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Preface

This book is aimed at students and researchers who want to learn how to efficiently
solve constrained optimization problems involving partial differential equations (PDE)
using the FreeFEM software. PDE-constrained optimization problems are frequently
encountered in many academic and industrial contexts. Readers should have a basic
knowledge of the analysis and numerical solution of partial differential equations using
finite element methods, optimization, algorithms and numerical implementation.

Throughout the book, we look at a number of examples, some classic, some less
so. We have selected the examples to cover a number of possible situations, and
hope that they will provide reusable basis for tackling other problems in various fields.
For each problem illustrated, we show how to use FreeFEM effectively and how it
can be combined with expert optimization routines such as IpOpt or with automatic
differentiation. We give implementation details and several useful tips. All our code is
available at FreeFEM’s website

https://freefem.org/Optim/

and can, we hope, serve as models for users.

Figure 1, which is reproduced later in the book, summarizes the different ways of
approaching and solving a given PDE-constrained optimization problem, ranging from
“fully" direct methods (left) to “fully" indirect methods (right). Basically, the direct
approach is to first discretize first and then optimize, while the indirect one goes in the
opposite direction: first apply a first-order optimality condition and then discretize the
optimality system. But there are a number of “hybrid", intermediate possibilities. All
ways illustrated on this figure are detailed in the book and explained with the help of
carefully chosen examples. Readers can therefore use Figure 1 as a guide to the various
approaches explained in this book.

As all the approachesmentioned above concern differentiable optimizationmethods,
we present in the appendix a free-derivative optimization method, which is included in
FreeFEM and illustrate its use on a parameter identification problem.

It is worth stressing the importance of having a well-defined theoretical framework
within which the problem under consideration is well posed, before being discretized for
numerical solution. Indeed, the success of the subsequent numerical implementation
depends on the correct formulation. This is why, in the first part of the book, we recall
some basic facts of optimal control theory for partial differential equations, as well as
the optimization and discretization methods used throughout, before moving on to the
details of the various implementations.

Chapter 1 is devoted to introducing the framework and main tools that will be used
throughout the book in the context of PDE-constrained optimization with FreeFEM
and IpOpt. In Chapter 2, we first discuss the linear quadratic case, with an extension
to the time-dependent case. This is followed by brief developments on the semilinear

https://freefem.org/Optim/
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case and optimal shape design with relaxation. Chapter 3 has the dual aim of illustrating
the numerical resolution of a problem of calculus of variations and the impact of the
choice discretize then optimize or optimize then discretize on the numerical solution.
Chapter 4 has been written to illustrate the use of Chapter 1 and Chapter 2 to complete
the numerical solution of a difficult problem. We tackle the question of the optimal
design of a micro-swimmer, write the problem in a practical framework and then apply
the method illustrated above. Appendix A includes several extras, such as the possible
use of FreeFEM and IpOpt in Python. Appendix B illustrates CMA-ES as a possible
alternative to IpOpt for a parameter identification problem.

We hope that readers will get the most out of this book, and that they will be
able to adapt our models and provided templates to solve their own PDE-constrained
optimization problems quickly and efficiently.

Paris, Frédéric Hecht
2024 Gontran Lance

Emmanuel Trélat
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Figure 1: Summary diagram of the differentiable optimization methods
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Chapter 1

State of the art

We devote this first chapter to recalling the foundations for theoretical and numerical
PDE-constrained optimization. First, we introduce the FreeFEM software and the
finite element method for numerically solving the PDE constraint. We then present
the theoretical framework for optimal control of PDEs and highlight the need for an
adjoint variable to compute the derivative of the objective function. We then focus on
the interior point method IpOpt and show with a simple example how it can be called
from FreeFEM. Finally, we discuss different discretization strategies, distinguishing
between the choices first optimize then discretize and first discretize then optimize, also
showing how to use automatic differentiation.

1.1 Introduction
Engineering problems or theoretical research problems often lead to optimization prob-
lems governed by partial differential equations (PDEs). Advances in computational
capabilities, PDE solvers and optimization algorithms have provided accurate and effi-
cient methods for solving challenging PDE constrained optimization problems.

When considering an optimal control problem governed by partial differential equa-
tions, aswewill show in the illustrative examples provided in this survey, it is particularly
important to establish preliminarily a rigorous mathematical framework in which the
problem is well posed, before deriving and designing appropriate numerical methods
to solve it efficiently.

Throughout Chap. 2, we refer to [10, 14, 20, 21] regarding classical issues on PDE
control theory and general optimization. There exist many classical methods for solving
PDEs, such as finite differences, finite volumes, spectral methods and general Galerkin
methods. Here we will specifically focus on the Finite Element Method (FEM) and we
refer to [17] for variational formulations of PDE problems. This chapter can serve as
an introduction to numerical PDE optimization; some basic knowledge is required in
numerical computations as well as some basics in the C++ language.

Optimal control problems are optimization problems where the decision variables,
called controls, are acting on the state variables through an ordinary differential equation

1



2 CHAPTER 1. STATE OF THE ART

(ODE) or a partial differential equation (PDE). Within this viewpoint, the control is
the input and the resulting state is the output. The optimization problem consists in
determining what is the best possible input over a class of possible inputs, so that the
output satisfies some prescribed constraints and minimizes a given criterion.

Most often, the objective function depends on both state and control variables and
thus requires, at least from the numerical point of view, to make explicit or to compute
the state’s dependence with respect to the control (i.e., the input-output mapping of the
system). State H and control D are respectively assumed to belong to real Banach spaces
. and *. General optimal control problems considered in Chap. 2 are written in the
abstract form

min
(H,D) ∈.×*

� (H,D), 4(H,D) = 0, 2(H,D) ∈  ,

where
� : . ×* ↦→ R

is the objective function,
4 : . ×* ↦→ /

usually stands for some ODE or PDE constraint and

2 : . ×* ↦→  

defines some additional state and/or control constraints. Here, / is a real Banach space
and  is a closed convex set. Well-posedness is assumed, meaning that, for every
control D ∈* (input), the equation

4(H,D) = 0

has a unique solution H = H(D) ∈. (output). Establishing existence of solutions for such
general optimization problems may happen to be a challenging issue, often using deep
functional analysis and compactness arguments. Besides, uniqueness of the solution is
often a consequence of strict convexity properties.

In this chapter, we do not report on existence and uniqueness issues. Our objective
is to show how to compute numerically in an efficient way a solution whose existence
has already been proved or at least assumed. Given an optimal control problem, we will
emphasize, with several examples, the importance of having a rigorous mathematical
framework in which not only is settled and solved the problem, but it is also a guide for
designing appropriate discretizations of the problem and ensuring the convergence of
the subsequent numerical method.

Throughout the book, we focus on finite element discretizationmethods, particularly
in dimensions 1, 2 or 3. We present the software FreeFEM developed at Laboratoire
Jacques-Louis Lions (Sorbonne Université), a PDE solver using the finite element
method and based on variational formulations with user-friendly and powerful features.
We will provide some examples and details on how to use it and we will also refer
to the documentation [9] (also available online) where most features are described.
Regarding optimization strategies, we use differentiable methods which require the
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computation of derivatives. FreeFEM is flexible enough to allow users to write their
own optimization algorithm (e.g., gradient, BFGS, Newton methods), or to plug it
into some existing optimization routines. We will focus particularly on the IpOpt
routine (see [23]), an (open and free) expert optimization routine that is well adapted
to large-scale nonlinear optimization problems, and we will show how to combine it
with FreeFEM. In particular, we will explain how IpOpt can be called directly from
FreeFEM. Since solving PDEs requires a number of variables that increases with the
size of the mesh, we have to deal with a large number of state and control variables
(more than a million in the usual problems) as well as many constraints. The options
available in IpOpt guarantee a good adaptability and efficiency for general convex
and non-convex optimization problems of large size. Nevertheless and in spite of their
efficiency, differentiable methods are not always the best choice, this is why we add in
App. B an example treated with a free derivation optimization method.

1.2 Preliminaries

1.2.1 The FreeFEM software

FreeFEM (see [9]) is a software developed in C++ to solve PDEswith the finite element
method in dimensions 1, 2 or 3. The meshes are generated thanks to an advanced auto-
matic mesh generator and most of usual finite element spaces are embedded in so that
most of the PDEs considered in practice can be solved via the discretization of the as-
sociated variational formulation. The documentation contains a complete introduction
for a quick start as well as many classical examples such as heat conduction, elasticity
system, Navier-Stokes equations. Users who are not familiar with the language are
invited to browse the section [1, Learning by examples] where multiple examples will
allow to advance step by step. We will see that not only FreeFEM has a user-friendly
interface but its syntax is also similar to the mathematical problems under consider-
ation, thus facilitating greatly their transcription. Mathematically, the PDE problems
considered must be solved in the context of an appropriate variational formulation (see,
for example, [17]). Indeed, FreeFEM treats PDEs in their weak form, the variational
formulation being discretized according to a well suited choice of finite elements. As a
first basic example, let us consider the Poisson equation

−ΔH = D in Ω, H ∈ �1
0 (Ω), (1.1)

in some bounded domain Ω with a Lipschitz boundary, for some D in !2 (Ω). Its
variational formulation is:

find H ∈ �1
0 (Ω),

∫
Ω

∇H · ∇{ 3G =
∫
Ω

D{ 3G ∀{ ∈ �1
0 (Ω) (1.2)

i.e., 0(H, {) − 1(D, {) = 0, ∀{ ∈ �1
0 (Ω), (1.3)

where
0(H, {) = (∇H,∇{)!2 (Ω)
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is a continuous and coercive bilinear form and

1(D, ·) = (D, ·)!2 (Ω)

is a continuous linear form, both being defined on the Hilbert space �1
0 (Ω). The

Lax-Milgram theorem guarantees the existence of a weak solution of (1.2).

In order to discretize (1.2), we introduce a triangulation of the domain Ω (i.e. a
mesh) as well as an appropriate finite element space which guarantees that the finite
dimensional linear system resulting from the discretization of (1.3) on the basis of the
finite element space is well posed (i.e., boundedly invertible).

As an example, we solve (1.1) on a 2D L-shaped domain Ω (see Fig. 1.1). The
script FreeFEM for generating the mesh is given in the code 1.1.

int[int] lab=[1,1,1,1];
mesh Th = square(20,20,label=lab);
Th=trunc(Th,x<0.5 | y<0.5, label=1);

Code 1.1: Mesh generation with boundary label equal to 1

The finite element space +ℎ is

+ℎ =

{
{ ∈ �1 (Ω), ∀ ∈ )ℎ { | ∈ P1

}
= Span(q8)8∈{1..=3 }

where P1 is the space of continuous piecewise linear functions and (q8) is a basis of it.
One of the noticeable advantages of FreeFEM is that the user does not need to encode
the specificities of the mesh and the finite element functions. This is done automatically
by the command fespace. The access to the various data of the mesh and the finite
element functions is then direct. Moreover, we will see that the use of macros allows to
reduce significantly the number of lines of code to finally have a minimal script. The
numerical solution of (1.2) is finally obtained by:

fespace Vh(Th,P1);
Vh Y,V,U=1; //finite element functions

macro grad(Y) [dx(Y),dy(Y)] // //macro ended by //

solve Poisson(Y,V) = int2d(Th)(grad(Y)'*grad(V))
- int2d(Th)(U*V)
+ on(1,Y=0); // H ∈ �1

0 (Ω)
plot(Th,Y); // Fig. 1.1

Code 1.2: Poisson solution by solving the variational formulation (see
test_poisson_L.edp)

Instead of solving the variational form (1.2) with a single line of code, we can also
define the matrices coming from the discretization of the bilinear form 0 and of the
linear form 1 in (1.3), and solve the resulting linear system. We introduce the finite
element subspace

.ℎ = {{ ∈ +ℎ , { |mΩ = 0}

https://freefem.org/Optim/
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(a) (b)

Figure 1.1: Example (1.1): (a) L-mesh; (b) solution H of (1.2) for D = 1

including the homogeneous Dirichlet boundary condition stated in (1.1) and let

(q8)8∈{1..=} 0 < = < =3 ,

be a basis of .ℎ . The stiffness and mass matrices are respectively given by

(�ℎ,8 9 ) (8, 9) ∈{1..=} =
∫
Ω

∇q8 · ∇q 9 3G, ("ℎ,8 9 ) (8, 9) ∈{1..=3 } =
∫
Ω

q8q 9 3G.

Solving (1.3) discretized by finite elements P1 finally consists in solving the linear
system

�ℎHℎ −"ℎDℎ = 0.

Since the mesh )ℎ and the finite element space +ℎ are generated as in Code 1.1,
FreeFEM is able to define the matrices �ℎ and "ℎ of the variational form (1.2) thanks
to the command varf which is designed to construct variational form in FreeFEM.
It is not necessary to introduce the space of zero finite elements on the edge .ℎ in the
code. Indeed, FreeFEM handles the Dirichlet boundary conditions (homogeneous or
inhomogeneous) by specifying them directly in the variational formulation.

Vh Y,V,U=1; // finite element functions

macro grad(Y) [dx(Y),dy(Y)] //
varf stiffness(Y,V) = int2d(Th)((grad(Y)'*grad(V)))

+ on(1,Y=0); // H ∈ �1
0 (Ω)

varf Umass(Y,V) = int2d(Th)(U*V); // Y is not used. This is a
way to define a linear form through the variational form
tool

matrix Ah = stiffness(Vh,Vh,solver=sparsesolver); // with
Dirichlet B.C.

real[int] Uh = Umass(0,Vh); // To specify Y=0

Code 1.3: varf command
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Finally, solve Poisson(Y,V) in Code 1.2 is equivalent to solve �ℎHℎ = Dℎ via

Y[] = Ah^-1*Uh;

Code 1.4: Poisson solution with finite element matrices

In both cases, it is not necessary to know the characteristics of the mesh in detail, which
greatly facilitates the overall implementation. Note that, in Code 1.4, the notation
Ah^-1 does refer to the computation of the solution Y[] of the matrix equation
Ah Y[] = Uh, and not to the computation of the inverse of the matrix.

Although it is close to writing the variational formulation, the solve command is
most often not as fast as dealing directly with the matrices which are usually sparse.
When we only deal with one PDE, it is not clear that one may save a significant
computation time. But when in addition an optimal control problem has to be solved,
the optimization process may require many calls to the state and adjoint PDE equations.
There is then a genuine advantage to work with sparse matrices as soon as the number
of PDEs considered increases. In Sec. 2.1, we will highlight the advantages of using
sparsematrices to compute derivatives (in particular for Jacobian andHessianmatrices).
Assuming that the equation (1.1) is a constraint, we nowwant tominimize the functional
�, depending on both H and D,

� (H,D) = 1
2

∫
Ω

(H− H3)2 3G +
U

2

∫
Ω

D2 3G, (1.4)

whose computation requires solving (1.1) in a first step. Moreover, we will see that
computing the derivative of � with respect to D may require to solve the state and
adjoint PDEs coming from the first-order necessary optimality conditions, as explained
in Sec. 1.2.2 hereafter.

Let us mention some other softwares which are comparable to FreeFEM like
NGsolve or Fenics. To go further with FreeFEM we refer the reader to a complete
documentation on its website (see [1]). Main information, installation’s guide, finite
element method reminders, several examples, are available online.

1.2.2 PDE-constrained optimization
In differentiable optimization problems, numerical methods are generally based on
first-order optimality conditions and thus on the computation of derivatives. Let, be
a Banach space, we denote its topological dual by, ′ = L(,,R) (space of continuous
linear functionals on,) and by

〈I,|〉, ′,, = I(|) ∀I ∈, ′

the duality pairing. Given a linear operator �, its adjoint is denoted by �∗. For the
special case of the Hilbert space �, the dual � ′ can be directly identified with � and
the duality pairing is identified with the inner product (·, ·)� of �. A differentiable
optimization problem is generally written as

min
|∈U03

� (|) (1.5)

https://ngsolve.org/
https://fenicsproject.org/
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where � :, → R is Gateaux differentiable and U03 ⊂ , is a nonempty, closed and
convex subset. We denote by �� the (Gateaux) derivative of �. First-order optimality
conditions are then written in the following form.

Theorem 1. Let |̄ ∈, be a (locally) optimal solution of (1.5). Then

|̄ ∈ U03 , 〈�� (|̄), |− |̄〉, ′,, > 0, ∀| ∈ U03 . (1.6)

Classical differentiable optimization strategies involve the computation of (at least)
first-order derivatives. Indeed, a Taylor expansion returns at some iterate point G:

� (G) = � (G: ) + 〈�� (G: ), G− G:〉, ′,, + >(‖G− G: ‖, )

and the next iterate G:+1 is searched such that

� (G:+1) 6 � (G: )

and thus, assuming that G:+1 is close enough to G: , such that

〈�� (G: ), G− G:〉, ′,, 6 0.

In the case where, =R# , a particular descent direction is usually given by the opposite
of the gradient −∇� (G: ) (see Algorithm 1). However, the framework provided by (1.5)

Algorithm 1 Gradient descent algorithm
initialization G0, stop criterion n
while ‖∇� (G: )‖ 6 n do

compute U: with linear search methods (in the direction −∇� (G: ))
compute G:+1 = G: −U:∇� (G: )
compute ∇� (G:+1)

end while

and Theorem 1 is rather limited when one has to tackle an optimal control problem
because the objective function and its derivative are generally not easy to compute.
Moreover, such an elementary algorithm may not perform well for large-scale opti-
mization problems involving a PDE constraint. A new framework is therefore needed
with the first constraint of decoupling state and control variables. Then, assuming
the existence of solutions, the computation of the derivatives of the involved functions
should be easy andwe should be able tomove easily to a powerful numerical framework.
We therefore write below the general minimization problem of a function � depending
on both state and control variables subject to a PDE embedded in the operator 4 with
some additional constraints encoded inU03:

min
(H,D) ∈.×*

� (H,D) subject to 4(H,D) = 0, D ∈ U03 . (1.7)
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Remark 1. In a more general way, we can consider in addition to the equality con-
straints, inequality constraints like

6(H,D) 6 0,

as it is the case for example in obstacle problems. In the following, we only focus on
equality constraints, noting that inequality constraints are in general easier to treat than
equality constraints by direct methods.

Following [10], the assumptions 1 below guarantee existence of a solution ( H̄, D̄) in
. ×* of (1.7).

Assumption 1.

1. U03 ⊂ * is nonempty, bounded, closed and convex.

2. The mappings
� : . ×* ↦→ R and 4 : . ×* ↦→ /

are continuous, where / is a Banach space and . ,* are reflexive Banach spaces.

3. For every D ∈ U03 , the state equation

4(H,D) = 0

has a unique solution H(D) ∈ . and the mapping

D ∈ U03 ↦→ H(D) ∈ /

is continuous.

4. The mapping
(H,D) ∈ . ×* ↦→ 4(H,D) ∈ /

is weakly continuous.

5. � is sequentially weakly lower-semicontinuous.

Some state constraints can be added by means of a set Y03 ⊂ . assumed to be
nonempty, convex and closed. We introduce the reduced cost function of the problem
(1.7)

D ∈ U03 ↦→ �̂ (D) = � (H(D), D)
so that (1.7) is reformulated as

min
D∈U03

�̂ (D).

If we want to use Algorithm 1 to compute an optimal solution, we have to compute the
derivative of �̂. This requires to compute the derivative of the mapping D ∈ U03 ↦→
H(D) ∈ . , which is not explicit. Assumption 2 below provides a general framework that
ensures the differentiability of the input-output mapping D ∈ U03 ↦→ H(D) ∈ . (by the
implicit function theorem) and at the same time allows us to compute ��̂, which is
necessary to derive the first-order optimality conditions.
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Assumption 2.

1. U03 ⊂ * is nonempty, bounded, closed and convex.

2. The mappings
� : . ×*→ R and 4 : . ×*→ /

are continuously Fréchet differentiable, where*, . and / are Banach spaces.

3. For all D ∈ + in a neighborhood + ofU03 , the state equation

4(H,D) = 0

has a unique solution H(D) ∈ . .

4. The partial derivative
mH4(H(D), D) ∈ L(., /)

has a bounded inverse for every D ∈ U03 .

Applying Theorem 1 to D ∈ U03 ↦→ �̂ (D), we get the following first-order optimality
conditions in terms of the reduced cost function �̂.

Theorem 2. Under Assumption 2, if D̂ ∈ U03 is a (locally) optimal solution of
the reduced problem, then〈

��̂ (D̂), D− D̂
〉
* ′,*

> 0 ∀D ∈ U03 .

At this step, a descent direction can be found by exploiting the derivative ��̂.
Unfortunately, Theorem 2 does not provide an easy way to compute it numerically
since, according to the sensitivity analysis developed below, the numerical computation
of the derivative of the mapping D ∈ U03 ↦→ H(D) ∈ . requires the computation of “too
many” directional derivatives.

Sensitivity approach

Let B be such that D+ n B ∈ U03 for n small enough and then compute �̂ (D+ n B). Thanks
to Assumption 2, the chain rule gives〈

��̂ (D), B
〉
* ′,*

=

〈
mH� (H(D), D), �H(D)B

〉
. ′,.
+
〈
mD� (H(D), D), B

〉
* ′,*

. (1.8)

The partial derivatives mH� and mD� are easy to compute since � explicitly depends on
H and D. In contrast, computing �H(D)B requires to solve 4(H,D) = 0 and this is not
straightforward. Differentiating

4(H(D), D) = 0
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in the direction B allows us to compute XHB = �H(D)B as the solution of the linear
equation

mH4(H(D), D)XHB = −mD4(H(D), D)B. (1.9)

Computing
〈��̂ (D), B〉* ′,*

thus requires to compute the solution XHB of (1.9) for each direction B. Hence, the
numerical computation of the differential ��̂ (D) is difficult if * has a large dimension
since it is necessary to compute the directional derivative in each direction of a given
basis of the vector space spanned by *. A numerical method based on this sensitivity
approach is therefore not feasible in high dimension because it would be too much com-
putationally demanding. The same problem is encountered for automatic differentiation
in the direct mode (as explained in Sec. 1.2.5), where the Jacobian is not necessarily
needed because we generally need a descent direction that is given by the Jacobian
applied to a well-chosen direction. In the same way as automatic differentiation does
in the reverse mode (see [11]), the gradient can be found with significantly less efforts
by introducing an adjoint variable, as explained next.

Adjoint approach

Equation (1.8) is equivalently written as〈
��̂ (D), B

〉
* ′,*

=

〈
�H(D)∗mH� (H(D), D), B

〉
* ′,*
+
〈
mD� (H(D), D), B

〉
* ′,*

and thus
��̂ (D) = �H(D)∗mH� (H(D), D) + mD� (H(D), D).

Moreover, (1.9) gives

mH4(H(D), D)�H(D) = −mD4(H(D), D). (1.10)

It is not required to know the whole differential �H(D) but only the vector

�H(D)∗mH� (H(D), D).

The fourth item of Assumption 2 ensures the existence of the inverse −mH4(H(D), D)−1

and (1.10) gives
�H(D) = −mH4(H(D), D)−1mD4(H(D), D)

and

�H(D)∗mH� (H(D), D) =
(
− mH4(H(D), D)−1mD4(H(D), D)

)∗
mH� (H(D), D)

= −mD4(H(D), D)∗
(
mH4(H(D), D)∗

)−1
mH� (H(D), D)︸                                  ︷︷                                  ︸

adjoint −? (D)

.
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The adjoint vector ? = ?(D) ∈ / ′ is defined as the solution of the linear equation

mH4(H(D), D)∗? = −mH� (H(D), D). (1.11)

Finally,

��̂ (D) = mD4(H(D), D)∗?(D) + mD� (H(D), D).

From a numerical point of view, compared with the sensitivity approach which requires
to solve as many PDEs as * has degrees of freedom to express the derivative of �̂,
the adjoint approach only requires to solve the state equation in (1.7) and the adjoint
equation (1.11). This gives a significant advantage in that solving the PDEs requires
more time and more computation as the mesh is finer. Hence, the computation of the
first derivative of the objective function of the problem (1.7) at a point D ∈ U03 follows
the following steps:

S.1 Compute the partial derivatives

mH� (H,D), mD� (H,D), mH4(H,D), mD4(H,D),

and the adjoint operators

mH4(H,D)∗, mD4(H,D)∗.

S.2 Solve the state equation
4(H,D) = 0,

which gives H(D) (input-output mapping).

S.3 Solve the adjoint equation

mH4(H(D), D)∗? = −mH� (H(D), D),

which gives the adjoint ? = ?(D).

S.4 Finally, compute

��̂ (D) = mD4(H(D), D)∗?(D) + mD� (H(D), D).

The adjoint variable ? can be interpreted as the Lagrange multiplier corresponding to
the constraint 4(H,D) = 0. The Lagrangian ! : . ×* × / ′→ R of the problem (1.7) is
defined by

! (H,D, ?) = � (H,D) + 〈?, 4(H,D)〉/ ′,/ .

The partial derivatives of the Lagrangian with respect to the adjoint variable ? and
the state variable H give the state equation in (1.7) and the adjoint equation (1.11),
respectively, while the partial derivative with respect to the control variable D gives
the derivative of the reduced cost function �̂. Under Assumption 2, Theorem 2 is
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reformulated as follows (Pontryagin maximum principle, well known in optimal control
theory).

Corollary 1. Under Assumption 2, let ( H̄, D̄) ∈ . ×* be an optimal solution of
(1.7) with D̄ ∈ U03 . Then there exists ?̄ ∈ / ′ such that

4( H̄, D̄) = 0, (1.12)
mH4( H̄, D̄)∗ ?̄ = −mH� ( H̄, D̄), (1.13)

〈mD� ( H̄, D̄) + mD4( H̄, D̄)∗ ?̄, D− D̄〉* ′,* > 0 ∀D ∈ U03 . (1.14)

The Lagrangian formulation of the optimality conditions is

〈@, m?! ( H̄, D̄, ?̄)〉/ ′,/ = 0 ∀@ ∈ / ′, (1.15)
〈mH! ( H̄, D̄, ?̄), {〉. ′,. = 0 ∀{ ∈ ., (1.16)

〈mD! ( H̄, D̄, ?̄), D− D̄〉* ′,* > 0 ∀D ∈ U03 . (1.17)

Corollary 1 is most often used to find the adjoint equation and the derivative of �̂.
This requires to identify precisely the involved spaces. ,* and / and the duality pairings
must be chosen accordingly. When * is a Hilbert space, ��̂ (D) can be identified with
the gradient ∇�̂ (D) corresponding to the inner product of*.

Remark 2. Corollary 1 provides necessary first-order optimality conditions for a PDE
constrained optimization problem. Such conditions are known to be sufficient when
the problem (1.7) is convex. Otherwise, one can use the sufficient conditions for local
optimality given by second-order optimality conditions (and the Hessian). However,
from a numerical point of view, the numerical computation of the Hessian of the
Lagrangian might be heavy (the matrix may not be sparse) and can be replaced by an
approximated matrix (BFGS and quasi-Newton method for instance). Sometimes, we
also can circumvent this problem by computing the Hessian applied to an appropriate
direction since the whole matrix is not useful (see, e.g., [18]).

Remark 3. The introduction of the adjoint is an efficient way to compute the derivative
of the objective function. The additional control constraints included in the set U03
can also be handled. However, it is much more difficult to take into account the possible
additional state constraints included inY03 because this requires to modify accordingly
the adjoint equation, which may become more difficult to solve or even be a challenge
to write. In such a case, the adjoint method may not be advisable. We will give some
alternatives in Chap. 2.

Poisson example

Let Ω be an open subset of R# with Lipschitz boundary. We have defined in Sec.
1.2.1 the problem of minimizing the cost function (1.4) subject to a Poisson PDE with
homogeneous Dirichlet boundary condition (1.1), that we reformulate in the framework
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of (1.7) by introducing the sets . = �1
0 (Ω) and * = !

2 (Ω). For the moment, we do
not consider any additional control constraints included in the set U03 ⊂ *. We thus
denote the cost function and PDE constraints by the functions � and 4 in a weak form:

� : (H,D) ∈ . ×* ↦→ 1
2

∫
Ω

(H− H3)2 3G +
U

2

∫
Ω

D2 3G ∈ R

4 : (H,D) ∈ . ×* ↦→ 0(H, ·) − 1(D, ·) ∈ /

where 0 and 1 are the bilinear forms defined by (1.3). Consider the Gelfand triple (see
[10, Definition 1.26])

�1
0 (Ω) ⊂ !

2 (Ω) ⊂ �−1 (Ω),

where !2 (Ω) is identified with its dual so that the duality pairing 〈·, ·〉. ′,. is compatible
with the !2 (Ω)-inner product. Since * = !2 (Ω), the duality pairing 〈·, ·〉* ′,* is the
!2 (Ω)-inner product. Finally, we set / = �−1 (Ω) = . ′ so that the duality pairing
〈·, ·〉/ ′,/ is compatible with the !2 (Ω)-inner product. Assumption 2 is verified. Indeed,
Items 1. and 2. are straightforward while Items 3. and 4. are due to properties of
elliptic operators stated in [6]. For ? ∈ / ′ = �1

0 (Ω), the Lagrangian is given by

! (H,D, ?) =
∫
Ω

(
1
2
(H− H3)2 +

U

2
D2 +∇H · ∇?−D?

)
3G.

Remark 4. The identification of the duality pairings induced by the !2 (Ω)-inner
product gives a Lagrangian that we can handle easily. Nevertheless, this compatibility
depends on the sets . , / and * chosen to verify Assumption 2 and is not always
straightforward to obtain.

We finally apply Corollary 1 to express the weak formulation of the adjoint equation
and exhibit the variational inequality which gives the first derivative of the reduced cost
function �̂ that is then identified with the gradient associated with the !2 (Ω)-inner
product.

m?! (H,D, ?) = 0 ⇐⇒
∫
Ω

(∇H · ∇{−D{) 3G = 0 ∀{ ∈ �1
0 (Ω),

mH! (H,D, ?) = 0 ⇐⇒
∫
Ω

(∇? · ∇{+ (H− H3){) 3G = 0 ∀{ ∈ �1
0 (Ω),

mD! (H,D, ?) : { ∈ !2 (Ω) ↦→
∫
Ω

(UD− ?){ 3G,

i.e., in the strong form for the !2 (Ω)-inner product,

H ∈ �1
0 (Ω) solution of −ΔH = D in Ω,

? ∈ �1
0 (Ω) solution of Δ? = H− H3 in Ω,

��̂ (D) identified with ∇�̂ (D) = UD− ?.
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Dirichlet boundary control example

In this section, we focus on a boundary control problem. We further assume that Ω has
either a C2 boundary or is a convex polytope. In the previous example, the variational
formulation was written by introducing the set . = �1

0 (Ω) for a homogeneous Dirichlet
boundary condition. For Neumann or Robin boundary conditions, we take . = �1 (Ω)
instead. For inhomogeneous Dirichlet boundary conditions, the standard variational
formulation must be reformulated using some alternatives.

Given 5 ∈ !2 (Ω), we modify the previous example by adding a Dirichlet boundary
condition D ∈ !2 (mΩ) so that the new problem is

min � (H,D) = 1
2

∫
Ω

(H(G) − H3 (G))2 3G +
U

2

∫
mΩ

D(G)2 3G (1.18)

subject to

{
−ΔH = 5 in Ω,
H = D on mΩ.

(1.19)

We cannot write directly the weak formulation as in the Poisson example. To overcome
this difficulty, a possibility may be to first introduce a small parameter X so that the
Dirichlet boundary condition in (1.19) becomes a Robin boundary condition

Xm=H + H = D on mΩ

and to write the variational formulation by introducing the space . = �1 (Ω). Here, we
consider instead the way FreeFEM handles Dirichlet boundary conditions. Following
[22, Sec. 10.6], we denote by

�0 :D(�0) → !2 (Ω)

the Dirichlet Laplacian (we have D(�0) = �1
0 (Ω) ∩�

2 (Ω) because of the regularity
assumption on Ω) and by W0, W1 respectively the Dirichlet and Neumann traces. The
Dirichlet map D is defined as follows: for any D ∈ !2 (mΩ) there exists a unique
DD ∈ !2 (Ω) such that

ΔDD = 0 on Ω and W0 (DD) = DD |mΩ = D

(actually, DD ∈ C∞ (Ω) and the operator D is bounded from !2 (mΩ) to !2 (Ω)). The
adjoint of D is

D∗ = −W1�
−1
0

and for all { ∈ !2 (Ω)

(Du, {)!2 (Ω) = −(D, m=q)!2 (mΩ) with �0q = {.

We thus seek the solution H(D) of (1.19) in the affine space �1
0 (Ω) +DD and we define

I ∈ �1
0 (Ω) ∩�

2 (Ω) the solution of

−ΔI = 5 in Ω
I = 0 on mΩ,
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so that H = I +DD with I = �−1
0 5 , whose variational formulation is the following: find

I ∈ �1
0 (Ω) such that ∫

Ω

∇I · ∇{ =
∫
Ω

5 { 3G ∀{ ∈ �1
0 (Ω).

The state space . has to be defined in order to find a unique weak solution H ∈ . of
(1.19) when solving the resulting very weak variational formulation∫

Ω

−HΔ{ 3G =
∫
Ω

5 { 3G−
∫
Ω

DDΔ{ 3G ∀{ ∈ �1
0 (Ω) ∩�

2 (Ω).

Since the Dirichlet Laplacian �0 induces an isomorphism from �1
0 (Ω) ∩�

2 (Ω) to
!2 (Ω) and �−1

0 is also selfadjoint in !2 (Ω), one can take q ∈ !2 (Ω) such that

{ = �−1
0 q

and the previous variational formulation is equivalent to:

find H ∈ . s.t.
∫
Ω

Hq 3G =

∫
Ω

(
�−1

0 5

)
q3G +

∫
Ω

DDq 3G ∀q ∈ !2 (Ω).

Therefore, we set . = !2 (Ω),* = !2 (Γ) and / = !2 (Ω) so that

H = I+DD ∈ !2 (Ω)

is the unique solution of (1.19) (uniqueness of solution is straightforward by putting
( 5 , D) = 0). Then we define

4(H,D) = H− �−1
0 5 −DD

so that Assumption 2 is satisfied in that setting and optimality conditions yield the
existence of q ∈ !2 (Ω) such that

q = H3 − H
(D∗q, {−D)!2 (mΩ) > 0 ∀{ ∈*.

Introducing ? ∈ �1
0 (Ω) ∩�

2 (Ω) solution of ? = �−1
0 q, the adjoint equation now reads

Δ? = H− H3 in Ω
? = 0 on mΩ,

so that ��̂ (D) is identified with the gradient

∇�̂ (D) = UD + m=?

for the !2 (mΩ)-inner product.
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Remark 5. If none of the assumptions done on Ω hold, we have to modify the space
�1

0 (Ω) ∩�
2 (Ω) accordingly, since existence and uniqueness of the solution to the very

weak variational formulation relies on the isomorphism �0 ∈ L
(
�1

0 (Ω) ∩�
2 (Ω), !2 (Ω)

)
.

This issue is treated in [22, Sec. 13].

Remark 6. From the numerical point of view, D is usually smooth enough to get that
H ∈ �1 (Ω) so that we solve (1.19) in FreeFEM by searching H ∈ {| ∈ �1 (Ω), | |mΩ = D}
verifying ∫

Ω

∇H · ∇{ 3G =
∫
Ω

5 { 3G ∀{ ∈ �1
0 (Ω).

This is numerically carried out by specifying the boundary conditions thanks to the
command on(IndexBoard, Y=U).

Vh Y,V; // finite element functions
macro grad(Y) [dx(Y),dy(Y)] //
solve Poisson(Y,V) = int2d(Th)((grad(Y)'*grad(V)))

+ on(1,Y=U); // H ∈ {| ∈ �1 (Ω), | |mΩ = D}

Wemention this inhomogeneous Dirichlet limit problem to highlight the difficulties
that can arise with the choice of . , / and* spaces to theoretically find the adjoint and
derivative. From the numerical point of view, although we generally do not need to
know these sets explicitly since we often assume that all involved data are sufficiently
smooth, a good understanding of the mathematical framework and in particular the
knowledge of the discretized spaces as well as the inner products is crucial in the
calculations.

When we move to the numerical framework and have in mind the Algorithm 1,
the numerical computation of the derivative of the objective function involves the
adjoint variable found by solving the adjoint equation according to a chosen scheme.
Alternatively, one can override the adjoint equation and directly derive a discretized
version of the optimal control problem. Both approaches are respectively called First
Optimize Then Discretize (FOTD) and First Discretize Then Optimize (FDTO).

1.2.3 Overview of optimization’s strategies
Given a general optimal control problem, we have given in Sec. 1.2.2 ways to com-
pute the continuous derivatives of the involved functions. This numerically implies
to get a suitable approximation of both functions and of their derivatives that allow
their numerical computation. Effectiveness of the procedure is directly imputed to han-
dling both discretization and optimization. Given discretization parameters 0 < ℎ < ℎ0
and some families of finite-dimensional discretization spaces (.ℎ)0<ℎ<ℎ0 , (*ℎ)0<ℎ<ℎ0 ,
(/ℎ)0<ℎ<ℎ0 and (Uℎ

03
)0<ℎ<ℎ0 of the spaces . , *, / and U03 , the optimal control

problem (1.7) is discretized as

min
(Hℎ ,Dℎ) ∈.ℎ×*ℎ

�ℎ (Hℎ , Dℎ) subject to: 4ℎ (Hℎ , Dℎ) = 0, Dℎ ∈ Uℎ
03 . (1.20)
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where
�ℎ : .ℎ ×*ℎ→ R and 4ℎ : .ℎ ×*ℎ→ /

are discretized versions of the functions � and 4. Without loss of generality, the finite-
dimensional spaces .ℎ and *ℎ are identified with vector spaces R#. and R#* , with
#. > 1, #* > 1. The problem (1.20) is expressed in a finite-dimensional framework
and can then be numerically solved by usual tools.

In this book, we particularly focus on differentiable methods, which therefore call,
at least, the first-order derivatives of the cost and constraint functions. Nevertheless,
we may encounter difficulties when the functions concerned are not smooth enough.
Moreover, another difficulty appears when the cost function is not convex and has a real
importance when the number of local extrema increases. This is why, in App. B, we will
focus on a derivative-free optimization strategy for a parameter identification problem.
Indeed, for such a problem, we are not sure to be able to differentiate functions with
respect to the parameters involved in the PDE. Moreover, most identification problems
require a large amount of experimental data which leads to write a cost function as a sum
of several polynomial functions, thus with a large number of local extrema. Well known
derivative-free methods are genetic algorithms, Bayesian methods in image processing
problems and machine learning methods. In App. B, we will take advantage once again
of FreeFEM, which benefits from the stochastic optimization routine CMA-ES (see
[8]).

We now come back to differentiable optimization algorithms, which are directly
related to the KKT conditions and need derivatives of the functions �ℎ and 4ℎ . This
approach is usually called First Discretize Then Optimize (FDTO) or direct method. In
contrast, in the First Optimize Then Discretize (FOTD) (or indirect) approach, the first-
order optimality condition of the continuous problem (1.7) is first derived by applying
Corollary 1 such that all functions sets and operators involved are then discretized
accordingly to get for an optimal solution ( H̄ℎ , D̄ℎ) ∈ .ℎ ×Uℎ

03

4ℎ ( H̄ℎ , D̄ℎ) = 0, (1.21)
(mH4ℎ ( H̄ℎ , D̄ℎ))∗?ℎ = −mH�ℎ ( H̄ℎ , D̄ℎ), (1.22)

(mD�ℎ ( H̄ℎ , D̄ℎ) + (mD4ℎ ( H̄ℎ , D̄ℎ))∗ ?̄ℎ , {ℎ − D̄ℎ)*ℎ > 0, ∀{ℎ ∈ Uℎ
03 . (1.23)

Both methods may not be mathematically equivalent since the partial derivatives of
the discretized functions �ℎ and 4ℎ may differ from the discretizations of the partial
derivatives mH4ℎ , mD4ℎ , mH�ℎ , mD�ℎ .

Note that the FOTD approach does not give the true numerical derivative of the
discretized function (rather obtained with the FDTO approach). This may affect the
algorithm’s convergence.

To our knowledge, the question of the convergence of optimal solutions of the
discretized problem to the solution of the continuous one is a challenging issue that
deserves further consideration. On this issue, within the ODE context, under some
appropriate assumptions on optimal control problems in finite dimension, it is proved
in [19] that the direct FDTO and indirect FOTD approaches are mathematically equiv-
alent when the discretization is performed with a symplectic partitioned Runge-Kutta
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integrator. This reference also contains interesting issues related to automatic differen-
tiation, that we illustrate in App. A.2. Indeed, in this example, when the state equation
is discretized according to an implicit scheme, automatic differentiation in reverse mode
actually hides an explicit scheme for the adjoint equation.

When optimization is performed first, we have to pay a special attention to the
choices of discretization for state and adjoint variables. Nevertheless the freedom of
discretization’s choice for the adjoint variable sometimes implies that FOTD is more
relevant since the derivativemakes appear the adjoint which is, without state constraints,
usually more regular than the state variable. The adjoint can thus be approximated
more accurately thanks to a well-fitting discretization. Conversely, one of the main
advantages of FDTO approach is its ability to allow the use of large-scale optimization
methods, state constraints and automatic differentiation. We mention [15, Section 6.2]
for a comparison between the FDTO and FOTD approaches for a PDE-constrained
optimization problem.

Remark 7. In this remark, we mention a general rigorous mathematical framework
for discretizations [12, 13]. Under Assumption 2, let . , * and / be separable Banach
spaces. Let .̃ be a separable Banach space such that the embedding. ↩→ .̃ is continous.
Given a discretization parameter ℎ and a family of finite-dimensional spaces (.ℎ)0<ℎ<ℎ0

assumed to be uniformly continuously embedded .ℎ ↩→ .̃ , we assume the existence of
projection and embedding operators

%.ℎ : .̃ → .ℎ and %̃.ℎ : .ℎ→ .̃

such that %.
ℎ
%̃.
ℎ
= id.ℎ . The numerical scheme is assumed to be convergent, i.e.,

lim
ℎ→0
‖%̃.ℎ %

.
ℎ H− H‖.̃ = 0 ∀H ∈ . .

Note that ‖%̃.
ℎ
‖L(.ℎ ,.̃ ) = 1 and, by theUniformBoundedness Principle, that ‖%.

ℎ
‖L(.̃ ,.ℎ) 6

Cst (uniform constant). The same setting is established for * and / ′. The mappings �
and 4 involved in (1.7) are approximated by

�ℎ : (Hℎ , Dℎ) ∈ .ℎ ×*ℎ ↦→ � (%̃.ℎ Hℎ , %̃
*
ℎ Dℎ) ∈ R,

4ℎ : (Hℎ , Dℎ) ∈ .ℎ ×*ℎ ↦→ 4(%̃.ℎ Hℎ , %̃
*
ℎ Dℎ) ∈ /,

and, according to the FOTD approach, we have

m#4ℎ (Hℎ , Dℎ) = (%̃/
′

ℎ )
∗m#4(%̃.ℎ Hℎ , %̃

*
ℎ Dℎ)%̃

★
ℎ ,

m#�ℎ = m#� (%̃.ℎ Hℎ , %̃
*
ℎ Dℎ)%̃

★
ℎ ,

where (#,★) ∈ {(H,. ), (D,*)}. Such a framework encompasses most of the usual
discretization strategies (finite differences, finite elements, Galerkin). The particular
case of a linear PDE is addressed in [3].

For the Poisson example (1.1), having in mind its variational formulation (1.2), we
take

. = .̃ = �1
0 (Ω), * = *̃ = !2 (Ω), / ′ = /̃ ′ = �1

0 (Ω)
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so that. ↩→* ↩→ / . The finite element space*ℎ consists of P1 Lagrange elements, .ℎ
is the subspace of*ℎ such that we have 0 on the boundary and (/ℎ) ′ =.ℎ . Embedding
operators are thus induced by the above canonical embeddings and projections via the
!2 (Ω)-inner product.

A general framework for conformal transformations and especially Galerkin dis-
cretization methods in the context of PDE optimization is stated in [12, 13]. In the next
page, we illustrate in a diagram several ways used throughout this survey for dealingwith
PDE constrained optimization. The corresponding codes are available on FreeFEM’s
website.

https://freefem.org/Optim/
https://freefem.org/Optim/
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Figure 1.2: Summary diagram of the differentiable optimization methods
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On Figure 1.2:

(0) the continuous optimization problem is discretized according to well chosen
discretization spaces for both state and control. The cost and the constraint
(the PDE) functions are discretized accordingly to finally obtain an optimization
problem in finite dimension.

(01) We give the resulting NLP (Non Linear Programming) as input to a software
equipped with an automatic differentiation tool and IpOpt (AMPL for instance).
Then, derivatives and optimization are done by AMPL.

(02) Or we directly compute derivatives of the previous optimization problem in finite
dimension and directly callIpOptinFreeFEM. At this step, derivatives returned
by AMPL or by hand-computing should be identical.

(11, 12) As in step (0), we discretize the continuous optimization problem according
to a well chosen discretization space for the control only. The cost function is
discretized by first computing the discretized state with respect to the control.
The PDE constraint is not anymore an explicit constraint but becomes step of the
cost function computation.

(13) As for steps (01, 02), either we compute derivatives of the optimization problem
in finite dimension (discretization of the reduce cost function) and give them as
inputs to IpOpt in FreeFEM,

(14) or we directly write the NLP problem in AMPL which proceeds on its own to the
computation of derivatives and to the optimization process.

(2) We write the continuous first-order optimality conditions of the continuous op-
timization problem (KKT conditions, Pontryagin maximum principle, ...) with
state and control as unknowns,

(3) or we write the continuous first-order optimality conditions of the continuous
optimization problem with only the control as unknown.

(21, 22) We discretize the continuous first-order optimality conditions and solve the re-
sulting extremal system according to a well chosen discretization space (e.g.,
shooting methods for optimal control in finite dimension).

(23) When the Banach space * is Hilbert, we can identify its duality pairing with
some inner product such that the derivative of the cost function can be identified
with a gradient thanks to the Riesz representation theorem.

(24) We then compute discretized derivatives according to a well chosen discretization
and give them as inputs to IpOpt in FreeFEM.

(4) Whenwe compute the gradient of a function by semi-automatic differentiation, we
can in some cases exhibit an adjoint variable which verifies the adjoint equation
coming from the first-order optimality conditions. For instance in App. A.3, we
use the idea of automatic differentiation in reverse mode to compute by hand the
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gradient of the cost function. We then show that the gradient involves an adjoint
variable which satisfies a discretized version of the continuous adjoint equation.
This means that, with an appropriate discretization, automatic differentiation and
hybrid methods lead to the same discretized gradient.

1.2.4 The optimization routine IpOpt
IpOpt (for Interior Point Optimizer) is an open source software package for large-
scale differentiable optimization problems. First developed in Fortran, the C++ version
allows to IpOpt to be more easily interfaced with Matlab, Python, R, Julia, etc.

IpOpt is included (with most of available linear solvers and options) in FreeFEM.
We just have to call the library by adding in the head of the code the command: load
"ff-Ipopt". We previously highlighted the ability of FreeFEM to construct

and manage sparse matrices. This is crucial for the efficiency of the optimization
processing since IpOpt gathers many of the most powerful linear solvers (MUMPS,
Pardiso, WSMP, HSL routines). A significant asset of IpOpt is its large panel of
options (choice of linear solver, multipliers updating, adjustment of line search, BFGS
or Newton method, etc). A full description of the interior point method can be found
in [23] and options are available at [2, Ipopt Options Tab].

IpOpt is designed to find local solutions of mathematical optimization problems
of the form

min
G∈R=

5 (G) (1.24)

s.t.

{
6! 6 6(G) 6 6*
G! 6 G 6 G*

(1.25)

where 5 : R=→ R is the objective function and 6 : R=→ R< stands for equality and
inequality constraints. Here, 6! , 6* and G! , G* respectively refer to lower and upper
bounds of constraints and variables. The functions 5 and 6 can be nonlinear and
nonconvex, but are at least assumed to be twice differentiable. With this in mind, we
aim to show how to transcribe a PDE optimization problem like (2.1, 2.2) to a finite-
dimensional optimization problem like (1.24, 1.25). Once this transcription has been
made, the most usual way to call IpOpt is:

IPOPT(f,df,d2f,C,jacC,x0,ub=xub,lb=xlb,cub=CUB,clb=CLB,optfile=
"ipopt.opt");

Code 1.5: Calling IpOpt in FreeFEM (see ipoptfreefem.edp)

where df and d2f are respectively the gradient (an array) and the Hessian (a matrix
in the Triplet Format, hopefully highly sparse) of the objective function; C includes the
constraints 6 and jacC its Jacobian (a matrix in the Triplet Format, hopefully highly
sparse too); ub and lb are respectively the upper and lower bounds for G, cub and clb
are the upper and lower bounds of the constraints 6, and x0 is an initialization point;
optfile="ipopt.opt" incorporates all options (maximum number of iteration,

https://freefem.org/Optim/
https://coin-or.github.io/Ipopt/IMPL.html
https://coin-or.github.io/Ipopt/IMPL.html
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convergence tolerance threshold, choice of linear solver and so on). Difficulties for the
computation of the Hessian d2f usually happen (too much memory greedy, needs the
inverse of a matrix or slowing down too much the code), which is not disabling. IpOpt
offers many options, we can bypass the problem by choosing a quasi-Newton method,
which is the default option if IpOpt is called without specifying the Hessian.

Remark 8. Matrix triplet format is a way to numerically store sparse matrices, without
specifying the zeros. Given a matrix, we only have to specify the row, the column,
and the value for each non-zero element. This returns three arrays having the same
size. FreeFEM will automatically deal with matrix triplet format through varf anf
matrix commands.

IPOPT(f,df,C,jacC,x0,ub=xub,lb=xlb,cub=CUB,clb=CLB); // no
Hessian ↦→ BFGS

Despite its potential more expensive cost computation, the Newton method is usually
converging to an optimal solution with less iterations than a quasi-Newton method.
Nevertheless the latter sometimes offers more flexibility. We advise at least to specify
the cost function f, the constraints C and their derivatives df and jacC, knowing that
the more information we provide, the more efficient IpOpt is expected to be. We refer
the reader to [23] to understand the particularities and how IpOpt works.

We mention two significant points: first, all IpOpt options are callable from
FreeFEM. Second, the data to be given to IpOpt (f, df, d2f, C, jacC) need to
respect a precise type: df,C,x0,xub,xlb,CUB,CLB have to be arrays and the matrices
d2f and jacC have to be expressed in the Triplet Format for sparse matrices.

As an example, consider the minimization problem in R2

min
G∈ 

5 (G) = −G1G2 (1− G1− G2) (1.26)

where

 =
{
(G1, G2) ∈ R2 | G1, G2 > 0, G1 + G2 6 1

}
(1.27)

which is formulated in the template (1.24, 1.25) as

min
G1 ,G2

5 (G) = −G1G2 (1− G1− G2){
6! 6 6(G) = G1 + G2 6 6*

G! 6 G 6 G*

with G! =
(
0
0

)
, G* large enough, 6* = 1 and 6! small enough. Derivatives are

∇ 5 (G) =
(
−G2 (1−2G1− G2)
−G1 (1− G1−2G2)

)
, ∇6(G) =

(
1
1

)
,

∇2 5 (G) = −
(
−2G2 1−2G1−2G2

1−2G1−2G2 −2G1

)
.
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Therefore, the cost function is:

func real f(real[int] &X) //returns a real
{

return -X[0]*X[1]*(1-X[0]-X[1]);
}

and its gradient and Hessian are:

func real[int] df(real[int] &X) // returns an array
{

real[int] dJ(X.n); // size of X
dJ = -1*[ X[1]*(1-2*X[0]-X[1]), X[0]*(1-2*X[1]-X[0])];
return dJ;

}
matrix hess; // matrix has to be declared outside
func matrix d2f(real[int] &X) // returns a matrix
{

hess = -1*[ [ -2*X[1] , 1-2*X[0]-2*X[1] ],
[ 1-2*X[0]-2*X[1] , -2*X[0] ] ];

return hess;
}

On the other side, the constraint function 6 is:

func real[int] C(real[int] &X) // returns an array
{

real[int] cont(1); // array of size 1
cont[0] = X[0]+X[1];
return cont;

}

If onlyX[0]+X[1] is returned instead of the 1-size array containing this value, IpOpt
will return an error. Like the Hessian of 5 , the Jacobian of 6 is:

matrix dc; // to be declared outside
func matrix jacC(real[int] &X) // returns a matrix
{

dc = [[1,1]]; // double array of size (1,2)
return dc;

}

We finally have to declare lower and upper bounds, an initialization point and then call
IpOpt:
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//Initialisation points
real[int] start = [1,1];
real[int] lm = [1]; // Lagrange mulitplier of constraint C
real[int] lz = [1,1]; // Lagrange mulitplier of simple lower

bound constraint
real[int] uz = [1,1]; // Lagrange mulitplier of simple upper

bound constraint

//Variables bounds
real[int] Xub = [10000,10000]; // has to be array
real[int] Xlb = [0,0]; // has to be array

//Constraints box1nds
real[int] Cub = [0]; // has to be array
real[int] Clb = [-10000]; // has to be array

//Calling IpOpt
IPOPT(J,gradJ,hessianJ,C,jacC,start,ub=Xub,lb=Xlb,clb=Clb,cub=

Cub,lz=lz,uz=uz,lm=lm,optfile="ipopt.opt");

cout << "(x,y) = " << "(" << start[0] << "," << start[1] << ")"
<< endl; // print

solution
cout << "f(x,y) = " << J(start) << endl; // print solution
cout << "(lc) = " << lm << endl; // print constraint dual

variable
cout << "(lz) = " << lz << endl; // print simple lower

constraint dual variable
cout << "(uz) = " << uz << endl; // print simple upper

constraint dual variable

which returns the optimal solution G = (0.33,0.33) in less than 10 iterations. We plot
convergence curves in Fig. 1.3 for a desired convergence tolerance equal to 10−15. The
output of IpOpt is included in the start variables and returns the optimal solution
if it is found. We also get the Lagrange multipliers through the variables lm,lz,uz
highlighted above.

This example can be used as a template for other problems by adapting the formu-
lation inside the functions (f, df, d2f, C, jacC). If IpOpt meets any difficulty to
converge, or if it stops to a locally infeasible point, adjusting the starting point may
sometimes help. In some cases, difficultiesmay occur whenIpOpt requires to compute
function derivatives, for instance for nonlinear PDEs or when state constraints are ad-
ditionally given. An alternative is to compute derivatives by automatic differentiation.
We may also implement finite differences but this requires a accurate approximation
that may induce a crippling computation time.

1.2.5 Automatic differentiation
We present here a brief introduction to automatic differentiation in direct and inverse
modes. We refer the reader to [16] to go further and understand in depth the fundamen-
tals of automatic differentiation.
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(a) (b)

Figure 1.3: Convergence curves: (a) objective function; (b) convergence criterion

The leading principle of automatic differentiation is that a function 5 : R? → R@
given by a sequence of elementary numerical functio ns whose derivatives are already
known can be differentiated by differentiating each line of the code step by step. This
allows the chain rule to be used directly in the code and thus to compute the true
derivative of the numerical function. A standard framework consists in considering a
function 5 : R=→ R as mentioned in [4, 7] and a succession of calculation steps

(q: , �: ):∈{0..# } ∈ E:−1

with E:−1 = C∪U: ∪B: where

C = R× {∅}, U: =* × {−= · · · :}, B: = �× {−= · · · :}2.

Here, * is a set whose elements are functions already known and implemented in the
language and whose derivatives are still in the set *. Each step of the computation
introduces a new variable and calls a known function of * according to a previous
variable or a binary operation between two previous variables. Most of the time, this
only allows classical analytic functions that we know how to differentiate analytically
and whose derivatives are also combinations of elements of* (cos and sin for example).
The set � gathers most of the binary operations {+,−,×,÷} ⊂ �. We now suppose that
we can find a finite sequence of operations

(q: , �: ):∈{0..# }

such that all intermediate iterates given by

∀: ∈ È0, #É, G: = q: (G−=, . . . , G−1, . . . , G:−1)

lead to the final iterate
G# = 5 (G−=, ..., G−1).

In this framework (G−=, ..., G−1) design inputs and (G: ):>0 internal states in the coded
function. The automatic differentiation uses the chain rule and the knowledge of the
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derivatives of the functions involved in q: to compute the final gradient. There are two
methods. Either the chain rule is applied according to the calls of functions in series
line by line from the first line, it is the direct method, or from the last line, it is the
reverse method. The first one calculates the Jacobian of the function (so a matrix) while
the last one gives the Jacobian applied in a given direction (so an array). The direct
method gives directly the Jacobian matrix but is expensive because it is necessary to
calculate all the intermediate derivatives which are not necessarily needed for the final
direction.

Direct mode

We give in the following lines a way to compute the function

5 (D, {) =
(
(D + {)2 +D cos(D) sin({)

)2

and its derivatives using automatic differentiation in direct mode. To do so, let us clarify
some notations. The function 5 has two inputs (D, {) that corresponds in previous section
to (G−2, G−1). Besides, 5 will ask in its coding way three computation steps. This is
going to make appear three variables (G, H, I) corresponding in the previous section to
(G0, G1, G2).

1 def f(u,v):
2 x = u*cos(u)*sin(v)
3 y = (u+v)**2 + 1
4 z = (x+y)**2
5 return z

Code 1.6: A way of coding function 5

1 def df(u,v,du,dv):
2 dx = u*sin(u)*du*sin(v)+cos(u)*du*sin(v)
3 + u*sin(u)*cos(v)*dv
4 x = u*cos(u)*sin(v)
5 dy = 2*du*(u+v) + 2*dv*(u+v)
6 y = (u+v)**2 + 1
7 dz = 2*(x+y)*dx + 2*(x+y)*dy
8 return dz

Code 1.7: Automatic differentiation in direct mode

Code 1.7 exhibits the functioning of an automatic differentiation tool in direct mode.
Each calculation step is derivated with respect to the variables involved. For example
the line y = (u+v)**2 + 1 gives the line dy = 2*du*(u+v)+ 2*dv*(u+v
). At the end, we obtain a function that depends on (D, {) and on the several directions
of descent (3D, 3{). To recover the Jacobian, we must then evaluate the function as
many times as there are directions of descent, i.e. here (1,0) and (0,1). Direct mode
is only based on the chain rules. The size of the matrix is not prohibitive in this case
but we can also consider a function 5 : R? → R@ with ?, @ large (this happens when
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discretizing the weak form of a PDE). We then have to compute a matrix of size ?× @
and evaluate it ? times. In that case, direct mode is disabling. Fortunately, we do not
usually need the full Jacobian, but only the Jacobian applied in a given direction. The
reverse mode allows to compute the gradient without having to evaluate the Jacobian in
each free direction. A parallel with the backpropagation method in machine learning is
given in [5].

Reverse mode

In the reverse mode case, we assume that a given function to be differentiated has been
written in the following framework. We consider an evaluation sequence of intermediate
operations (q: , �: ):∈{0..# } such that the function’s output is

G# = 5 (G−=, ..., G−1).

To compute the derivative of 5 in reverse mode, we associate to variables (G8){8∈−=...# }
a variable (_8){8∈−=...# }, which we update with the following rule

_# = 1, ∀8 ∈ {−=...# −1} _8 =
∑
:>8

_:m8q: . (1.28)

Given the previous rule, the partial derivatives of 5 evaluated at (G−=, ..., G−1) are
stored in the variables (_−=, ...,_−1). The successive quantities _8 thus depend on all
_:∈{8+1...# } insofar as q: implies variables G 9∈{8+1...# }. In practice, if the numerical
code is not too long, we can proceed manually and line by line starting from the end of
the implementation of the cost function. We then derivate

G: = q: (G−=, ..., G:−1)

with respect to the involved variables G−=, ..., G:−1 and update the _ variables following
the rule

_8 += _:m8q: (G−=, ..., G:−1), (1.29)

where G+ = 0 means G = G + 0. We highlight this method on the previous example. We
must first rewrite 5 with a sequence of elementary operations and then apply (1.28).
However, a more usual way of doing this is to differentiate each line of the code, from
the last line to the first line, with respect to the variables involved and then update the
corresponding adjoint variables.

1 def df(u,v):
2 x = u*cos(u)*sin(v) # adjoint ;G
3 y = (u+v)**2 + 1 # adjoint ;H
4 cost = (x+y)**2 # adjoint ;2
5
6 lc=1, lx=0, ly=0, lu=0, lv=0 # initialization of each _

for all variables involved
7 # We now use (1.29) starting from the end of Code 1.6
8 # Code 1.6 - line 4 involves (G, H)
9 lx += 2*(x+y)*lc # line 4: mG derivative, we update _G
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10 ly += 2*(x+y)*lc # line 4: mH
11 # Code 1.6 - line 3 involves (D, {)
12 lu += 2*(u+v)*ly # line 3: mD
13 lv += 2*(u+v)*ly # line 3: m{
14 # Code 1.6 - line 2 involves (D, {)
15 lu +=cos(u)*sin(v)*lx-u*sin(u)*sin(v)*lx # line 2: mD
16 lv += u*cos(u)*cos(v)*lx # line 2: m{
17 return lu,lv

Code 1.8: Automatic differentiation in reverse mode

The reader can see that all operations G: = q: (G−=, · · · , G:−1) must be computed before
the calculation of the quantities _8 because they are required to update them. The price
to pay is to write the code with a well-defined sequence of operations (q: ,I: ) and to
save all the intermediate variables (G1, · · · , G#−1), which can be memory heavy if the
function 5 to be calculated uses a large number of intermediate variables. It is therefore
advisable to have a code that is “optimized”. The generalization to a function with
value in (R@ , @ > 1) is done by permuting the quantities _ with @ vectors fixed on the
canonical basis.

Let us comment on the direct and reverse modes. The reverse mode is well suited
when the function 5 : R? → R@ to differentiate takes values in R@ with @ small and
especially when ? � @. On the contrary, the direct mode is preferred when we dif-
ferentiate with respect to few variables (R? with ? small and moreover when ? � @).
When considering optimal control problems, the choice of discretization can be differ-
ent for functions and derivatives (indeed, an implicit scheme for the state usually implies
an explicit scheme for the adjoint). The automatic differentiation therefore dispenses
with this choice because both the direct and reverse methods return the true numerical
derivative of the implemented function, and is therefore in line with a purely numerical
approach.

A last important point that we would like to address is the close relationship between
the inverse mode and the introduction of the adjoint variable in optimal control (see
[19]). Let us consider the problem of controlled predator-prey equations (see [20, Ex.
4.10]), given by

min �) (D, {) =
1
2

∫ )

0
(G(C) −1)2 3C, (1.30)

subject to

{
¤G = G + H +D G(0) = 1
¤H = G− H + { H(0) = 1,

(1.31)

(D, {) ∈ U03 =
{
5 ∈ !∞ (0,)) | ∀C ∈ (0,)) −1 6 5 (C) 6 1

}2
, (1.32)

we compute the derivative of the numerical implementation of the functional cost
(the inverse mode is well suited since � : R? → R with ? large enough) and show
that there appears a discretization of the adjoint equation coming from the Pontryagin
maximum principle in finite dimension. The gradient computed by means of automatic
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differentiation gives a discretized adjoint equation whose implementation is described
in App. A.2. Automatic differentiation also allows the computation of the Hessian, but
the resulting matrix is usually not sparse and the optimization process thus becomes less
efficient. Furthermore, automatic differentiation is difficult to implement with respect
to mesh variations (hence, for general optimal shape design problems), for which the
adjoint method is more appropriate.

Finally, in this chapter, we have provided most of the tools necessary to write a
general PDE optimization problem in the form (1.7), to discretize it with well-chosen
finite elements, and to numerically find an optimal solution using the interior point
method IpOpt. In the following section, by taking several examples, we will give
various ways to discretize an optimization problem governed by a partial differential
equation.
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Chapter 2

PDE constrained optimization
with FreeFEM

In this chapter, we consider several more or less classical PDE-constrained optimization
problems, written in the framework introduced in Chap. 1, and we focus on their
numerical solution using finite elements in FreeFEM and the method of interior points
IpOpt respectively introduced in Secs. 1.2.1 and 1.2.4. Starting with a classical linear
quadratic example, we give various ways for solving it, which can serve as templates
for the user. We also explain how to use automatic differentiation in FreeFEM.
Nonlinear and time-dependent PDEs are also considered to show the great efficiency
of FreeFEM to handle the constraints induced by such PDEs. A brief subsection is
devoted to showing how to solve optimal shape design problems within the optimal
control viewpoint. We finally propose several numerical codes which are available at
FreeFEM’s website, https://freefem.org/Optim/.

2.1 Linear quadratic PDE constrained optimization

The first problem we address to illustrate the numerical solution of constrained PDE
optimization is the minimization of a quadratic criterion subject to a linear elliptic
equation. Some additional constraints are encoded in a convex set U03 . The weak
formulation of the PDE is introduced in order to have a well adapted framework for its
numerical solution as well as the writing of the derivatives and to design an appropriate
numerical strategy.

Let Ω be a bounded Lipschitz domain and H3 be !2 (Ω). Let 0,D0, D1 be !∞ (Ω)

33

https://freefem.org/Optim/


34 CHAPTER 2. PDE CONSTRAINED OPTIMIZATION WITH FREEFEM

with 0 positive. We seek an optimal solution D ∈ !2 (Ω) of

min � (H,D) = 1
2

∫
Ω

(H(G) − H3 (G))2 3G +
U

2

∫
Ω

D(G)2 3G (2.1)

subject to

{
−∇ · (0∇H) = D in Ω,
H = 0 on mΩ.

(2.2)

and D0 6 D 6 D1 . (2.3)

To formulate (2.1, 2.2) in the form of (1.7), the set of admissible controls is defined by

U03 = {D ∈ !2 (Ω) | D0 6 D 6 D1} ⊂ * = !2 (Ω).

The variational formulation of (2.2) consists in finding H ∈ �1
0 (Ω) solution of∫

Ω

0∇H · ∇{ 3G−
∫
Ω

D{ 3G = 0 ∀{ ∈ �1
0 (Ω). (2.4)

We take . = �1
0 (Ω). The Lax-Milgram Theorem (see [15, Lemma 1.8]) implies that,

for any D ∈ U03 , there is a unique solution H ∈ �1
0 (Ω) of (2.4). Since * = !

2 (Ω), the
duality pairing is

〈·, ·〉* ′,* = (·, ·)* .

Defining the operators

� ∈ L
(
�1

0 (Ω), �
−1 (Ω)

)
s.t. �H :{ ∈ �1

0 (Ω) ↦→
∫
Ω

0∇H · ∇{ 3G,

� ∈ L
(
!2 (Ω)

)
s.t. �D :{ ∈ �1

0 (Ω) ↦→
∫
Ω

D{ 3G,

the set / must be defined so that the mapping

4 : (H,D) ∈ �1
0 (Ω) × !

2 (Ω) ↦→ �H−�D ∈ /

satisfies Assumption 2. The Gelfand triple

�1
0 (Ω) ↩→ !2 (Ω) = !2 (Ω) ′ ↩→ �−1 (Ω)

leads to set / = �−1 (Ω) and the duality pairings 〈·, ·〉. ′,. and 〈·, ·〉/ ′,/ are thus com-
patible with the !2 (Ω)-inner product. The last items of Assumption 2 follow from
the Lax-Milgram Theorem. We have �∗ = � and �∗ = � and the adjoint ? evolves in
/ ′ = �1

0 (Ω). The partial derivatives of the functions under consideration are

mH� (H,D) = (H− H3 , ·)*
mD� (H,D) = (UD, ·)*
mH4(H,D) = �
mD4(H,D) = −�.

(2.5)
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Now, from the numerical point of view, we have two main options: either the state
equation 4(H,D) = 0 is seen as a constraint to be checked and is considered, like the
objective function �, to depend on both the state and the control (H,D). The optimization
is then performed with respect to two optimization variables (state and control), this
is Option 1; or else, the only optimization variable is the control, and in this case
4(H,D) = 0 is preliminarily solved to compute H(D) as a function of D, in order to
express the reduced cost function �̂ (D), this is Option 2. Options 1 and 2 are also
respectively called simultaneous and sequential methods.

Option 1: Variables (H,D) ∈ . ×*

Cost: � (H,D)
Constraints: 4(H,D) = 0 and (H,D) ∈ .03 ×U03

Option 2: Variables D ∈*

Cost: � (H(D), D) = �̂ (D)
Constraints: D ∈ U03

Option 2 brings up the reduced cost function �̂ whose derivatives with respect to the
control variable D are computed using the adjoint representation presented in Sec. 1.2.2.
The PDE constraint is thus implicitly contained in the numerical implementation of the
reduced cost function. In contrast, Option 1 keeps the cost function dependent on the
state and control variables (H,D) and the PDE constraint is an explicit equality constraint.
Although Option 1 seems more memory greedy, it is generally more efficient, when we
can write it, than Option 2 because we can more easily compute the Hessian of the cost
function as a sparse matrix. Moreover, a notable advantage of Option 1 is its ability to
handle potential constraints on the state included in Y03 whereas the adjoint equation
and Option 2 are not well suited in this case. This being said, for the numerical part,
let )ℎ be a triangulation of Ω:

mesh Th = square(50,50); //we take Ω =]0,1[2,

and the finite element space

+ℎ =

{
{ ∈ �1 (Ω), ∀ ∈ )ℎ { | ∈ P1

}
= Vect(q8)8∈{1..=3 },

with P1 elements that guarantee the resulting linear system of (2.2) to be invertible (see
[22]).

fespace Vh(Th,P1); // with P1 Lagrange finite elements
int nd = Vh.ndof; // =3 degrees of freedom for +ℎ

Remark 9. Reminding the constraint (2.3), from the numerical point of viewwe usually
compare the degrees of freedom instead of the functions themselves. This is exact for
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P1 elements and acceptable for most of Lagrange types elements. To this aim, we
introduce the interpolation operator Πℎ , which returns the approximated function on
a given finite element space. The operator Πℎ is related to the basis (q8)1686=3 , so
that Πℎ ( 5 ) =

∑=3
8=1 q

′
8
( 5 )q8 . We obtain (q′

8
)1686=3 as a concatenation of the basis of

the dual space of the chosen finite dimensional polynomial space, on each element of
the triangulation, so that q′

8
(q 9 ) = X8 9 . Thus, to compare the two functions D and D0

we now have to compare their interpolates, respectively Dℎ = Πℎ (D) and Dℎ0 = Πℎ (D0),
or the degrees of freedom of the interpolates. We thus introduce the new operator
Iℎ ( 5ℎ) = (q′8 ( 5 ))8 that returns the array of degrees of freedom of the finite element
function 5ℎ in the basis (q8)1686=3 . To simplify notations, we assume in the following
that comparing two interpolates Dℎ 6 {ℎ is done by comparing their degrees of freedom
Iℎ (Dℎ) 6 Iℎ ({ℎ). More generally, Dℎ will denote either the finite element function or
its degrees of freedom Iℎ (Dℎ) according to the situation.

Vh uh; // Dℎ is a finite element function
real[int] Xu = uh[]; // Xu is the degrees of freedom of Dℎ

In the example above, we illustrate the difference between the finite element function Dℎ
and its degrees of freedom. Throughout the book, since IpOpt only accepts arrays as
inputs, we will deal with the degrees of freedom of the involved finite element functions.

Let us denote .ℎ ,*ℎ and the discreteUℎ
03
:

.ℎ = {{ℎ ∈ +ℎ , {ℎ|mΩ = 0} = Vect(q8)1686=3 ,8∉mΩ
Uℎ
03 = {D

ℎ ∈ +ℎ , Dℎ0 6 Dℎ 6 Dℎ1} ⊂ *ℎ =+ℎ .

and the stiffness and mass matrices coming out from the operators � and � read

�ℎ,8 9 =
(
0∇q8 ,∇q 9

)
(8, 9) ∈{1..=3 }2 , "ℎ,8 9 =

(
q8 , q 9

)
(8, 9) ∈{1..=3 }2 .

One can notice that usually the size "ℎ is larger than the size �ℎ because the latter
does not take into account the finite element functions which have non-zero values on
the boundary. Fortunately, the way FreeFEM handles Dirichlet boundary conditions
allows us to keep .ℎ = +ℎ and specify the Dirichlet boundary condition directly in the
variational formulation in the Code 2.1. Which numerically results in specifying the
Dirichlet condition value directly to the degrees of freedom whose finite elements is
nonzero on the boundary. This adds in the matrix �ℎ some penalty terms at the indices
related to the boundary elements (see FreeFEM’s website for a detailed explanation on
how FreeFEM manages Dirichlet boundary conditions).

https://doc.freefem.org/documentation/finite-element.html
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Vh Y,V;
varf stiffness(Y,V) = int2d(Th)(grad(Y)'*grad(V))

- on(1,2,3,4,Y=0) //Homogeneous Dirichlet
condition

varf mass(Y,V) = int2d(Th)(Y*V);
matrix Mh = mass(Vh,Vh); // =3 ×=3 matrix
matrix Ah = stiffness(Vh,Vh);

Code 2.1: Finite element matrices involved in (2.1,2.2) (see lq_stationary_O1.edp and
lq_stationary_O2.edp)

IpOpt needs to compute the numerical derivatives of the cost and constraint functions.
Having in mind Sec. 1.2.3, either the continuous derivatives of the functions are
discretized according to a well-chosen scheme, or the functions are discretized first
and their derivatives are computed later. In the first case, the advantage is to keep the
structure of the continuous problem as long as possible. In the second case, we are able
to return the true numerical derivatives.

2.1.1 Derivatives of discretized functions (FDTO)

In the First Discretize Then Optimize (FDTO) approach, the problem (2.1, 2.2) is
discretized and yields a usual finite dimensional linear quadratic optimization problem.
The mesh, finite element space and matrices were presented in the previous section.
Depending on whether Option 1 or 2 is chosen, the discretized problem is

Option 1:

min
(Hℎ ,Dℎ) ∈R2=3

1
2
(Hℎ − Hℎ3)

)"ℎ (Hℎ − Hℎ3) +
U

2
D)ℎ"ℎDℎ (2.6)

s.t.

{
�ℎHℎ −"ℎDℎ = 0
Dℎ0 6 Dℎ 6 D

ℎ
1
,

(2.7)

Option 2:

min
Dℎ ∈R=3

1
2
(�−1
ℎ "ℎDℎ − H

ℎ
3)
)"ℎ (�−1

ℎ "ℎDℎ − H
ℎ
3) +

U

2
D)ℎ"ℎDℎ

(2.8)

s.t. Dℎ0 6 Dℎ 6 Dℎ1 . (2.9)

The matrices �ℎ and "ℎ have been defined in Code 2.1. They depend on the
triangulation)ℎ . Whatever the choice of optimization variables, the numerical problem

https://freefem.org/Optim/
https://freefem.org/Optim/
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is written as

min
-

� (-) s.t.

{
�;1 6 � (-) 6 �D1
-;1 6 - 6 -D1 .

Option 1 : - = (Hℎ , Dℎ) ∈ R2=3

�ℎ (-) =
1
2
(Hℎ − Hℎ3)

)"ℎ (Hℎ − Hℎ3) +
U

2
D)ℎ"ℎDℎ

�ℎ (-) = �ℎHℎ −"ℎDℎ
∇�ℎ (-) =

(
"ℎ (Hℎ − Hℎ3) U"ℎDℎ

)
∇�ℎ (-) =

(
�ℎ 0ℎ
0ℎ "ℎ

)
∇2�ℎ (-) =

(
"ℎ 0ℎ
0ℎ U"ℎ

)
Option 2 : - = Dℎ ∈ R=3 (no explicit PDE constraints)

�ℎ (-) =
1
2
(�−1
ℎ "ℎDℎ− H

ℎ
3)
)"ℎ (�−1

ℎ "ℎDℎ− H
ℎ
3) +

U

2
D)ℎ"ℎDℎ

∇�ℎ (-) = "ℎ�−1
ℎ "ℎ (�

−1
ℎ "ℎDℎ − H

ℎ
3) +U"ℎDℎ

∇2�ℎ (-) = "ℎ�−1
ℎ "ℎ�

−1
ℎ "ℎ +U"ℎ .

The functions required by IpOpt are expressed above in a matrix format. They
must be written in FreeFEM following the model given in Sec. 1.2.4. In the following
sections, we give details on how to implement these functions in FreeFEM according
to the choice of discretizations.

Experience shows that Option 1 is, in this case, almost always the best solution.
Since PDE constrained optimization uses many variables, the treatment of sparse ma-
trices is a crucial point and is usually the best option in terms of computational speed
and memory allocation. Although the number of optimization variables is larger than
in Option 2, in Option 1 we do not have to compute the inverse of the matrix �ℎ , which
would be a heavy task in high dimension. The matrices �ℎ and "ℎ are sparse while
their inverse is not in general. Although the Hessian is constant in both situations, it
is more memory greedy in the second case and involves more computation. Finally,
for more complicated equations (such as nonlinear PDEs or time-dependent problems),
it is not trivial that treating both state and control variables simultaneously is more
efficient, except when state constraints are added to the problem. The adjoint method
fits precisely in an approach where the previous one would not have worked. Getting
some distance, it is not easy to know what options to choose. Given a boundary control
problem for instance, we have much less unknows to find when we deal with the reduced
cost function.
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2.1.2 Discretization of continuous derivatives (FOTD)
Unlike the previous strategy, in the First Optimize Then Discretize (FOTD) approach,
the continuous derivatives of the functions are first computed and then discretized.
In this section, the problem (2.1, 2.2) is still linear quadratic. Note that when state
constraints are added, the adjoint equation may become much more complicated. We
focus on the option where only the control is the optimization variable and we write the
continuous problem as

min
D∈U03

� (H(D), D) = �̂ (D).

As explained in Sec. 1.2.2, the adjoint approach facilitates the computation of the
derivatives of the reduced cost function. The Lagrangian is

! : (H,D, ?) ∈ . ×* × / ′ ↦→ 1
2
(�(H− H3), H− H3)* +

U

2
(�D,D)* + (?, �H−�D)* ,

and we follow the steps (S.1, S.2, S.3, S.4). Let D ∈ U03 be an optimal solution.
• S.1 The partial derivatives of � and 4 have been computed in (2.5). The operators
� and � are selfadjoint (�∗ = � and �∗ = �). Corollary 1 implies that if (H,D) is
solution of (2.1, 2.2) then there exists an adjoint ? ∈ / ′ = �1

0 (Ω) such that

�H = �D,

�? = −�(H− H3),
(U�D−�?,D)* 6 (U�D−�?, {)* ∀{ ∈ U03

which can be rewritten in the continuous form for H ∈ �1
0 (Ω) and ? ∈ �

1
0 (Ω) as

−∇ · (0∇H) = D in Ω
H = 0 on mΩ,

∇ · (0∇?) = H− H3 in Ω
? = 0 on mΩ,∫

Ω

(UD− ?)D 3G 6
∫
Ω

(UD− ?){ 3G ∀{ ∈ U03 .

• S.2 We seek the solution H ∈ �1
0 (Ω) of the state equation 4(H,D) = 0

−∇ · (0∇H) = D in Ω
H = 0 on mΩ,

macro state() {
solve State(Y,V) = int2d(Th)(a*(grad(Y)'*grad(V)))

- int2d(Th)(U*V)
+ on(1,2,3,4,Y=0); } //

Code 2.2: LQ state equation

which is equivalent to
Hℎ = �

−1
ℎ "ℎDℎ .
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• S.3 We seek the solution ? ∈ �1
0 (Ω) of the adjoint equation

∇ · (0∇?) = H− H3 in Ω
? = 0 on mΩ,

macro adjoint() {
solve Adjoint(P,Q)= int2d(Th)(a*(grad(P)'*grad(Q)))

+ int2d(Th)((Y-Yd)*Q)
+ on(1,2,3,4,P=0); } //

Code 2.3: LQ adjoint equation

which is equivalent to
?ℎ = �

−1
ℎ "ℎ (H

ℎ
3 − Hℎ).

• S.4 The first derivative of the reduced cost function is given by(
∇�̂ (D), @

)
*
=

∫
Ω

(UD− ?)@ 3G,

macro interpgrad() {
solve L2grad(theta,V) = int2d(Th)(theta*V) - int2d(Th)

((alpha*U-P)*V);
real[int] dJ = theta[]; } //

Code 2.4: LQ gradient’s interpolation

which finally returns UDℎ − ?ℎ for the !2 (Ω)-inner product. The previous steps
S.2, S.3, S.4 performed successively return almost the same gradient as in Option
2 of the previous FDTO approach by performing the same operations but without
the final multiplication by "ℎ .

Let us give a brief explanation of the numerical stepS.4. The real number 〈��̂ (D), @〉* ′,*
is expressed using the duality pairing 〈·, ·〉* ′,* which here corresponds to the !2 (Ω)-
inner product and thus brings out the gradient ∇�̂ (D). As seen in Sec. 1.2.1, the routine
varf gives the matrix of a given variational formulation. Hence, writing

varf derive(V,Q)= int2d(Th)((alpha*U-P)*Q)

is numerically similar to recovering the continuous linear form

@ ↦→
∫
Ω

(UD− ?)@ 3G

in a well-chosen finite element space basis. Thus dJ denotes the interpolation of this
linear form in this basis of the finite element space. One could of course choose another
inner product, whose matrix in the finite element space is %ℎ , which would not return

UDℎ − ?ℎ



2.1. LINEAR QUADRATIC PDE CONSTRAINED OPTIMIZATION 41

but rather
%−1
ℎ "ℎ (UDℎ − ?ℎ).

This is a crucial point to understand because many problems show the derivative of
the reduced cost function in a linear form which must then be interpolated thanks
to a good discretization of the space *. Usually, the additional constraints included
in U03 are specified in another function �, the so-called constraint function (e.g.,
D ↦→ � (D) =

∫
Ω
D(G) 3G). The Jacobian of � is then required by IpOpt. The only

remaining task is to express the cost function and its gradient following the steps (S.2,
S.3, S.4) on the triangulation )ℎ respectively in the Codes 2.5 and 2.6.

func real J(real[int] &X)
{

U[] = X; // associated array X to the control D function.
state; // returns H solution of (2.2)
return int2d(Th)((Y-Yd)^2) + alpha*int2d(Th)(U^2);

}

Code 2.5: LQ cost function (see lq_stationary_indirect.edp)

Having in mind Rem. 9, recall that IpOpt can only take arrays as inputs. Conse-
quently, the cost function J takes as input the array of the degrees of freedom of the
finite element function U. Then, we compute inside J the cost function with the finite
element function U. Hence the cost function depends on an array and can be called
from IpOpt.

func real[int] dJ(real[int] &X)
{

U[] = X;
state; // state equation (see Code 2.2)
adjoint; // adjoint equation (see Code 2.3)
interpgrad; // interpolation of the gradient (see Code 2.4)
return dJ;

}

Code 2.6: Derivative of the LQ cost function (see lq_stationary_indirect.edp)

In the first method, the computation of the Hessian is rather easy but it requires a matrix
inversion. We advise instead to compute the theoretical first-order derivatives and to
use the BFGS approximation of the Hessian provided by IpOpt.

Remark 10. The optimality conditions produce a state-adjoint system called extremal
system. In finite-dimensional optimal control, the solution of the first-order optimality
system can be computed by implementing an indirect shooting method (see [23, Chap.
9]) in which, if for example the initial and final states are fixed, one has to properly adjust
the initial adjoint vector so that, when integrating the extremal with the corresponding
initial state and adjoint, the final state matches the desired value. Numerically, the
shooting method consists in combining a differential equation integrator with a Newton
method. When the optimal control problem is solved in finite dimension and this

https://freefem.org/Optim/
https://freefem.org/Optim/
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dimension is not too large, the method is feasible and, when properly initialized to
ensure convergence, it provides a fast and accurate solution. But in high dimension,
it can be extremely difficult to initialize the method successfully. This is particularly
true in the case of PDE optimization where the size of the adjoint variable is related
to the size of the mesh. Therefore, most of the time, it is not realistic to ensure the
convergence of a shooting method for optimal PDE control problems.

2.1.3 Inhomogeneous Dirichlet boundary conditions
The previous example treated the case of homogeneous Dirichlet conditions, which
makes easier the numerical study because the variational formulation can be written on
well-identified functional spaces (this is also the case when dealing with Neumann or
Robin’s boundary conditions). We now generalize the above numerical approaches to
inhomogeneous Dirichlet conditions. Instead of (2.2), we now consider{

−∇ · (0∇H) = D in Ω
H = 6 on mΩ,

(2.10)

where 6 is assumed to be smooth enough. The way to numerically manage the boundary
condition depends on the choice of either Option 1 or Option 2.

In Option 2, the boundary condition can be immediately reported in the variational
formulation so that the numerical state equation becomes:

macro state() {
solve State(Y,V) = int2d(Th)(a*(grad(Y)'*grad(V)))

- int2d(Th)(U*V)
+ on(1,2,3,4,Y=g); //H = 6 on mΩ

} //

Code 2.7: State equation

The adjoint equation remains unchanged but the adjoint is well modified because it still
depends on the state.

In contrast, Option 1 requires more work. For homogeneous Dirichlet conditions,
the stiffness matrix �ℎ introduced in Code 2.1 forces H to be equal zero on the boundary
mΩ and can only be applied to finite element functions in �1

0 (Ω). Since H now belongs
to an affine subset of �1 (Ω) and not to �1

0 (Ω), the state equation cannot be written as
before. The variational formulation of (2.10) is now:

find H ∈ �1 (Ω),
∫
Ω

0∇H · ∇{ 3G−
∫
Ω

D{ 3G = 0 ∀{ ∈ �1
0 (Ω). (2.11)

A numerical trick consists in introducing, using the Dirichlet map D (see [25, Sec.
10.6]), the solution D6 of

−Δ(D6) = 0 on Ω and D6 = 6 on mΩ

and its numerical version:
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Vh Dg;
solve dirmap(u,v) = int2d(Th)(grad(Y)'*grad(V)) + on(1,2,3,4,Y=

g);
Dg[] = Y[];

Code 2.8: Dirichlet map

We seek the solution of (2.10) in the affine space �1
0 (Ω) +D6 under the form H = I+D6.

Therefore, finding a solution H ∈ �1 (Ω) of (2.10) is equivalent to finding a solution
I ∈ �1

0 (Ω) of (2.2). The optimization variables are (I,D) and the discretized problem
is

min
(Iℎ ,Dℎ) ∈R2=3

�ℎ (Iℎ , Dℎ) =
1
2

(
Iℎ + (D6)ℎ − Hℎ3

))
"ℎ

(
Iℎ + (D6)ℎ − Hℎ3

)
+ U

2
D)ℎ"ℎDℎ

s.t.

{
�ℎIℎ −"ℎDℎ = 0
Dℎ0 6 Dℎ 6 D

ℎ
1
.

The state constraint is unchanged (as well as its Jacobian) while the cost function
now involves Hℎ = Iℎ + (D6)ℎ . Most of the following examples specify homogeneous
Dirichlet conditions but a generalization to inhomogeneous Dirichlet conditions can be
made along the above lines.

2.1.4 Automatic differentiation alternative

Unless the derivatives are easy to calculate, it may be advantageous to use automatic
differentiation, which allows to compute the numerical derivatives at the computer
accuracy. As automatic differentiation is not available in FreeFEM (especially when
one wants to make a derivation with respect to the mesh points), it is required to export
the problem data collected with FreeFEM (mesh data, matrices of the variational forms
involved, etc.) to another language which benefits from an automatic differentiation
program.

In order to keep a user-friendly interface, we propose two practical solutions: either
to use the modeling language AMPL, or the Python package CasADi (with GNU license
and callable from Matlab or Python). AMPL is a commercial software but is free of
access on the NEOS server. Finally, for those who are quite familiar with the language
C++, we advise to combine directly IpOpt with an automatic differentiation tool C++
(such as CppAD or Adept, see [16]) for more efficiency.

In the following, we provide numerical examples that illustrate how to combine
FreeFEM with AMPL in the linear quadratic case (2.1, 2.2). The combination with the
Python package CasADi is presented in App. A.3.

For a given triangulation )ℎ and generated with FreeFEM, we store the matrices
�ℎ and "ℎ constructed in the Code 2.1 of Sec. 2.1 in sparse matrices via the COO
(Coordinate) format. The files "A.txt" and "B.txt" are generated via FreeFEM
with the command (see lq_stationary_AMPL.edp):

https://neos-server.org/neos/
https://freefem.org/Optim/
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{ofstream fout("Ah.txt");
fout << Ah << endl;
}

AMPL (“AMathematical ProgrammingLanguage”, see [1, 13]) is a highly developed
software for modeling and solving large-scale optimization problems. Like CasADi,
the unknown variables must be declared and the objective and constraints must be
defined as a nonlinear programming problem. The transcription of AMPL is based on
classical logical operators, aggregation functions and sets, while the transcription of
CasADi is done more in the framework of matrix calculus. Both handle the sparsity
feature of matrices very well. As far as AMPL is concerned, it is necessary to write the
problem using appropriate sets (set of indices of the non-zero elements of a matrix for
example). A significant advantage of AMPL is the possibility to call several recognized
optimization solvers, like Knitro, CPLEX, IpOpt, etc, which can be used free of
charge on the server NEOS. The program is usually divided into three files: "file.mod"
contains the model, while "file.dat" gathers the parameter allocations and "file.run" the
successive commands.

The Code 2.9 includes the introduction of variables (lines 12 and 13), parameters
(line 1 and lines 6 to 10), minimization of the objective function (line 15) and constraint
functions (lines 19 to 21). Unlike CasADi, we do not use explicit matrix calculus in
AMPL, the sum operator on appropriate sets is preferred instead. The parameters A and
M represent the sparse matrices �ℎ and "ℎ introduced in the Code 2.1. To preserve
sparsity, the matrices in AMPL are downloaded from a text file in triplet format (see
sparse matrices on the Wikipedia web page for multiple ways to store them). The
indices for which A has non-zero values are declared in a two-dimensional set indexA.
The parameter A{indexA} depending on this set thus gathers the non-zero values of
the matrix �ℎ (idem for "ℎ). The quadratic cost function is obtained on line 15 of the
Code 2.9 by summing over all the indices (i,j)in indexM and we therefore do
not take into account in the sum the indices where M has a null value. This induces a
significant gain in computation time.

https://neos-server.org/neos/
https://en.wikipedia.org/wiki/Sparse_matrix


2.1. LINEAR QUADRATIC PDE CONSTRAINED OPTIMIZATION 45

1 param m integer >=0;
2 set index = 0..m;
3 set indexA dimen 2;
4 set indexM dimen 2;
5

6 param alpha =0.1;
7 param A{indexA}; # stiffness matrix
8 param M{indexM}; # mass matrix
9 param L{index};

10 param yd; # target
11

12 var Y{index}; # state
13 var U{index}; # control
14

15 minimize quad: sum{(i,j) in indexM}(
0.5*(Y[i]-yd)*M[i,j]*(Y[j]-yd) +
0.5*alpha*(U[i]*M[i,j]*U[j]));

16

17 subject to PDE{i in index}: sum{(i,j) in
indexA}(A[i,j]*Y[j]) - sum{(i,j) in
indexM}(M[i,j]*U[j]) = 0;

18

19 subject to lowbound{i in index}: U[i] >= 0;
20 subject to upbound{i in index}: U[i] <=1;
21

22 subject to volume: sum{i in index} U[i]*L[i] == 0.25; #∫
Ω
D(G) 3G = 0.25

Code 2.9: AMPL: "file.mod" (see ffad.{dat,mod,run})

Like all the parameters, the data are assigned in Code 2.10:

1 data;
2

3 param m:= 2600;
4 param: indexA: A:= include A.txt;
5

6 param: indexM: B:= include B.txt;
7

8 param yd:= 0.1;
9 read{i in index}(L[i]) < L.txt;

Code 2.10: AMPL: "file.dat" (see ffad.{dat,mod,run})

AMPL is then called by typing in the terminal the command: ampl file.run

https://freefem.org/Optim/
https://freefem.org/Optim/
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1 model file.mod;
2 data file.dat;
3

4 option solver ipopt;
5 option ipopt_options"max_iter=1000 tol=1.e-12

linear_solver=mumps";
6

7 solve;

Code 2.11: AMPL: "file.run" (see ffad.{dat,mod,run})

Provided that the data can be easily imported as in Code A.3, AMPL stands out for its
ability to manage many efficient optimization solvers such as Knitro, CPLEX and
so on, which, as already said, can be used for free on NEOS, on which we have to
upload the three above files (in order to be uploaded to NEOS, data file must contain
parameters allocations stated in file "A.txt", "B.txt" etc, since they cannot be
uploaded aside). Python (and Matlab) alternatives are presented in Appendix A.3.

To conclude this part, we plot in Fig. 2.1 the convergence curves of the scaled
error respectively associated to the several methods illustrated above. In the case of
the Linear-Quadratic problem (2.1, 2.2), we notice that the FDTO method is ten times
faster than the FOTD one. AMPL endowed with its own automatic differentation tool is
an interesting acceptable alternative.

Figure 2.1: Convergence curves of several methods

https://freefem.org/Optim/
https://neos-server.org/neos/solvers/index.html
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2.2 Extension to time-dependent problems

In this section, we show how to deal with a time-dependent optimal control problem,
which consists in determining D ∈ !2 ((0,));!2 (Ω)) solution of

min � (H,D) = 1
2

∫ )

0

∫
Ω

(H(G, C) − H3 (G))2 3G3C +
U

2

∫ )

0

∫
Ω

D(G, C)2 3G3C (2.12)

subject to


HC −∇ · (0∇H) = D in (0,)) ×Ω
H = 0 in (0,)) × mΩ
H(0) = H0

D0 6 D 6 D1

(2.13)

where H0 ∈ !2 (Ω) is fixed.
For the existence of solutions, we refer the reader to [15, 20].
We focus here on the numerical implementation for solving this problem. Several

time discretization strategies can be implemented, which can then be combined with
the optimization strategies described previously. We follow Option 1, but the other
possibilities can be adapted in a similar way to time-dependent problems. We introduce
a mesh of the domain Ω, as in the previous stationary example. The main issue is how
to deal simultaneously with temporal and spatial discretizations.

A first classical time discretization consists in using an implicit Euler scheme
combined (we will mostly choose implicit schemes since there is no CFL condition to
be satisfied) with finite elements P1 in space.

A second possibility is to use the ability of the FreeFEM to handle 3D problems
by considering a 3D time-space mesh and to discretize simultaneously time and space
variables with finite elements P1.

2.2.1 Implicit Euler scheme

Although an implicit scheme is a bit harder to implement numerically because it requires
a matrix inversion, its advantage over explicit schemes is that it does not require any
CFL condition. We consider the mesh )ℎ introduced in Sec. 2.1 and the matrices �ℎ
and "ℎ . Given an integer =C , consider a time subdivision

C0 = 0 < C1 < · · · < C=C = )

of the interval [0,)]. We introduce the discrete variables

.̃ = (H1, · · · , H=C ) ∈ R=3=C and *̃ = (D1, · · · , D=C ) ∈ R=3=C ,
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with H8 , D8 ∈ R=3 , arrays of degree of freedom of the finite element approximations of
H(C8 , ·) and D(C8 , ·) respectively. We then discretize the problem (2.12, 2.13) as

min � (.̃ ,*̃) = 1
2

=C∑
:=1
(H: − Hℎ3)

)"ℎ (H: − Hℎ3) +
U

2

=C∑
:=1

D): "ℎD: (2.14)

subject to


"ℎ

H:+1− H:
XC

+ �ℎH:+1 = "ℎD:+1, ∀: ∈ (0...=C −1)
H0 = H

0(initial guest)
Dℎ0 6 D: 6 D

ℎ
1 , ∀: ∈ {0...=C }.

(2.15)

We simplify the notations by introducing the matrices

�C = �ℎ +
1
XC
"ℎ , "C =

1
XC
"ℎ

for XC = )
=C

and the sparse matrices

�̃ =

©­­­­«
�=3 0=3 · · · 0=3
−"C �C · · · 0=3
...

. . .
. . .

...

0=3 · · · −"C �C

ª®®®®¬︸                            ︷︷                            ︸
=3=C columns and rows

"̃ =

©­­­­­«
0=3 · · · 0=3
"C

. . . 0=3
...

. . .
...

0=3 · · · "C

ª®®®®®¬
�̃ =

©­­­­­«
" 0=3 · · · 0=3

0=3 "
. . . 0=3

...
. . .

. . .
...

0=3 · · · 0=3 "

ª®®®®®¬
(2.16)

to reformulate the optimization problem (2.14, 2.15) as the problem of determining
(.̃ ,*̃) ∈ R2=3 (=C+1) solution of

min � (.̃ ,*̃) = 1
2
(.̃ −.3)) �̃ (.̃ −.3) +

U

2
*̃) �̃*̃

subject to


�̃.̃ − "̃*̃ =

(
H0,ℎ

0=3 (=C−1)

)
,

Dℎ0 6 *̃: 6 D
ℎ
1
∀: ∈ {0..=C }.

We thus obtain a finite-dimensional constrained linear quadratic problem

∇� (.̃ ,*̃) =
(
�̃ (.̃ −.3)
U�̃*̃

)
, ∇2� (.̃ ,*̃) =

(
�̃ $

0 U�̃

)
, ∇� (.̃ ,*̃) =

(
�̃ 0
0 −"̃

)
.

forwhich the numerical implementation inFreeFEM now follows themethod presented
in Sec. 2.1.1, based on the template introduced in Sec. 1.2.4 (see lq_time_O1.edp and
lq_time_O2.edp).

2.2.2 Time discretization with FreeFEM
Another possibility is to exploit the ability of FreeFEM to handle multidimensional
problems, by considering the time variable as a third variable of the I space and

https://freefem.org/Optim/
https://freefem.org/Optim/
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(a) (b)

Figure 2.2: (a) initial square mesh; (b) 3D mesh with buildlayers

transforming a 2D (or 1D) problem into a 3D (or 2D) problem. In the example (2.12,
2.13), the variational formulation reads as follows:∫

(0,) )×Ω
(HC {+ 0∇H · ∇{) 3G3C =

∫
(0,) )×Ω

D{ 3G3C (2.17)

for all { in �1 ((0,)) ×Ω)) such that { | (0,) )×mΩ = 0. We build a mesh of the 3D domain
(0,)) ×Ω on which the PDE is settled. In order to manage the 3D meshes, we use at
the beginning of the file the command: load "msh3". Several options to build a
3D mesh with FreeFEM are available. We prefer to start from an initial mesh of the
domain Ω, subset of R2, that we extend (along the axis I) to a mesh of the cylinder
(0,)) ×Ω thanks to the command buildlayers:

mesh Th2 = square(20,20);
int[int] rup=[0,30],rdown=[0,20],rmid=[1,10,2,10,3,10,4,10];
mesh3 Th = buildlayers(Th2,20,zbound=[0,T],labelmid=rmid,

labelup=rup,labeldown=rdown);

Code 2.12: 3D mesh cylinder with 2D mesh basis (see lq_time_t_as_z.edp)

The new finite element space is

+ℎ =

{
{ ∈ �1 ((0,)) ×Ω), ∀ ∈ )ℎ { | ∈ P1

}
(in this case, the temporal discretization performed with a finite element discretization
is symmetric). As in the static case, we define the matrix of the variational formulation
(2.17):

varf vA(Y,V) = int3d(Th)(-dz(V)*Y+a*(grad(Y)'*grad(V))) //
dz(Y)=mC H

+ on(10,Y=0) // Dirichlet boundary condition
+ on(20,Y=Y0); // initial condition H0

matrix Ah = vA(Vh,Vh,solver=sparsesolver);

We define the matrix of the cost function:

https://freefem.org/Optim/
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varf vCost(Y,V) = int3d(Th)(Y*V);
matrix Mh = vCost(Vh,Vh,solver=sparsesolver);

Given a mesh of the domain (0,)) ×Ω, we now write the discretized optimal problem
as

min
(.̃ ,*̃ ) ∈R2#

1
2
(.̃ −.3))"ℎ (.̃ −.3) +

U

2
*̃)"ℎ*̃

s.t.

{
�ℎ.̃ = "ℎ*̃

*ℎ0 6 *̃ 6 *
ℎ
1

where # is the number of degrees of freedom of the chosen finite element space (taking
into account the time dimension), *ℎ0 and *ℎ

1
are the resulting arrays of degrees of

freedom from the interpolation operator connected to the finite element space Vℎ of
the functions D0 and D1 respectively. Here, # is of the same order as the quantity
=3 (=C + 1) from the previous section. The gradient and Hessian of the cost function
and the Jacobian of the constraint function are now easy to compute and the numerical
implementation follows what has been presented in Sec. 2.1.1.

When considering linear quadratic optimal control problems, the problems result-
ing from the various discretization strategies remain general high-dimensional linear
quadratic optimization problems. Nevertheless, the previous examples can be used as
models for other examples, more complicated, but which require a significant upstream
work on the chosen discretization.

When the PDE under consideration is linear, we recommend to use Option 1.
Indeed, keeping the PDE as a linear constraint rather than solving it directly, which
requires at least a matrix inversion (the matrix inversion will always take place but the
linear solver chosen in IpOpt will do it), will most of the time bring two advantages.
First, it is easier to compute the Jacobian of this constraint and it is almost always easier
to compute the derivatives of the cost function with respect to state and control than
the derivatives of the reduced cost function, whose Hessian is even harder to compute.
Second, we keep the sparse feature of the matrices involved in the discrete writing of
the problem.

Option 2 (use of an adjoint representation) is more suitable when the dependence
on the control is more complex and cannot be expressed easily, as in the case of shape
optimal design, when the control is a shape (see [3, 14]) or for nonlinear problems.
Option 1 and Option 2 differ in the choice of the parameterization of the optimal shape
to be found.

Furthermore, regardless of the chosen approach, time-dependent problems aremuch
more computationally and memory intensive and require careful attention to potential
simplifications.
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2.3 Optimization under semilinear PDE constraints

We add a nonlinear term to the previous problem. Given H3 ∈ !2 (Ω) and D0, D1 ∈
!∞ (Ω), we seek an optimal solution D ∈ !2 (Ω) of

min � (H,D) = 1
2

∫
Ω

(H(G) − H3 (G))2 3G +
U

2

∫
Ω

D(G)2 3G (2.18)

subject to


−∇ · (0∇H) +q(H) = D in Ω
H = 0 on mΩ
D0 6 D 6 D1 .

(2.19)

Following the framework stated in [24, Assumptions 4.2 and 4.3], the function q :R→R
is continuous, monotone increasing, globally bounded and twice differentiable. The
global boundedness assumption is only used to ensure that q(H) ∈ !2 (Ω). In our
numerical tests, we choose q(H) = H3, which is not globally bounded, but Sobolev
embeddings guarantee that �1 (Ω) ↩→ !6 (Ω) for a bounded Lipschitz domain Ω of R2

or R3. Therefore, given any D ∈ !2 (Ω), the PDE (2.19) has a unique weak solution
H ∈ �1

0 (Ω) (see [24, Remarks on Theorem 4.4]). Compared with the state state (2.2),
the semilinear PDE is more difficult to solve with the finite element method. We do not
have any linear variational formulation and therefore there is no way to solve it with a
single matrix inversion.

We propose to solve the PDE numerically with successive approximations (iterative
fixed point) or with a Newton method and to use an adjoint representation to compute
the derivatives. Note that the adjoint only requires a matrix inversion because the
adjoint equation is linear. Let )ℎ be the same triangulation of the domain Ω as before
and let +ℎ still denote the finite element space P1. The variational formulation is∫

Ω

0∇H · ∇{ 3G +
∫
Ω

q(H){ 3G =
∫
Ω

D{ 3G ∀{ ∈ �1
0 (Ω).

A first possibility is to use Algorithm 2 (fixed point) to compute a numerical solution
of this variational formulation, whose translation in FreeFEMmacros is given in Code
2.13.

Algorithm 2 Fixed point method for semilinear PDEs
set 4AA = 1
while (4AA > 10−10) do

solve: ∀{ ∈ �1
0 (Ω),

∫
Ω

0∇I · ∇{ 3G +
∫
Ω

q(H?−1){ 3G =
∫
Ω

D{ 3G

compute 4AA = ‖I− H?−1‖!2 (Ω)
set H? = I
set ? = ? +1.

end while
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macro semilinearstateFP(){
real err=1;
while (err>tol) {
Vh Yold;
solve semilinear(Y,V) = int2d(Th)(a*grad(Y)'*grad(V))

+ int2d(Th)(Yold^3*V) // q(H) = H3

- int2d(Th)(U*V)
+ on(1,2,3,4,Y=0);

real[int] taberr = Y[]-Yold[];
err = l2norm(taberr); // ‖H:+1 − H: ‖!2 (Ω)
// l2norm defined in appendix A.1
}

} //

Code 2.13: Semilinear state equation with a fixed point method (see
semilinear_fixedpoint_ipopt.edp)

Another possibility is to implement a Newton-Raphson strategy, consisting in deter-
mining H ∈ + such that � (H) = 0 with � :+ ↦→+ , as done in Algorithm 3.

Algorithm 3 Newton method
set 4AA = 1
set H0 and | initialized
while (4AA > 10−10) do

H? = H?−1−|
solve: �� (H?)| = � (H?)
4AA = ‖{‖
set ? = ? +1.

end while

In the context of the problem (2.18, 2.19), � is the variational formulation of the
state equation (2.19) and we have

� (H) =
∫
Ω

(0∇H · ∇{+q(H){−D{) 3G

�� (H)| =
∫
Ω

(0∇| · ∇{+q′(H)|{) 3G

for some { ∈ �1
0 (Ω), and (2.19) is solved in Code 2.14.

https://freefem.org/Optim/
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macro semilinearstateNewton(){
real err=1;
Vh W=0;
while (err>tol) {
Y[] -= W[]; // H?+1 = H? −|
solve semilinear(W,V) =

int2d(Th)(a*grad(W)'*grad(V) // �� (H)|
+ 3*Y^2*W*V) // q(H) = H3

- int2d(Th)(a*grad(Y)*grad(V) + Y^3*V - U*V) //� (H)
+ on(1,2,3,4,W=0);

err = l2norm(W[]); // ‖|‖!2 (Ω)
// l2norm defined in appendix A.1
}

} //

Code 2.14: Semilinear state equation with Newton method (see
semilinear_fixedpoint+Newton_ipopt.edp)

One may wonder whether it is better to use a fixed point or a Newton method.
Newton’s algorithm is well known for its fast, but convergence can in general only be
obtained if its initialization is close enough to the solution. The fixed point algorithm
is less sensitive to the initialization constraint but the convergence is slower in general.
One may consider a hybrid method consisting in using a fixed point method in the first
iterations and then switching to a Newton method when one is close enough to the
solution (this is the idea of global or damped Newton methods).

As in Sec. 2.1, . is the set �1
0 (Ω) and the set of admissible controls U03 is the

subset of !2 (Ω) given by

U03 =
{
D ∈ !2 (Ω), D0 6 D 6 D1

}
⊂ * = !2 (Ω),

/ = �−1 (Ω) (dual of �1
0 (Ω)), so that Assumption 2 is satisfied, and

� (H,D) = 1
2

∫
Ω

(H(G) − H3 (G))2 3G +
U

2

∫
Ω

D(G)2 3G,

4(H,D) = �H +�q(H) −�D.

Under [24, Assumptions 4.14], existence of an optimal control D̄ ∈ U03 is guaranteed
and the optimality conditions stated in Corollary 2 give

H ∈ �1
0 (Ω) solution of: −∇ · (0∇H) +q(H) = D in Ω, (2.20)

? ∈ �1
0 (Ω) solution of: ∇ · (0∇?) −q

′(H)? = H− H3 in Ω, (2.21)
D ∈ U03 such that: (UD− ?, {−D)* > 0 ∀{ ∈ U03 . (2.22)

Again, like in the example (2.1, 2.2), the duality pairing 〈·, ·〉* ′,* is compatible with
the !2 (Ω)-inner product and hence the adjoint representation yields the gradient of the
reduced cost function(

∇�̂ (D), {
)
*
=

∫
Ω

(UD− ?){ 3G ∀{ ∈ !2 (Ω).

https://freefem.org/Optim/
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Although the state equation is nonlinear, the adjoint equation is linear and can thus
easily be solved with FreeFEM:

macro semilinearadjoint() {
solve SLAdjoint(P,Q)= int2d(Th)(a*(grad(P)'*grad(Q)))

+ int2d(Th)(3*Y^2*P*Q) // q′(H) = 3H2

+ int2d(Th)((Y-Yd)*Q)
+ on(1,2,3,4,P=0);

} //

Code 2.15: Semilinear adjoint equation

At this step, it suffices to rewrite the cost function and its derivative as in Codes 2.5
and 2.6 by replacing the macros of the previous state and adjoint equations.

In the case of semilinear equations, it is possible to work with sparse matrices that
do not depend on the state and control, provided that we are careful enough on how to
discretize the nonlinear term. Therefore, we can override the computation of the adjoint
by using automatic differentiation with the software AMPL as in Sec. 2.1.4. We thus
reduce the cost function to the quadratic discretized cost

�ℎ (Hℎ , Dℎ) =
1
2
(Hℎ − Hℎ3)

)"ℎ (Hℎ − Hℎ3) +
U

2
D)ℎ"ℎDℎ

while the state equation is viewed as a constraint

4ℎ (Hℎ , Dℎ) = �ℎHℎ +"ℎ (Hℎ)3−"ℎDℎ

so that "file.mod" becomes:
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1 param m integer >=0;
2 set index = 0..m;
3 set indexA dimen 2;
4 set indexM dimen 2;
5

6 param alpha =0.1;
7 param A{indexA}; # stiffness matrix
8 param M{indexM}; # mass matrix
9 param L{index};

10 param yd; # target
11

12 var Y{index}; # state
13 var U{index}; # control
14

15 minimize quad: sum{(i,j) in indexM}(
0.5*(Y[i]-yd)*M[i,j]*(Y[j]-yd) +
0.5*alpha*(U[i]*M[i,j]*U[j]));

16

17 subject to PDE{i in index}: sum{(i,j) in
indexA}(A[i,j]*Y[j])

18 + sum{(i,j) in indexM}(M[i,j]*Y[j]**3)
19 - sum{(i,j) in indexM}(M[i,j]*U[j])

=0;
20

21 subject to lowbound{i in index}: U[i] >= 0;
22 subject to upbound{i in index}: U[i] <=1;
23

24 subject to volume: sum{i in index} U[i]*L[i] == 0.25; #∫
Ω
D(G) 3G = 0.25

Code 2.16: AMPL: "file.mod" - semilinear case
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Figure 2.3: Convergence curves for semilinear case: (a) objective function; (b) conver-
gence criterion

The convergence curves of the various methods are shown in Fig. 2.3. The methods
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converge more or less quickly to the same solution. Here we emphasize the advantages
of automatic differentiation over adjoint methods that bypass solving the state equation
by iteration methods. The convergence of the algorithm is then faster and its numerical
writing is much easier. Nevertheless, we must pay some attention to the numerical
discretization of the cost and state constraint functions. Indeed, we will show in
Chap. 3 the importance of the choice of finite element spaces for the algorithm to give
an acceptable solution.

2.4 Optimal shape design problems

FreeFEM is adapted to solve numerically optimal shape design problems. Indeed,
FreeFEM is user-friendly for solving PDEs, but also for building and modifying
meshes. Shape optimization is a vast field and there are many ways to compute
numerical optimal solutions. It is possible to implement geometric and topological
optimization aswell as homogenizationmethods. For the level-setmethod inFreeFEM,
we refer the reader to [4, 5] and to the dedicated website. We also mention [9] which is a
pedagogical introduction to the level-set method in shape optimization usingFreeFEM.
In short words, level-set method is related to the solution of an advection equation
combined with a gradient descent algorithm (see [11] for an example of an efficient
gradient descent algorithm applied to shape optimization). We mention two methods
that can be combined with IpOpt:

• Shape deformation methods: we look for a way to modify an initial shape to a
so-called optimal shape and thus compute the derivatives of the cost and con-
straint functions using classical shape optimization analysis tools. The command
movemesh provided by FreeFEM allows us to write an optimal shape design
problem in the context of Hadamard boundary variations. The derivatives with
respect to the domain and the appropriate deformation vector fields are thus com-
puted to find the next iteration using the movemesh. We refer to [14] for an
introduction to shape variation strategies.

• Relaxation methods: we look for an optimal solution in a larger admissible set
containing the classical design sets and expect the solution to be in the starting
set of shapes. One of the best known methods is homogenization (see [2, 6]).
The optimal solution often presents a gray level instead of being black or white,
which underlines the appearance of a relaxation phenomenon.

The example of Sec. 4.1 further is devoted to illustrating the first method. Here, let
us quickly describe the second method, which can be implemented in the framework
of the numerical methods of Sec. 2.1 by considering a variant of the linear quadratic
example (2.1, 2.2). Let Ω be a subset of R2 and let H3 ∈ !2 (Ω) be a target function.
The set of admissible controls is

U03 = {l ⊂ Ω measurable , |l | 6 l0}

http://www.cmap.polytechnique.fr/~allaire/freefem_en.html
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l measurable D ∈ !∞ (Ω, [0,1])

jl ∈ {0,1} 0 6 D 6 1

|l | 6 ! |Ω|
∫
Ω

D(G) 3G 6 ! |Ω|

Relaxation

Figure 2.4: Convexification strategy

where |l | is the Lebesguemeasure ofl. Denoting by jl the indicator function (defined
by jl (G) = 1 if G ∈ l and 0 otherwise), we seek for a measurable domain l solution of

min
l∈U03

� (H,l) = 1
2

∫
Ω

(H(G) − H3 (G))2 3G

s.t.

{
−ΔH = jl in Ω
H = 0 on mΩ.

We refer the reader to [18] for sufficient conditions ensuring existence of solutions. For
the numerical solving, we relax the indicator function jl of l as shown in Fig. 2.4.

This leads to the relaxed (convexified) problem

min
D∈U03

� (H,D) = 1
2

∫
Ω

(H(G) − H3 (G))2 3G

s.t.


−ΔH = D in Ω
H = 0 on mΩ
0 6 D 6 1

with
U03 =

{
D ∈ !2 (Ω), 0 6 D 6 1 and

∫
Ω

D(G) 3G = ! |Ω|
}
.

We now adapt the example (2.1, 2.2). Shape optimization is performed by stipulating
upper and lower bound constraints on the control D in the hope that they will be saturated
for the optimal solution (if not, this means that there is relaxation). The generalization
of such methods can be found in the homogenization method studied in [2]. The
optimization solver IpOpt may be used.

2.5 Conclusion
In this chapter, we have considered several PDE-constrained optimization problems and
solved them with FreeFEM. We have provided the detail of all steps, starting from an
appropriate mathematical formulation of the problem to the numerical implementation.
We have designed several methods depending on the chosen problem. We stress that
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FreeFEM has already been the focus of several educational papers, such as [17, 26] in
topology optimization, [10] in geometric optimization, [7] for structural optimization
and [12] where the authors combined FreeFEM with IpOpt.

FreeFEM is also powerful for three-dimensional problems. Let us mention [8]
where the authors build finite element method for fast rotating Bose-Einstein conden-
sates. Regarding optimization problems, we mention [19] where the authors propose
a new framework for the two- and three-dimensional topological optimization of the
weakly-coupled fluid–structure system. In the same field, we cite [21] where the authors
present an educative paper and focus on a level-set method in dimension two with an
extension to the three-dimensional case. In the sequel, we will focus on more specific
problems, following the methods illustrated in this chapter.
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Chapter 3

Plateau problem

In this chapter, we address a problem of calculus of variations: compute the optimal
solution of the Plateau problem. We present three different methods illustrated in
Figure 1.2 of Chap. 1: a direct method via automatic differentiation, an indirect method
by solving the optimality conditions and a hybrid method. We finally highlight the
non-commutativity of the previous methods which do not necessarily yield the same
solution, depending on the choice of discretization.

3.1 Introduction
The Plateau problem is named after the Belgian natural scientist J. Plateau, who made
numerous experiments with soap films, realizing a large variety of minimal surfaces.
We can find a complete description and many solving suggestions, e.g., in [1, 2].
We illustrate on such an example of variational computation how the combination
of FreeFEM and IpOpt can improve the numerical solution for a PDe constrained
optimization problem. Depending on a good choice of discretization, we will also show
that automatic differentiation is a powerful tool.

In this well known problem, the aim is to find a minimal surface whose boundary
is fixed. We restrict ourselves to closed and �2 surfaces, parametrized by means of the
graph of a given function D : Ω̄→ R (with Ω ⊂ R2) belonging to the admissible set

((Ω) =
{
D : Ω̄→ R, D |Ω ∈ �2 (Ω,R), D |mΩ ∈ �1 (mΩ,R)

}
,

so that an admissible surface is given by the parametric surface

- (G, H) = (G, H,D(G, H)), (G, H) ∈ Ω̄.

The cost functional is
� (D) =

∫
Ω

(1+ |∇D |2) 1
2 3G.

Given a function W ∈ �1 (mΩ,R) along the boundary of Ω, we seek an optimal solution

61



62 CHAPTER 3. PLATEAU PROBLEM

of the Plateau optimization problem

min
D∈( (Ω)

� (D) such that D |mΩ = W. (3.1)

We propose three methods for its numerical solving:

• The first one consists in finding the critical points of the functional � thanks to an
iterative procedure combining a fixed point method and a Newton method. This
method is part of FOTD.

• The second one calls the IpOpt solver from FreeFEM.

• In the third one, we use automatic differentiation with AMPL after having gener-
ated in FreeFEM the discretization of the functional � with finite elements.

Note that IpOpt requires to compute at least the gradient, and if possible, the Hessian.
To this aim, we compute the first derivative of the cost functional �

�� (D){ =
∫
Ω

∇D · ∇{
(1+ |∇D |2) 1

2
3G ∀{ ∈ ((Ω) (3.2)

and its second order derivative

�2� (D) ({,|) =
∫
Ω

∇{ · ∇|
(1+ |∇D |2) 1

2
− (∇D · ∇{) (∇D · ∇|)

(1+ |∇D |2) 3
2

3G ∀{,| ∈ ((Ω). (3.3)

We introduce a triangulation )ℎ of the domain Ω and will induct hereafter several finite
element spaces. We define the FreeFEMmacros of the cost function and its derivatives
that we need for the various approaches. As an example, we define Ω as the unit square
and

W(G, H) = cos(cG) cos(cH).

We approximate the functions D in ((Ω) with P1 finite elements (we will choose as well
P2 and will compare solutions):

mesh Th=square(10,10,[x+1,y]);
fespace Vh(Th,P1);

Vh u,up,v;
func gamma = cos(pi*x)*cos(pi*y);
macro grad(u) [dx(u),dy(u)] //

Code 3.1: Minimal surface numerical framework

Besides, we introduce the macros of the derivatives of the cost function � that we need
for the optimization methods.
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macro J(u) int2d(Th)(sqrt(1.0 + grad(u)'*grad(u))) //
macro DJ(u,v) int2d(Th)(grad(u)'*grad(v)/sqrt(1.0 + grad(

u)'*grad(u))) //
macro DJfp(u,up,v) int2d(Th)(grad(u)'*grad(v)/sqrt(1.0 + grad(

up)'*grad(up))) // for fixed point method
macro D2J(u,v,w) int2d(Th)(grad(w)'*grad(v)/sqrt(1.0 + grad(

u)'*grad(u)) - grad(u)'*grad(v)*grad(u)'*grad(w)/sqrt(1.0 +
grad(u)'*grad(u))^3 ) //

Code 3.2: Minimal surface macros

3.2 Solving with an iterative method
We claim that (3.1) is a convex optimization problem so that solving the first-optimality
conditions leads to the optimal solutions. We first try to solve (3.1) by a search for
critical points of the functional �. The task is to find functions D ∈ ((Ω) so that the
differential �� (D) of � in the Fréchet sense, given by (3.2), vanishes. Denoting by
(0 (Ω) the set of functions in ((Ω) vanishing in mΩ,

(0 (Ω) =
{
D : Ω̄→ R, D |Ω ∈ �2 (Ω,R), s.t. D |mΩ = 0

}
⊂ ((Ω),

the aim is to find D ∈ ((Ω) such that

�� (D){ =
∫
Ω

∇D · ∇{
(1+ |∇D |2) 1

2
3G = 0 ∀{ ∈ (0 (Ω),

D = W on mΩ.

Given a good enough initialization function D0, we seek a zero of the first derivative of
the cost function by means of a Newton algorithm that returns at the :-th iterate a new
function D:+1 in ((Ω) such that

�2� (D: ) (D:+1, {) −�2� (D: ) (D: , {) = �� (D: ) ({) ∀{ ∈ (0 (Ω),
D:+1 = W on mΩ. (3.4)

Newton’s method strongly depends on the starting point. Therefore, to improve the
convergence of the algorithm, the first steps of the algorithm can be devoted to ap-
proximating the solution by using a fixed point algorithm before launching the Newton
method that will then converge faster once the iterate is close to the solution. In the
first iterations : ∈ {0.. }, we thus seek a function D:+1 ∈ ((Ω) solution of the linear
problem ∫

Ω

∇D:+1 · ∇{
(1+ |∇D: |2)

1
2
3G = 0 ∀{ ∈ (0 (Ω),

D:+1 = W on mΩ,
(3.5)

and we switch to the Newton method when the distance between two successive itera-
tions, (∫

Ω

(D:+1−D: )2 3G
) 1

2

,
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is small enough. We stop the Newton method when the above error is below a given
tolerance. We write in Code 3.3 the full algorithm combining the fixed point iterations
(3.5) and the Newton iterations (3.4).

while(err > eps && iter++ < 100)
{

up[]=u[]; // D:−1← D:

newton = newton | ( err < 0.005); // boolean

if( ! newton ) // at first iterations
solve PointFixe(u,v) = DJfp(u,up,v) + on(1,2,3,4,u=

gamma);
else

solve Newton(u,v) =
D2J(up,v,u) - D2J(up,v,up)

+ DJ(up,v)
+ on(1,2,3,4,u=gamma);

err = sqrt(int2d(Th)((u-up)^2)); // error
real Ju = J(u);
cout << iter << " " << newton << " " << err << " J ="<< Ju

<< endl;
plot(u,cmm=iter + " err =" + err + " Ju=" + Ju);

}

Code 3.3: Plateau problem by fixed point and Newton method (see
minsurf_fixedpoint_Newton.edp)

Newton’s algorithm converges to the solution in few iterations. Nevertheless, the
method could appear limited if we would like to add some constraints such as forcing
the minimal surface to lie under a given surface. Indeed, an additional constraint would
add in the optimality conditions a Lagrange multiplier, which is more complicated to
deal with. In such a case, a more user-friendly alternative may be to solve the problem
by combining FreeFEM with IpOpt.

3.3 Solving with FreeFEM combined with IpOpt
In this section we introduce an additional lower bound function D< : Ω̄→ R and we
now consider the optimization problem

min
D∈( (Ω)

� (D) s.t. D |mΩ = W, D< 6 D. (3.6)

In the previous section, we computed the optimal solutions of (3.1) by seeking the
critical points of the function �. This is equivalent to solving the first-order optimality
conditions which are also sufficient since the problem (3.1) is convex. In this section,
the additional lower bound constraint breaks the equivalence between critical points
and optimality conditions, which require the introduction of a Lagrange multiplier
associated to the constraint. We could apply the first-order optimality conditions and

https://freefem.org/Optim/
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solve them thanks to an augmented Lagrangian method for instance. Here, we rather
use the combination of FreeFEM with IpOpt and we discretize the derivatives of the
cost function � and of the lower bound constraint. Therefore, in contrast to the previous
method, which is typical of the FOTD method, since we first wrote the optimality
conditions of the problem (3.1) that we have then discretized and solved, we now
compute a discretization of the derivatives the functions involved in the problem (3.6)
and only after we use an optimization algorithm (hereIpOpt). To this aim, we compute
a discretized version of �� (D) and �2� (D).

func real J(real[int] &X)
{

Vh u; u[]=X;
return int2d(Th)(sqrt(1.0 + grad(u)'*grad(u))) ;

}

func real[int] DJ(real[int] &X)
{

Vh u; u[]=X;
varf vg(uu,v) = int2d(Th)((grad(u)'*grad(v))/sqrt(1.0 +

grad(u)'*grad(u))) ;
real[int] G= vg(0,Vh);
return G;

}

matrix H; //global variable for matrix, otherwise => seg fault
in Ipopt

func matrix D2J(real[int] &X)
{

Vh u; u[]=X;
varf vH(v,w) = int2d(Th)( (grad(w)'*grad(v))/sqrt(1.0 +grad

(u)'*grad(u))
- (grad(w)'*grad(u))*(grad(v)'*grad(u))*(1.0 + grad(u)'*

grad(u))^-1.5 ) ;
H = vH(Vh,Vh);
return H;

}

Code 3.4: Optimal surface (see minsurf_Ipopt.edp)

We directly define the additional constraints in lower and upper bounds of the
optimization variable X. For the problem (3.1), we force in Code 3.5 the function D to
be equal to W on the boundary mΩ by introducing two arrays ;1 and D1 so that

;1 6 - 6 D1

with ;1 [8] and D1 [8] very large if the index 8 matches with a degree of freedom of an
interior finite element and ;1 [8] and D1 [8] equal to W if the index 8 matches with the
degree of freedem of a boundary finite element.

https://freefem.org/Optim/
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varf OnGamma(u,v) = on(1,2,3,4,u=1);
func g = cos(pi*x)*cos(pi*y);
Vh OnG; Vh gh=g;
OnG[]=OnGamma(0,Vh,tgv=1); // 1 on Gamma
Vh lb = OnG!=0 ? gh : -1e19 ; //
Vh ub = OnG!=0 ? gh : 1e19 ; //

Code 3.5: Boundary constraint

We define the additional constraint stated in the problem (3.6) by adding the follow-
ing two lines in the code in order to modify the lower bound variables accordingly for
the function

D< (G, H) = 3−
(
10

(
(G−0.5)2 + (H−0.5)2

))2
.

Vh clb = 3-square(10*(square(x-x0)+square(y-y0))); // lower
constraint

if(constraint) lb = max(lb,clb);

It only remains to run IpOpt:

IPOPT(J,DJ,HJ,u[],lb=lb[],ub=ub[],tol=1.e-15);

In this example, we first computed a discretized version of the derivatives of the
cost function, what can be referred to as a hybrid method in Diagram 1.2. A full FDTO
method would compute the derivatives of a discretized version of the cost function.

3.4 Automatic differentiation alternative
In the two previous sections, we computed the continuous derivatives of the involved
functions and then discretized them according to our finite element space’s choice.
From the numerical point of view, having in mind a gradient descent method as an
optimization algorithm, it may sometimes be better to compute the true numerical
gradient, i.e., compute the derivatives of a discretized version of the cost and constraint
functions. This is whywe focus in this section on an automatic differentiation alternative
based on the software AMPL. We are going to see that we have to choose adequately
the discretization space, otherwise convergence of the algorithm may fail. In a first
attempt, as in the previous sections, we choose P1 finite elements for the function D.
The cost function brings the spatial derivatives of D which have to be discretized too.
When we write in FreeFEM the cost function

func real J(real[int] &X)
{

Vh u; u[]=X;
return int2d(Th)(sqrt(1.0 + grad(u)'*grad(u))) ;

}
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Here, 3G(D) and 3H(D) discretizations are hidden in the quadrature formula int2d.
Automatic differentiation is not directly available in FreeFEM. Therefore, we have to
export the discretization in AMPL and we thus have to exhibit this formula in order to
well observe the same solution. To this aim, we are going to develop the cost function
computation in the Code 3.6 and comment the computing steps.

param mV integer >=0; # ndof for D discretization
param mP integer >=0; # ndof for 3G(D) and 3H(D) discretizations

set indexV = 0..mV-1;
set indexP = 0..mP-1;

set indexPx dimen 2;
set indexPy dimen 2;
set indexM dimen 1;
set indexG dimen 1;
set indexUE dimen 1;

param Px{indexPx}; # matrix of operator 3G

param Py{indexPy}; # matrix of operator 3H

param M{indexM}; # mass matrix
param ue{indexUE};

var u{indexV};

minimize cost : sum{i in indexM}( M[i]*sqrt(1.0+ (sum{(i,j) in
indexPx}( Px[i,j]*u[j] ))**2 + (sum{(i,j) in indexPy}(
Py[i,j]*u[j] ))**2));

subject to gamma_inf{i in indexG} : u[i]<=ue[i] + 1.e-19; #
subject to gamma_sup{i in indexG} : u[i]>=ue[i] - 1.e-19; #

option solver ipopt;
option ipopt_options"max_iter=1000 tol=1.e-15

linear_solver=mumps";

Code 3.6: File "surfmin.mod" (see minsurf.{dat,mod,run})

We compute the matrices involved in Code 3.6 in FreeFEM by introducing two
finite element spaces: +ℎ is used to discretize the optimization variable D, while %ℎ
is used to discretize 3G(D) and 3H(D). Indeed, given D approximated with P1 finite
elements, its spatial derivatives are thus discretized with P0 finite elements without
approximation error. Therefore the two matrices %G and %H map the finite element
space +ℎ to the finite element space %ℎ .

https://freefem.org/Optim/
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Figure 3.1: Solution returned by the three methods

fespace Vh(Th,P1);
fespace Ph(Th,P0);

matrix Px = interpolate(Ph,Vh,t=0,op=1);
matrix Py = interpolate(Ph,Vh,t=0,op=2);

varf mass(u,v) = int2d(Th)(v);
real[int] M = mass(0,Ph);

Code 3.7: Matrices needed in "surfmin.mod"

3.5 Example and remarks
We illustrate the previous methods by choosing

W(G, H) = cos(cG) cos(cH),

defined on the square Ω = [0,1]2. In a first attempt, we discretize the unknown D
with P1 finite elements and we plot in Fig. 3.1 the solution returned by the three
methods. Indeed, solving the first-order optimality conditions either with the automatic
differentiation method or by using IpOpt in FreeFEM, the solution found is almost
identical. To convince ourselves of this, we plot in Fig. 3.2 the !2 error between the
solutions and we observe that they are similar to within 10−7. The fact that the solutions
are identical comes from the choice of the discretization space, which allows us to
obtain a discretized cost function without interpolation error. Indeed, we have taken P1
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Figure 3.2: Error between different solutions for P1 discretization

(a) (b)

Figure 3.3: Solution of Plateau’s problem with P2 elements: (a) with AD (AMPL); (b)
with IpOpt and FreeFEM

elements for D so that its spatial derivatives can be approximated by P0 elements, which
are constant functions on each triangle of the mesh. Hence, the quadrature formula
used to compute the cost function involves constant values of the function

√
1+ |∇D |2

on each triangle. However, if the function approximated inside the root is no longer
constant, we will make approximation errors and the three methods will not return
exactly the same solution. For example, let us now take as discretization space the P2
elements for D and let us plot the solution in Fig. 3.3. Here, the spatial derivatives of
D are discretized according to discontinuous P1 elements. If we try to discretize them
with continuous P1 elements, then we make an approximation error which is prohibitive
for the convergence of the algorithm.

These two numerical examples illustrate that the choice of the discretization’s space
matters to ensure the convergence of the algorithm and for direct and indirect methods
to lead to the same result.

In a last example, we illustrate how IpOpt combined with FreeFEM is standing
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Figure 3.4: Error between different solutions for P2 discretization

out. We now force the solution to be under a given function as an additional constraint.
We consider the problem

min
D∈( (Ω)

� (D) such that D |mΩ = W, D 6 D" (3.7)

with

W(G, H) = cos(cG) cos(cH),

and

D" (G, H) = 3− (10((G−0.5)2 + (H−0.5)2))2.

Solving optimality conditions would require to add and manage a Lagrange multiplier
for the obstacle constraint. Besides, automatic differentiation proved to be a relevant
solution if we discretize with P1 elements, but it is still limited for other discretization
choices. Nevertheless, IpOpt combined with FreeFEM manages a large choice of
discretization spaces and enables to take into account additional constraint as inputs.
This is why this solution turns out to be an effective and interesting one. We plot in
Fig. 3.5 the solution of the Plateau problem with an obstacle constraint D" .

All numerical codes developed in this chapter are downloadable at FreeFEM’s
website.
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(a)

(b)

Figure 3.5: Solution of Plateau’s problem with P2 elements: (a) obstacle D" ; (b)
solution with obstacle
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Chapter 4

Shape optimization with
FreeFEM

In this chapter, we address a less classical problem that illustrates the user-friendly yet
effective framework provided by FreeFEM to solve a shape optimization problem with
mesh modifications combined with the powerful interior point method IpOpt. Based
on the mathematical framework introduced in Chap. 1 and following the numerical
tools illustrated in Chap. 2, we consider the optimal design problem of a microfluidic
swimmer’s membrane consisting of maximizing its velocity in a given direction. We
treat the membrane as a moving lower boundary of a domain where a Stokes fluid
evolves and we want to maximize the fluid velocity at the free surface, by imposing
constraints on the length and curvature of the boundary.

The examples presented in the previous sections were rather classical and aimed at
illustrating several numerical methods and providing some numerical templates.

In this section, our objective is to highlight other features of FreeFEM on a more
challenging example, namely, the problem of designing the best possible shape for
micro-swimmers in a fluid, in order to lead them in a given direction. At the interface
between fluid-structure interaction and control theory, this problem has been studied in
various forms in the literature (see [2, 10]). Here, as illustrated in Fig. 4.1, we assume
that the micro-swimmers have a membrane Γ that oscillates periodically at some fixed
frequency to generate fluid motion. To account for the periodicity of the membrane
motion, the fluid domain is assumed to be a flat torus obtained by bending the square
along the H direction so thatΣ2 merges withΣ4 (torus); the lower boundary Γ is assumed
to move at speed {� so that viscous forces in Γ imply fluid motion (see Fig. 4.1(b)). For
the ease of study, we assume that Γ is the graph of a �2 function (no overlap), moreover
satisfying some physical constraints on the second derivative.

In a more complicated model, overlap could be allowed by modifying the boundary
with two-dimensional deformation vector fields.

We perform our study in the reference frame of the moving boundary Γ (velocity
{�), which induces the vertical motion of the fluid observed in Fig. 4.3.

73
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O

Σ3

Σ4Σ2

Σ1 = Γ

G

H

(a)

Ω

Σ3

Σ1 = ΓΣ2 = Σ4

(b)

Figure 4.1: Fluid domain: (a) initial square; (b) torus after periodization.

4.1 Boundary and domain parametrization
Let Ω0 denote the initial torus. Given a function

5 : [0,1] → [0,1]

such that 5 (0) = 5 (1), we parametrize the bottom boundary as

Γ = {(G, 5 (G)) | G ∈ [0,1]},

so that Ω0 is modified to obtain the fluid domain Ω under the action of the vector field

\ (G, H) = (G, H + (1− H) 5 (G)).

As for the numerical approach, although the flow problem introduced below is
expressed on the modified cylinder Ω, we discretize the domain with a square mesh
such that periodicity will be ensured by considering periodic finite elements. We then
introduce a triangulation of Ω (see Fig. 4.2(b)) by modifying the previous square
mesh (see Fig. 4.2(a)) under the action of the vector field \ thanks to the command
movemesh. As the control 5 acts on the 1D boundary, we introduce a one-dimensional
mesh of the boundary which will be necessary for the computation of the gradient. Each
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(a) (b)

Figure 4.2: Fluid domain mesh: (a) initial; (b) modified for 5 (G) = 0.1sin(3cG).

iteration of the optimization process will involve a modification of both the square mesh
and the one-dimensional mesh along Γ. Numerically, in the Code 4.1, we introduce
several meshes in addition to the initial square mesh of Ω0 thanks to the command
extract:

int[int] ll=[1];
mesh Th0 = square(NX,NX*H,[x,y*H]); // initial square mesh
func fclab = (x>0.999)*2 + (x<0.001)*1; // Borders label
ThL = extract(Th0,refedge=ll);
ThL = change(ThL, flabel = fclab); // (0,1) straight mesh with

label 1, 2

mesh Th = Th0; // mesh to be modified at each function call to
get Ω

meshL ThC = ThL; // mesh to be modified at each function call
to get Γ

Code 4.1: 1D finite element space and movemesh command (see
shape_microswimmer.edp)

Fig. 4.2 shows the initial square mesh of Ω0 and its modification to obtain the mesh
of Ω for a particular function. The reference frame of the moving boundary follows
a rectilinear uniform motion with speed {� in the G-direction. Let D = (D1, D2) be the
velocity of the fluid and let ? be the pressure. We consider the Stokes flow equations
on the modified domain Ω:

−2`∇ · Y(D) +∇? = 0 in Ω (4.1)
div(D) = 0 in Ω (4.2)

f(D, ?) ®= = 0 on Σ3 (4.3)

D =

(
0
5 ′

)
on Γ (4.4)

https://freefem.org/Optim/
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Figure 4.3: Velocity D for 5 (G) = 0.1sin(3cG) and {� = −1

where ®= is the outer normal vector, ` is the kinematic viscosity,

Y(D) = 1
2

(
∇D +∇D)

)
is the symmetric gradient of D and

f(D, ?) = 2`Y(D) − ? Id

is the Cauchy stress tensor. Assuming that

5 ∈ �2 (0,1) ∩�1
0 (0,1),

Ω has at least a �1,1 boundary by Sobolev injections. Existence of solutions

(D, ?) ∈ �1 (Ω) × !2 (Ω)

of the Stokes system (4.1, 4.2, 4.3, 4.4) follows from [4, Theorem IV.5.2]. More details
on existence and regularity of solutions in less regular domains can be found in [3, 8].

Remark 11. The equation (4.1) stands for the balance law between viscous and pressure
forces, while (4.2) stands for the incompressibility of the fluid. We usually add an
integral constraint

∫
Ω
?(G) 3G = 0 on the pressure in order to guarantee the uniqueness

of the solution (D, ?), which is not needed here since the condition (4.3) yields the
pressure on Σ3. The equations (4.3) and (4.4) respectively imply that the fluid is free of
surface forces at the top boundary Σ3 and a no-slip boundary condition on Γ, namely,
the fluid and the solid have the same speed at the interface. For micro-swimmers,
inertia effects play no role and the motion is entirely determined by the friction forces
encompassed in (4.4) and therefore by the shape of Γ.

Given a boundary shape
5 (G) = 0.1sin(3cG)

moving to the right ({� = −1), we plot the corresponding velocity in Fig. 4.3. Near
the minimum of 5 , we observe that the slope of the Γ boundary generates a semblance
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of a vortex and a fluid velocity that increases with the variation of the slope. The
mixed boundary conditions (4.3) and (4.4) are treated in the variational formulation by
introducing the state finite element space

+ = {(D, ?) ∈ �1 (Ω)2× !2 (Ω) | D =
(

0
5 ′

)
on Γ},

so that (D, ?) ∈ + is a weak solution of the Stokes system if and only if∫
Ω

(2`Y(D) : Y({) − @ div(D) − ? div({)) 3G = 0 ∀({, @) ∈ +0 (4.5)

where
+0 = {({, @) ∈ �1 (Ω)2× !2 (Ω) | { = 0 on Γ}.

As in Sec. 1.2.2, the solution (D, ?) belongs to an affine space. The finite element
space is chosen such that the discretized linear system corresponding to (4.1, 4.2) is
invertible. For example, one can choose the Lagrangian elements P2 for the velocity D
and the Lagrangian elements P1 for the pressure ?, which are known to imply an LBB
condition (see [6, Chap. 2]) that guarantees this invertibility property. The variational
formulation (4.5), whose state and test functions are defined on the modified domainΩ,
is solved numerically in a finite element space with periodic boundary conditions via
the command

fespace Wh(Th,[P2,P2,P1],periodic=[[2,y],[4,y]]); //
[D1, D2, ?], Σ2 = Σ4.

Wh [u1,u2,p], [v1,v2,q];

with the following macros related to the variational formulations

macro SGrad(u,v) [[dx(u),0.5*(dx(v)+dy(u))],[0.5*(dx(v)+dy(u)),
dy(v)]]

// Y(D)
macro div(u1,u2) (dx(u1)+dy(u2)) // div(D)

to solve (4.1, 4.2, 4.3, 4.4) with the state equation macro stated in Code 4.2.

macro stokes() { // State equation’s macro (4.1, 4.2, 4.3, 4.4)
solve Stokes( [u1,u2,p], [v1,v2,q] ) =

int2d(Th)(2*mu*(SGrad(u1,u2):SGrad(v1,v2)) - div(u1,u2)*q
)

- int2d(Th)(div(v1,v2)*p)
+ on(1,u1=0,u2=vdent*gm)} //

Code 4.2: Stokes state equation

The 1D control 5 ∈ �2 (0,1) ∩�1 (0,1) is discretized with one-dimensional finite el-
ements P1 into fm. Therefore, its exact numerical derivative dx(fm) is discretized
with finite elements P0, i.e. it is piecewise constant. However, the boundary condition
on(1,u1=0,u2=vd*gm) of the Code 4.2 implies that u2which is continuous, must
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be equal to gm which must therefore be continuous. In an effort to minimize approxi-
mation errors, we approximate in the Code 4.3 the initial P0 discretization of 5 ′ using
the projection on !2 (0,1) with P1 finite elements.

func real[int] L2regul(real[int] &X)
{

WhL f,g,cdf;
f[] = X;
solve l2regul(cdf,g) = int1d(ThL)(cdf*g) // !2 (Ω) projection

of dx(f) (P0)
- int1d(ThL)(dx(f)*g); // with P1

elements
return cdf[];

}

Code 4.3: Regularization of 5 ′ with !2 projection with P1 finite elements

4.2 Shape optimization problem
In Sec. 4.1, the problem consists in maximizing the velocity of the fluid in the direction
®] =

( 1
0
)
with respect to the boundary Γ, by considering the cost functional

�̂ ( 5 ) = −
∫
Σ3

D · ®] 3B (4.6)

where the pair (D, ?) satisfies (4.1, 4.2, 4.3, 4.4). Some additional constraints on 5

are added to ensure both existence of optimal solutions and a better convergence of the
optimization algorithm. The setU03 entails physical constraints:

• The volume constraint ∫ 1

0
5 (G) 3G = 0

implies that the domain Ω keeps a constant volume in time. It is formulated
numerically by introducing the vector Cvol that represents the linear form

6 ↦→
∫ 1

0
6(G) 3G

in the P1 finite element basis:

varf varCvol(f,g) = int1d(ThL)(1*g); //
∫ 1
0 6(G) 3G

real[int] Cvol = varCvol(0,WhL);

Code 4.4: Volume constraint

• Bound constraints on the first derivative of 5

| 5 ′(G) | 6 "1 ∀G ∈ (0,1)
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ensure existence of optimal solutions. This constraint is numerically carried
out by using the interpolation matrix of the derivative operator from P1 finite
elements to P0 finite elements defined in Code 4.6.

• To ensure existence of a solution (D, ?) ∈ �1 (Ω) ∩ !2 (Ω) of the Stokes system,
we assume that 5 ∈ �2 (Ω) so that Ω has a �1,1 boundary and 5 ′ ∈ �1 (0,1), and
we assume in addition that there is a bound constraint on the second derivative
of 5 :

| 5 ′′(G) | 6 "2 ∀G ∈ (0,1).

This curvature constraint, which is physical, is important to ensurewell-posedness
and we observe that it induces a better convergence of the optimization algorithm.

The optimization problem (4.1, 4.2, 4.3, 4.4, 4.6) is formulated as

min
5 ∈U03

�̂ ( 5 )

whereU03 is the subset of* = �2 (0,1) defined by

U03 =
{
5 ∈ �2 (0,1) ∩�1

0 (0,1) |
∫ 1

0
5 (G) 3G = 0,

| 5 ′(G) | 6 "1, | 5 ′′(G) | 6 "2 for a.e. G ∈ (0,1)
}
.

4.3 Sensitivity analysis
The function 5 acts on both the shape of the Ω domain ( 5 ′ is involved in the boundary
condition (4.4)) and the solution (D, ?) of the Stokes system (4.1, 4.2, 4.3, 4.4). If the
domain Ω were fixed, we could compute the derivative of the reduced cost function
directly using the adjoint representation introduced in Sec. 1.2.2, but here the shape
deformations of Γ must also be taken into account. To this end, we come back to
the variational calculus approach and we write a sensitivity analysis to express the
derivative.

Let 5 ∈ U03 . Let us compute the shape derivative of the reduced cost function in
the direction 6 ∈* by taking C small enough so that 5 + C6 ∈ U03 . We define

ΩC = (id+ Cq) (Ω)

where

q(G, H) =
( 0

1−H
1− 5 (G) 6(G)

)
is the vector field deformingΩ toΩC with respect to the small perturbation 6. We define
the real-valued function

� : C ↦→ � (C) = �̂ ( 5 + C6)
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and we compute its Fréchet derivative � ′(0) which gives the reduced cost function
derivative

� ′(0) = 〈��̂ ( 5 ), 6〉* ′,* .
According to usual methods for the computation of derivatives of solution of a PDEwith
respect to the domain (see [1] and [7, Chap. 5]) we introduce the material derivative
(D̃, ?̃) solution of the linearized system

−2`∇ · Y(D̃) +∇ ?̃ = 0 in Ω (4.7)
div(D̃) = 0 in Ω (4.8)

f(D̃, ?̃) ®= = 0 on Σ3 (4.9)

D̃ = {�

(
0
6′

)
− m

m=

(
D− {�

(
0
5 ′

))
×q · ®= on Γ. (4.10)

The derivative of the reduced cost function �̂ is

〈��̂ ( 5 ), 6〉* ′,* =
∫
Σ3

D̃ · ®] 3B.

Two terms appear in (4.10), respectively coming from the boundary condition {�
(

0
5 ′

)
and from the domain variation vector field q in (4.10). The first term stands for the
variation of D with respect to the boundary condition (4.4), assumingΩ fixed, while the
second one stands for the mesh deformation variation. By (4.10), we thus get D̃ along
Γ, under the influence of both terms, while the knowledge of D̃ along Σ3 is required to
compute 〈��̂ ( 5 ), 6〉* ′,* . The adjoint vector ({, @) ∈ �1 (Ω)2× !2 (Ω) is defined as the
solution of

−2`∇ · Y({) +∇@ = 0 in Ω (4.11)
div({) = 0 in Ω (4.12)

f({, @) ®= = ®] on Σ3 (4.13)
{ = 0 on Γ. (4.14)

Remark 12. The adjoint system (4.11, 4.12, 4.13, 4.14) is similar to the one we would
get from the Stokes problem (4.1, 4.2, 4.3, 4.4) considered on a fixed domain Ω with a
Dirichlet boundary control.

Following the variational formulation (4.5) for the numerical solving of the state
equation, we solve in Code 4.5 the adjoint system (4.11, 4.12, 4.13, 4.14).

macro adjoint() {
solve StokesAdjoint( [v1,v2,q],[w1,w2,g] ) =

int2d(Th)( 2*mu*(SGrad(v1,v2):SGrad(w1,w2)) - div(w1,
w2)*q )

- int2d(Th)( div(v1,v2)*g )
- int1d(Th,3)(w1) // Neumann condition (4.13)
+ on(1,v1=0,v2=0); // Dirichlet condition (4.14).

} //

Code 4.5: Stokes adjoint system
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Using the boundary condition (4.13), we have

〈��̂ ( 5 ), 6〉* ′,* =
∫
Σ3

D̃ · ®] 3B =
∫
Σ3

f({, @) ®= · D̃ 3B.

The function D̃ is known along Γ thanks to (4.10), involving the effects of 5 on the
derivative. To express the derivative with respect to 5 , we use the adjoint system (4.11,
4.12, 4.13, 4.14), in relationship with the expression of f({, @) ®= · D̃ on Γ, and on Σ3 by
making an integration by parts:∫

Ω

(−2`∇ · Y(D) +∇?) ·|3G =
∫
Ω

(2`Y(D) : Y(|) − ?div(|)) 3G

−
∫
Γ∪Σ3

f(D, ?) ®= · { 3B.
(4.15)

Applying (4.15) to the solution (D, ?) of Stokes system, to the solution (D̃, ?̃) of the
linearized system and to the solution ({, @) of the adjoint system, we finally compute
the reduced cost function derivative as

〈��̂ ( 5 ), 6〉* ′,* =
∫
Γ

f({, @) ®= ·
(
{�

(
0
6′

)
− m

m=

(
D− {�

(
0
5 ′

))
q · ®=

)
3B (4.16)

where
®= = 1
(1+ 5 ′2) 1

2

(
5 ′

−1

)
.

We identify the linear form (4.16) with a gradient expressed in * = �2 (0,1) by find-
ing, for a �2 (0,1)-inner product to be defined in accordance with the duality pairing
〈·, ·〉* ′,* , the solution d ∈ �2 (0,1) of

(d,6)� 2 (0,1) =

∫
Γ

(q1 (G, H)6′(G) +q2 (G, H)6(G)) 3B ∀6 ∈ �2 (0,1), (4.17)

with
q1 = {�f({, @) ®= ·

(
0
1

)
,

q2 = f({, @) ®= ·
mD

m=
×q · ®=− {�f({, @) ®= ·

(
0
1

)
× 5 ′′®=1q · ®=,

where ®=1 is the G-axis component of ®=. The above quantities are stored numerically
in data types func The state (D, ?) and the adjoint ({, @) are discretized with finite
elements P2 ×P1 and the control 5 is discretized with 1D finite elements P1. Since
5 ∈ �2 (0,1), we do not consider here conformal transformations for * but rather
nonconformal transformations, in agreement with the general mathematical framework
given in the remark 7. Moreover, q1 and q2 are defined on the modified mesh in (4.17)
and their finite element approximation in theCode 4.7 is discontinuous since they involve
derivatives of 5 . Therefore, we introduce below several 1Dfinite element spaces defined
respectively on the square and modified meshes ThL and ThC to interpolate q1 and q2
with finite elements P1 on (0,1) (see Code 4.7).
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fespace WhL(ThL,P1); // F.E. functions on straight mesh: 5

fespace PhL(ThL,P0); // F.E. functions on straight mesh: 5 ′

fespace WhC(ThC,P1); // F.E. functions on curve mesh

Let us give some details: WhL is a finite element space used to discretize 5 and
to write the matrix of the scalar product on �2 (0,1) which is required for gradient
interpolation; PhL is a finite element space with which we compute the first and second
derivatives of 5 that appear in the constraints and are required to compute the resulting
matrix of the second-order terms involved in the �2 (0,1)-inner product. The matrix
corresponding to the first derivative operator is constructed using the operator dxwhich
thus allows to express the derivative of a finite element function P1 with finite elements
P0. For the second derivative, we construct by hand the matrix of jumps of the first
order derivatives of the finite element basis P1 WhL (see Code A.1 further).

matrix mDx = interpolate(PhL,WhL,t=0,op=1); // mG operator: P1
to P0

matrix mDxx;
MatJumpofDx(WhL,ThL,mDxx); // returns the jumps of mDx (see

Code A.1)

Code 4.6: Matrices of first and second derivatives of 5

Finally, WhC allows us to numerically compute the integral along the curve boundary
Γ involved in (4.17). In Code 4.7, we compute a regularization of q1 and q2 by
performing a projection onto !2 (Ω) with P1 finite elements on (0,1).
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func real[int] L2regulphi(int indexphi)
{

WhC vC,phiC;
WhL phiL;
func phi = (1.0-y)/(1.0-fm);
func nx = dx(fm)*(1.0+dx(fm)^2)^(-0.5);
func ny = -1.0*(1.0+dx(fm)^2)^(-0.5);
if (indexphi == 1){ // for q1 non continuous

func phi1 = vdent*sigman(v1,v2,q,nx,ny)'*[0.0,1.0];
solve l2regulphi(phiC,vC) = int1d(ThC)(phiC*vC) - int1d

(ThC)(phi1*vC);
}

if (indexphi == 2){ // for q2 non continuous
func phi2 = -1.0*phi*ny*sigman(v1,v2,q,nx,ny)'*[dx(u1)*

nx+dy(u1)*ny,dx(u2)*nx+dy(u2)*ny]
+vdent*c2gm*nx*phi*ny*sigman(v1,v2,q,nx,ny)

'*[0,1];
solve l2regulphi(phiC,vC) = int1d(ThC)(phiC*vC) - int1d

(ThC)(phi2*vC);
}

phiL = phiC;
return phiL[];

}

Code 4.7: !2 regularization for q1 and q2

The macro sigman(v1,v2,q,nx,ny) stands for the vector f({, @) ®=. This
interpolation is necessary because we cannot accurately interpolate the discontinuous
approximations of q1 and q2 defined on Γ (given by phi1 and phi2 in Code 4.7)
with continuous P1 finite elements on (0,1). Once this regularization is done, the
interpolation from Γ to (0,1) is straightforward in FreeFEM by typing phi1L =
phi1C. We next compute the gradient based on the �2 (0,1)-inner product chosen
with the macro in Code 4.8.

macro gradInterp(){
varf linearform(u,v) = int1d(ThL)(-dx(phi1L)*v + phi2L*v);

//
(4.16)

real bdJ = linearform(0,WhL);
real[int] dJ = MH2^-1*bdJ; // Gradient in �2 (0,1)

} //

Code 4.8: Stokes gradient’s interpolation

Remark 13. Numerically, we observe that the algorithm is converging in a much better
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way when we compute the gradient by interpolating the linear form (Code 4.8)

(d,6)� 2 (0,1) =

∫ 1

0
(−q′!1 (G) +q

!
2 (G))6(G) 3G ∀6 ∈ �2 (0,1),

versus (d,6)� 2 (0,1) =

∫ 1

0
(q!1 (G)6

′(G) +q!2 (G)6(G)) 3G ∀6 ∈ �2 (0,1),

where q!1 and q!2 are respectively the interpolations of q1 and q2 with P1 finite elements
on (0,1), computed in Code 4.7.

The matrix representing the inner product of �2 (0,1) is constructed below with the
matrix representing the inner product of �1 (0,1) and the one giving the jumps of the
first order derivatives of the finite element basis (see the Code 4.6).

// �2 (0,1)-inner product
varf scalarH1(u,v) = int1d(ThL)(u*v+dx(u)*dx(v));
matrix MH1 = scalarH1(WhL,WhL); // (d,6)� 1 (0,1)
matrix mDxxL = mDxx'*mDxx;
matrix MH2 = MH1 + mDxxL; // (d,6)� 2 (0,1)
set(MH2,solver=sparsolver);

Code 4.9: �2 (0,1)-inner product’s construction

Remark 14. As stated in [5, 9], we may consider a weighted version of the usual
�2 (0,1)-inner product

( 5 , 6)� 2 (0,1) =

∫ 1

0
(U2 5 ′′6′′+ 5 ′6′+ 5 6) 3G,

with U > 0 to be tuned depending on the mesh.

4.4 Codes and results

We finally write the complete algorithm with the several macros and functions defined
above and we first initialize the numerical framework based on Sec. 4.1 to solve (4.1,
4.2, 4.3, 4.4).
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load "msh3"
load "gsl"
load "ff-Ipopt"

bool hotrestart = 1;
verbosity=0;
real HUB = 10.0; // | 5 ′′(G) | 6 "2
real CUB = 0.5; // | 5 ′(G) | 6 "1
real XUB = 0.2;
real H = 1; //
int NX = 25; // boundary mesh size
real vdent = -1.0; // boundary’s speed

int[int] ll=[1];
mesh Th0 = square(NX,NX*H,[x,y*H]);
func fclab = (x>0.999)*2 + (x<0.001)*1; // Borders label
meshL ThL = extract(Th0,refedge=ll);
ThL = change(ThL, flabel = fclab); // (0,1) Straight Mesh with

label 1, 2

mesh Th = Th0;
meshL ThC = ThL; // Curve Mesh for Γ

fespace WhL(ThL,P1);
fespace PhL(ThL,P0);
fespace WhC(ThC,P1);
fespace Wh(Th,[P2,P2,P1],periodic=[[2,y],[4,y]]);

WhL fm,phi1L,phi2L,cgm,gm;
WhL c2gm;

With the macros and functions introduced in previous sections, the cost function is:

func real J(real[int] &X)
{

fm[] = X;
Th = movemesh(Th0,[x,fm+y*(H-fm)/H]);

cgm[] = L2regul(fm[]); // Code 4.3

stokes(); // Code 4.2
return = -int1d(Th,3)(u1);

}

The derivative of the reduced cost function involves both state and adjoint macros
defined in Codes 4.2 and 4.5. Before using the gradient interpolation macro written in
Code 4.8, we perform a regularization of the functions q1 and q2 (Code 4.7).
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func real[int] dJ(real[int] &X)
{

fm[] = X;

Th = movemesh(Th0,[x,fm+y*(H-fm)/H]); // Ω0 ↦→Ω

ThC = movemesh(ThL,[x,fm+y*(H-fm)/H]); // (0,1) ↦→ Γ

cgm[] = L2regul(fm[]); // Code 4.3

stokes(); // Code 4.2
adjoint(); // Code 4.5

phi1L[] = L2phiregul(1); // Code 4.7
phi2L[] = L2phiregul(2); // Code 4.7

gradInterp(); // Code 4.8
return dJ;

}

The constraint introduced in Sec. 4.2 and its Jacobian are computedwith thematrices
introduced in Code 4.6:

func real[int] C(real[int] &X)
{

real[int] cont(1+PhL.ndof+WhL.ndof);
cont[0] = Cvol'*X; //

∫ 1
0 5 (G) 3G = 0

cont(1:PhL.ndof) = mDx*X; // | 5 ′(G) | 6 "1
cont(PhL.ndof+1:PhL.ndof+WhL.ndof) = mDxx*X; // | 5 ′′(G) | 6 "2
return cont;

}

matrix dc;
func matrix jacC(real[int] &X)
{

real[int,int] dcc(1,WhL.ndof); dcc = 0.0;
dcc(0,:) = Cvol;
dc = dcc;
dc = [[dc],[mDx]];
dc = [[dc],[mDxx]]; // [volume, | 5 ′ | 6 "1, | 5 ′′ | 6 "2 ]
return dc;

}

In FreeFEM, the possibility use matrices and arrays instead of solving the varia-
tional formulation usually guarantees a more efficient algorithm in terms of execution
speed and required memory. We wrote most of macros and functions with the explicit
formulation for the sake of clarity, but the execution is quicker when dealing with
matrices. Finally, it remains to call the optimization routine IpOpt:
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real[int] start(WhL.ndof);
real[int] xub(WhL.ndof);
real[int] xlb(WhL.ndof);
real[int] cub(1+PhL.ndof+WhL.ndof);
real[int] clb(1+PhL.ndof+WhL.ndof);

// Variables bounds
xub= XUB;
xlb= -XUB;
cub(1:PhL.ndof)= CUB;
clb(1:PhL.ndof)= -CUB;
cub(PhL.ndof+1:PhL.ndof+WhL.ndof)= HUB;
clb(PhL.ndof+1:PhL.ndof+WhL.ndof)= -HUB;

xub[0] = 0.0; // 5 (0) = 0
xlb[0] = 0.0; // 5 (0) = 0
xub[WhL.ndof-1] = 0; // 5 (1) = 0
xlb[WhL.ndof-1] = 0; // 5 (1) = 0
clb[0] = 0.0; //

∫ 1
0 5 (G) 3G = 0

cub[0] = 0.0; //
∫ 1
0 5 (G) 3G = 0

clb[PhL.ndof+WhL.ndof] = -HUB/alpha;
cub[PhL.ndof+WhL.ndof] = HUB/alpha;
clb[PhL.ndof+1] = -HUB/alpha;
cub[PhL.ndof+1] = HUB/alpha;

// intialization
WhL X0=0.0125/2*sin(x*pi*2*2);
if (hotrestart){
start = HOTRESTART(hotrestart); }

IPOPT(J,dJ,C,jacC,start,lb=xlb,ub=xub,clb=clb,cub=cub,tol=1.e
-8);

Code 4.10: Calling IpOpt in the Stokes problem (see shape_microswimmer.edp)

The optimal solution returned by IpOpt is plotted in Fig. 4.4 for a rough and for a
fine mesh. As mentioned above, the constraints on the first and second derivatives of 5
have been introduced to guarantee well-posedness and a good numerical convergence of
the optimization process. As expected, the optimal solution saturates these constraints.

Since PDE optimization problems involve a large number of variables, iterations of
the algorithm require a larger computational time as the mesh is finer.

Having a good initial guess is also important. Hot-restart loops turn out to be
effective by providing a better initialization that we refine by first running the algorithm
on a rougher mesh and then on a finer one. An interpolation on the finer mesh of the
solution obtained on the rough mesh is taken as a new initialization, in order to make

https://freefem.org/Optim/
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(a) (b)

Figure 4.4: Optimal solution of (4.1, 4.2, 4.3, 4.4, 4.6) for "1 = 0.4 and "2 = 5.0 on:
(a) rough mesh; (b) fine mesh.

the algorithm converge in a better way on the fine mesh. The hot-restart procedure is
described in App. A.1. The whole code is available at FreeFEM’s website.

4.5 Further comments
We plot in Fig. 4.6 the optimal solutions for various values of "2. We observe that
the value of the cost functional at the optimal solution increases when "2 is taken
larger and that, as "2→ +∞, the sequence of optimal solutions seems to converge to
a triangular-shaped function, which may be the optimal solution of the problem when,
formally, "2 = +∞, i.e., 5 varies in �1 (0,1) instead of �2 (0,1) without any constraint
on 5 ′′. However, although this limit problem seems to be tractable from the numerical
point of view, treating it rigorously from the theoretical point of view is much more
difficult because existence of solutions of the Stokes problem (4.1, 4.2, 4.3, 4.4) is not
guaranteed in �1 (Ω) ∩ !2 (Ω): it is required to consider other functional spaces (see
[3, 8]) and the framework becomes much more complicated. We leave this issue as an
interesting open problem.

Numerically, we can proceed as follows. Ignoring the second derivatives of 5
involved in the constraint function C and in Codes 4.8 and 4.9, the control 5 now varies
in the subset of* = �1 (0,1)

U03 =
{
5 ∈ �1

0 (0,1),
∫ 1

0
5 (G) 3G = 0 and | 5 ′(G) | 6 "1, for a.e. G ∈ (0,1)

}
.

The optimal solution returned by IpOpt is plotted in Fig. 4.5.
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Appendix A

Supplements

A.1 Some FreeFEM functions

The macro to build the matrix of jumps of the derivatives of the finite element basis
functions is:

macro MatJumpofDx(Vh,Th,A)
{

if (A.n) A.clear;
matrix Adx(Vh.ndof,Th.nt);
fespace Ph(Th,P0);
matrix Dx = interpolate(Ph,Vh,op=1);
assert(Vh.ndofK==2);
int nt = Th.nt;
for(int k=0; k< nt;++k)
{
Adx(Vh(k,0),k)=+1;
Adx(Vh(k,1),k)=-1;

}
A = Adx*Dx;

} //

Code A.1: Matrix of derivative’s jumps (see shape_microswimmer.edp)

Hot-restart requires first to use the option warm_start_init_point yes in
the IpOpt option file "optfile.opt". It is assumed that the code has already been
run so that the files "Th0old.msh" and " fsol . txt " already exist. Then, it suffices to add
the following lines at end of the code:

91
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if (hotrestart == 0){
savemesh(Th0,"Th0old.msh");
{
ofstream file("fsol.txt");
file << X0[];
}

}

The interpolation of a solution or of an initialization function only requires to
provide a new mesh ThL and a finite element space WhL with the following routine:

func real[int] HOTRESTART(bool &hot)
{

if (hot){
WhL Xinit;
mesh Th00 = readmesh("Th0old.msh"); // Initial mesh
meshL ThL0 = extract(Th00,refedge=ll);
ThL0 = change(ThL0, flabel = fclab); // Straight Mesh

for hotrestart
fespace WhL0(ThL0,P1);
WhL0 X00;
{
ifstream file("fsol.txt");
file >> X00[];
}
Xinit = X00; // interpolation on the new mesh
return Xinit[];

}
}

Code A.2: Hot restart routine (see shape_microswimmer.edp)

Hot-restart is easy to implement in FreeFEM, thanks to the facility of interpolating
from one given mesh to another one by just typing ustart=uh1 with ustart and
uh1 respectively defined on the meshes Th2 and Th1.

The !2 (Ω) norm for functions defined on a finite element space +ℎ is coded as
follows:

https://freefem.org/Optim/
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func l2norm(real[int] &X)
{

// Th,Vh already constructed
Vh u,v;
varf varl2norm(u,v) = int2d(Th)(u*v);
matrix M = varl2norm(Vh,Vh); // better to be constructed

outside
real[int] uu = M*u[];
l2error = sqrt(X'*uu); // =

(∫
Ω
D(G)2 3G

) 1
2

return l2error;
}

A.2 Semi-automatic differentiation and adjoint method
In this section, we show that the adjoint code of the reduced cost functional of the
problem (1.32, 1.31) implicitly makes appear a discretization of the adjoint equation
obtained by applying the Pontryagin maximum principle (see [4, Chapter 7]):(

¤G
¤H

)
=

(
1 1
1 −1

)
+

(
D

{

) (
G(0)
H(0)

)
=

(
1
1

)
, (A.1)(

¤?
¤@

)
=

(
−1 −1
−1 1

)
+

(
G−1

0

) (
?())
@())

)
=

(
0
0

)
, (A.2)∫ )

0
(?(D−q) + @({−k)) 3C 6 0 ∀(q,k) ∈ U03 . (A.3)

The variational inequality (A.3) comes from the maximization condition of the Hamil-
tonian of the optimal control problem and makes appear the duality pairing as the
!2-inner product (

��̂ ( D{ ),
(
q
k

))
!2 (0,) )

= −
∫ )

0
(?q+ @k) 3C

involving the derivative of the reduced cost functional, which thus yields its gradient

∇�̂ ( D{ ) = −
(
?

@

)
.

The reduced cost functional �̂ obtained by solving (A.1) is computed thanks to an
implicit Euler discretization (with = time steps) with the matrices

� =

(
1− XC −XC
−XC XC +1

)
and

�−1 =
1

1−2XC2

(
XC +1 1

1 1− XC

)
= `

(
0 1
1 1

)
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with XC = 1
=−1 , so that (A.1) and (A.2) are respectively discretized according to implicit

and explicit schemes as

∀: ∈ {0...=−2},
(
G

H

) :+1
= �−1

(
G

H

) :
+ XC�−1

(
D

{

) :+1 (
G

H

)0
=

(
1
1

)
, (A.4)

∀: ∈ {0...=−2},
(
?

@

) :+1
= �

(
?

@

) :
+ XC

(
G: −1

0

) (
?

H

)=−1
=

(
0
0

)
. (A.5)

The cost (1.31) is then computed by discretization according to a rectangle rule:

1 def J(u,v):
2 x[0]=0,y[0]=0,cost=0 # initialization
3 a = 1+dt, b = 1-dt
4 mu = 1/(1-2*dt**2)
5
6 for k in range(1,n-1): # dynamic loop
7 x[k] = mu*(a*x[k-1]+y[k-1]) + dt*mu*(a*u[k]+v[k])
8 y[k] = mu*(x[k-1]+b*y[k-1]) + dt*mu*(u[k]+b*v[k])
9 cost+= 0.5*(x[k]-1)**2
10
11 return cost

Following the successive steps for adjoint code generation presented in Section 1.2.5,
we write the derivative of the previous function obtained by automatic differentiation
in reverse mode. To do so, some adjoint variables ;G , ;H , ;D , ;{ , ;2 are introduced, respec-
tively related to the variables G, H,D, {, 2>BC. The key is to range from the final step back
to the first steps and to derive the computation line with respect to the variable involved
and to finally update the corresponding adjoint variable. For example, the line 8

(y[n-k]=mu*(x[n-k-1]+b*y[n-k-1])+dt*mu*(u[n-k]+b*v
[n-k]))

will generate lines 23 to 26 for updating the variables

(lx[n-k-1],ly[n-k-1],lu[n-k-1],lv[n-k-1])
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1 def gradJ(u,v):
2 x[0]=0,y[0]=0,cost=0 # initialization
3 a = 1+dt, b = 1-dt
4 mu = 1/(1-2*dt**2)
5
6 for k in range(1,n-1): # dynamic loop
7 x[k] = mu*(a*x[k-1]+y[k-1]) + dt*mu*(a*u[k]+v[k])
8 y[k] = mu*(x[k-1]+b*y[k-1]) + dt*mu*(u[k]+b*v[k])
9 cost+= 0.5*(x[k]-1)**2
10
11 lx = 0, ly = 0, lc = 0 # arrays of size n
12 lc[n-1] = 1 # reverse mode initialization
13
14 for k in range(1,n-1):
15 lc[n-k-1] += lc[n-k] # line 9: cost[n-k]
16 lx[n-k] += lc[n-k]*(x[n-k] - 1)
17
18 lx[n-k-1] += mu*ly[n-k] # line 8: y[n-k]
19 ly[n-k-1] += b*mu*ly[n-k]
20 lu[n-k] += dt*mu*ly[n-k]
21 lv[n-k] += dt*b*mu*ly[n-k]
22
23 lx[n-k-1] += a*mu*lx[n-k] # line 7: x[n-k]
24 ly[n-k-1] += mu*lx[n-k]
25 lu[n-k] += dt*a*mu*lx[n-k]
26 lv[n-k] += dt*mu*lx[n-k]
27
28 return lu,lv # Gradient

Having updated the adjoint variables, we have, for every : ∈ {0..=−2},(
;G
;H

) :
= �−1

(
;G
;H

) :+1
+

(
G: −1

0

)
,

(
;D
;{

) :
= XC�−1

(
;G
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) :
which gives, considering the variables ;D , ;{ ,(
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0
0
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. (A.6)

Since
( ?
@

) :
= −

(
;D
;{

) :
, we recognize an implicit Euler time discretization of (A.2), like

for the state equation (A.1) in the backward direction which is to be compared with the
explicit discretization (A.5) in forward direction. The derivative of the reduced cost
function is therefore expressed as

−(?0, ..., ?=−1, @0, ..., @=−1)

according to the chosen discretization of the integral in (1.31, A.3).
A Crank-Nicolson scheme could have been chosen in (A.1). This would give a

matrix � such that �−1 = � and a Crank-Nicolson scheme for (A.2) too. We refer to
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[3] for a discussion on the relationship of automatic differentiation in reverse mode
with derivative computation using adjoint variables, and resulting appropriate choices
of discretization schemes.

A.3 PDE Optimization with Python or Matlab
Section 1.2.5 was devoted to automatic differentiationwithinAMPL for PDE constrained
problems. Possible alternatives are either towrite our own adjoint inC++ code by calling
routines like CppAD and Adept or to export the problem in Python or Matlab by
using the CasADi package. Loading data into Python is done by:

ndof = int(numpy.loadtxt('ndof.txt'))
iA, jA, AM = numpy.loadtxt('A.txt', unpack=1, skiprows=3);
iM, jM, MM = numpy.loadtxt('B.txt', unpack=1, skiprows=3);
ydArray = numpy.loadtxt('target.txt',unpack=1,skiprows=1);

Ac = scipy.sparse.coo_matrix((AM, (iA, jA)), shape=(ndof,ndof))
;

Mc = scipy.sparse.coo_matrix((MM, (iM, jM)), shape=(ndof,ndof))
;

Code A.3: Sparse matrices importation in Python

The three first lines stand for the characteristics of the matrices and are skipped by
using the option skiprows=3 in the numpy.loadtxt command. The optimization
package CasADi (see [2]) is then called and the problem is written as a nonlinear
programming problem via the toolbox

import casadi as ca
opti = ca.Opti()

Declaring the variables is done by using the MX symbolics (assuming that most
of operations between multiple sparse-matrix valued objects are allowed) whose de-
scription is available on the CasADi website https://web.casadi.org/docs/#the-mx-
symbolics.

A = ca.MX(Ac); # convert sparse matrices above in MX object
M = ca.MX(Mc);
yd = ca.MX(ydArray) # target H3 in (2.1)

y = opti.variable(ndof) #Variables declaration
u = opti.variable(ndof)

It remains to express the cost and constraint functions. Matrix multiplication �G is
done either by mtimes(A,x) or A @ x commands. Most of possible operations are
described in [1, Docs tab].

https://web.casadi.org/docs/#the-mx-symbolics
https://web.casadi.org/docs/#the-mx-symbolics
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opti.minimize( 0.5*(y.T-yd.T) @ M @ (y-yd) + 0.5*alpha*u.T @ M
@ u ) #
(2.1)

opti.subject_to( A @ y - M @ u == 0.0 ) # PDE constraint
function (2.7)

opti.subject_to( opti.bounded(0,Mu,1) ) # Bounds on control
0 6 D 6 1

opti.solver('ipopt',{'ipopt':{'max_iter':50, 'tol':1.e-11,
'Hessian_approximation':'limited-memory'}})

sol = opti.solve()

Code A.4: CasADi template for LQ PDE Optimization (see
lq_stationary_casadi.edp)

Computing the Hessian by automatic differentiation is in general too much memory
greedy and too long in the execution, and BFGS thus appears as an alternative by using
the IpOpt option
'Hessian_approximation':'limited-memory'

The previous code is written in the setting of Option 1. But Option 2 can also be
considered:

u = opti.variable(ndof) # only control as variable
us = M @ u
y = solve(A,us) # Solve state equation

cost = 0.5*(y.T-yd.T) @ M @ (y-yd) + 0.5*alpha*u.T @ M @ u
F = Function('F',[u],[cost]) # way to declare D ↦→ �̂ (D)

opti.minimize( F(u) )
opti.subject_to( opti.bounded(0,Mu,1) )
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Appendix B

Identification of parameters
with FreeFEM

So far we have proposed differentiable optimization strategies for PDE-constrained
optimization. For some reasons, we sometimes have to choose an alternative: the
involved functions may fail to be differentiable and in such a case we are not able to
write and use a gradient, or the cost function may also be non-convex with a large
number of local extrema. We therefore need a robust derivative-free method to skim
through both of these difficulties.

Derivative-free optimization is a domain that gathers many algorithms. Among the
best known, genetic algorithms are often used for shape optimization, bayesian methods
are sometimes preferred for image processing, and now we also have the growth of
machine learning algorithms with a large number of applications. All these methods
may be good candidates. In this appendix, we focus on the stochastic optimization
algorithm CMA-ES that is implemented in FreeFEM and we seek to identify the Lamé
parameters of a given beamwhose behavior is given by a large number of measurements
acquired through several experiments. We thus look for the parameters of the theoretical
model, which is subject to the resolution of an elasticity PDE, in order to characterize
the observed behavior.

B.1 The system of elasticity
We focus on a two-dimensional beam and we want to determine its Lamé parameters
thanks to several measurements of the boundary deformation. The uncertainties of the
measurements are such that we cannot rely on a single measurement of the deformed
beam. Therefore, we will consider many measurements of the deformed beam and we
try to determine the theoretical deformation of the beam, so that it is on average as close
as possible to the available measurements. The procedure is as follows: the left edge
of the beam is fixed at its end and bends downwards due to the gravity field. We then
collect a given number of measurements of the bent beam and we compare them to the
theoretical deformation of the beam by solving an elasticity PDE. Finally, we search for
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the best possible two parameters that minimize a sum of square functions standing for
the distance of the theoretical coordinates of the boundary to the data.

More generally, we are interested in solid objects deformed under the action of
certain applied forces. We model this phenomenon by an elasticity PDE. Indeed, a
point in the solid, initially at a certain position (G, H) will arrive at a new position (-,. )
after a given time (we consider the PDE to be stationary by assuming that the beam
has reached its equilibrium position). If we further assume that the displacements are
small and that the solid is elastic, the displacement vector D = (G−-, H−. ) satisfies the
following PDE, better known as Hooke’s law, which expresses a relation between the
stress tensor:

f8 9 (D) = _X8 9∇ ·D +2`n8 9 (D)

and the strain tensor

n8 9 (D) =
1
2

(
mD8

mG 9
+
mD 9

mG8

)
.

Here, _ and ` are the two Lamé’s coefficients that we are looking for. They both
describe the mechanical properties of the solid, and are more commonly related to the
more physical constants � , the Young’s modulus and a, the Poisson’s ratio

` =
�

2(1+ a) , _ =
�a

(1+ a) (1−2a) .

We thus look at beam, which is initially assimilated to a rectangular domain Ω with
boundary mΩ = ∪4

8=1Γ8 and which is subject to external forces 5 like the gravity field.
Its displacement D satisfies the PDE

−`ΔD− (`+_)∇(∇ ·D) = 5 .

Note that we do not use this equation because the associated variational form does not
give the right boundary condition, we simply use:

div(f(D)) = 5 ,

whose corresponding variational formulation reads∫
Ω

f(D) : n ({) −
∫
Ω

5 G 3G = 0,

or ∫
Ω

_∇D · ∇{+2`n (D) : n ({) −
∫
Ω

5 G 3G = 0. (B.1)

We then introduce a mesh (see Fig. B.1) of the rectangular beam that we will modify
through the vector displacement D obtained after having solved the previous variational
form (B.1).

The experiment that we consider to collect measurements is the following: the left
board Γ4 is fixed while the gravity fields acts on the elastic beam such that it goes
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down. Boundary conditions are such that the left boundary is fixed thanks to a Dirichlet
boundary condition

D = 0 on Γ4,

while the three other sides are free of constraints

f(D) · ®= = 0 on Γ8 , 8 ∈ {1,2,3}.

To numerically solve the elasticity PDE, we refer to [1]. We use P2 finite element. The
solving procedure is written in Code B.1.

fespace Vh(Th, P2);
Vh u, v;
Vh uu, vv;

// Macro
real sqrt2=sqrt(2.);
macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] //
// The sqrt2 is because we want: epsilon(u1,u2)’*

epsilon(v1,v2) = epsilon(u): epsilon(v)
macro div(u,v) ( dx(u)+dy(v) ) //

// Problem
real mu= E/(2*(1+nu));
real lambda = E*nu/((1+nu)*(1-2*nu));

macro pdelamemacro(){
solve lame([u, v], [uu, vv])

= int2d(Th)(
lambda * div(u, v) * div(uu, vv)

+ 2.*mu * ( epsilon(u,v)' * epsilon(uu,vv) )
)
- int2d(Th)(

f*vv
)
+ on(4, u=0, v=0)
;

} //

Code B.1: Elasticity solving with FEM (see beam_paramater_identification.edp)

CodeB.1 returns the displacement vector of the beam. Tofinally obtain the deformed
beam, we need to move the initial rectangular mesh thanks to the vector displacement
D. This step is performed by the command movemesh:

mesh Thm = movemesh(Th, [x+u, y+v]);

We then plot on Fig. B.1 the initial and the modified meshes. The modified beam
is moved with a multiplicative coefficient in the movemesh command in order to well

https://freefem.org/Optim/
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(a)

(b)

Figure B.1: Mesh of the beam: (a) initial mesh; (b) and modified one

observe the deformation. Once the beam has been moved, we collect the coordinates
of its boundary thanks to the following code:

int[int] ll = [1,2,3];
meshL Th1 = extract(Th,refedge=ll); // extract boundary
real[int] coord(2*ThL.nv); // coordinates of the boundary

for (int i=0;i<ThL.nv;i++)
{

coord[i] = ThL(i).x;
coord[ThL.nv+i] = ThL(i).y;

}

For the sake of simplicity, we focus here on a linear elasticity model. Nevertheless,
a nonlinear elasticity model, much more realistic, would be feasible at the cost of
additional iterations necessary to solve the resulting variational formulation by a fixed
point or Newton method as already described in Sec. 2.3.

B.2 Identification problem
We now denote by (-<4B)8∈{1..# } several measurements of the coordinates of the
deformed beam boundary. We look for the two corresponding Lamé parameters that
will give the closest - coordinates of the theoretical beam boundary, by minimizing
a sum of quadratic functions. For this purpose, we consider an objective function
that takes the Lamé parameters as unknowns, computes the coordinates of the beam
modified by the elasticity PDE and then compares these coordinates to the available
measurements. We thus consider the following cost function which computes the
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Lamé’s parameters unknowns: _, `

Solve PDE (B.3)

Coordinates - Measures -<4B

Cost function (B.2)

Call optimization solver CMA-ES (Code B.4)

Identified parameters _̄, ¯̀

Figure B.2: Recapitulative procedure of the identification problem

relative errors of the coordinates to the measurements

min
_,`

1
#

#∑
8=1

‖- (_, `) − - 8<4B ‖2

‖- 8<4B ‖2
(B.2)

such that - (_, `) includes the coordinates of the moved beam by the displacement
vector D solution of:


div(f(D)) = 5 ,
D = 0 on Γ4,

f(D) · ®= = 0 on Γ8 , 8 ∈ {1,2,3},
(B.3)

where 5 includes the gravity vector field. We sum up the procedure in Fig. B.2 This one
requires first to solve the elasticity PDE and then to move the mesh. This is summarized
in the following Code B.2:
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func real[int] beamcoord(real &lambda, real &mu)
{

pdelamemacro();

meshL ThL = movemesh(Th1,[x+eps*u,y+eps*v]); // move the
boundary with [u,v] displacement

real[int] coord(2*ThL.nv); // Coordinates of the boundary’s
vertices

for (int i=0;i<ThL.nv;i++)
{

coord[i] = ThL(i).x;
coord[ThL.nv+i] = ThL(i).y;

}

return coord;
}

Code B.2: Function returning the coordinates of the theoretical moved beam

We now implement a function that will measure, for given parameters _ and `,
the closeness of the theoretical beam boundary with the different measurements of the
deformed beam boundary that we have. To do so, we quantify it by a least squares
method, which is thus constrained by the resolution of the theoretical PDE (B.1). This
function is written in Code B.3.

func real leastsquaremeasure(real[int] &X)
{

real[int] coordX = beamcoord(X[0],X[1]);
real objective = 0.;
real objective0 = 0.;
for (int j=0;j<target.n;j++)
{

objective0 = 0.;
for (int i=0;i<n;i++)
{

objective0 += (noisytarget(j,i)-coordX[j])^2;
}
objective0 *= (1./(norm2(noisytarget(j,:))));
objective += objective0;

}
objective *= (1./n);
cout << "cout = " << objective << " || lambda = " << X[0]

<< "|| mu = " << X[1] << endl;
return objective ;

}

Code B.3: Least square objective’s function (see
beam_paramater_identification.edp)

The resulting objective function is a sum of square functions that has many local

https://freefem.org/Optim/
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minima. A gradient method or a differentiable method is not feasible because there
is a high probabily that the iterates will get trapped around a local minimum and will
not reach the global minimum. Hence, we are going to use a more robust algorithm
which has the advantage of searching for a solution in a wider spectrum at the cost
of a larger number of iterations and thus a slower convergence. We use the algorithm
CMA-ES, a stochastic algorithm that only requires the cost function (not its derivatives).
Its behavior and functioning are detailed in [3]. More information can also be found
on FreeFEM’s website https://freefem.org and the whole numerical code is available
at FreeFEM’s page.

real[int] Xinit = [50000,50000]; //initialization point
real[int] u0 = Xinit;
real[int] StDevs=[100000,100000]; //initial deviations
real min = cmaes(leastsquaremeasure,u0,stopTolFun=1e-5,

stopMaxIter=1000,initialStdDevs=StDevs,seed=random(),popsize
=25);

Code B.4: CMA-ES solver

Let us give some explanations on the options given by CMA-ES:

• seed: seed for random number generator.

• initialStdDevs: valuef for the standard deviations of the initial covariance
matrix. If the value is passed, the initial covariance matrix will be set to fId. The
expected initial distance between initial between unknowns and optimal solution
should be roughly initialStdDevs. Here, we have two unknowns, thus we
give a two dimensional array.

• popsize: integer value used to change the sample size. Increasing the popula-
tion size usually improves the global search capabilities at the cost of, at most, a
linear reduction of the convergence speed with respect to popsize.

B.3 Results
In our example, we are looking for the Lamé parameters of a beam whose Young’s
modulus and Poisson’s ratio are �0 = 2100000, a0 = 0.28. This gives _0 = 1044030,
`0 = 820312. We have at our disposal several measurements of the beam. We can well
imagine that pads have been placed on the boundaries (except the fixed boundary) of
the beam at rest (these sensors coincide with the vertices of the mesh) and we measure
their coordinates after deformation. This gives a number of data for which we then have
several measurements in order to have on average a good approximation. At the end,
the measurements are stored in a two dimensional array (here we have 62 measurements
corresponding to the coordinates with 100 samples of each). We then use the algorithm
described in Fig. B.2 several times (10 times) and we obtain on average the following
Lamé coefficients _̄ = 1020260, ¯̀ = 825761, with a mean relative error n_ = 2.3%,
n` = 0.7%.

https://freefem.org
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We thus almost find the initial Lamé’s parameters with a relatively good accuracy
considering the measurement uncertainties. CMA-ES seems to be a good alternative
for optimization problems with some difficulties such as the computation of derivatives
or a large number of local minima. We can also appreciate its ability to obtain a good
estimate of a solution in order to initialize a more accurate and faster optimization
method.

A good choice may be to perform the first iterations of the optimization with the
robust algorithmCMA-ES, before switching, for example, toIpOpt that is very efficient
to find local minima.

For readers wanting to go further, for instance Lamé’s parameters emulation with
artificial intelligence tools, we bring to the foreground the possibilities to make a link
with FreeFEM and Python in App. A.3. Other possibilities are being developed,
like the Python package “pyfreefem” [2]. Some tools of Deep Learning implemented
in Python (tensorflow and pytorch modules) are thus available. Let us mention [5],
where the authors use Deep Learning methods for parameter identification. For readers
who want to find further details on PDE-optimization under uncertainties, we advise
to skim through the book [4]. The authors propose a smooth transition from optimal
control of deterministic PDEs to optimal control of random PDEs. It covers uncertainty
modelling in control problems, variational formulation of random PDEs, existence
theory and numerical resolution methods.
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