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Abstract

An in-domain finite dimensional controller for a class of distributed parameter systems on a one-dimensional spatial domain
formulated under the port-Hamiltonian framework is presented. Based on (Trenchant et al. 2017) where positive feedback
and a late lumping approach is used, we extend the Control by Interconnection method and propose a new energy shaping
methodology with an early lumping approach on the distributed spatial domain of the system. Our two main control objectives
are to stabilize the closed-loop system, as well as to improve the closed-loop dynamic performances. With the early lumping
approach, we investigate two cases of the controller design, the ideal case where each distributed controller acts independently
on the spatial domain (fully-actuated), and the more realistic case where the control action is piecewise constant over certain
intervals (under-actuated). We then analyze the asymptotic stability of the closed-loop system when the infinite dimensional
plant system is connected with the finite dimensional controller. Furthermore we provide simulation results comparing the
performance of the fully-actuated case and the under-actuated case with an example of an elastic vibrating string.

Key words: Port-Hamiltonian systems; Distributed parameter systems; Passivity-based control; Casimir function;
Optimization.

1 Introduction

The control of distributed parameter systems governed
by partial differential equations (PDEs) has been the
subject of an intensive research activity over the last
decades [1,2]. Based on the location of actuators and
sensors, control of PDEs is concerned with either bound-
ary or in-domain distributed control. Typical in-domain
distributed controls of PDEs have been investigated in
[3] for nonlinear PDEs with non-normal linearizations,
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in [4,5] for optimal control, and in [6] for optimal con-
trol problem over a finite time interval, etc. Compared
to the boundary control problems, this latter offers more
degrees of freedom and can be extended to higher di-
mensional spatial domains where the input acts within
the domain. In this paper, we focus on in-domain piece-
wise constant distributed control that allows to assign
the dynamic performances over a given frequency range
with clear physical interpretations. This piecewise con-
stant in-domain control has been investigated in [7,8]
using speed-gradient method. Different from the afore-
mentioned approach, we design the controller on infi-
nite dimensional port-Hamiltonian systems (PHSs), for
its advantages in the modeling and possible extension
to control of multi-physical nonlinear systems [9], which
covers a wide domain of applications, such as fluid dy-
namics, chemical processes, and recently flexible struc-
tures actuated by soft actuators [10,11].

The concept of PHSs has firstly been introduced in
the 90’s in [12] for lumped parameter systems. It is an
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energy-based representation that expresses the power
exchanges within the system and with its environment,
using energy and co-energy variables and an intrinsic
geometric structure, the Dirac structure. PHSs have
later been extended to distributed parameter systems in
[13]. The geometric Stokes-Dirac structure for linear dis-
tributed parameter PHSs defined on a one-dimensional
(1D) spatial domain has been investigated in [14] using
the semigroup theory. In terms of control, the Hamilto-
nian function is a good Lyapunov candidate function,
and this class of systems exhibits an intrinsic passivity
property, which makes passivity-based control (PBC)
techniques suitable. Moreover, controllers designed
through PBC have a clear physical interpretation. The
PBC has been applied to lumped parameter PHSs and
extensively studied in [15,16] leading to efficient control
design techniques such as Control by Interconnection
(CbI) and Interconnection and Damping Assignment
(IDA)-PBC. [17] has generalized the CbI to distributed
parameter PHSs with boundary control. The controller
is designed to be a PHS. With the passive interconnec-
tion between the plant and the controller, the closed-
loop system is again a PHS [16]. Casimir functions are
then used to find an invariant relation between the
state variables of the plant and those of the controller.
By modifying the controller parameters, one can add
damping to the closed-loop system (damping injection)
and adjust the shape of its closed-loop Hamiltonian
modifying both equilibrium and dynamic performances
(energy shaping). The first result on CbI for distributed
parameter PHSs with in-domain distributed control can
be found in [18] where a positive feedback, late lump-
ing approach and full actuation are investigated. Later
on, [19] has applied the same late lumping approach,
but with negative feedback and jet bundle formalism to
design a finite dimensional port-Hamiltonian controller
for piezo-actuated Euler-Bernoulli beam. The initial
conditions have been estimated by an observer pro-
posed in [20]. This controller has been extended to a 2D
Kirchhoff–Love plate in [21]. Part of the controller state
variables are used for energy shaping, whereas the oth-
ers are for damping injection. As the jet bundle method
focuses more on the geometric properties, the stability
of the closed-loop system has not been investigated yet.
Different from existing work in [18,19,21], we consider
here the CbI of distributed PHS using a negative feed-
back, an early-lumping approach and a limited number
of actuators. The controller design takes all the informa-
tion of the discretized plant into account to achieve both
energy shaping and damping injection at the same time.

The main contributions of this paper are:

(1) The generalization of the in-domain CbI estab-
lished for the Timoshenko beam in [22] to a class of
1D linear distributed parameter PHSs which cov-
ers different physical applications such as vibrat-
ing strings, Timoshenko beams, Euler-Bernoulli
beams, etc. With the early lumping approach, the

finite dimensional controller is designed on the ba-
sis of the approximated finite dimensional plant
system.

(2) Using the semigroup theory and passivity proper-
ties, we prove the asymptotic stability of the closed-
loop system when the finite dimensional controller
is applied to the infinite dimensional plant, getting
rid of the well-known spillover effect [23].

(3) Besides the asymptotic stabilization of the closed-
loop system, the controller improves the dynamic
performances of the system over a given range of
frequencies, i.e. accelerate the system with less os-
cillation and less overshoot.

Two different cases are investigated for the dynamic
performances improvement: the ideal fully-actuated case
where the control input works independently on each el-
ement of the discretized model and the under-actuated
case where the input acts identically on sets of elements,
providing less degrees of freedom. This latter case is
closer to the real implementation because the control
is usually carried out through actuator patches that
act similarly over spatial elements. It is shown how to
change the closed-loop energetic properties of the dis-
cretized system in a perfect way when the system is
fully-actuated and in an optimal way when the system
is under-actuated.

The paper is organized as follows: in Section 2 the port
Hamiltonian formulation of a class of linear distributed
parameter systems with two conservation laws and
with in-domain control is presented, together with its
structure-preserving discretization. The aforementioned
CbI and energy shaping methods are investigated in Sec-
tion 3 with a detailed closed-loop stability analysis. This
control strategy takes advantage of the early lumping
approach, leading to a directly implementable controller
with guaranteed performances over a given frequency
range. The passivity of the system and the damping in-
jection guarantee the well-posedness and the asymptotic
stability of the closed-loop system. Section 4 provides
some simulation results with a comparison between the
fully- and under-actuated cases using a vibrating string
example, followed by the frequency analyses in Section
5. Section 6 ends up with conclusions and perspectives.

2 Port-Hamiltonian systems with in-domain
control

In this paper, we consider partitioned port-Hamiltonian
systems defined on a 1D spatial domain ζ ∈ [a, b] with
distributed and boundary control and observation of the
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form:

∂

∂t

x1(ζ, t)

x2(ζ, t)

 =

 0 G
−G∗ −R

L1(ζ)x1(ζ, t)

L2(ζ)x2(ζ, t)

 (1)

+

 0

B0

ud(ζ, t), (2)

yd(ζ, t) =
[
0 BT

0

]L1(ζ)x1(ζ, t)

L2(ζ)x2(ζ, t)

 , (3)

ub = B

L1(ζ)x1(ζ, t)

L2(ζ)x2(ζ, t)

 , yb = C

L1(ζ)x1(ζ, t)

L2(ζ)x2(ζ, t)

 , (4)

where x = [xT
1 , x

T
2 ]

T ∈ X := L2([a, b] ,Rn) ×
L2([a, b] ,Rn), L = diag(L1,L2) is a bounded and Lip-
schitz continuous matrix-valued function such that
L(ζ) = LT (ζ) and L(ζ) ≥ η with η > 0 for all
ζ ∈ [a, b]. The dissipation operator R is bounded, sym-
metric (R∗ = R) and coercive (⟨z,Rz⟩L2 > c∥z∥L2

,

∀z ∈ L2([a, b] ,Rn) and c > 0). B(·) and C(·) are some
boundary input and boundary output mapping opera-
tors that will be defined later. B0 ∈ Rn×1 is full rank.
X ∋ x is the space of energy variables and Lx denotes
the co-energy variables associated to the energy vari-
ables x. The total energy of the system is given by:

H(x1, x2) =
1

2

∫ b

a

(
L1(ζ)x

2
1(ζ, t) + L2(ζ)x

2
2(ζ, t)

)
dζ.

(5)
Furthermore, we consider in this paper that:

G = G0 +G1
∂

∂ζ
, (6)

with G0, G1 ∈ Rn×n and G1 full rank. G∗ is the formal
adjoint of G i.e.

G∗ = GT
0 −GT

1

∂

∂ζ
.

ud and yd denote the distributed input and output, re-
spectively. The system (1-4) with (6) stems from the
modeling of flexible structures like elastic strings, waves
or Timoshenko beams and beams organised in networks.
The distributed input which is applied only to x2 can
be considered as an exerted force/torque. The proposed
approach is easy to extend to second order operators
defining Euler-Bernoulli beam equation for example.

We define P1 =

 0 G1

GT
1 0

 .

Definition 1 The boundary port variables associated to
the system (1) are defined by:f∂

e∂

 =
1√
2

P1 −P1

I I


︸ ︷︷ ︸

Rext

Lx(b)
Lx(a)

 . (7)

By definition the boundary port variables result to:

dH

dt
=

∫ b

a

y∗dud dζ+fT
∂ e∂−

∫ b

a

(L2x2)
∗R(L2x2)dζ. (8)

Theorem 1 Let W be a 2n × 4n matrix. If W has full

rank and satisfies WΣWT ≥ 0, where Σ =

0 I

I 0

, then
the system operator

A = (J −R)L,

where

J =

 0 G
−G∗ 0

 and R =

0 0

0 R


with domain

D(A) =

x ∈ H1
(
[a, b] ,R2n

)
|

f∂
e∂

 ∈ ker(W )


generates a contraction semigroup on X.

PROOF. The proof follows Theorem 4.1 in [14].

Boundary inputs and outputs are defined by:

ub = W
[
fT
∂ eT∂

]T
, yb = W̃

[
fT
∂ eT∂

]T
. (9)

With the plant system established, the first step in the
design procedure using an early lumping approach is
to spatially discretize (1). The discretization needs to
preserve both the Dirac structure and the passivity of
the system to take advantage of the PHS properties.
Therefore we apply themixed finite elementmethod [24],
and the approximated system of (1) is again a PHS with

3



p elements:

ẋ1d

ẋ2d

 = (Jn −Rn)

Q1x1d

Q2x2d

+Bbub +

 0

B0d

ud,

(10a)

yb = BT
b

Q1x1d

Q2x2d

+Dbub, (10b)

yd =
[
0 BT

0d

]Q1x1d

Q2x2d

 , (10c)

where xid =
[
x1
i · · · xp

i

]T
for i ∈ {1, · · · , 2n}, ud ∈ Rp,

yd ∈ Rp,

Jn =

 0 Ji

−JT
i 0

 and Rn =

0 0

0 Rd

 ,

are the discretized matrices of the operators J and R
with Ji and Rd the discretized matrices of the opera-
tors G and R. Q1 ∈ Rnp×np and Q2 ∈ Rnp×np are the
discretized matrices of L1 and L2, respectively. B0d ∈
Rnp×p is the discretization of the input mapping B0 over
the spatial domain.

The input ub denotes the boundary input which cor-
responds to the boundary actuation or/and conditions.
Since the distributed actuation of the system is consid-
ered, we assume that there is no energy changes (actua-
tion) at the boundary of the spatial domain, i.e. ub = 0
and the discretized system (10) can therefore be simpli-
fied.

The Hamiltonian of the discretized model (10) writes:

Hd(x1d, x2d) =
1

2

(
xT
1dQ1x1d + xT

2dQ2x2d

)
. (11)

It is important to notice that in what follows the choice
of the structure-preserving discretization method is not
unique. One could have alternatively used other dis-
cretization methods such as [25,26] that also guarantee
the existence of port-Hamiltonian structure and struc-
tural invariants suitable for control design purposes. Fur-
thermore, we consider a finite number of inputs for con-
trol design. In this regard, the infinite dimensional sys-
tem (1) is in general not controllable but stabilizable,
because the uncontrollable modes are already exponen-
tially stable.

3 Control by interconnection and energy shap-
ing

In this section, we extend the CbI method to the in-
domain distributed input and output case. The main dif-
ference with CbI for finite dimensional PHSs [15,16] is
that the controller takes the overall information of the
plant into consideration, as depicted in Fig. 1 for an ideal
interconnection case. The arrows in Fig. 1 represent the
signals of both input and output. ud and yd represent
the power conjugated distributed input and output of
system (10). uc and yc are power conjugated input and
output of the controller (12). These two pairs of input
and output are interconnected in a power-preserving way
as formulated in (13). As a result, one can shape the dis-
tributed Hamiltonian function all over the system with
an appropriate parametrization of the controller and the
use of structural invariants i.e. Casimir functions [9].
The main objective of the proposed CbI method is to
improve the closed-loop performances over a given fre-
quency range while guaranteeing the overall closed-loop
stability (v.s. neglected dynamics during the synthesis).
One can also modify the equilibrium point by changing
the minima of the energy function.

Discretized plant system

Controller

− · · ·− − − · · ·−

BC(a) BC(b)

ud yd

ucyc

Fig. 1. Distributed control by interconnection strategy.

The controller in Fig. 1 is designed to be a finite dimen-
sional PHS, which is expressed as follows:

ẋc = (Jc −Rc)Qcxc +Bcuc,

yc = BT
c Qcxc +Dcuc,

(12)

where xc ∈ Rm, Jc = −JT
c ∈ Rm×m, Rc = RT

c ≥ 0 and
Qc = QT

c ≥ 0, Bc ∈ Rm×m, Rm×m ∋ Dc ≥ 0, uc ∈ Rm

and yc ∈ Rm. Matrices Qc and Dc are used for energy
shaping and damping injection/diffusion, respectively.

Without considering external signals, the interconnec-
tion between the discretized plant system (10) and the
controller (12) is given byud

uc

 =

 0 −M

MT 0

yd

yc

 , (13)

whereRp×m ∋ M = Im⊗1k, with Im the identitymatrix
of dimensionm, 1k a ones vector of dimension k×1, and
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⊗ denoting the Kronecker product. k is the number of
elements covered by one actuator. The relation between
m, k and p is given by:

p = mk.

The passive interconnection (13) guarantees the passiv-
ity of the closed-loop system. It results in a new PHS in
closed-loop:

ẋcl = (Jcl −Rcl)Qclxcl, (14)

where xcl =
[
xT
1d, x

T
2d, x

T
c

]T
,Qcl = diag

(
Q1, Q2, Qc

)
,

Jcl =


0 Ji 0

−JT
i 0 −B0dMBT

c

0 BcM
TBT

0d Jc

 ,

Rcl =


0 0 0

0 Rd +B0dMDcM
TBT

0d 0

0 0 Rc

 .

The Hamiltonian of the controller (12) is:

Hc(xc) =
1

2
xT
c Qcxc. (15)

Therefore, the closed-loop Hamiltonian function reads:

Hcld(x1d, x2d, xc) = Hd(x1d, x2d) +Hc(xc). (16)

The next step is to design the controller matrices Jc,
Rc, Bc, Qc, and Dc in order to shape the closed-loop
Hamiltonian (16). In Proposition 1 we first show how
the controller states can be related to the plant states
using structural invariants.

Proposition 1 The closed-loop system (14) admits the
Casimir function C(x1d, xc) defined by:

C(x1d, xc) = BcM
TBT

0dJ
−1
i x1d − xc (17)

as structural invariant, i.e. Ċ(x1d, xc) = 0 along the
closed-loop trajectories, as soon as Jc and Rc are cho-
sen equal to zero. If the initial conditions of x1d(0) and
xc(0) satisfy C(x1d(0), xc(0)) = 0, the controller is a
proportional-integral control, and the control law (12)-
(13) is equivalent to the state feedback:

yc = BT
c QcBcM

TBT
0dJ

−1
i x1d +DcM

TBT
0dQ2x2d,

ud = −Myc.
(18)

Therefore, the closed-loop system yields:

ẋ1d

ẋ2d

 =

 0 Ji

−JT
i −R̃d

Q̃1x1d

Q2x2d

 , (19)

where

R̃d = Rd +B0dMDcM
TBT

0d, (20)

Q̃1 = Q1 + J−T
i B0dMBT

c QcBcM
TBT

0dJ
−1
i , (21)

are the new closed-loop dissipation matrix and energy
matrix associated to x1d.

PROOF. We consider here Casimir functions of the
form:

C(x1d, x2d, xc) = F (x1d, x2d)− xc. (22)

The time derivative of C is given by

dC

dt
=

∂TC

∂xcl

∂xcl

∂t

=
[
∂TF
∂x1d

, ∂TF
∂x2d

, −I
]
(Jcl −Rcl) ecl,

(23)

where ecl =
∂Hcld

∂xcl
= Qclxcl. The Casimir functions are

dynamic invariants, i.e. Ċ = 0 that do not depend on
the trajectories of the system (which is related to the

Hamiltonian). Therefore, (23) with Ċ = 0 gives rise to
the following matching equations:

∂TF

∂x2d

(
−JT

i

)
= 0, (24a)

∂TF

∂x1d
Ji −

∂TF

∂x2d
R̃d −BcM

TBT
0d = 0, (24b)

∂TF

∂x2d

(
−B0dMBT

c

)
− (Jc −Rc) = 0. (24c)

Solving (24a), one gets ∂F/∂x2d = 0, which indicates
that xc does not depend on x2d. Therefore, with Jc =
−JT

c and Rc = RT
c ≥ 0, (24c) indicates that Jc and Rc

equal zero. Since Ji is full rank, from (24b) one gets (17)
as a structural invariant as soon as the initial condition
xc(0) is chosen properly. Taking the initial conditions
x1d(0) and xc(0) such that C(x1d(0), xc(0)) = 0, (17)
becomes:

BcM
TBT

0dJ
−1
i x1d(t)− xc(t) = 0, (25)

which allows to link the state of the controller with the
state of the plant. Replacing xc in (14) by (25), the con-
trol law (12) becomes a state feedback as formulated
in (18). Therefore the closed-loop system (14) becomes
(19).
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Remark 1 The choice of Casimir function is in general
not unique. Yet considering the fact that both system and
controller are linear and the fact that Casimir functions
are structural invariants that should not depend on the
Hamiltonian, the set of possible Casimir functions re-
duces to linear functions of the form (22).

From Proposition 1, the closed-loop Hamiltonian func-
tion (16) is now only a function of the discretized plant
state variables:

Hcld(x1d, x2d) =
1

2

(
xT
1dQ̃1x1d + xT

2dQ2x2d

)
, (26)

with its time derivative being:

dHcld

dt
= −xT

2dQ2R̃dQ2x2d ≤ 0. (27)

From a physical point of view, (26) implies that with the
dynamic controller (12) equivalent to the state feedback
(18), it is possible to change, at least partially (depend-
ing on p and the range ofB0d), the energy matrix related
to x1d. For a given number of distributed input m, the
objectives of the energy shaping is to look for matrices
Bc and Qc such that the norm of the difference (con-
sidered here in the Frobenius norm, see Definition 6.4
of [27]) between the desired energy matrix Q̃1d and the

closed-loop one Q̃1 is minimal:

min
BT

c QcBc

∥∥∥∥∥∥∥∥J
−T
i B0dMBT

c QcBcM
TBT

0dJ
−1
i +Q1︸ ︷︷ ︸

Q̃1

−Q̃1d

∥∥∥∥∥∥∥∥
F

.

(28)
Actually, because B0d ∈ Rnp×p and from the definition
of Q̃1 in equation (21), one can only shape independently
the energymatrix related to p elements of x1d. Therefore,
by multiplying BT

0d and B0d on both sides of matrices
inside the Frobenius norm, (28) can be simplified as:

min
BT

c QcBc

∥∥∥BT
0dJ

−T
i B0dMBT

c QcBcM
TBT

0dJ
−1
i B0d −Qm

∥∥∥
F

(29)

with Rp×p ∋ Qm = BT
0d

(
Q̃1d −Q1

)
B0d full rank and

Qm ≥ 0 1 . Furthermore (29) can be formalized by the
optimization Problem 1.

Problem 1 The closed-loop energy function related to p
elements of x1d is shaped in an optimal way if and only

1 Qm can be either positive semi-definite, or negative semi-
definite with some restrictions to guarantee a stable closed-
loop system, depending on the fact that one wants to increase
or decrease the closed-loop stiffness. In order to improve the
closed-loop performances we consider the former case, i.e.
Qm ≥ 0.

if X = BT
c QcBc ∈ SRm×m

0 minimizes the criterion

f(X) =
∥∥∥AXAT −Qm

∥∥∥
F
, (30)

where A = BT
0dJ

−T
i B0dM ∈ Rp×m and SRm×m

0 repre-
sents the set of symmetric and positive semi-definite ma-
trices.

The solution to Problem 1 depends on the independent
number of distributed input that are available. We con-
sider two different cases: the ideal fully-actuated case
(m = p) and the under-actuated case (m < p).

3.1 Fully-actuated case

We first consider the fully-actuated case where each dis-
cretized element of the plant is controlled by an inde-
pendent input, i.e. ud ∈ Rm andm = p, as illustrated in
Fig. 2. The input matrix M = I ∈ Rp×p. Therefore, the

ud1 ud2 ud3 ud4 udp
· · · · · · · · · · · · · · · · · ·

ζ

Fig. 2. Fully-actuated case illustration.

optimization Problem 1 admits an exact solution that is
given in Proposition 2.

Proposition 2 In the fully-actuated case, i.e.m = p the
optimization Problem 1 has an exact analytical solution

X̂ =
(
BT

0dJ
−T
i B0d

)−1

Qm

(
BT

0dJ
−1
i B0d

)−1

leading to

f(X) = 0. The controller matrices Bc and Qc can be
chosen as:

Bc =
(
BT

0dJ
−1
i B0d

)−1

, Qc = Qm. (31)

PROOF. With M being the identity matrix, the ma-
trix Rp×p ∋ A = BT

0dJ
−T
i B0d is invertible. Therefore,

(30) admits a minimum in 0 when:

X̂ = A−1QmA−T

=
(
BT

0dJ
−T
i B0d

)−1

Qm

(
BT

0dJ
−1
i B0d

)−1

.
(32)

From the expression of X , one can choose Bc and Qc as
in (31) to satisfy (32).

3.2 Under-actuated case

We study now the more realistic case where the same
control input is applied to a set of elements, as shown in
Fig. 3, where k denotes the number of elements sharing
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the same input. The number of distributed inputs m
is less than the number of discretized elements p, and
follows m = p/k.

ud1 ud2 udm
· · · · · · · · · · · · · · ·

ζ

Fig. 3. Under-actuated case with an example of k = 2.

In this case the controller has less degrees of freedom
than in the fully actuated case, hence the matrix A ∈
Rp×m in (30) is not invertible and the optimization Prob-
lem 1 is ill-conditioned. The solution of the optimization
Problem 1 is given in Proposition 3.

Proposition 3 f(X) defined in (30) is convex and the
minimization of f(X) is equivalent to the minimization

of f2(X), which has a unique minimum given for X̂ =
V Σ−1

0 UT
1 QmU1Σ

−1
0 V T , with V , Σ0 and U1 the matrices

of the singular value decomposition of the matrix A i.e.

A = UΣV T =
[
U1 U2

]Σ0

0

V T , (33)

where U ∈ Rp×p and V ∈ Rm×m are unitary matrices,
U1 ∈ Rp×m, U2 ∈ Rp×(p−m), and Σ0 = ΣT

0 ≥ 0 is the
diagonal matrix composed of singular values of A.

PROOF. The proof of Proposition 3 is similar to that
of Proposition 3 in [22]. Substituting (33) into f2(X ),
one gets:

min
X∈SRm×m

0

f2(X )

= min
X∈SRm×m

0

∥∥∥UΣV TXV ΣTUT −Qm

∥∥∥2
F

= min
X∈SRm×m

0

(∥∥∥Σ0V
TXV ΣT

0 − T1

∥∥∥2
F
+ 2∥T2∥2F +∥T3∥2F

)
,

(34)
where T1 = UT

1 QmU1, T2 = UT
1 QmU2, and T3 =

UT
2 QmU2. Since ∥T2∥2F and ∥T3∥2F are given once the

matrices A and Qm are defined, the minimization of
(34) is equivalent to:

min
X̄∈SRm×m

0

∥∥X̄ − T1

∥∥2
F
, with X̄ = Σ0V

TXV ΣT
0 . (35)

According to Theorem 2.1 in [28], T1 ∈ SRm×m
0 , and

(35) admits a unique solution ˆ̄X = T1. Therefore, (34)
has the minimum when:

X̂ = V Σ−1
0

ˆ̄XΣ−1
0 V T = V Σ−1

0 UT
1 QmU1Σ

−1
0 V T . (36)

The choice of controller matrices Bc and Qc is not
unique, as long as they satisfy the condition (36). We
will present a possible choice in Subsection 4.2.

Remark 2 We have investigated the choices of con-
troller matrices Bc and Qc under two different cases
in Proposition 2 and 3, respectively. The objective is to
shape the closed-loop Hamiltonian Hcld with the modifi-
cation of part of the potential energy matrix. The choice
of the controller matrix Dc follows the similar procedure,
with the optimization of the difference between (27) and
the desired one.

3.3 Closed-loop stability

In this subsection we consider the closed-loop stability
of the infinite-dimensional system (1) controlled by the
finite-dimensional controller (12) derived from the early
lumping approach. The power-preserving interconnec-
tion between (1) and (12) is formulated as:

ud

uc

 =

 0 −1ζ

1∗
ζ 0

yd
yc

 , (37)

with

1ζ : Rm → L2, 1∗
ζ : L2 → Rm. (38)

1ζ is the characteristic function that distributes the
point-wise value of the controller in Rm space to the
sub-interval L2 space, as illustrated in Fig. 4.

Plant system

Controller

− − · · · − −

BC(a) BC(b)

ud yd

ucyc

Fig. 4. Distributed control by interconnection strategy.

Lemma 1 The interconnection (37) generates a Dirac
structure with the following power conservation:

∫ b

a

y∗d1ζyc dζ = yTc 1
∗
ζyd. (39)
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The closed-loop system is equivalent to:

Ẋ =


0 G 0

−G∗ −Rcl −B01ζB
T
c

0 Bc1
∗
ζB

∗
0 0

Lcl

︸ ︷︷ ︸
Acl

X , (40)

where X =

 x

xc

 ∈ Xs is the state defined on the

state space Xs = L2

(
[a, b],R2n

)
× Rm, Rcl = R +

B01ζDc1
∗
ζB

∗
0 and Lcl = diag (L1,L2, Qc). The domain

of Acl is defined as:

D (Acl) =

{
X ∈ H1

(
[a, b] ,R2n

)
× Rm,B (Lx) = 0

}
.

The Hamiltonian of (40) is:

Hcl =
1

2

∫ b

a

(
L1(ζ)x

2
1(ζ, t) + L2(ζ)x

2
2(ζ, t)

)
dζ+

1

2
xT
c Qcxc

(41)
with

dHcl

dt
=

∫ b

a

y∗
dud dζ + yT

c uc −
∫ b

a

(L2x2)
∗Rcl(L2x2)dζ

= −
∫ b

a

(L2x2)
∗Rcl(L2x2)dζ.

(42)
The last step of (42) is derived considering (39).

In order to prove the stability of the closed-loop sys-
tem using Lyapunov arguments and LaSalle’s invariance
principle, we first state the following theorems.

Theorem 2 The linear operatorAcl defined in (40) gen-
erates a contraction semigroup on Xs.

PROOF. To prove that the closed-loop operator Acl

generates a contraction semigroup, we apply Lumer-
Phillips Theorem (Theorem 1.2.3 in [29]). The proof is
done in two steps: first, we show that the operator Acl

is dissipative. Second, we show that

range (λI −Acl) ∈ Xs, for λ > 0. (43)

According to Definition 6.1.4 in [30], Acl is dissipative
if Re⟨AclX ,X⟩ ≤ 0, which is equivalent to ⟨AclX ,X⟩+
⟨X ,AclX⟩ ≤ 0. For the sake of clarity and without any

restriction, we take L1 = L2 = 1 and Qc = I in the rest
of this proof. From (40), one has:

⟨AclX ,X⟩+ ⟨X ,AclX⟩
=⟨Gx2, x1⟩L2

+ ⟨−G∗x1 −Rclx2, x2⟩L2

+ ⟨−B01ζB
T
c xc, x2⟩L2

+ ⟨Bc1
∗
ζB

∗
0x2, xc⟩Rm

+ ⟨x1,Gx2⟩L2
+ ⟨x2,−G∗x1 −Rclx2⟩L2

+ ⟨x2,−B01ζB
T
c xc⟩L2

+ ⟨xc, Bc1
∗
ζB

∗
0x2⟩Rm .

(44)

According to (39), we get:

⟨B01ζB
T
c xc, x2⟩L2

= ⟨Bc1
∗
ζB

∗
0x2, xc⟩Rm ,

⟨x2,−B01ζB
T
c xc⟩L2

= ⟨xc, Bc1
∗
ζB

∗
0x2⟩Rm .

(45)

Substituting (45) into (44), we have:

⟨AclX ,X⟩+ ⟨X ,AclX⟩
=⟨Gx2, x1⟩L2

+ ⟨−G∗x1, x2⟩L2
− ⟨Rclx2, x2⟩L2

+ ⟨x1,Gx2⟩L2
+ ⟨x2,−G∗x1⟩L2

− ⟨x2,−Rclx2⟩L2

=− ⟨Rclx2, x2⟩L2
− ⟨x2,−Rclx2⟩L2

≤ 0,

where the last step is obtained according to the boundary
conditions. Therefore, the operator Acl is dissipative.

To show (43), we apply the proof of Theorem 3.3.6 in [31]
with adjustments dedicated to our in-domain control.
For the sake of simplicity, we choose λ = 1. Taking an
arbitrary function

f =

 x̃

x̃c

 ∈ Xs,

(43) is then equivalent to the problem:

find X ∈ Xs such that (I −Acl)X = f, (46)

which is again equivalent to:

x1 − Gx2 = x̃1, (47a)

G∗x1 + (I +Rcl)x2 +B01ζB
T
c xc = x̃2, (47b)

−Bc1
∗
ζB

∗
0x2 + xc = x̃c. (47c)

Substituting (47c) into (47b), one gets:

G∗x1 + (I +M)x2 = x̃2 −B01ζB
T
c x̃c, (48)

with M = Rcl +B01ζB
T
c Bc1

∗
ζB

∗
0 .

According to the definition of G and G∗, (47a) and (48)
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become:

x1 −
(
G0 +G1

∂

∂ζ

)
x2 = x̃1, (49)(

GT
0 −GT

1

∂

∂ζ

)
x1 + (I +M)x2 = x̃f , (50)

with x̃f = x̃2 − B01ζB
T
c x̃c. Thus one gets a compact

form as follows:

∂x

∂ζ
= Bhx+ gh, (51)

with

Bh =

G−T
1

[
GT

0 , I +M
]

G−1
1

[
1, −G0

]
 , gh =

−G−T
1 x̃f

−G−1
1 x̃1

 .

(52)

The solution of the function (51) is derived as:

x(ζ) = eBhζx(a) + q(ζ), (53)

with q(ζ) =
∫ ζ

a
eζ−sBhgh ds.

Therefore, to solve the problem (46), one needs to find
the solution of x(ζ), and eventually the solution of x(a).
According to the boundary condition in the domain of
Acl, we have:

WRext

x(b)
x(a)

 = WRext

eBhx(a) + q(b)

x(a)

 =

0
0

 .

(54)

By calculation, WRext

eBh

I

 has full rank. Hence, one

can get the solution of x(a) as:

x(a) = −

WRext

eBh

I




−1

WRext

q(b)
0

 . (55)

Therefore x(ζ) is obtained from (53). Substituting x into
(47b), one obtains xc. As a result, the problem (46) is
solved. According to the Lumer-Phillips theorem, the
operator Acl generates a contraction semigroup that
concludes the proof.

Theorem 3 The operator Acl has a compact resolvent.

PROOF. According to the Definition A.4.24 in [1], we

need to prove that the operator (λI −Acl)
−1

is compact

for some λ ∈ ρ (Acl), with ρ (Acl) denoting the resolvent
set of Acl. This proof follows from Garding’s inequality
(Theorem 7.6.4 in [32]) and the proof of Theorem 2.26
in [33].

Define T = λI − Acl. From the previous Theorem 2,
Acl generates a contraction semigroup, thus λ > 0 is in
the resolvent set of Acl. T is boundedly invertible and
satisfies ∥T X∥L2

≥ ∥X∥H1 . Therefore, T −1 is compact
which concludes the proof.

Due to Theorem 2 and Theorem 3, the trajectory of
the closed-loop system is pre-compact and its asymp-
totic stability can be proven by Lyapunov arguments
and LaSalle’s invariance principle (Theorem 3.64 of [34])
as shown in Theorem 4.

Theorem 4 For any X (0) ∈ L2

(
[a, b],R2n

)
× Rm, the

unique solution of (40) tends to zero asymptotically, and
the closed-loop system (40) is globally asymptotically sta-
ble.

PROOF. We choose the energy of the closed-loop sys-
tem as Lyapunov function. From (42), the time deriva-
tion of the Lyapunov function is semi-negative definite:

dHcl

dt
= −

∫ b

a

(L2x2)
∗Rcl(L2x2)dζ ≤ 0. (56)

Using LaSalle’s invariance principle, it remains to show
that the only solution associated with dHcl

dt is 0 i.e. the
only solution associated with L2x2 = 0 is x2 = 0. Due
to the internal dissipation and zero boundary input, the
only solution associated with this problem is 0. The con-
troller being a simple integrator, if well initialized it also
converges to xc = 0 as the state of the system converges
to x = 0.

4 Numerical simulations

As illustrative example we consider a vibrating string of
length L = 2 m, modulus of elasticity T = 1.4 × 106 N
density ρ = 1.225 kg/m and dissipation coefficient R =
10−3. The dynamic model of the string writes:ẋ1

ẋ2

 =

 0 ∂
∂ζ

∂
∂ζ −R

L1x1

L2x2

+

0
1

ud (57)

with x1(ζ, t) = ∂ω
∂ζ (ζ, t), and x2(ζ, t) = ρ(ζ)∂ω∂t (ζ, t).

ω(ζ, t) is the longitudinal displacement over the spatial
domain with the state space x ∈ L2([0, L] ,R2). L1 = T
and L2 = 1

ρ . The dissipation term is chosen to be very
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small R = 10−3. The distributed input ud is the force
density. From Definition 1:

P1 =

0 1

1 0

 .

Then the boundary port variables give:

f∂
e∂

 =
1√
2


L2x2(L)− L2x2(0)

−L1x1(L) + L1x1(0)

L1x1(L) + L1x1(0)

L2x2(L) + L2x2(0)

 .

We consider a clamped-free scenario with in-domain con-
trol. Hence, we define the boundary input formulated in
(9) with:

W =

√
2

2

 0 1 1 0

−1 0 0 1

 , and WΣWT ≥ 0.

The clamped-free boundary condition implies ub = 0.

The discretization matrices in (10) are:

Ji =



1
γ

− 1
γ2

1
γ

...
. . .

. . .

(−1)p−1 (γ
′)

p−2

γp · · · − 1
γ2

1
γ


p×p

,

B0d = Ip, Q1 = diag (Tab) ∈ Rp×p, Q2 = diag

(
1

ρab

)
∈

Rp×p, Rd = diag (Rab) ∈ Rp×p, with Tab,
1

ρab
and Rab

chosen to be
T

Lab
,

1

ρLab
and RLab, respectively. Lab =

L/p. γ denotes the effort mapping parameter [24] and

γ′ = 1 − γ. They are chosen to be
1

2
in order to get a

centered scheme.

Initial conditions are set to a spatial distribution
x1(ζ, 0) ∼ N (1.5, 0.113) for the strain distribution and
to zero for the velocity distribution i.e., x2(ζ, 0) = 0.
The string is discretized into 50 elements. We consider
a time step of 5× 10−5s and mid-point time discretiza-
tion method 2 for simulations. The open loop evolution
of the string deformation ω is given in Fig. 5.

2 Implicit midpoint rule is known to be a structure-
preserving time integration for PHSs [35]. It is a particular
case in the family of symplectic collocation methods for time
integration which is investigated in [25].

Fig. 5. Open loop deformation of the vibrating string.

Next we investigate the numerical simulations of the
closed-loop system considering both fully-actuated and
under-actuated cases.

4.1 Fully-actuated case

Following Proposition 1 and Proposition 2, we choose

Bc =
(
BT

0dJ
−1
i B0d

)−1

= Ji,

and the initial conditions of the controller such that C =
0. In this case (17) becomes: xc = x1d, and the closed-
loop system (19) reads:ẋ1d

ẋ2d

 =

 0 Ji

−JT
i − (Rd +Dc)

Q̃1x1d

Q2x2d

 , (58)

One can see that the equivalent closed-loop stiffness Q̃1

can be shaped through the choice of Qc.

We first consider the pure damping injection, i.e. varying
Dc with Qc = 0. We consider Dc = diag (αLab) with α
denoting the damping coefficient. In Fig. 6(a) we can see
that this degrees of freedom allows to damp the vibra-
tions of the string to the detriment of the time response.

Next we fix α = 4000 corresponding to the slightly over-
damped case in order to illustrate the effect of the energy
shaping on the achievable performances. We can see in
Fig. 6(b) that we can speed up the closed-loop system
by increasing the closed-loop stiffness via energy shap-
ing, without introducing any overshoot. The energy ma-

trix of the controller Qc = diag
(

β
Lab

)
, with β denoting

the energy shaping parameter. A good dynamic perfor-
mance is achieved when β = 5×106, which relates to an
equivalent string stiffness of T̃ = 6.4× 106N.
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(a) (b)

Fig. 6. Closed-loop Hamiltonian function and endpoint po-
sition in the fully-actuated case with (a) pure damping in-
jection and with (b) energy shaping plus damping injection.

The evolution of the distributed input and of the string
deformation along time with damping injection and en-
ergy shaping are given in Fig. 7(a) and (b) respectively.
We can see in Fig. 7(a) that the control remains smooth.
Fig. 7(b) shows that the closed-loop stabilization time
is about 3× 10−3s which is much faster than 8× 10−3s
resulting from the pure damping injection case.

(a) (b)

Fig. 7. (a) Evolution of the closed-loop input signal and (b)
deformation in the energy shaping and damping injection
case with full actuation, α = 4× 103, β = 5× 106.

4.2 Under-actuated case

We now consider that the control is achieved using m
patches as depicted in Fig. 3. The aim of the control
design is to modify as far as possible the internal elas-
ticity T̃ of the string to get similar performances as in
the fully-actuated case. We choose the controller matrix
Bc = Jm with Jm ∈ Rm×m stemming from the dis-
cretization of ∂

∂ζ . According to (36) in Proposition 3,

Qc = J−T
m V Σ−1

0 UT
1 QmU1Σ

−1
0 V TJ−1

m .

Dc is chosen according to Remark 2, with desired
time derivative of the Hamiltonian formulated in (27)
being the fully-actuated case, i.e. in order to satisfy

min
Dc∈Rm×m

∥∥MDcM
T − diag (αLab)

∥∥
F
. As a result, the

optimal Dc is given by D̂c = diag
(

αLab

k

)
.

We first consider the case with 10 patches, i.e. p = 50,

m = 10 and k = 5. The evolution of the string defor-
mation as depicted in Fig. 8(a) is quite similar to that
obtained in the fully-actuated case in Fig. 7(b). This in-
dicates that if the controller matrices Bc, Qc and Dc

are adequately selected, the achievable performances in
the under-actuated case can be optimized in order to
be close to the ones obtained in the fully-actuated case.
When the number of patches is reduced to 5, these per-
formances are slightly deteriorated at high frequencies
as shown in Fig. 8(b).

(a) (b)

Fig. 8. (a) Closed-loop evolution of the deformation with 10
patches, (b) Hamiltonian function and endpoint position in
the under-actuated case for k = 5, and k = 10.

In order to illustrate the effect of the neglected dynam-
ics on the achievable performances, we implement the
controller designed considering 10 patches on the dis-
cretized system with p = 50, to a more precise model of
the string derived using p = 200. In Fig. 9 we can see
that, due to the damping injection and the associated
closed-loop bandwidth, the neglected dynamics does not
impact significantly the closed-loop response of the sys-
tem to the considered initial condition. An example of
in-domain controller design on Timoshenko beam model
has been investigated in [22,36].

(a) (b)

Fig. 9. (a) Closed-loop evolution of the deformation of the
high order system, and (b) comparison of the endpoint posi-
tion of the low order and high order systems using the same
controller.

5 Frequency analysis of closed-loop systems

In this section, we focus on the frequency analysis of the
system. We start with the poles of the closed-loop sys-
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tem with only damping injection actuated on every dis-
cretized element of the string corresponding to the sim-
ulation results in Fig. 6(a). The poles map is illustrated
in Fig. 10. The damping injection puts the poles away
from the imaginary axis in the left hand side of the plot,
and increases the stability margin of the residual modes.
Moreover, one notice that for α = 4000, two poles of the
closed-loop system are distributed on both sides of the
vertical axis, as pointed out by green dashed circles. One
of the poles located at −232 explains the over-damped
phenomenon, which is discussed in Fig. 6(a).

Fig. 10. Poles of the closed-loop system with damping injec-
tion for fully-actuated case.

Similarly, the poles of the closed-loop system with both
the energy shaping and damping injection correspond-
ing to Fig. 6(b) are presented in Fig. 11. The energy
shaping has changed the natural frequency of the sys-
tem and eliminated the aforementioned over-damping.
Meanwhile, the bigger β is, the higher frequency modes
appear. But the stability of the closed-loop system is al-
ways guaranteed with the damping injection.

Fig. 11. Poles of the closed-loop system with energy shaping
and damping injection for fully-actuated case.

For the under-actuated case as presented in Fig. 8, the
poles are plotted in Fig. 12(a), with its zoom of low fre-
quency modes in Fig. 12(b). It is shown that one can
only control low frequency modes that dominate the re-
sponse in order to approximate the poles distribution as
in Fig. 11 for fully-actuated case. The stability of the
high frequency modes, e.g. the pole s = −0.4±3.4×106i
(as pointed out by the green circle of Fig. 12(a)) of the
closed-loop system with 5 patches is preserved with the
internal dissipation of the string.

(a) (b)

Fig. 12. Poles for under-actuated case.

Remark 3 In order to investigate the influence of
damping injection to the high frequency modes in under-
actuated case, we vary the matrix Dc and plot the closed-
loop poles. According to Fig. 13, the conclusion is similar
as the fully-actuated case presented in Fig.10.

Fig. 13. Poles of the closed-loop system for under-actuated
case with the change of Dc.

When the designed low order controller with 10 patches
is applied to a higher order system with 200 discretized
elements, the poles are presented in Fig. 14. The stability
of high frequency modes is always guaranteed with the
internal dissipation. If we compare the poles at low fre-
quency modes in Fig. 14(a) with Fig. 11 and Fig. 12(a),
we can notice that these poles for high order system are
more away from the imaginary axis, some of which are
real poles s = −51393.5,−43073.5 and −8658.29. These
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poles have a very fast response such that they can be ne-
glected. The zoom of high frequency poles in Fig. 14(b)
are similar as in Fig. 12(a) with 10 actuator patches,
which is consistent with the simulation results in Fig.
9(b).

Pole map
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Fig. 14. Poles of the high order closed-loop system (p = 200)
with low order designed controller (p = 50 and k = 10).

6 Conclusion and future work

In this paper, we consider the in-domain control of
infinite-dimensional port Hamiltonian systems with two
conservation law using an early lumping approach. For
control design purposes, we extend the CbI method
to the use of controllers distributed in space. The dis-
tributed structural invariants are used to modify part
of the closed-loop energy of the system. Two different
cases are investigated: the ideal case where the system
is fully-actuated and the more realistic under-actuated
case where the control action is achieved using piece-
wise homogeneous inputs. In the latter the controller
is derived by optimization. Simulations of both fully-
actuated and under-actuated cases show how the damp-
ing injection together with the energy shaping improves
the dynamic performances of the closed-loop system
and keeps the closed-loop system asymptotically stable.
Comparisons of the two cases also indicate that with an
appropriate choice of the controller parameters, one can
achieve similar performances for the under- and fully-
actuated cases. The robustness of the proposed con-
troller including an integrator in the closed-loop system
will be investigated in the future. Future work also aims
at extending the approach to the use of observers and
at generalizing the proposed control design procedure
to classes of non linear infinite-dimensional PHS.
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Gorrec. On the use of structural invariants for the distributed
control of infinite dimensional port-Hamitonian systems. In
2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 47–52, Dec 2017.

[19] T. Malzer, H. Rams, and M. Schöberl. Energy-based in-
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