N
N

N

HAL

open science

New negative definiteness conditions for quadratic
functions with illustration in LPV sampled-data control
Lucas A.L. Oliveira, Kevin Guelton, K.M. Motchon, Valter J.S. Leite

» To cite this version:

Lucas A.L. Oliveira, Kevin Guelton, K.M. Motchon, Valter J.S. Leite.
conditions for quadratic functions with illustration in LPV sampled-data control. Automatica, 2025,

173, pp.112077. 10.1016/j.automatica.2024.112077 . hal-04724713

HAL Id: hal-04724713
https://hal.science/hal-04724713v1
Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

New negative definiteness


https://hal.science/hal-04724713v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Automatica 173 (2025) 112077

Contents lists available at ScienceDirect
automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

New negative definiteness conditions for quadratic functions with
illustration in LPV sampled-data control™

Lucas A.L. Oliveira **, Kevin Guelton **, Koffi M.D. Motchon?, Valter ].S. Leite

@ Université de Reims Champagne-Ardenne, CReSTIC UR 3804, 51100 Reims, France
b CEFET-MG, Graduate Program on Mathematical and Computational Modeling (PPGMMC), Brazil
¢ CEFET-MG, Campus Divindpolis, Department of Mechatronics Engineering, Brazil

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 12 October 2023

Received in revised form 19 July 2024
Accepted 1 November 2024

Available online xxxx

This paper addresses negative definiteness conditions of quadratic functions, common in control
problems with time-varying delay systems. Existing geometric conditions, relaxed by partitioning tech-
niques, may lack monotonic convergence, making their optimality questionable. Alternative conditions
based on the generalized S-procedure are known to be necessary and sufficient when coefficients
are not dependent on uncertain parameters; otherwise, they are sufficient only. We propose new
approaches to mitigate these issues, unexplored in previous studies, demonstrated in stability analysis
of linear parameter varying sampled-data control systems. First, we rewrite quadratic polynomial
inequalities as homogeneous ones, deriving relaxed conditions using Young's inequality or Polya’s
theorem, offering recursive monotonic convergent relaxations. Then, based on Bézier curve equivalence
and the de Casteljau algorithm, we provide further relaxed recursive monotonic convergent conditions.
Two numerical examples illustrate the effectiveness and improvements over previous related studies.
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1. Introduction and problem statement

Consider quadratic polynomial inequalities given by:
Plr) =Py + 1P + P < 0, V1 € [1, 7], (1)

where @; € R™" (i =0, 1, 2) and t is a real bounded scalar quan-
tity. Such constraints play an important role in control theory,
especially for stability analysis of dynamic systems with time-
varying delays (see, e.g., Chen, Park, Xu, and Zhang (2022), Zhang,
Han, and Ge (2022)). However, since these matrix inequalities are
not convex in 7, ongoing research focuses on providing conditions
based on linear matrix inequality (LMI) to satisfy (1) with mini-
mal conservatism. Widely used approaches involve geometrical
considerations to establish sufficient conditions, summarized in
the following lemmas, which include the pioneer and most recent
related results from the literature; see, e.g., Chen, Park, and Xu
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(2019), Kim (2011, 2016), Liu, Liu, Li, and Sidorov (2023), Yang,
He, Kang, and Pan (2019), Yang and Zhang (2014), Zhang, Long,
He, Yao, Jiang, and Wu (2020) and the surveys in Chen, Park, Xu,
and Zhang (2022), He, Liang, Yang, and Wei (2023), Zhang et al.
(2022) for a complete overview.

Lemma 1. Let At =7 —1. The quadratic inequality (1) holds if one
of the following set of conditions (i.e., (i) (Kim, 2011; Yang & Zhang,
2014), (ii) (Kim, 2016; Yang et al., 2019), (iii) (Zhang et al., 2020)
or (iv) (Liu et al, 2023) is satisfied.

(i) P(r)<0, P(t)<0 and &, >0.
(ii) P(r) <0, P(T) <0 and P(t)— At?d; <0.
(iii) 3 €[0, 1] such that P(r) <0, P(T) <0, P(r)—pu’At’d, <0
and P(T)—(1—p )2 At2d, <0.
(iv) 3ue[0, 1] such that P(r) <0, P(T) <0, P(r +P(t+unAt)—
W2 AT @, <0 and P(T)+P(xr+uAt)—(1—p) Ar?d, <0.

In Lemma 1, conditions (i) require convexity (in t) of the
scalar polynomial &TP(r)s, VE € R"\ {0}, often overly con-
servative. Therefore, relaxed conditions (ii) were introduced to
accommodate convex or concave polynomials. To further relax
these, conditions (iii) and (iv) incorporate a parameter u that
must be tuned within [0, 1] or treated as a decision variable,
leading to bilinear matrix inequality (BMI) constraints, making
the application for computationally complex control problems
harder. It is important to note that these geometrical conditions

0005-1098/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).


https://doi.org/10.1016/j.automatica.2024.112077
https://www.elsevier.com/locate/automatica
https://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2024.112077&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lucas.oliveira@univ-reims.fr
mailto:kevin.guelton@univ-reims.fr
mailto:koffi.motchon@univ-reims.fr
mailto:valter@ieee.org
https://doi.org/10.1016/j.automatica.2024.112077
http://creativecommons.org/licenses/by-nc-nd/4.0/

LA.L Oliveira, K. Guelton, KM.D. Motchon et al.

are only sufficient. Hence, improvements have been recently pro-
posed considering partitioning approaches (Chen et al., 2019; He
et al, 2023; Liu et al., 2023), summarized in the following lemma,
which consists in splitting the interval of the definition of t into
N € N* equally spaced partitions, i.e., [_T,f]:UL[_r,-,f,-] with:

T=1, T=Tp=71+i5 and At=T—1 (2)

In the sequel, Iy denotes the set of positive integers from 0 to N
and I}, = Iy\{0}.

Lemma 2. For a given N € N*, the quadratic inequality (1) holds
if one of the following set of conditions (i.e., (i) (Chen et al.,, 2019),
(ii) (He et al., 2023) or (iii) (Liu et al, 2023)) is satisfied, Vi€Iy,.

(i) P(1)<0, P(%) <0, and P(Ti_1)— 25 @, <0,

(ii) P(1)<0, P(7)<0 and P (5~ 4%) — 4T @, <.

(iii) P(1) <0, P(2) <0, and P(Ti_1)+P(T)— 45 &, <0.

This partitioning approaches offer recursive relaxations and
might approximate necessary and sufficient conditions for large
N, when &g, @4, and &, are constant matrices. However, they
suffer from the following fact (illustrated by a numerical example
given in Section 4.1).

Fact 1. With the above considered partitioning approaches, there is
no guarantee that, if a solution exists for a given N, then there is a
solution for N+1.

Therefore, these partitioning-based conditions will be said to
be non-monotonic convergent (non-MC) as N expands, which
hinders the search for a large enough N to closely approximate
the optimal solution.

In addition to extensive research efforts to relax geometrical
conditions, recent studies established milestone results through
the application of the generalized S-procedure (Chen, Park, &
Xu, 2022; de Oliveira & Souza, 2020; Kim, 2021; Park & Park,
2020; Rouamel, Oliveira, Bourahala, Guelton, & Motchon, 2023),
summarized in the next lemma.

Lemma 3 (Kim, 2021; Park & Park, 2020; Rouamel et al., 2023). The
quadratic inequality (1) holds if there exists 0 <M+M T e R™" such
that:

P(r) 3P1+1P+ATM

[ " o -M-m7 |~

Lemma 3 has the advantage of being necessary and sufficient
when &y, @1, and &, are constant matrices, without the need
for partitioning approaches. However, it requires the introduction
of additional decision variables. As claimed by many authors of
recent studies (see, e.g. Chen and Li (2021), Chen, Park, Xu, and
Zhang (2022), He et al. (2023), Zeng, Lin, He, Teo, and Wang
(2020), Zhang et al. (2022)), this can be highly demanding and
impose significant computational burden, particularly for large
matrix-valued inequalities (1) with numerous decision variables,
as commonly involved in the time-delay systems framework (e.g,
when applying Jensen, Wirtinger or Bessel-Legendre inequali-
ties (Kim, 2021; Liu, Seuret, & Xia, 2017; Lopes, Guelton, Arcese,
& Leite, 2021; Rouamel et al., 2023; Seuret & Gouaisbaut, 2015)).

Fact 2. If (1) involves uncertain parameter-dependent matrices
@o(p), @1(p), and P,(p), where p € RP with bounded entries
pi € Lpi, pil, Vi € T, then the conditions in Lemmas 2 and 3 are
no longer necessary, but only sufficient.

Furthermore, to reduce the number of decision variables (i.e.,
to lower computational complexity) compared to Lemma 3 (Kim,
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2021; Park & Park, 2020; Rouamel et al., 2023), matrix injection
approaches were used in Xie, Chen, Jin, Zhang, and He (2023,
Lemma 4). Nonetheless, these conditions (not reproduced here for
space reasons) also suffer from Fact 2.

According to Facts 1 and 2, it appears that there is still room
for improvement. Therefore, the problem statement of this paper
can be summarized as follows.

Problem statement Provide relaxed negative definiteness condi-
tions for (1), which are (when possible) monotonic convergent (MC)
as N (or any other recursive parameter) expands to an optimal
solution (i.e., ensure that if a solution exists for N, then it also exists
for N+1).

MC conditions might help to closely approximate optimal
solutions when there is no significant improvement for a suffi-
ciently large N. This paper addresses this problem by introducing
two previously unexplored novel approaches. The first consid-
ers rewriting P(t) in (1) as a homogeneous polynomial matrix
inequality (see e.g., Oliveira and Peres (2005)), then applying
recursive relaxations from the application of Young's inequal-
ity or Polya’s Theorem (Hardy, Littlewood, & Pélya, 1952). The
second alternative consists in rewriting P(t) in (1) as a Bézier
curve (Farin, 2002), then applying recursive relaxations from the
application of de Casteljau’s algorithm (Farin, 2002). To the best
of the authors’ knowledge, investigating the negative definiteness
of quadratic functions (1) from homogeneous polynomials or
Bézier curve approaches has never been done in the literature.
Bézier curves, independently introduced by Paul de Casteljau and
Pierre Bézier, respectively, in 1959 and 1960, have numerous
applications in image synthesis and font rendering (Farin, 2002).
Except in a very recent work dealing with Takagi-Sugeno model-
based control (Bainier, Marx, & Ponsart, 2024), their use within
linear matrix inequality (LMI) relaxation has not been explored
so far.

The remainder of this paper is structured as follows. Section 2
presents the proposed relaxed non-MC and MC conditions for
quadratic polynomials (1), derived in homogeneous polynomials
or Bézier curve frameworks. Section 3 highlights the case where
(1) involves uncertain parameter-dependent matrices (see Fact 2),
by considering the stability analysis of closed-loop sampled-data
linear parameter-varying (LPV) systems, via a looped Lyapunov-
Krasovskii functional (LKF) inspired by Seuret (2012), which also
demonstrates the application of this proposal in time-varying de-
lay systems. Section 4 offers two numerical examples to illustrate
the efficacy of our proposal compared to previous prominent
conditions in the literature. The first example considers simple
scalar polynomials, while the second showcases the efficiency of
our proposal on an LPV sampled-data control benchmark. Finally,
the conclusion provides perspectives on this work.

2. New negative definiteness conditions
This section presents new non-MC and MC conditions for (1)
from the perspective of homogeneous polynomial and the Bézier

curve approaches and discusses their computational complexity
W.I.t. previous results.

2.1. Homogeneous polynomial approach

For any given N € N*, consider equally spaced partitions of

[z,7] defined in (2). Yt € [z.%], let oy = % ¢ [0,1] and
o= % €[0,1], where aqitagi=1. Hence, T = oy T+t and

(1) can be rewritten as:
(aiTi+a2iTi)* @2 +(1iTi+ o) @1+ Po <0, Viely. (3)
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By multiplying the second and the third terms in (3) respectively
by a1+ and (aq; +0;)?, it is equivalent to the second-order
homogeneous polynomial inequality:

o P(Ti) oo T (T, T)+a3P(xi) <0, Viely, (4)

with 7(zi, T;) =27iTi P2 +(zi+T;) @1 +2Po.
Considering the well-known Young’s inequality, the next the-
orem provides relaxed conditions for (4), and so (1).

Theorem 1. For a given N € N*, the quadratic inequality (1) holds
if P(7i) <0, Viely, 2P(%)+7T(zi, &) <0 and 2P(z;)+T(zi, T1) <0,
Viely.

Proof. When 7(z;,7;) < 0, the inequalities P(7;) < 0, Vi € Iy,
provide the negativeness of (4) (and so (1)). In the other case,
when 7(z;,7;) > 0, from the Young's inequality we have 0 <
o < (o +a2). Hence, (4) holds if o%(P(%)+ 17(z. %) +
a%i(P(_ri)—i- %T(_ri,f,-)) < 0, i.e., if the conditions in Theorem 1
hold. O

Theorem 1 also suffers from Fact 1 and thus provides non-MC
conditions for (1) as N expands (see the numerical example given
in Section 4.1). Furthermore, applying Young’s inequality makes
it only sufficient. The following Theorem provides an alternative
based on the application of Polya’s Theorem (Hardy et al., 1952).

Theorem 2. For a given N € N* and for a sufficiently large d €N, the
quadratic inequality (1) holds if, Vi € T}, the monomial coefficients

of
(al, (T)+ a2 T(Ti, fl)+a2, (Ti))(a1i+a2i)d (5)

are all strictly negative.

Proof. Straightforward by applying Polya’s Theorem (Hardy et al.,
1952, Theorem 56) on (4), since (oqi+03)¢=1, VdeN. O

An important milestone of Polya’s Theorem is, conversely,
if all the monomial coefficients of (5) are negative for a large
enough d, then it is necessary and sufficient to prove that (4)
is negative (Oliveira & Peres, 2005). Hence, the conditions in
Theorem 2 are MC and tend to an optimal solution (when it holds)
as d expands (with fixed N).

Remark 1. To implement the conditions of Theorem 2 into typical
convex optimization tools (e.g., YALMIP (Lofberg, 2004) in MAT-
LAB), one can expand (5) on the canonical basis of a homogeneous
polynomial of order d+2, like in Oliveira and Peres (2005). This
process is revisited for clarity in Appendix, where it is shown
that, if the inequalities (A.4), (A.5), and (A.6) hold, then (5) is
negative-definite (so (1) is verified).

2.2. Bézier curve approach

Let @ =" €[0, 1], inequality (1) can be rewritten as:
P(ar) = B3(a)P)+B3(a)PY +B3( )P <0, (6)

where B3(«) = o?, Bi(a) = 2a(1—«), and Bj(a) = (1—«)* are
second-order Bernstein polynomials in «, and PY = P(T), P? =
%T(_r, 7) and Pg = P(z) provide the control points of a quadratic
Bézier curve (see Farin (2002) for more details) by congruence
with any & e R™\ {0}.

Remark 2. The quadratic Bezier representation (6) of (1) is equiv-
alent to its homogeneous polynomial representation (4) with N=
1. The only difference remains on the weight of the monomials,
ie, Bf(a):Zcx(l—a) in (6) and a0, in (4). This slight difference
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provides an important feature for Bernstein polynomials, which
belong to the unitary simplex while the monomials of homoge-
neous polynomials (4) do not (i.e., Va1 € [0, 1] and o, = 1—ay,
a?+aj0p+a3 < 1 but not always equal to 1).

Bezier curves always remain within the convex hull formed by
their control points, leading to straightforward conditions for the
negative definiteness of (1) if all control points in (6) are negative
(e, PJ <0, PY < 0, and P) < 0), which are equivalent to the
conditions of Theorem 2 with N = 1 and d = 0. Furthermore,
a single Bezier curve can be split into two connected curves
at a common control point using de Casteljau’s algorithm and
recursively divided into 2%V curves, with tighter control points
approaching the original curve (Farin, 2002). Leveraging these
properties, the next theorem provides new relaxed conditions for

(1),

Theorem 3. For a given N € N*, the quadratic inequality (1) holds
if, Vke Lywv-1_q:

(eT®I)IP’{<V <0, Vqel (7)
where ® denotes the Kronecker product, P = (D ]_[ o Dx; ® Py,
where (kn, ...kj...ko) is the base-2 decomposmon of the integers

k (so we have k € ]11) eq (Vq € It) denotes the standard Euclidean
basis vectors of R5 Py =[Py’ POT PY"], and:

.
1 1 1 1 1

1.0 0 Py a3 d oo
|1 1 — 1 1| D= 1 1 1

Do=|1 1 o|.Di=l0 1 1|.D=lo 1 1 1 o
11 1 1 1

111 0 0 1 oo 1 11

Proof. Applying de Casteljau’s algorithm to the quadratic Bézier
representation (6), we can divide the Bézier segments into half
points without loss of generality for numerical convenience
(Farin, 2002). For the first iteration (M= 1), it yields the definition
of new control points P}, P! and P} for the subdivided Bézier
curve on the left, and P}, P} and P, for the right one, such
that [PJ7 P}T P}T] = ((Do®I)Po)" and [P}T PIT PiT] =
(D1 ® )P)", where Dy and D; are de Casteljau’s matrices for
quadratic Bézier curves (Farin, 2002). Since the subdivided left
and right Bézier representations share the same control point PJ,
they can be rearranged as P;" =[P)" P]T P}T PiT PJT]|=
(DRI)Py)".

Then, for the second iteration (M = 2), we apply the same
procedure on each previously obtained left and right subdivision
to get P2=(DDo®I)Py and P? =(DD; ®1)P,.

Again, for the third iteration (A =3), we obtain P2 =(DDoDo ®
1Py, P2 =(DDoD; ® I)Py, P3 :(f)DlDO ® Py and P2 =(DD;D; ®
NP,.

Finally, proceeding by recurrence to the A/-th iteration, we
get the control points stored element-wise in ]Pl,f(‘/ (for all k €
Iyw-1_1), which negativeness are guaranteed if the inequalities
in (7) are satisfied. O

Remark 3. In Theorem 3, A/ represents the number of iterations in
de Casteljau’s algorithm, resulting in 2V equally spaced partitions
of (6) across the parameter range « € [0, 1]. This contrasts
with the N partitioning approach over the parameter range t €
[z, 7] considered in Lemma 2 and Theorems 1, 2. Moreover,
since the obtained de Casteljau’s subdivisions are equivalent, all
together, to the original Bézier representation (6), the conditions
of Theorem 3 are MC as A expands.

Remark 4. Extensions of Theorems 2 and 3 to deal with higher-
order polynomial functions than (1) are straightforward by con-
sidering their higher-order homogeneous polynomial or Bézier
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Table 1

Number of matrix inequality rows, number of additional decision variables (ag,) and types of negative definiteness conditions in Lemmas 1-3 and Theorems 1-3.
Methods: Rows Agy Type
Lemma 1, (i) (Kim, 2011; Yang & Zhang, 2014), (ii) (Kim, 2016; Yang et al., 2019) 3n - S
Lemma 1, (iii) (Zhang et al., 2020), (iv) (Liu et al., 2023) 4n 1 S
Lemma 2, (i) (Chen et al., 2019) (2N + 1)n - non-MC
Lemma 2, (ii) (He et al., 2023), (iii) (Liu et al., 2023) (N +2)n - non-MC
Lemma 3 (Kim, 2021; Park & Park, 2020; Rouamel et al., 2023) 3n n? S
Theorem 1 BN+ 1)n - non-MC
Theorem 2 ((2+d)N+ 1)n - MC
Theorem 3 52N -1 - MC

curve equivalences. However, such extensions are left out of this
brief for space reasons.

2.3. Computational complexity

The number of rows of the resulting matrix inequalities rel-
ative to n, N, d, and N are listed in Table 1 for the conditions
outlined in Lemmas 1, 2, and 3, Theorems 1, 2, and 3. Lemma 1
presents simpler sufficient (S) conditions. In contrast, complexity
increases with other results, required for non-MC or MC condi-
tions. Lemma 3 conditions have a smaller number of rows than
non-MC or MC conditions but introduce n? additional decision
variables (ag,), which could increase the computational burden,
particularly for control problems with numerous decision vari-
ables. This computational complexity of Lemma 3 can be reduced
by considering the matrix injection approach as proposed in Xie
et al. (2023). In such a case, the reduced number of additional
variables will depend on the rank of ¢,. Also, due to Fact 2,
Lemma 3, as well as the conditions in Xie et al. (2023) can be more
conservative than non-MC or MC approaches for some control
problems, as illustrated in Section 4.2 with the stability analysis
of LPV sampled-data control systems. Theorems 2 and 3 may also
be seen as computationally extensive. However, drawing such
a conclusion would be a shortcut since we would also have to
consider the effective N, d, or A/ to reach an optimal solution with
the benefit of the MC characteristics, as demonstrated via numer-
ical examples in Section 4. Furthermore, the overall complexity
cannot be evaluated without considering the specificity of each
control problem treated with the help of negativeness conditions
for (1), as it also affects the total number of rows and decision
variables. In this context, the specific control problem considered
in the next section will show that Theorems 2 and 3 can provide
less conservative results at the price of increasing computational
complexity. Finally, note that the overall complexity factors can
also differ depending on the solver used to cope with the convex
optimization problems. For more information on this issue, the
reader can refer to the detailed discussion given in Lee and Joo
(2015, Remark 1), where it is highlighted that the choice of the
most convenient solver can be made according to the balance
between the number of decision variables and LMI rows.

3. Application to LPV sampled-data control

Consider the class of LPV systems given by:
X(t) = A(p(0)x(t) + B(p(t))u(t), (8)

where x(t) € R™ and u(t) € R™ are the state and control vectors,
A(p(£)= X1, p()Ai € R and B(p(t))=Y.1_, pi(t)B; € R¥>T
are polytopic matrices, parameterized by
p(t) = [oa(t) pu(t)] € RY, which belongs to the unitary
simplex (3__, pi(t)=1, pi(t) > 0).

We assume that the states are available at periodic sampling
instants ty, such that t € Ugen[ty, tee1) = [0, +00), with t 1 —
ty = n. Moreover, the control signal at t = ¢, is kept constant

by a zero-order holder until the next sample. We consider the
sampled-data state feedback control law (Fridman, 2010; Seuret,
2012):

u(t) = Kx(t,) = Kx(t — t(t)), 9)

where K € R™™ js a robust control gain matrix and, Vt €
[tk, ter1), T(t) = t — t € [0,7n) with 7(t) = 1. Yields the
closed-loop dynamics:

X(t) = A(p(t))x(t) 4 B(p())Kx(t — (1)) (10)

In this application, we assume that the robust control gain K is
known and A(p(t))+ B(p(t))K is Hurwitz stable (Seuret, 2012).
To provide the closed-loop stability conditions of the sampled
data system, summarized in the next theorem, we follow a path
similar to that of Seuret (2012), but with a slightly modified
looped LKF given by:

V(t) = Va(t) + Va(t) + Va(t) + Va(t) + Vs(t), (11)

with Vi(t) = xT(6)Px(t), Va(t) = (n — () AXT(1)SAX(t), Va(t) =
(77 - T(t))AX ( )Qx(t - T( )) Va(t) = (n — t()r(t) (OUL(1),
Vs(t f[ (X s)ds, where Ax(t)=x(t)—x(t—z(t)),

g(t )—C01{X(f) X(t— T( ))}

Theorem 4. Let us denote H(M)=M+M", for any square matrix
M. For given n > 0 and K € R™™, the closed-loop LPV sampled-
data system (10) is asymptotically stable, if there exist the matrices
0 <R=RT e R™™ 0 <P =Pl ¢ RN § =T g RN,
U = UT c RZnXXanY Q c Rnxxnx' L e ]R3nx><nx, and X c R3nx><nx
satisfying:

T2()®; + T(1)P1 + Po(p(t)) < 0, VT(t)€[0, 7] (12)

with @, = —H(E[UE;), &1 ="H((¢2—¢1)'Se3—e]Qer+nE[UE;)—
2E]UE1—eJRe3—LR7'LT, &g =H(e;(Pe1+nQe2)+(e1—&2)(Qer+
nSe3—L")) —(e1—&2)'S(e1—¢2)+n(EJUE1 +£4Re3)+H(XG(p(t))),
G(p()=[A(p(t)) B(p(t)K —I], er=[I 0 0] e;=[0 I 0]
e3=[0 0 I} El=[¢e] & |andE, =[e; O]

Since t(t)€[0, n), and if A(p(t))+B(p(t))K is Hurwitz stable, the
maximum allowed upper bound 7 can be obtained by linear search,
i.e., by increasing n— n until the quadratic inequality (12) remains
feasible.

Proof. Assume that P = PT > 0, then V(t) is continuous and
positive at every t; since Vi(ty) > 0 and Vi(ty) = Vi(tkr1) =
0, Vi € {2,3,4,5}. Therefore, the closed-loop system (10) is
asymptotically stable if, Vt € [ty, tyr1):

V(t) = Va(t) + Va(t) + Va(t) + Va(t) + Vs(t) < 0. (13)

Let &(t) = col{x(t), x(t — (t )) x(t)}. The derivatives of each Vi(t)
are given by Vi(t) = 2&7(t )8171’835( ), Va(t) = —£'(t)er —
£2)'S(e1 — £2)E(t) + 2(n — T(£)E (¢ )(81 - 82)T583$( t), Vs5(t) =
—2£ (t)(e1—£2) ' Qe2E () +2(n—T(0)E T(£)e4Qe2E (1), Va(t)= (n—
2t(t))5 (¢ )ETUElé(f)JrZ(n T(t)e()g(t )ETUEzE( t), and Vs(t)=
(1= 1(6))& T(£)eJRes&(0)— [, & (S)RX(S)ds.
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Assuming R = R"T > 0, we apply Jensen’s inequality (see
Theorem 4.1 in Briat (2011)), so that —ftit(t)kT(s)R)'((s)ds <
—2& T(t)L(e1—e2)E(t HT(t)E T(£)LR™ILTE(t). Then, by rewriting (10)
as G(p(t))&(t)=0, we apply Finsler's Lemma (Skelton, Iwasaki, &
Grigoriadis, 1998), leading to (12) with the introduction of the
slack decision matrix X e R>*". O

Remark 5. Condition (12) is a quadratic constraint (1) with
a time-varying parameter-dependent @y(p(t)). To address the
conditions outlined in Theorem 4, we can apply any condi-
tions of Lemmas 1, 2, Theorems 1, 2 or 3, for all vertices of
(A(p(t)), B(p(t))) € co{(Ai, B;)icn .} (with extra Schur complements
to handle the term LR™!LT). See also Remark 1 and Appendix for
more details on how to apply Theorem 2 to solve (12).

Remark 6. The looped-LKF (11) is standard, lacking additional
terms such as multiple integrals as often seen in previous studies
to reduce conservatism (e.g., Lee, Lee, Park, and Kwon (2018), Lee
and Park (2017)). The proof of Theorem 4 is also simple, employ-
ing Jensen’s inequality (see Theorem 4.1 in Briat (2011)), while
other studies typically use tighter bounding techniques such as
Wirtinger (Seuret & Gouaisbaut, 2013), Bessel-Legendre inequal-
ities (Gao, Liu, He, Wu, & Navaratne, 2020; Lee & Park, 2017), or
combinations, as relaxation techniques. In fact, in most previous
related studies that provide new negative definiteness conditions
for (1), comparisons are made with other studies employing
different relaxation techniques (see, e.g., Chen et al. (2019), Chen,
Park, Xu, and Zhang (2022), He et al. (2023), Kim (2011, 2016), Liu
et al. (2023), Yang et al. (2019), Yang and Zhang (2014), Zhang
et al. (2022, 2020)). Hence, in these previous studies, it is diffi-
cult to distinguish conservative improvements due only to the
proposed negative definiteness conditions for (1). In this paper,
with the same framework of the stability analysis of LPV sampled
data systems, our objective is to fairly compare the different
approaches presented above to address (1). The numerical results
will be presented in the next section.

4. Illustrative benchmark examples

In this section, the example of a quadratic scalar inequality
(1) is first considered, then another one dealing with the sta-
bility analysis of an LPV sampled-data control plant. MATLAB
is used for computation and LMI conditions are solved using
YALMIP (Lofberg, 2004) and MOSEK (Andersen & Andersen, 2000).
All numerical tests are performed on an MSI GS60 2PL laptop
equipped with a 2.5 GHz Intel Core i7-4710HQ processor and
12 GB of RAM, running Windows 10.

4.1. Numerical example of a scalar quadratic inequality

Let us consider the scalar quadratic inequality:
P(r)=1210a+ 110+ b—a <0, 1€[0,1], (14)

where a and b are real parameters used to evaluate and compare
the feasibility fields of the different negative definiteness condi-
tions. Because (14) is a scalar, we can assert that, for t € [0,1],
P(t) < 0if (a, b)e S, with S defined by:
P(0)=b—a<0,
S={(a, b)eR?| P(1)=9a+b+10<0, (15)
b—a—2 <0,if —5- € [0,1].

a

This characterization of the domain S where (14) holds is used
to compare the conservatism, in terms of feasibility fields, of
Lemmas 1-3 and Theorems 1-3.
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Table 2
Feasibility of the different negative definiteness conditions (w.r.t. N, d or N)
with (14), a = —0.66 and b = —4.46.

Methods/N (or N) : 1 2 3 4 5 6
Lemma 2, (i) (Chen et al, 2019) o o %] 2] 2] 2]
Lemma 2, (ii) (He et al.,, 2023) o o %} Feas o %}
Lemma 2, (iii) (Liu et al., 2023) g o %] Feas o %]
Theorem 1 @ Feas @ Feas o Feas
Theorem 2,d =0 g o %] Feas o %]
Theorem 2, d =1 g o o Feas o %}
Theorem 2, d =2 g o (%] Feas o 2]
Theorem 2,d =3 o o o] Feas Feas  Feas
Theorem 2, d =9 %] %] %] Feas Feas Feas
Theorem 2, d = 10 g o Feas Feas Feas Feas
Theorem 3 @ Feas Feas Feas Feas Feas

Theorem 2 (d =10, N = 1)

:
IS

Theorem 1 (N = 1)+

rys Theorem 2 (d = 0,

Theorem 3 (.
Lemma 1, iv) (
_g| |[Lemma 2, 4i) and #43) (

=z =
8»—‘

[

1

L

o=

Lemma 1, 22)
& Lemma 1, i43) (p=1) -
-10{-| Lemma 2, i) (N =1)

Lemma 1, )

Fig. 1. Comparison of the feasibility fields obtained from the different ap-
proaches with no partitions (N =1 or & = 0).

First, consider the special case where a=—0.66 and b= —4.46.
Table 2 shows feasible solutions for some N under partitioning
conditions in Lemma 2, Theorem 1, and Theorem 2 (with fixed
d), while N+ 1 does not yield solutions (). This highlights the
non-MC behavior of these conditions, and so confirms Fact 1. The
MC behaviors of Theorem 2 (w.r.t. d for fixed N) and Theorem 3
(w.r.t. V) will be demonstrated in the sequel.

Then, for a € [-16,1], b € [—16, —3], and without par-
tition (N = 1), a comparison of the feasibility fields obtained
from the different negative definiteness conditions is shown in
Fig. 2. Lemma 1 provides the most conservative results, while
Theorem 2 (with d = 0 and N = 1) matches Theorem 3 (with
N = 0) and the best geometric conditions in Lemmas 1 and 2.
Furthermore, Theorem 1 encompasses the latter results, while
Theorem 2 (with d =10 and N = 1) provides a wider feasibility
field. Hence, the present proposals consistently outperform or
equalize the results obtained from Lemmas 1 and 2. Note that
Lemma 3 allows recovery of S with this simple example. How-
ever, this may not always be true, due to Fact 2 (this will be
emphasized in Section 4.2).

The last test compares the feasibility fields of Theorems 1-3
(for various N, d, and N) with the most effective previous parti-
tioning approaches. The results are shown in Fig. 1. In Fig. 1(a),
as N increases, Lemma 2 (ii), iii), and Theorem 2 (with d = 0),
exhibit identical results. Notably, expanding N does not cover all
areas consistently, as N+1 misses certain solutions found at lower
N values, again confirming Fact 1. In Fig. 1(b), Theorem 1 also
demonstrates non-MC behavior, but the coverage area for a given
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(:%) Lemma 2, i), #ii) and Theorem 2 (d = 0) (b) Theorem 1

LS

[T T
oW

a

(c) Theorem 2 (N = 1)
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(d) Theorem 2 (N = 5) (€) Theorem 3

-8
3s5p - d=4
d=3
wb = d=2
&=t
- d=0

Zm=no

I I T
=0 e o

Z

Fig. 2. Comparison of the feasibility fields satisfying (14), obtained from Lemmas 2 and Theorems 1-3, for various N, d, or N.

N consistently exceeds that of Fig. 1(a), indicating a reduction in
conservatism. In contrast, Theorem 2 provides MC conditions by
increasing d, as shown in Figs. 1(c) and (d) for fixed N=1 and 5,
respectively, where the areas for d+1 always include those for d.
Then, Theorem 2 with N =5 and d = 4 closely approximates S.
Fig. 1(e) shows results from Theorem 3, increasing de Casteljau’s
iterations from A/ = 1 to 5 (with tighter approximations achieved
for large N), outperforming all the other tested results in terms of
coverage area. Furthermore, the inclusion of the results for N'+1
in A confirms the MC nature of Theorem 3.

This first example demonstrates the effectiveness and advan-
tages of the proposed conditions, highlighting Fact 1 alongside
Lemma 2, Theorem 1, and Theorem 2 (w.r.t. N for fixed d).
Additionally, it reveals the MC behavior of Theorem 2 (w.r.t. d
for fixed N) and Theorem 3, addressing the drawback of non-MC
conditions.

4.2. Benchmark of a sampled-data control system

In this example, we investigate the stability, for the largest
allowable sampling interval 7, of a Hurwitz stable LPV sampled-
data closed-loop dynamics (10) with the vertices:

v 0 e -1 0
ERI R

where y; = —1.8 fori € {1,5,2,6}, y; = —2.2 fori € {3,7, 4,
6 = —08 fori € {1,5,3,7}, 6, = —1fori € {2,6,4,
Ai=—08forie{1,2,3,4}and A; = —1.2 fori e {5,6,7, 8}.
According to Remark 5, the quadratic conditions of Theorem 4
are addressed using Lemmas 1-3, Xie et al. (2023, Lemma 4), and
Theorems 1-3. Table 3 shows the maximum allowable sampling
period 7 achieved with various values of N, d, or N. For each
method presented in Table 3, the maximum sampling period
was determined through a linear search on 7. The highest value
obtained is 7 =1.950. Among geometric conditions in Lemmas 1-
3, only those in Lemma 2, (ii) and (iii), reach this maximum
with N = 29 partitions (indicating conservatism in the other
conditions). Moreover, despite the fact that Lemma 3 is reputed
to be necessary and sufficient when @, @1, and &, are parameter
independent, it is only sufficient for the uncertain parameter-
dependent case studied in this example (as well as Xie et al.
(2023, Lemma 4)). This confirms Fact 2 since the achieved values
n = 1.926 with Lemma 3, and 7 = 1.872 with Xie et al. (2023,
Lemma 4), are less than the largest value 7 =1.950 obtained with
Lemma 2, (ii) or (iii) or Theorems 1-3. In particular, Theorems 1-
3 reach the largest value with fewer (or equal) partitions (or
de Casteljau’s iterations) than Lemma 2, (ii) and (iii). The last
column of Table 3 shows the average solver time, ty,;, which is the
time required to obtain a solution using the respective numerical
method. It is computed from 20 consecutive executions of the
method listed in the first column of Table 3, with the correspond-
ing 7. It is fair to say that the conditions in Theorems 1-3 are
more computationally demanding, as revealed by comparing the
solver time t,, required for each result that reaches the maximum

)

}
8},

n=1.950 (with minimal N, polynomial degree d, or de Casteljau
iterations A'). However, it is important to recall that the condi-
tions of Lemmas 1 and 2 are non-MC, so reaching the maximum
does not guarantee optimality. On the contrary, Theorems 2 and
3 being MC, ensure that 7=1.950 is the optimal solution for the
quadratic constraints in Theorem 4. Furthermore, Theorems 2 and
3 offer more flexibility in adjusting d, N, or \/, to balance conser-
vatism improvements and computational complexity. Hence, we
can claim that the increase in computational complexity is the
price to pay for relaxed MC conditions (unexplored in the pre-
vious literature) to provide guaranteed optimal solutions, which
is an important feature in various control problems involving
quadratic constraints.

5. Conclusion

This paper introduces new approaches to tackle the negative
definiteness of quadratic functions, crucial in stability analysis
and control design for time-varying delayed systems. These are
based on rewriting the quadratic functions in (1) as homogeneous
polynomials or Bézier curves. First, relaxed non-MC conditions
are suggested using Young'’s inequality, succeeded by MC condi-
tions via Polya’s relaxations or de Casteljau’s algorithm. Unlike
prior non-MC partitioning methods, the proposed relaxed MC
conditions, based on Polya’s Theorem or de Casteljau’s algorithm,
ensure optimal solutions for sufficiently large d (Polya’s degree)
or M (number of de Casteljau’s iterations). This important feature
for control problems is illustrated first through a scalar quadratic
function example and then applied to an LPV sampled-data con-
trol benchmark. Both examples demonstrate the advantages, de-
spite increased computational complexity, over the most effective
negative definiteness conditions from previous literature. Future
work aims to generalize these conditions for higher-order polyno-
mial constraints and to explore more complex control problems,
e.g., involving multiple polynomial-dependent parameters.

Appendix. Equivalent inequality conditions to the statement
of Theorem 2

Note that (ayi+a;)? =30, cka?*ak.. Hence, similarly to the
way borrow in Oliveira and Peres (2005), (5) can be rewritten as:

d
(0511 (Ti)+ oo T(Ti, Tl)+(¥21 fl chatljl ¢ )i
k=

) (A1)
= Ci (o Pasp () +ai o T(n, @)+ o P(n)
k=0
Let, forj e Z and lil <deN:
C’ = , ifj>0,
6y = d J' (A.2)

0, 0therw1se.
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Table 3

Automatica 173 (2025) 112077

Maximum allowable sampling period (77) and solver time (t;,;), obtained from Lemmas 2-3, Xie et al. (2023, Lemma 4), and Theorems 1-3 (with respect to d, N or

N).

Methods

7| N or V| ts(s)

Lemma 1, (ii) (Kim, 2016; Yang et al,, 2019)
Lemma 1, (iii) (Zhang et al,, 2020), © =0
Lemma 1, (iii) (Zhang et al., 2020), u =1
Lemma 1, (iii) (Zhang et al., 2020), u = .15
Lemma 1, (iv) (Liu et al.,, 2023), u =0
Lemma 1, (iv) (Liu et al., 2023), u =1
Lemma 1, (iv) (Liu et al., 2023), u = 0.2
Lemma 2, (i) (Chen et al., 2019)

Lemma 2, (ii) (He et al., 2023)

Lemma 2 (iii) (Liu et al., 2023)

Lemma 3 (Kim, 2021; Park & Park, 2020; Rouamel et al., 2023)
(Xie et al., 2023, Lemma 4)

Theorem 1

Theorem 2, d =0

Theorem 2, d =1

Theorem 2,d =5

Theorem 2, d = 10

Theorem 3

1.851 - | 0.061 -

1.865 | - | 0.079 -

1.851 | - | 0.048 -

1.881 - | 0.067 -

1.867 | - | 0.059 -

1.867 | - | 0.056 -

1.888 | - | 0.061 -

1.851 |1 0.043 1.9211910.385
1.867 | 1]0.045 1.950 | 29 | 0.595
1.867 | 1 0.047 1.950 | 29 | 0.646
1.926 | - | 0.038 -

1.872 | - | 0.024 -

1.885 | 1 0.057 1.950 | 15 | 1.281
1.867 | 1 0.042 1.950 | 29 | 1.756
1.870 | 1 0.061 1.950 | 18 | 1.534
1.906 | 1 0.145 1.950 | 11| 2.539
1.925 | 1]0.286 1.950 | 6 | 2.591
1.885 | 1 0.086 1.950 | 5 | 2.098

We have ¢} = 4¢7F,
rewritten as:

) = 1. Thus, by symmetry, (A.1) can be

Bd
> ol b (i) + 6 T B+ 6 R+
k=0

dly |e dal_ d d
e ERINE L e B L)
Bd
+ Z o (€T + 6 () + CRT)).
k=0

where 1y() is the indicator function of the subset N of R, i.e.
1y(Y) = 1if d is even or 0, and O otherwise. |y | and [y] are
the floor and ceiling of a real number y, respectively.

Finally, if all the monomial coefficients in (A.3) are negative,
then the inequality (1) holds, i.e,, if, V(i, k) eIy x Ig,:

& P(T)+C, T, T)+6; “P(zi) <0, (A4)
2 P(T)+ 6y T(w, 7)+ 44 P(m) <0, (A5)
and, if 1y(¢) = 1(d is even or 0):

T O | |
G P(@m)+ 6 T(n, w)+ 67 P(zi)<0 (A.6)

are satisfied with g4 = |%!| + 1. Therefore, (A.4), (A5) and
(A.6) provide equivalent inequality constraints to the statement
of Theorem 2 with the Polya’s expansion of P(t) given in (5).
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