

Γ

h(x)(u1 − u2) sgn(u2 − v2) dσ,

lim
n→∞

lim
k→0

1

k

∫

Γ

h(x)(u1 − u2)θn(vi)Tk(u2 − v2) dσ

=

∫

Γ

h(x)(u1 − u2) sgn(u2 − v2) dσ, i = 1, 2.

Thus,

lim
n→∞

lim
k→0

Lk,n

=

∫

Γ

h(x)[(u1 − v1)− (u2 − v2)](sgn(u1 − v1)− sgn(u2 − v2)) dσ.
(3.17)
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For the integral on the right-hand side of (3.12),

|Mk,n| =
∣∣∣∣
1

k

∫

Ω

f(θn(u)− θn(v))Tk(u− v) dx

∣∣∣∣

≤
∫

Ω

|f ||θn(u)− θn(v)| dx.

Note that |f ||θn(u)− θn(v)| ≤ 2|f | ∈ L1(Ω) with

θn(u)− θn(v) −→ 0 as n −→∞, a.e. in Ω.

Thus, by the Lebesgue Dominated Convergence Theorem,

∫

Ω

|f ||θn(u)− θn(v)| dx −→ 0 as n→∞,

which gives
lim
n→∞

lim
k→0

Mk,n = 0. (3.18)

From (3.12) and the fact that Ik,ni,1 ≥ 0, we obtain

Ik,ni,2 + Ik,ni,3 +Xk,n + Lk,n ≤Mk,n.

Taking the limit of both sides of the last inequality first as k −→ 0 then as
n −→∞, we get

∫

Γ

h(x)((u1 − v1)− (u2 − v2))(sgn(u1 − v1)− sgn(u2 − v2)) dσ = 0.

That is, sgn(u1 − v1) = sgn(u2 − v2) on Γ.

4 Main Result

This section is devoted to our main result, Theorem 4.2, namely the uniqueness
of the renormalized solution under assumptions (A1)-(A4). The proof of this
uniqueness result makes use of the results of the previous section and the method
developed in [3, 10]. The following proposition, proved in [10], states that
assuming a very local Lipschitz control of B(x, s) with respect to s, we have the
existence of a function ϕ which controls the Lipschitz continuous character of
the matrix field B through very technical conditions.

Proposition 4.1 ([10]). Suppose that (2.2) holds. Then there exists a function
ϕ ∈ C1(R) that satisfies the following properties:

ϕ(0) = 0 and ϕ′ ≥ 1. (4.1)

In addition, there are constants δ > 1/2, 0 < k0 < 1, and L > 0 such that

ϕ′

(1 + |ϕ|)2δ
∈ L∞(R), (4.2)
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and for any r, s ∈ R satisfying |ϕ(r)− ϕ(s)| ≤ k, for 0 < k < k0,

∣∣∣∣
B(x, r)

ϕ′(r)
− B(x, s)

ϕ′(s)

∣∣∣∣ ≤
1

ϕ′(s)
Lk

(1 + |ϕ(r)|+ |ϕ(s)|)δ (4.3)

and
1

L
≤ ϕ′(s)
ϕ′(r)

≤ L. (4.4)

We now state and prove the main theorem.

Theorem 4.2. If assumptions (A1)-(A4) hold, then the renormalized solution
of (1.1) is unique.

Proof. In view of Theorem 1 in [14], assumptions (A1)–(A3) are sufficient to give
the existence of at least one solution to (1.1). Let u and v be two renormalized
solutions of (1.1).

Since (2.2) holds, by Proposition 4.1, we can find a function ϕ ∈ C1(R), such
that for some constants δ > 1/2, 0 < k0 < 1, and L > 0, ϕ satisfies (4.1)–(4.4).

The proof is then decomposed into two steps. Step 1 is devoted to show
the very technical result (4.5). Roughly speaking, (4.5) is an extension of the
method developed by Artola in [1] (see also [5]), and allows one to consider very
general dependency of B(x, s) with respect to s and L1 data. Limit (4.5) was
also derived in [3] (see also [10]) for elliptic equations with Dirichlet boundary
condition. Since we have to deal with the boundary term, we give here a com-
plete proof of (4.5). In Step 2, we are able to conclude that u = v a.e. in
Ω.

Step 1. In this step we prove that

lim
k→0

1

k2

∫

Ωi

(
1

ϕ′(ui)
+

1

ϕ′(vi)

)
|∇Tk(ϕ(ui)− ϕ(vi))|2 dx = 0, i = 1, 2. (4.5)

Writing (2.10) of Definition 2.2 for u and v, with S1 = S2 = θn and ψ =
Wk := Tk(ϕ(T3n(u)) − ϕ(T3n(v))), where n ∈ N, n ≥ 1 and 0 < k < 1, and
subtracting the resulting equations, we have

Ak,n1 +Ak,n2 +Bk,n1 +Bk,n2 + Ck,n = Dk,n, (4.6)

where

Ak,ni =

∫

Ωi

(θn(ui)B(x, ui)∇ui − θn(vi)B(x, vi)∇vi)∇Wk dx, i = 1, 2,

Bk,ni =

∫

Ωi

(θ′n(ui)B(x, ui)∇ui∇ui − θ′n(vi)B(x, vi)∇vi∇vi)Wk dx, i = 1, 2,

Ck,n =

∫

Γ

h(x)(u1 − u2)(Wk,1θn(u1)−Wk,2θn(u2)) dσ

−
∫

Γ

h(x)(v1 − v2)(Wk,1θn(v1)−Wk,2θn(v2)) dσ,

Dk,n =

∫

Ω

fWk(θn(u)− θn(v)) dx.
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We will first look at the limit of each term as n −→∞.
We can write Ak,ni as

Ak,ni =

∫

Ωi

θn(ui)
B(x, ui)

ϕ′(ui)
(∇ϕ(ui)−∇ϕ(vi))∇Wk dx

+

∫

Ωi

θn(ui)

(
B(x, ui)

ϕ′(ui)
− B(x, vi)

ϕ′(vi)

)
ϕ′(vi)∇vi∇Wk dx

+

∫

Ωi

(θn(ui)− θn(vi))B(x, vi)∇vi∇Wk dx, i = 1, 2.

Using the symmetry with respect to vi, we obtain

Ak,ni = Ak,ni,1 +Ak,ni,2 +Ak,ni,3 , i = 1, 2,

where

Ak,ni,1 =
1

2

∫

Ωi

(
θn(ui)

B(x, ui)

ϕ′(ui)
+ θn(vi)

B(x, vi)

ϕ′(vi)

)
(∇ϕ(ui)−∇ϕ(vi))∇Wk dx,

Ak,ni,2 =
1

2

∫

Ωi

(
B(x, ui)

ϕ′(ui)
− B(x, vi)

ϕ′(vi)

)

× (θn(ui)ϕ
′(vi)∇vi + θn(vi)ϕ

′(ui)∇ui)∇Wk dx,

Ak,ni,3 =
1

2

∫

Ωi

(θn(ui)− θn(vi))(B(x, ui)∇ui +B(x, vi)∇vi)∇Wk dx.

For i = 1, 2, let us define Uki = {x ∈ Ωi : 0 < |ϕ(ui)− ϕ(vi)| < k}. For any
k > 0 small enough, since supp θn = [−2n, 2n], we have a.e. in Uki ,

θn(ui)∇Tk(ϕ(ui)− ϕ(vi)) = θn(ui)∇Tk(ϕ(T3n(ui))− ϕ(T3n(vi)))

= θn(ui)∇Wk, i = 1, 2.
(4.7)

As a consequence of (4.7), for any k > 0 small enough, we get for i = 1, 2,

Ak,ni,1 =
1

2

∫

Ωi

θn(ui)
B(x, ui)

ϕ′(ui)
(∇ϕ(ui)−∇ϕ(vi))∇Wk dx

+
1

2

∫

Ωi

θn(vi)
B(x, vi)

ϕ′(vi)
(∇ϕ(ui)−∇ϕ(vi))∇Wk dx

=
1

2

∫

Uk
i

θn(ui)
B(x, ui)

ϕ′(ui)
(∇ϕ(ui)−∇ϕ(vi))(∇ϕ(ui)−∇ϕ(vi)) dx

+
1

2

∫

Uk
i

θn(vi)
B(x, vi)

ϕ′(vi)
(∇ϕ(ui)−∇ϕ(vi))(∇ϕ(ui)−∇ϕ(vi)) dx.

Using the coercivity of B we obtain that

α

2

∫

Uk
i

(
θn(ui)

ϕ′(ui)
+
θn(vi)

ϕ′(vi)

)
|∇(ϕ(ui)− ϕ(vi))|2 dx ≤ Ak,ni,1 , i = 1, 2. (4.8)

As far as Ak,ni,2 are concerned, by (4.3), we have for i = 1, 2, and any k > 0 small
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enough

|Ak,ni,2 | ≤
1

2

∫

Uk
i

∣∣∣∣
B(x, ui)

ϕ′(ui)
− B(x, vi)

ϕ′(vi)

∣∣∣∣ |θn(ui)∇ϕ(vi) + θn(vi)∇ϕ(ui)|

× |∇(ϕ(ui)− ϕ(vi))| dx

≤ 1

2

∫

Uk
i

1

ϕ′(ui)
Lk

(1 + |ϕ(ui)|+ |ϕ(vi)|)δ

× |θn(ui)∇ϕ(vi) + θn(vi)∇ϕ(ui)||∇(ϕ(ui)− ϕ(vi))| dx

≤ 1

2

∫

Uk
i

1

ϕ′(ui)
Lk

(1 + |ϕ(ui)|+ |ϕ(vi)|)δ

× θn(ui)|∇ϕ(vi)||∇(ϕ(ui)− ϕ(vi))| dx

+
1

2

∫

Uk
i

1

ϕ′(ui)
Lk

(1 + |ϕ(ui)|+ |ϕ(vi)|)δ

× θn(vi)|∇ϕ(ui)||∇(ϕ(ui)− ϕ(vi))| dx.
For ε > 0 (which will be chosen later), Young’s inequality leads to, for i = 1, 2,

|Ak,ni,2 | ≤
∫

Uk
i

θn(ui)ϕ
′(vi)

2

[
1

ε

(
Lk

ϕ′(ui)
|∇ϕ(vi)|

(1 + |ϕ(ui)|+ |ϕ(vi)|)δ
)2

+ ε

(
1

ϕ′(vi)
|∇ϕ(ui)−∇ϕ(vi)|

)2
]
dx

+

∫

Uk
i

θn(vi)ϕ
′(ui)

2

[
1

ε

(
Lk

ϕ′(ui)
|∇ϕ(ui)|

(1 + |ϕ(ui)|+ |ϕ(vi)|)δ
)2

+ ε

(
1

ϕ′(ui)
|∇ϕ(ui)−∇ϕ(vi)|

)2
]
dx

≤ C1k
2

∫

Uk
i

(θn(ui)ϕ
′(vi)|∇ϕ(vi)|2 + θn(vi)ϕ

′(ui)|∇ϕ(ui)|2)

(ϕ′(ui))2(1 + |ϕ(ui)|+ |ϕ(vi)|)2δ
dx

+ C2ε

∫

Uk
i

(
θn(ui)

ϕ′(ui)
+
θn(vi)

ϕ′(vi)

)
|∇ϕ(ui)−∇ϕ(vi)|2 dx.

In view of assumption (4.4), we deduce that, for i = 1, 2,

C1k
2

∫

Uk
i

[θn(ui)ϕ
′(vi)|∇ϕ(vi)|2 + θn(vi)ϕ

′(ui)|∇ϕ(ui)|2]

(ϕ′(ui))2(1 + |ϕ(ui)|+ |ϕ(vi)|)2δ
dx

≤ C1k
2

∫

Uk
i

(L2θn(ui)ϕ
′(vi)|∇vi|2 + θn(vi)ϕ

′(ui)|∇ui|2)

(1 + |ϕ(ui)|+ |ϕ(vi)|)2δ
dx

≤ C3k
2

∫

Uk
i

(θn(ui) + θn(vi))
ϕ′(ui)|∇ui|2 + ϕ′(vi)|∇vi|2

(1 + |ϕ(ui)|+ |ϕ(vi)|)2δ
dx.

It follows that

|Ak,ni,2 | ≤ C3k
2

∫

Uk
i

(θn(ui) + θn(vi))
ϕ′(ui)|∇ui|2 + ϕ′(vi)|∇vi|2

(1 + |ϕ(ui)|+ |ϕ(vi)|)2δ
dx

+ C2ε

∫

Uk
i

(
θn(ui)

ϕ′(ui)
+
θn(vi)

ϕ′(vi)

)
|∇ϕ(ui)−∇ϕ(vi)|2 dx, i = 1, 2,

(4.9)
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where C2 and C3 are positive constants independent of k and n (with C2 also
independent of ε).

We now turn to the term Ak,ni,3 . By (4.1) and (4.4), we have

|ui − vi| ≤
L

ϕ′(ui)
|ϕ(ui)− ϕ(vi)| a.e. in Uki , i = 1, 2, (4.10)

and since θn is a Lipschitz continuous function verifying |θ′n(r)| = 1
nχ{n<|r|<2n}

a.e. in R, we obtain

|θn(ui)− θn(vi)| ≤
1

n
|ui − vi| ≤

Lk

nϕ′(ui)
a.e. in Uki , i = 1, 2. (4.11)

Observe that this inequality still holds if the roles of ui and vi are interchanged.
Therefore using (4.11), we obtain, for i = 1, 2,

|Ak,ni,3 | ≤
1

2

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

|θn(ui)− θn(vi)|
∣∣∣B(x, ui)ϕ

′(ui)∇ui∇ui

+B(x, ui)ϕ
′(ui)∇ui∇vi −B(x, vi)ϕ

′(vi)∇ui∇vi
−B(x, vi)ϕ

′(vi)∇vi∇vi
∣∣∣ dx

≤ Lk

2n

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

(B(x, ui)∇ui∇ui +B(x, vi)∇vi∇vi) dx

+
Lk

2n

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

(B(x, ui)|∇ui∇vi|+B(x, vi)|∇ui∇vi|) dx

Applying Young’s Inequality on the second term of the previous inequality, we
get, for i = 1, 2,

Lk

2n

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

(B(x, ui)|∇ui∇vi|+B(x, vi)|∇ui∇vi|) dx

≤ Lk

4n

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

[
B(x, ui)(∇ui∇ui +∇vi∇vi)

+ [B(x, vi)(∇ui∇ui +∇vi∇vi)
]
dx.

It follows that, for i = 1, 2,

|Ak,ni,3 | ≤
C4k

n

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

(B(x, ui)∇ui∇ui +B(x, vi)∇vi∇vi) dx

+
C5k

n

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

(B(x, ui)∇vi∇vi +B(x, vi)∇ui∇ui) dx.
(4.12)
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By (2.9a) of Definition 2.2, the first term of the right-hand side of (4.12) goes
to zero as n goes to infinity. It is worth noting that the second term of the
right-hand side of (4.12) contains non symmetric terms in ui and vi, so that
without any bound on B, the behavior of this term is not a direct consequence
of the decay of the truncate energy (2.9a). Using (2.9a) and condition (4.3), we
claim that the second term also goes to zero as n goes to infinity.

Indeed, writing for i = 1, 2,

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

B(x, ui)∇vi∇vi dx

=

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

(
B(x, ui)

ϕ′(ui)
− B(x, vi)

ϕ′(vi)

)
ϕ′(ui)∇vi∇vi dx

+

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

B(x, vi)

ϕ′(vi)
ϕ′(ui)∇vi∇vi dx,

and using (4.3) and (4.4), we have, for i = 1, 2,

C5k

n

∫
Uk

i ∩
{|ui|<2n+1}
∩{|vi|<2n+1}

B(x, ui)∇vi∇vi dx

≤ C5Lk
2

n

∫

{|vi|<2n+1}

|∇vi|2
(1 + |ϕ(ui)|+ |ϕ(vi)|)δ

dx

+
C5Lk

n

∫

{|vi|<2n+1}
B(x, vi)∇vi∇vi dx.

It follows that by (2.9a) of Definition 2.2, we have

lim
n→∞

C

n

∫
Uk

i ∩{|ui|<2n+1}
∩{|vi|<2n+1}

B(x, ui)∇vi∇vi dx = 0, i = 1, 2.

By similar computations, it can be shown that

lim
n→∞

C

n

∫
Uk

i ∩{|ui|<2n+1}
∩{|vi|<2n+1}

B(x, vi)∇ui∇ui dx = 0, i = 1, 2.

Consequently,
lim
n→∞

Ak,ni,3 = 0, i = 1, 2. (4.13)

Regarding the term Bk,ni , i = 1, 2, we have

|Bk,ni | =
∣∣∣∣
∫

Ωi

(θ′n(ui)B(x, ui)∇ui∇ui − θ′n(vi)B(x, vi)∇vi∇vi)Wk dx

∣∣∣∣

≤
∫

Ωi

|θ′n(ui)|B(x, ui)∇ui∇ui|Wk| dx+

∫

Ωi

|θ′n(vi)|B(x, vi)∇vi∇vi|Wk| dx

≤ k

n

∫

{|ui|<2n}
B(x, ui)∇ui∇ui dx+

k

n

∫

{|vi|<2n}
B(x, vi)∇vi∇vi dx.
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These last two integrals go to zero as n goes to infinity by (2.9a) of Definition 2.2.
Thus,

lim
n→∞

Bk,ni = 0, i = 1, 2. (4.14)

To pass to the limit of Ck,n as n goes to ∞, we use Proposition 3.2. Note
that

|h(x)(u1 − u2)Wk,1θn(u1)| ≤ ‖h‖L∞(Γ)|u1 − u2|k ∈ L1(Γ),

and

h(x)(u1 − u2)Wk,1θn(u1) −−−−→
n→∞

h(x)(u1 − u2)Tk(ϕ(u1)− ϕ(v1)) a.e. on Γ.

By the Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫

Γ

h(x)(u1 − u2)Wk,1θn(u1) dσ =

∫

Γ

h(x)(u1 − u2)Tk(ϕ(u1)− ϕ(v1)) dσ.

Using similar arguments, we obtain that

lim
n→∞

∫

Γ

h(x)(u1 − u2)Wk,2θn(u2) dσ =

∫

Γ

h(x)(u1 − u2)Tk(ϕ(u2)− ϕ(v2)) dσ

and for i = 1, 2,

lim
n→∞

∫

Γ

h(x)(v1 − v2)Wk,iθn(vi) dσ =

∫

Γ

h(x)(v1 − v2)Tk(ϕ(ui)− ϕ(vi)) dσ.

Therefore, we conclude that

lim
n→∞

Ck,n =

∫

Γ

h(x)[(u1 − u2)− (v1 − v2)]

× [Tk(ϕ(u1)− ϕ(v1))− Tk(ϕ(u2)− ϕ(v2))] dσ.

(4.15)

Finally, concerning Dk,n, since

|fWk(θn(u)− θn(v))| ≤ 2k|f | ∈ L1(Ω),

while
θn(u)− θn(v) −→ 0 a.e. in Ω as n −→∞,

the Lebesgue Dominated Convergence Theorem leads to

lim
n→∞

Dk,n = 0. (4.16)

Combining (4.8), (4.9), (4.13), (4.14), and (4.16), and choosing ε small
enough, we obtain
∫

Uk
1

(
θn(u1)

ϕ′(u1)
+
θn(v1)

ϕ′(v1)

)
|∇ϕ(u1)−∇ϕ(v1)|2 dx

+

∫

Uk
2

(
θn(u2)

ϕ′(u2)
+
θn(v2)

ϕ′(v2)

)
|∇ϕ(u2)−∇ϕ(v2)|2 dx+ Ck,n

≤ Ck2

∫

Uk
1

(θn(u1) + θn(v1))
ϕ′(u1)|∇u1|2 + ϕ′(v1)|∇v1|2

(1 + |ϕ(u1)|+ |ϕ(v1)|)2δ
dx

+ Ck2

∫

Uk
2

(θn(u2) + θn(v2))
ϕ′(u2)|∇u2|2 + ϕ′(v2)|∇v2|2

(1 + |ϕ(u2)|+ |ϕ(v2)|)2δ
dx+ ρ(n),

(4.17)
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where C is a positive constant independent of k and n, and where ρ(n) goes to
zero as n goes to ∞.

Let τ : R −→ R such that

τ(r) =

∫ r

0

ϕ′(t)
(1 + |ϕ(t)|)2δ

dt.

Clearly, τ is an increasing C1(R)-function and since 2δ > 1, τ is bounded. Then,
by Lemma 3.1 and (4.1) of Proposition 4.1, we deduce that

ϕ′(ui)|∇ui|2
(1 + |ϕ(ui)|)2δ

and
ϕ′(vi)|∇vi|2

(1 + |ϕ(vi)|)2δ
∈ L1(Ωi). (4.18)

Hence, we can pass to the limit on the right-hand side of (4.17). Furthermore,

θn(ui) −→ 1 as n −→∞, a.e. in Ωi, i = 1, 2.

By Fatou’s Lemma and (4.15), we have

∫

Uk
1

(
1

ϕ′(u1)
+

1

ϕ′(v1)

)
|∇ϕ(u1)−∇ϕ(v1)|2 dx

+

∫

Uk
2

(
1

ϕ′(u2)
+

1

ϕ′(v2)

)
|∇ϕ(u2)−∇ϕ(v2)|2 dx+ Ck

≤ Ck2

∫

Uk
1

ϕ′(u1)|∇u1|2 + ϕ′(v1)|∇v1|2
(1 + |ϕ(u1)|+ |ϕ(v1)|)2δ

dx

+ Ck2

∫

Uk
2

ϕ′(u2)|∇u2|2 + ϕ′(v2)|∇v2|2
(1 + |ϕ(u2)|+ |ϕ(v2)|)2δ

dx,

(4.19)

where

Ck =

∫

Γ

h(x)[(u1 − v1)− (u2 − v2)][Tk(ϕ(u1)− ϕ(v1))− Tk(ϕ(u2)− ϕ(v2))] dσ.

Dividing both sides of (4.19) by k2 and noting that χUk
i
−→ 0 a.e. in Ωi as

k −→ 0, (4.18) and the Lebesgue Dominated Convergence Theorem allow one
to conclude that

lim sup
k→0

(
1

k2

∫

Uk
1

(
1

ϕ′(u1)
+

1

ϕ′(v1)

)
|∇ϕ(u1)−∇ϕ(v1)|2 dx

+
1

k2

∫

Uk
2

(
1

ϕ′(u2)
+

1

ϕ′(v2)

)
|∇ϕ(u2)−∇ϕ(v2)|2 dx+

1

k2
Ck
)
≤ 0.

(4.20)

As a consequence, proving (4.5) is equivalent to showing that

lim sup
k→0

1

k2
Ck ≥ 0. (4.21)

We now study the behavior of Ck/k2 as k goes to zero. To shorten the
notation, we will denote by gk the function given by

gk = h[(u1 − v1)− (u2 − v2)]× [Tk(ϕ(u1)− ϕ(v1))− Tk(ϕ(u2)− ϕ(v2))].
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The main difficulty in managing this term is its non-linearity. Indeed, even if
sgn(u1 − v1) = sgn(u2 − v2) a.e. on Γ, there is no reason to have gk ≥ 0 nor to
give a bound of gk/k

2. In order to study the behavior of Ck/k2, we decompose
the integral on Γ into the integral on different subsets. Since from Lemma 3.3,
sgn(u1−v1) = sgn(u2−v2) a.e. on Γ, in view of the symmetry of gk with respect
to ui and vi (i = 1, 2), proving (4.21) is equivalent to prove

lim sup
k→0

1

k2

∫

{u1−v1>0}
gkdσ ≥ 0.

We now split the set {x ∈ Γ ; u1(x) − v1(x) > 0} (up to a zero measure
subset) into 4 subsets,

{u1 − v1 > 0} = P1 ∪ P2 ∪ P3 ∪ P4,

where

P1 := {ϕ(u1)− ϕ(v1) ≥ k} ∩ {ϕ(u2)− ϕ(v2) ≥ k},
P2 := {0 < ϕ(u1)− ϕ(v1) < k} ∩ {0 < ϕ(u2)− ϕ(v2) < k},
P3 = {ϕ(u1)− ϕ(v1) ≥ k} ∩ {0 < ϕ(u2)− ϕ(v2) < k},
P4 := {0 < ϕ(u1)− ϕ(v1) < k} ∩ {ϕ(u2)− ϕ(v2) ≥ k}.

Since we have

Tk(ϕ(u1)− ϕ(v1))− Tk(ϕ(u2)− ϕ(v2)) = 0 a.e. on P1,

we obtain that
1

k2

∫

P1

gkdσ = 0. (4.22)

As far as
∫
P2
gkdσ is concerned, recalling that ϕ ∈ C1(R) with ϕ′(t) ≥ 1 for

any t ∈ R gives

0 < u1 − v1 ≤ ϕ(u1)− ϕ(v1) < k a.e. on P2

and
0 < u2 − v2 ≤ ϕ(u2)− ϕ(v2) < k a.e. on P2.

As a consequence, we deduce that

1

k2
|gk| =

1

k2
|h||(u1 − v1)− (u2 − v2)||(ϕ(u1)− ϕ(v1))− (ϕ(u2)− ϕ(v2))|

≤ ‖h‖L∞(Γ) a.e. on P2.

Since
χP2
→ 0 as k → 0 a.e. on Γ,

the Lebesgue Dominated Convergence Theorem leads to

lim
k→0

1

k2

∫

P2

gkdσ = 0. (4.23)

We now study
∫
P3
gkdσ by splitting P3 into P3 ∩ {u1 − v1 ≥ k} and P3 ∩

{u1 − v1 < k}. With already used arguments, we have

0 < u2 − v2 < k a.e. on P3.
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It follows that

[(u1 − v1)− (u2 − v2)] ≥ 0 a.e. on P3 ∩ {u1 − v1 ≥ k},

so that
gk ≥ 0 a.e. on P3 ∩ {u1 − v1 ≥ k}.

On the other hand, we have

1

k2
|gk| =

1

k2
|h||(u1 − v1)− (u2 − v2)|(k − (ϕ(u2)− ϕ(v2)))

≤ ‖h‖L∞(Γ) a.e. on P3 ∩ {0 < u1 − v1 < k}.

Since
χP3
→ 0 as k → 0, a.e. on Γ,

the Lebesgue Dominated Convergence Theorem leads to

lim
k→0

1

k2

∫

P3∩{0<u1−v1<k}
gkdσ = 0.

Noting that we can write

∫

P3

gkdσ =

∫

P3∩{u1−v1≥k}
gkdσ +

∫

P3∩{0<u1−v1<k}
gkdσ,

we deduce that

lim sup
k→0

1

k2

∫

P3

gkdσ ≥ 0. (4.24)

At last, by writing

∫

P4

gkdσ =

∫

P4∩{u2−v2≥k}
gkdσ +

∫

P4∩{0<u2−v2<k}
gkdσ,

and by proving with similar arguments that

∫

P4∩{u2−v2≥k}
gkdσ ≥ 0

and

lim
k→0

1

k2

∫

P4∩{0<u2−v2<k}
gkdσ = 0,

yield

lim sup
k→0

1

k2

∫

P4

gkdσ ≥ 0. (4.25)

The results (4.22)–(4.25) give

lim sup
k→0

1

k2
Ck ≥ 0. (4.26)

Therefore, (4.5) holds true.

Step 2. In this step, we prove that u1 = v1 a.e. in Ω1 and u2 = v2 a.e. in Ω2.
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We first show that u1 = v1 a.e. in Ω1. To do this, we consider the function

θn(u1)Tk(ϕ(u1)− ϕ(v1)) ∈ L∞(Ω1) ∩ V1.

Since u1 = v1 = 0 on ∂Ω, we can apply Poincaré inequality which leads to

∫

Ω1

(θn(u1))2

∣∣∣∣
Tk(ϕ(u1)− ϕ(v1))

k

∣∣∣∣
2

dx

≤ C
∫

Ω1

(θn(u1))2

(∇Tk(ϕ(u1)− ϕ(v1))

k

)2

dx

+ C

∫

Ω1

(θ′n(u1))2|∇u1|2
∣∣∣∣
Tk(ϕ(u1)− ϕ(v1))

k

∣∣∣∣
2

dx,

(4.27)

where C > 0 does not depend on k and n. The second integral on the right-hand
side of (4.27) can be bounded by

∫

Ω1

(θ′n(u1))2|∇u1|2
∣∣∣∣
Tk(ϕ(u1)− ϕ(v1))

k

∣∣∣∣
2

dx ≤ 1

n2

∫

{|u1|<2n}
|∇u1|2 dx.

The integral on the right-hand side goes to zero as n goes to ∞ by (2.9a) of
Definition 2.2. This implies

lim
n→∞

lim
k→0

∫

Ω1

(θ′n(u1))2|∇u1|2
∣∣∣∣
Tk(ϕ(u1)− ϕ(v1))

k

∣∣∣∣
2

dx = 0. (4.28)

For the first integral on the right-hand side of (4.27), we have

∫

Ω1

(θn(u1))2

(∇Tk(ϕ(u1)− ϕ(v1))

k

)2

dx

≤ maxs∈[−2n,2n] ϕ
′(s)

k2

∫

Uk

1

ϕ′(u1)
|∇ϕ(u1)−∇ϕ(u2)|2 dx.

The integral on the right-hand side of this inequality goes to 0 as k goes to 0
by (4.5). Thus,

∫

Ω1

χ{ϕ(u1) 6=ϕ(v1)} dx

= lim
n→∞

lim
k→0

∫

Ω1

(θn(u1))2

∣∣∣∣
Tk(ϕ(u1)− ϕ(v1))

k

∣∣∣∣
2

dx = 0,

(4.29)

that is, ϕ(u1) = ϕ(v1) a.e. in Ω1. Since ϕ′ ≥ 1, we have u1 = v1 a.e. in Ω1. As
a consequence, γ1(u1) = γ1(v1), that is, u1 = v1 a.e. on Γ.

From Lemma 3.3, sgn(u1 − v1) = sgn(u2 − v2) on Γ. Since u1 − v1 = 0 a.e.
on Γ, we also have u2 − v2 = 0 a.e. on Γ. Thus, u2 = v2 a.e. on Γ.

It only remains to prove that u2 = v2 in Ω2. Consider the function

θn(u2)Tk(ϕ(u2)− ϕ(v2)) ∈ L∞(Ω2) ∩H1(Ω2),
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which has a zero value a.e. on Γ since u2 = v2 a.e. on Γ. We can then apply
Poincaré inequality which implies that

∫

Ω2

(θn(u2))2

∣∣∣∣
Tk(ϕ(u2)− ϕ(v2))

k

∣∣∣∣
2

dx

≤ C
∫

Ω2

(θn(u2))2

(∇Tk(ϕ(u2)− ϕ(v2))

k

)2

dx

+ C

∫

Ω2

(θ′n(u2))2|∇u2|2
∣∣∣∣
Tk(ϕ(u2)− ϕ(v2))

k

∣∣∣∣
2

dx.

Using the same arguments to show (4.29), we conclude that

∫

Ω2

χ{ϕ(u2) 6=ϕ(v2)} dx = lim
n→∞

lim
k→0

∫

Ω2

(θn(u2))2

∣∣∣∣
Tk(ϕ(u2)− ϕ(v2))

k

∣∣∣∣
2

dx = 0.

This implies ϕ(u2) = ϕ(v2) a.e. in Ω2. Therefore, since ϕ′ ≥ 1, u2 = v2 a.e. in
Ω2.

This concludes the proof of the uniqueness of the renormalized solution of
(1.1).
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[4] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equa-
tions involving measure data., J. Funct. Anal., 87 (1989), pp. 149–169.
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