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ABSTRACT Edge Computing provides an effective solution for relieving IoT devices from the burden of
handlingMachine Learning (ML) tasks. Further, given the limited storage capacity of these devices, they can
only accommodate a restricted amount of data for training, resulting in higher error rates for ML predictions.
To address this limitation, IoT devices can leverage Edge Computing and collaborate in the learning process
through a designated peer acting as an Edge device. However, the transmission of offloaded tasks over a
wireless access network poses challenges in terms of time and energy consumption. Consequently, although
collaborative learning can diminish the variance of the learned model, it introduces a communication cost,
dependent on the chosen Edge device. In light of these considerations, this paper introduces a coalition
formation game that proposes a distributed Federated Learning approach, where devices autonomously
and efficiently select the most suitable Edge device, aiming to minimize both their learning error and
communication cost.

INDEX TERMS Edge computing, game theory, federated learning, linear regression, IoT.

I. INTRODUCTION
As the Internet of Things (IoT) emerges, substantial data
is gathered by resource-constrained devices. However, such
massive data cannot feed efficiently ML models, locally
on the IoT devices because of their limited capabilities.
Consequently, these devices typically transmit the locally
collected data to central servers to efficiently train and
infer Machine Learning (ML) models. However, this process
imposes undesired costs in terms of computation, storage,
and communication on IoT devices, exacerbating the risk of
privacy breaches.

However, for FL to give satisfying accuracy, it is essential
to adhere to certain assumptions, with the two most crucial
ones being the following:
• The initial assumption asserts that the data samples
captured by various IoT devices represent independent
and identically distributed (i.i.d.) random variables.
However, in practice, since the local dataset of a single
IoT device may not be representative of the overall
population distribution. Hence, in this work, we relax
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this unrealistic assumption and take into account the
Mean Square Error of the ML prediction model, that no
longer amounts to zero.

• The second assumption stipulates that the local datasets
generated by federated learners are of approximately
equal size, ensuring balanced distributions. We maintain
this assumption, as dissimilarity in dataset sizes pre-
dominantly arise from the diverse types of application
scenarios. However, in the context of this study, we focus
on a scenario where IoT devices are employed for the
same application.

IoT devices collaborate by combining their learned param-
eters with a set of devices forming a learning cluster
to enhance their predictive learning capabilities. However,
while model aggregation through Federated Learning (FL)
diminishes error variance by tapping into a broader dataset,
it concurrently elevates error bias due to the diversity in the
considered data distributions. Hence, the efficacy of learning
is contingent on the number of IoT devices within the same
cluster. Furthermore, increasing the number of federated
learners poses an additional challenge by heightening the
communication cost among these learning devices.
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FIGURE 1. Federated learning game.

We build upon a prior work in [1] where IoT devices form
Federated Learning coalitions through cooperative game
theory, to strike a good compromise between communication
efficiency and learning accuracy. The Edge device is one of
the devices of the formed coalition, also denoted by coalition
leader. The latter is chosen dynamically to avoid the risk of
single-point-of-failure encountered with fixed Edge servers.
Clustering devices around the coalition leader/Edge device
is a coalition formation game [2] that we define and solve
by considering Nash stable coalitions that coincide with
optimal cluster formation. However, in our previous work,
IoT devices were considered to be identical with regard to
their computing power and ability to federate learning. In this
work, we tackle a realistic heterogeneous setting where IoT
devices are dissimilar which is particularly challenging as
we loose key properties in the portrayed game. In fact, the
communication cost in a coalition takes into account the
disparity in the computation capacity of devices, which in
turn impacts the selection of the coalition leader.

Fig. 2 gives the general framework of the paper. Initially,
we have a set of devices that need to learn some model
(subfig. (2a)). As they cannot send their dataset to a central
server nor train the learning model on their own, a shared
learning model is trained by each device and combined at
the central server. However, to reduce the signaling cost with
the central server, we propose to partition the devices into
coalitions (subfig. (2b)), choose an aggregating node in each
coalition and have each coalition train its learning model
through the selected aggregating node (subfig. (2c)).

FIGURE 2. General framework.

The rest of the paper is organized as follows. We provide
in section III the system model. In section IV, we portray the
Federated Learning game by devising astutely the coalition
cost function. In Section V, we identify the optimal coalition
configuration by devising astute dynamics. We conclude in
section VI.

II. RELATED WORK
Federated Learning is a privacy-preserving approach to
machine learning that can efficiently leverage edge comput-
ing to train the learning models of edge clients without the
need for hefty centralizing of data. This solution circumvents
the need for central servers, ensuring swift computation and
training of learning models.

Our work addresses the challenge of Federated Learning in
Edge Computing through the lens of game theory. Numerous
studies in the existing literature have explored FL within the
context of non-cooperative game theory. Nevertheless, the
majority of articles primarily serves the purpose ofmotivating
end-users to engage in the FL process. In works such as [3]
and [4], the framework of Stackelberg games is applied.
In this context, end devices act as sellers, determining the
pricing for joining a Federated Learning service platform,
which acts as the buyer, seeking prediction services. The
primary objective of these games is to enhance the accuracy
of the global model for the leader while generating revenue
for the followers. Another approach presented in the literature
is the utilization of a non-cooperative Bayesian game,
as proposed in [5]. This game aims to motivate participating
end-users to provide precise results for prediction services.
In the work detailed in [6], the aggregation process within
the FL system is also depicted as a non-cooperative game.
In the latter, both end-devices, capable of transmitting either
accurate or erroneous updates, and the Edge server, with
the ability to accept or disregard these updates, act as
players. When an end-device submits accurate updates that
are accepted by the Edge server, both parties experience an
increase in their respective payoffs. A recent work in [7]
propose a two-stage distributed collaborative architecture
that leverages Edge Computing and FL to allow multiple
Edge servers to collaboratively build an efficient learning
model. However, the non-cooperative game is related to
the provisioning of CPU resources and not the FL process.
Similarly to our work, the authors in [8] explore the relation
between the number of participating devices in FL and the
accuracy of the global learningmodel, stressing on the energy
consumption aspect. However, the study is done out of the
scope of game theory.

An important work that bridged Federated Learning and
cooperative game theory is the work in [9]. The authors
showed that, depending on the characteristics of the dataset,
devices should all participate in the same learning coalition
(where aggregation is made in the Cloud) or should apply
solely local learning (without having recourse to FL). How-
ever, considering only these two extreme cases is insufficient.
Another relevant work is found in [10] which addresses the
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intersection of edge computing and FL using Hedonic games.
Nonetheless, it focuses on finding Nash stable coalitions in
the presence of communication cost without characterizing
the utility function. In a prior work [1], we detailed the
cost function and proved that when communication cost
comes into play, devices often federate the learning in smaller
coalitions. This highlights the need for a more nuanced
understanding of Federated Learning scenarios.

The objective of our research is to address the challenges
of distributed Federated Learning in Edge computing through
game theory. In this context, constrained IoT devices must
autonomously and judiciously form resilient coalitions for
enhanced learning with energy efficient cost.

III. THE SYSTEM MODEL
We detail in this section the FL model which uses Linear
Regression amounting to a specific error prediction model.
Then, we give the communication model and the entailed
cost. Finally, we give the cost function that will be used by
the devised coalition formation game.

FIGURE 3. Notations.

A. DATASET MODEL AND ERROR PREDICTION
We consider a set N of n constrained IoT devices that
aim to perform learning through linear regression on a

limited dataset. Due to the small dataset size and the limited
storage capacity of such devices, the learning performed has
relatively high error. Thus, an IoT device can federate the
learning process with other devices to reduce collectively the
learning error.

The Federated Learning process typically unfolds through
the following sequential steps:

1) Initialization: An initial global model is established,
often derived from an existing model or provided by
the aggregating Edge device (the coalition leader).

2) Local Training: Each IoT device, denoted as i,
undergoes training using its local dataset. This dataset
consists of ri independent and identically distributed
(i.i.d.) samples for training, denoted by X ti for t =
1, . . . , ri, while the predicted variable is denoted by Y ti .
The relationship between Y ti and X

t
i is linear, given by

Y ti = θ ti · X
t
i + ηti , where θ ti denotes the slope of the

linear regression, and ηti represents the random bias of
the regression model with a mean of µe. Each device
i aims to estimate the mean θ̂i based on its dataset of
ri samples. The training typically involves an iterative
process, such as stochastic gradient descent, where the
model is updated in multiple iterations based on the
local data of each participating device.

3) Model Aggregation: Following local training, the
updated model θ̂i from any device i is transmitted
back to the coalition leader for aggregation. The latter
combines the models using weighted averaging to
create a new global model as follows:

θ̂Ek =
1∑|Ek |
j=1 rj

|Ek |∑
j=1

θ̂j · rj, (1)

where |Ek | ≤ n is the number of devices that are
federating the learning in the same coalition of device
i, denoted Ek .

4) Model Distribution: The updated global model is sent
back to the participating devices, and the process
iterates with new rounds of local training.

This iterative cycle of local training, model aggregation,
and model distribution continues until the total model
converges or goes below an acceptable level of error.

Following the model in [9], the Mean Square Error (MSE)
for linear regression learning by device i is given by what
follows:

MSEi =
µe

(
∑|Ei|

j=1 rj)
2

|Ei|∑
j=1

r2j
(rj − 2)

, (2)

We consider that devices have the same dataset size
denoted by r , accordingly the MSE simplifies to:

MSEi =
µe

(r − 2) · |Ei|
(3)

Note that the prediction error in (3) decreases as the learning
coalition size increases. Hence, devices are interested in
grouping altogether to federate the learning through a Cloud
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server. However, we will see that when communication cost
comes into play, devices will prefer to federate the learning in
smaller coalitions, through an astutely chosen Edge device.

B. COMMUNICATION MODEL
When the learning model is computed in a given coalition,
each device i joining the latter inflicts an additional
communication cost among devices in coalition Ei. We adopt
a Time Division Multiple Access type of channel access like
with NB-IoT (Narrow Band IoT) [11] or RedCap (Reduced
Capability) [12]. In such a setting, devices endure a delay
related to the coalition size as devices send in turn (in a given
time slot) their estimated parameters to the coalition leader
that will operate the aggregation according to (1), hence,
roughly after |Ei|− 1 time slots. Further, the coalition energy
consumption is also proportional to its size |Ei|.

Moreover, we consider that one packet is sufficient to
send the learned parameter and that it is sent in one time
slot. Further, we consider that orthogonal channels are re-
allocated among coalitions to cancel out interference. It is
reasonable to assume that a coalitionwill form among devices
close together geographically to reduce the communication
cost. However, not all aggregating nodes are equivalent and
can have different computation capacities, which constitutes
another limiting factor. Thus, the communication cost of
device i in coalition Ei is denoted by δi and given by:

δi = wEk · (|Ek | − 1) (4)

where the weight wEk characterizes the computation cost
of coalition Ek , which is dependent on the members of the
coalition.

The communication cost in a coalition takes into account
the disparity in the computation capacity and geographical
position of IoT devices which directly affects the selection
of the coalition leader. Hence, the weight wEk of a coalition
Ek is the weight of its leader, which is the device with
the fastest computational speed or best centrality (the
closest geographically from all devices in the coalition),
corresponding to the smallest weight:

wEk = min{wk , k ∈ Ej} (5)

C. COST FUNCTION
After defining the prediction error and communication cost,
we devise the cost of device i in coalition Ek as follows:

ci = MSEi + αδi (6)

where α is a normalizing factor.
We define the state E = {E1, · · · ,Em}, a partition of

devices into coalitions, specifically notingEk the k th coalition
and m the total number of coalitions.
The total cost that we seek to minimize is the sum of the

cost over all devices C(E) =
∑
i∈N

ci(E). We re-write the cost

function of device i in coalition Ek :

ci(E) =
β

|Ek |
+ wEk · (|Ek | − 1), (7)

where β =
(

µe
α(r−2)

)
. Note that when device i acts as a

singleton and learns on its own, the communication cost
vanishes.

The total cost becomes:

C(E) = β|E| +
∑
Ek∈E

wEk · |Ek |(|Ek | − 1) (8)

which is only dependent on the number, size and weight
of coalitions, thus necessitates minimal signaling among
players.

IV. FEDERATED LEARNING (GFL) GAME
We define the Federated Learning game as a game with IoT
devices as the players, whose possible strategies are: to join
another single device to form a new coalition, to join an
existing coalition or to separate back out from the current
coalition. We set the utility of a player as the marginal
cost, defined as the difference between the current total cost
(including the player) and the total cost without the said
player:

ui(E) := C(E)− C ({K \ {i},K ∈ E} \ {∅}) (9)

Accordingly,

ui(E) :=

{
Ej = {i} ⇒ ui(E) = β

Ej ̸= {i} ⇒ ui(E) = 2wEj (|Ej| − 1)
(10)

In the homogeneous case when wEk = 1,∀k , the game
is a potential game. However, in the heterogeneous case
addressed in the present work, the game is no longer a
potential game as the cost of a coalition after a device
defection can depend on factors not known by the device.
Therefore, in such a complex setting, we need to have
recourse to a practical way to compute optimal solutions,
which will be explained hereafter.

A. FORMULATED ABSTRACTION
We will introduce as an abstraction, denoted by H a set
of successive breakpoints in the effective cost of filling the
coalitions. This will allow us to express the structure and
cost of a solution in a parametric way using said equivalent
cost, which also facilitates comparing solutions among each
others. Then, we will devise a few algorithms using this
abstraction to build such solutions.

1) DEFINITION OF H
The validity and total cost of a solution only depend on the
identity of the leaders of coalitions and on the number of
devices joining each coalition. Thus, it is not affected by the
detail of which device joined which coalition.This remains
true when building a solution by having the devices join
gradually, only keeping the index of the joined coalition still
keeps enough information to characterize the solution.

We then associate to those indexes the number of devices
in the coalition (other than the leader) prior to their current
joining of the coalition. This removes the need to track the
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order of events, and instead treat the coalitions list as a set.
We also associate a second information to each element, the
marginal cost of joining that coalition at that size. Namely
the difference in the coalition cost incurred by the additional
device: a device joining coalition j which already contains k
non leaders devices will have a marginal cost of 2 · wj · k . (
writing wj = wEj for ease of reading). This second label does
not add any information but instead will serve as an order on
the elements of the set.

We obtain a finite set of triplets with enough information
to characterize the desired solution. Formally, we obtain what
follows:
Definition 1: The setHw and subsetHw(E):
For a given set or subset of weights w = w1 · · ·wm,

we consider:

• For each coalition j and positive integer k , the triplet of
the marginal cost of coalition j when going from size k
to k + 1, the coalition identity j and coalition size k are
given by: (2 · wj · k, j, k), also noted (2wj · k)kj .

• Hw: the set of all such possible triplets.
• For a given configuration E ,Hw(E) is the subset ofHw

verifying 0 ≤ k < |Ej|.
It is also a list of events consisting of devices joining
coalitions and allowing to build a solution equivalent to
the configuration E .

• When sortingHw bymarginal cost first then by coalition
index, we denote by Hw

i the first coordinate of the ith

element of the set Hw, corresponding to the marginal
cost,

• Likewise, for E a solution on n devices, Hw
i (E) is the

first coordinate of the ith element of the setH(E).
We can note that Hw is such that the number of elements

whose first coordinate is below a given value b can be
bounded by a finite number, specifically

∑
j≤|w|

b
wj
. This

means that the number of elements whose first coordinate is
lower or equal to the first coordinate of a specific element
is finite, and both the ith element of the set and its first
coordinateHw

i are well defined.
Remark 1: Remarks on the construction of the coalition

set
1) For a given finite subset H ⊂ Hw, there exists a

solution E such that H = Hw(E) if and only if H
verifies:

∀j, ∀0 ≤ ℓ ≤ k,
(
(2 · k · wj)kj ∈ H

)
⇒

(
(2 · ℓ · wj)ℓj ∈ H

)
(11)

2) For a given solution E , j is a leader in E if and only if
00j ∈ Hw(E), which corresponds to the addition of the
leader to its own coalition.
Proof: For the first remark, the first conditional

statement is easy: Hw(E) is of the form
⋃

j{(2wjk)
k
j , k <

|Ej|}, so if we take j, k and ℓ such that ℓ ≤ k , then (2wjk)kj ∈
Hw(E) means that k < |Ej|, thus ℓ ≤ k < |Ej| and in turn
(2wjℓ)ℓj ∈ Hw(E).

In the other direction, since H is finite, for any j, {k ∈
N, (2wj · k)kj ∈ H} = H ∪ {xkj , x ∈ R, k ∈ N} is finite
and its complementary to N, {k ∈ N, (2wj · k)kj /∈ H} is
non empty and admits a smallest element. Consider a solution
E using those values as the sizes of the coalitions: for any
device j, noting xj the smallest positive integer such that
(2wjxj)

xj
j , if xj ̸= 0 then E admits a coalition whose leader

is j, of size xj; else, j is not a leader in E . Then, computing the
set associated with this solution E gives us exactly H , from
which we started, proving the first assertion of the remark
that any H verifying property (11) is associated with a valid
solution.

The second remark states what follows: in a solution,
the leaders become the coalition indexes such that Hw(E)
restricted to those values of indexes is nonempty, with at
least one element. In turn, this subset contains the elements
corresponding to all integers lower than the one of that first
element, including 0, whose corresponding element is (2 ·wj ·
0)0j = 00j . Conversely, if the device is not a leader, then the
subset is empty andHw(E) does not contain that element.
Lemma 1: Properties of the defined order
1) The set Hw is increasing in w, using the inclusion as

the order on both sides.
2) For any potential leader j ∈ N, and size k ∈ N , for any

vector of weights w, there is a unique corresponding
element t, j, k inHw. Furthermore, the first coordinate,
which is the marginal cost t, is increasing in the values
of the coordinates of w.

3) The value of Hw
i for any given index i is increasing

in the values wi of the weights, using the order on the
reals.

4) The values of Hw
i for any given i is decreasing in w

using the inclusion.
5) Hw(E) verifies a form of convexity: ∀j, k ∈ N,((

(2wj · k)kj ∈ Hw(E)
)
⇒

(
∀ℓ ≤ k, (2wj · ℓ)ℓj ∈ Hw

(E)))
Proof: For the first property, we can separate Hw by

coalitions, and rewrite it as the disjoint union Hw
=
⋃
j
{(2 ·

wj · k), k ∈ N} =
⋃
j
H{wj} making the assertion obvious.

For property 2, The first coordinate of any triplet is a
function of the two other coordinates and w, and Hw is the
set of all possible such triplets, so for any pair of indexes
j ∈ [1 · · ·m], k ∈ N, there is exactly one triplet inHw whose
second and third coordinates are j and k . This expression
is 2wjk , with 2 and k both positive integers, so the first
coordinate of this triplet is increasing in one of the coordinate
of w and untouched by the others.

For property 3, we also need to show that this property is
also true when identifying the elements by the order of the
first coordinate, we can consider a first weight vectorw(1) and
take note of the i smallest elements and values, by definition
all lower or equal to Hw(1)

i . We then choose w(2)
≤ w(1) (i.e.

∀j,w(2)
j ≤ w(1)

j ) and apply the previous observation that the
triplets identified by their second and third coordinates are
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increasing in w to see that the triplet we are considering have
decreased or preserved their values, so remained lower or
equal toHw(1)

i . Since we can show i elements ofHw(2)
whose

values are each lower thanHw(1)

i , thenHw(2)

i ≤ Hw(1)

i . This is
true for all w(1) and all w(2)

≤ w(1), soHw
i is increasing in w.

For property 4, we can see the assertion as a consequence
of property 1: increasing w for the inclusion means inserting
new elements into Hw. Either none of the coordinates of
those new elements is lower than Hw

i , in which case, the
identity and first coordinate of the ith element is unchanged,
or some of the new elements are lower than Hw

i , meaning
the ith element of H is replaced either by one of those new
elements, or by an element of H that had a lower ranking,
in both cases reducing or preserving the first coordinate.

Finally, property 5 is a direct result of the definition of
Hw(E).

Without loss of generality, we can consider that the list of
weights is sorted in increasing order.

An instance of GFL on n devices of weights w translates
into choosing a finite subset H (E) of Hw of size n verifying
Remark 1. We can separate it into choosing a set of leaders
{j1, ·jm} ⊂ {1 · · · n} and choosing {00j1 , 0

0
j2
· · · 00jm} ⊂ H (E) ⊂

H{wj1 ,·wjm } ⊂ Hw as attributing the devices to coalitions
headed by those leaders.

We give the following examples for clarity:
With three devices of weights 2, 3 and 5, the set is:

H(2,3,5)
=

{
001, 0

0
2, 0

0
3, 4

1
1, 6

1
2, 8

2
1, 10

1
3, 12

3
1, 12

2
2, 16

4
1, · · ·

}
A solution E on this set with two coalitions, one coalition
with leader indexed by 1 of size 2 and the other with leader
indexed by 2 of size 1, which translates into:

H(2,3,5)(E) =
{
001, 0

0
2, 4

0
1

}
As another example, we consider two devices with weight
1 and

√
2 which gives:

H1,
√
2

=

{
001, 0

0
2, 2

1
1, (2
√
2)12, 4

2
1, (4
√
2)22, 6

3
1, 8

4
1, (6
√
2)32 · · ·

}
with no other equality of the first coordinate other than in 0.

2) COST FUNCTION OF THE GFL GAME
Recall that according to (5), the cost of a device in this game,
with the assumption that the leader is indeed the least costly,
is as follows:

ci(E) =
β

|Ej|
+ wj

(
|Ej| − 1

)
(12)

and the total cost is:

C(E) = β|E| +
∑
j

wj|Ej|
(
|Ej| − 1

)
(13)

Theorem 1: Total cost of Hw(E): The cost of any solution
E can be expressed as

∑
i≤|Hw1···wm (E)|H

w1···wm
i (E)+ β|E|.

Proof: Intuitively, we defined the first coordinate of
each triplet as the marginal cost of adding the device to that
coalition on a solution which already had the coalitions and
leaders fixed, with the empty solution having only the cost
β · |E|.

We can use the identity wj|Ej|
(
|Ej| − 1

)
=
∑

k≤|Ej| 2 wj ·
k on every coalition in the formula from (13), and obtain
C(E) − β|E| =

∑
j

∑
k≤|Ej|

2 wj · k =
∑

xkj ∈H(E) x =∑
i≤nHi(E).
Corollary 1: Optimal cost from Hw: The total cost

of an optimal solution of GFL(w1 · · ·wm) is equal to∑
i≤nH

w1···wm
i + βm, where m = |E|.

Proof: This is a corollary of Theorem 1: the cost of any
solution is the sum of the n first coordinates of the elements
ofHw, so the smallest such sum is a natural lower bound for
it. Since choosing the smallest elements verifies the pseudo
convexity property from Lemma 1 item 1, it corresponds to a
feasible solution and thus the actual optimal.

B. OPTIMAL NUMBER OF COALITIONS
Themain advantages of the result fromCorollary 1 are to give
a way to obtain the optimal cost for a specific set of coalition
leaders without needing to build the solution explicitly, and
to express the effect of altering w on the cost. In particular,
it can be used to show the following result:
Theorem 2: Convexity in the number of coalitions m: The

function associating m to the cost of the best solution of GFL
game on exactly m coalitions is convex.

Proof: We use the expression from equation (1).
In order to express the effect of varying the number
of coalitions, we consider the best solution using m +
1 coalitions and remove the one whose leader has of
largest weight wm+1 from the game to start building the
best solution for m coalitions. The new set of triplet is a
subset of the previous one: Hw1···wm ⊂ Hw1···wm+1 and
by construction, the optimal solution for m + 1 coali-
tion takes the smallest elements of this set: !∃(t, u) ∈
Hw1···wm+1 \Hw1···wm+1 (Eopt(m))×Hw1···wm+1 (Eopt(m)), t <

u, thus the restriction of the solution to the reduced set
also consist in the smallest elements of the new set:
!∃(t, u) ∈ Hw1···wm \ (Hw1···wm+1 (Eopt(m)) ∩Hw1···wm) ×

Hw1···wm (Eopt(m)), t < u. With the rest of the elements of the
new best solution being the elements of Hw1···wm of indexes
n −

∣∣(x)km+1 ∈ Hw1···wm+1
(
Eopt (m+ 1)

)∣∣ + 1 to n. We write
d(m+ 1) the number of those removed elements.

We can write the difference in cost when going from m +
1 to m as the sum over all moved devices of the difference in
cost between the two positions:

C(m)− C(m+ 1)

=

d(m+1)∑
i=1

(
Hn−d(m+1)+i(m)− i · wm+1

)
− β
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=

d(m+1)−1∑
i=0

Hn−i(m)−
d(m+1)∑
i=1

i · wm+1

− β

=

d(m+1)∑
i=1

(Hn−i+1(m)− i · wm+1)− β. (14)

In this expression, we can see that:
• By nature of d(m),

i · wm+1 ≤ d(m+ 1)wm+1 ≤ H
w1···wm+1
n = Hw1···wm

n−d(m+1).

As Hw1···wm
n−d(m+1) ≤ H

w1···wm
n−d(m+1)+i, all terms of the sum are

positive.
• Using Lemma 1 item 1, Hw1···wm

n is decreasing in the set
w1 · · ·wm for the inclusion which itself is increasing in
m, while the value wm is increasing in m. Thus d(m) is
decreasing in m.

• Also using Lemma 1 item 4, for a fixed i, Hn−i+1(m) is
decreasing in m.

• Since wm is increasing in m, for a fixed i, i · wm+1 is
increasing in m.

• β is constant.
Thus, the difference between the optimal total cost for m
minus the one for m + 1 is decreasing in m and in turn the
optimal cost on m coalitions, for which this difference is the
opposite of the discrete derivative, is convex in m.

This gives a way to check whether a candidate value of m
is above or below the optimal, and find the said optimal either
by testing values successively or by dichotomy.

V. COALITION FORMATION ALGORITHM
The formulated abstraction devised in the previous section
gives us a first method to obtain the best solution for a specific
number of coalitions (m is fixed) by building the first n
elements of the set H(m) and by using the number of each
class of elements as the size of the corresponding coalition.

We can then obtain the optimal solution by iterating on
m. Being a small optimization problem, we use the fact that
it is easier to compute Hw1···wm+1 from Hw1···wm and wm+1
than to rebuild the set fully, and simply keep and update
the number of elements of the different coalitions instead
of having to recount them.This gives us Algorithm 1, which
builds and updatesH(i) andmakes use of them to compute the
successive costs, until the corresponding total cost increases
again, at which point the next to last value is the optimal
number of coalitions, and the associated set gives the globally
optimal solution.

A. COMPLEXITY OF THE ALGORITHM
Sortingw (line 1) takes a timeO(nlogn) if the list is unsorted.
Initializing the loop with the solution for m = 1 i(n lines

2 to 7) takes n insertions at the end of the set and is in O(n).
Line 8 to 30 is the main loop, repeated until the cost

increases again, meaning from m = 2 to m = mopt + 1.
• In the loop, the first step (lines 9 to 13) is to update H
by the addition of a new coalition. This means inserting

Algorithm 1 Finding Eopt Through H

Variables : Ordered triplet set H ; real C and Ct;
arrays of integers X and Y

sort w
/* initialization, H := H{w1} */
H ← ∅
for 0 ≤ k < n do

H .insert( (2k · w1, 1, k),end)
end

X ← [n] // temporary list of sizes
C ← w1 · n · (n− 1)+ β // temporary total

cost
/* loop */
while 1 ≤ m ≤ n and flag do

/* update H */
for 0 ≤ 2 · k · wm < (H .last).first

// ((H.last).first is Hw1···wm
n )

do
H .insert( (2k · wm,m, k))
H .delete(last) // preserves size= n

end
/* list of sizes, to avoid going

through H fully */
Y ← empty array of size m
for 1 ≤ j ≤ m do

Y [j]←
⌊
(H .last).first

2·wj

⌋
+ 1 // the +1 is

the leader

if (H .last).first
2·wj

integer and (H .last).second > j
then Y [j]← Y [j]+ 1
// second term of the

lexicographical order value
then coalition

end
/* total cost */
Ct ← m · β
for 1 ≤ j ≤ m do

Ct ← Ct + wj · Y [j] · Y [j− 1]
end
if Ct < C // before the convex

minimum
then

C ← Ct; X ← Y
else

Break and return C,X
end
return C,X

end

d(m) ≤
1
wm∑
i≤m

1
wi

≤
n
m pre-sorted elements in a set

maintained at size n. It can be done in O(d(m) log n) ≤
O
( n
m log n

)
operations.

• The second step uses Hw1···wm to build the optimal
solution on m coalitions (in lines 14 to 18) in O(m)
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operations. Line 17 comes from the fact that we are using
a lexicographical order: in case of equality of the first
coordinate, the arbitration is done by the second (since
the three coordinates are linked linearly, the second
being also equal means the third will be as well, so it
does not need to be checked).

• Then, the algorithm computes the total cost of that solu-
tion (in lines 19 to 22), using the original equation (13).
This takes O(m) operations.

• The end of the loop consists in just comparing the new
obtained value to the previous one.

The complexity of the loop is the sum of the complexity
of its steps, for m going from 2 to mopt + 1, which takes
O(m2

opt + n log n logmopt ). This is also the global complexity
of the algorithm.

This expression depends on the number of devices n,
and a characteristic of the final solution which is the
optimal number of coalitions, mopt , which we know is at
most n.
We show in appendix that if we take the reasonable

assumption that the ratio of β over the average weight is
neither vanishing nor unbounded, we can show that mopt is
not vanishing compared to n, which means the complexity
bound is the actual complexity, and will allow to compare
with the other variants.

As a remark, with this algorithm, if instead of testing the
number of coalitions in increasing order, we try to use a
dichotomy search or an oracle, we would not gain much,
as the cost of buildingH directly for the final set of leaders is
close to the cumulative sum of the computation cost of each
incremental update. In order to use a more precise search,
we will need a more direct method to compute the optimal
total cost for a specific set of leaders.

B. SUB-MODULARITY AND GREEDY ALGORITHM
The GFL game with a fixed set of coalition leaders is sub-
modular. This allows to use a greedy algorithm in order to
add or remove devices from an optimal solution, changing
the number of devices n on the same set of coalitions (same
m and w) while preserving the optimality.
Theorem 3: Sub-modularity: The GFL game constrained

on the number of coalitions is sub-modular as any optimal
solution for n + 1 players can be constructed from an
optimal solution for n players with the best coalition that the
additional player should join.
The proof is in appendix .

We can use this method to obtain an optimal solution for a
specific n in three ways:
The empty solution is an optimal solution for n = m.

Starting from this solution and using a greedy algorithm is
simply a new perspective on building and using H directly:
at each step, the possible choices for the next element to be
added greedily is exactly the element or the set of elements
ofH with the smallest first coordinate.

An optimal solution for a set of leaders, restricted to
a strict subset, is still an optimal solution, except for a

reduced number of devices. This allows us to link the
solutions for consecutive values of m, and complete the
solutions greedily. Again, this behaves similarly as the
update of H from Algorithm 1 reversing the order of the
loop.

However, using the sub-modularity to correct an imperfect
oracle giving an optimal solution for a slightly incorrect
number of devices is distinct from the previously depicted
algorithms, and will give us a faster method.

1) THRESHOLD METHOD
Previously, when modeling the solutions as a subset of
Hw1···wm , we have characterized in Corollary 1 the optimal
solutions as the ones taking the n elements of smallest
marginal costs, which translates directly to choosing for
each coalition the size that would put their marginal cost
immediately below or equal to the real Hw1···wm

n , with
some care taken in case of equality. This approach is not
limited to using Hw1···wm

n as we will show that any value in[
Hw1···wm
n ,Hw1···wm

n+1

]
works as well.

Definition 2: Fitted Sizes: For a fixed set of leaders, a set
of coalition sizes is fitted to a real τ if for each leader j, the
corresponding size is the closest integer to τ

wj
+

1
2 , or one of

the two closest integers in case of equality.
We replace the control on the number of devices n by a

parameter that can be seen as an incentive for the leaders to
have bigger coalitions. Accordingly, Theorem 1 becomes:
Corollary 2: Optimal Fitting: For any coalition configura-

tion and set of weights, a set of sizesX = X1 · · ·Xm fitted to a
positive real is an optimal solution for the number of devices
corresponding to the total size m+

∑
Xj.

Proof: If we build Hw, and fit the sizes to Hw
ℓ ,

Theorem 1 and Corollary 1 tell us that the total cost will be
the sum of the ℓ smallest elements ofHw and that it is optimal
for m+ ℓ devices.
Another consequence of the same theorem is choosing the
right value that allows us to get the optimal solution for n
devices:
Corollary 3: Existence of a fitted solution for any number

of devices: For any number of coalitions and set of weights
and for any number of devices n, there exists a threshold τ ∈

R and a set of sizes fitted to τ that is an optimal solution for
GFL on n devices.

Proof: We can simply take Hw
n , which allows to build

the same solution as usingH.
However, finding that real, denoted by τ , is as difficult

as finding the optimal solution. Considering which reals
will give us the correct number of devices, we can use H
to see that these reals are the interval

[
Hw1···wm
n ,Hw1···wm

n+1

]
.

If we consider any optimal solution E , this interval is the
intersection of the intervals

[
2 · wj · |Ej|, 2 · wj ·

(
|Ej| + 1

)]
.

Finally, we can compute the average of the bound of
those intervals and use it to approximate an element of
the intersection. Then, we can correct the error from using
an approximation instead of an element of the interval by
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adjusting the potential difference in the number of devices
via a greedy algorithm owing to the sub-modularity property.
Lemma 2: Approached value of the Threshold τ : For a

given positive integer n, a solution of GFL fitted to τ̃ (n,m) :=
n−m

2∑ 1
wi

is at most m2 distant from n. In addition, for uniformly

and independently chosen weights, the absolute value of the
error is

√
m

12 .
The proof is in the appendix, in section .

Consequently, we have obtained a method to compute a
solution and its total cost corresponding to a specific number
of coalitions without needing an initial partial result, and thus
allowing the use of dichotomy or guesses based on properties
of w. In fact, since we have a fast method to compute the
cost of the best solution for a given m and do not rely on
computations for neighboring values, we search for the best
m by dichotomy, using the convexity, to test whether a value
is too high or too low. For each value of m, we guess the
corresponding pairs of marginal costs of coalitions in an
optimal solution as being close to τ̃ . We build a solution
of potentially an incorrect size by taking the sizes of the
coalitions so that τ̃ is in each of the intervals of the pairs
of marginal costs, then use a greedy algorithm to adjust the
number of players without losing optimality until we obtain
a solution both optimal and of the correct size. This method
is encoded in Algorithm 2.

2) COMPLEXITY OF THE ALGORITHM
Computing τ̃ (in lines 1 to 5) takes O(m) operations. Fitting
the sizes, in line 6, also takesO(m) operations. The rest of the
loop consists in either adding (lines 11 to 19) or removing
(lines 21 to 29) devices until reaching the correct number
of devices n. Each greedy insertion or removal consists in a
replacement in an ordered list of size m and a direct access,
and takes a time O(logm). The number of those steps is
bounded by m

2 in the worst case, and
√
m

12 in average, for a
complexity in O(m logm) and O(

√
m logm).

Without a heuristic to obtain or approachm, assumingm to
be in the same order of n and using a (weighted) dichotomy,
the complexity cost becomes O(n log2 n) in the worst case,
and O(n log n) in average (building τ̃ and the initial solution
become the most costly operation).

An example to show the algorithm general behavior is
portrayed in Figure 4 where τ (n) = Hw

n and τ̃ (n) are depicted
for n = 2000 and for w chosen uniformly between 1 and
2. The two values are almost indistinguishable, the highest
value of their difference on this experiment is 8 while the
average is slightly higher than 1. In Figure 5, the total cost
is displayed as a function of m for the same simulation as
in Figure 4 for β = 400. Furthermore, we added the total
cost with no cooperation among devices as the latter perform
on device learning (fully distributed and denoted as C(n))
and that corresponding to the grand coalition (centralized
and denoted as C(n)). Those two schemes are representative
of the state-of-the-art approaches, and clearly render worst
performances than our devised scheme.

Algorithm 2 Approached Threshold Method
Variables : real τ̃ , real A, array of m integers X ,

sorted list of m pairs Y, integer o
/* approximated value */
A← 0
for 0 < j ≤ m do

A← A+ 1
wj

end

τ̃ ←
n−m

2
A

/* approximated solution */

for 0 < j ≤ m do Xj←
⌊

τ̃
wj
+

1
2

⌋
/* check */
o← 0
for 0 < j ≤ m do o← o+ Xj
if o = n then return X
/* adjustment */
if o < n then

Y ← ∅
for 0 < j ≤ m do Y .insert((2 · wj · (Xj + 1)), j)
// Y is the list of coalition and

of the marginal costs of
increasing its size by one,
sorted by increasing cost

while o < n do
j0← (Y .first).second
Y .insert(((Y .first).first+ wj0 , j0))
Y .remove(first)
Xj0 ← Xj0 + 1
o← o+ 1

end
else

Y ← ∅
for 0 < j ≤ m do Y .insert((2 · wj · Xj), j)
// Y is the list of coalition and

of the marginal gain of
decreasing its size by one,
sorted by decreasing gain

while o > n do
j0← (Y .last).second
Y .insert(((Y .last).first− wj0 , j0))
Y .remove(last)
Xj0 ← Xj0 − 1
o← o− 1

end
end
return X

C. SEMI-DISTRIBUTED CONTEXT
In a semi-distributed context, we assume that a device can
obtain, through signaling messages with a central entity, the
information about the number of devices in play as well as
its own weight, and can identify or inquire about the list
of leaders, their weights and the size of their corresponding
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FIGURE 4. Discrepancy between τ (n) = Hw
n and τ̃ (n) as a function of m.

FIGURE 5. Total cost of the optimal solutions as a function of m for
β = 400.

coalition, but not the weight of the other (non-leader) devices
nor their specific repartition.

With those conditions, a player currently serving as the
leader of a non trivial coalition and deciding to quit being a
leader, does not know which member of the coalition has the
second lowest weight and thus cannot predict the cost for the
coalition members. In other words, we cannot build a set of
utilities as in (5) such that the total cost in (13) is a potential
function.

However, we can still solve the problem as a dynamic by
separating it into two parts: the choice of the leaders (and
hence the forming of coalitions headed by those leaders) and
the attribution of non-leader devices to the formed coalitions.

We have from item 3 of Lemma 1 the monotony of the
total cost in the value of the weights w. This implies that
the coalition leaders of an optimal solution are the devices
of smallest weights, giving us a first criterion to identify if
a device D is entitled to be a leader or not. Accordingly,
we define what follows:

Criterion 1: in an optimal solution, if there is a leader whose
weight is greater than the weight of device D, then D is a
leader as well.

From Theorem 2, equation (14), we can compute the
difference in total cost of the best solution when adding a new
leader, giving us a second criterion:

Criterion 2: In an optimal solutionminimizing first the total
cost and then the number of leaders, device D is a leader if

and only if
d(m+1)∑
i=1

(
Hw∪D
n−i+1(m)− i · wD

)
> β with w the list

of weights of leaders other than device D.
These two criterions are sufficient to characterize the set

of leaders minimizing the total cost and can be computed
autonomously by the devices despite their access to limited
information.

Then, in parallel of that evolution, the devices can also
select the coalition they choose to join according to a
best response dynamics using the marginal cost as utility,
behaving as with fixed leaders.

After convergence of the set of leaders, this sec-
ond dynamics is a potential game which will converge
in turn.

We obtain the following algorithms: Algorithm 3 simply
emulates the semi-distributed dynamics where devices have
access to limited information and call for Algorithm 4 and
Algorithm 5.

Algorithm 5 uses the criterions to constitute the list of
leaders, and Algorithm 4 attributes the devices to those
leaders’ coalitions using best response dynamics.

1) CORRECTNESS OF ALGORITHM 3
We provide the correctness of Algorithm 3 by showing the
correctness of the two embedded Algorithms 4 and 5.

a: CORRECTNESS OF THE DYNAMICS ON THE LIST OF
LEADERS
By construction, the list 1 · · ·mopt of the smallest weights is
stable by both criterions: trivially for Criterion 1, and through
the monotonicity of the total cost in the values of the weights
for Criterion 2.

Let’s consider another list of leaders noted ℓ. We can build
a path from ℓ to 1 · · ·mopt : by calling all elements that are
in 1 · · ·mopt but not in ℓ in increasing order, then by calling
all elements that are in ℓ but not in 1 · · ·mopt in decreasing
order.

The devices called will apply Criterion 1, until either mopt
or the maximum of ℓ is reached, and add themselves to
the list. Then, the list of leaders will be either a super-set
or a subset of the optimal list, with elements called from
the farthest from the equilibrium point to the closest. Using
the convexity of the total cost on w as a set, we can see
that Criterion 2 will add (if subset) or remove (if super-
set) those elements, until the list of leaders is the optimal
list 1 · · ·mopt : from any state, there is a path of nonzero
probability (specifically n−|1(ℓ,1···m)|

≥ n−n > 0) to the only
stable state, thus the dynamics on the list of leaders converges
to that stable state.

b: CORRECTNESS OF THE DYNAMICS OF DEVICES
ATTRIBUTION TO COALITIONS
Once the list of leaders has converged, it remains fixed.
The next step is to attribute devices to those leaders. When
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Algorithm 3 GFL as a Dynamics
input : List of weights w
/* This part emulates the context of

a dynamics where devices have
limited access and communications

*/
Variables : sorted list of leader ℓ, state E
repeat

Construct wt := wℓ1 ,wℓ2 · · ·wℓ|ℓ|

Device D is activated
j0 is the current leader of D
bool isDLeader = D.call(Algo 4 Leader Selection
(wt , wD, n ))
if j0 = D // currently a leader
then

if not isDLeader then
/* D is removed from the

leaders ℓ */
Remove D from ℓ

wt is the weight of current leaders ℓ

X is the sizes of the coalitions of current
leaders ℓ

for i ∈ ED /* including D */
do

k ← i.call(Algo 4 Best
Response(wt ,X ))
Eℓk ← Eℓk ∪ {i}

end
ED← ∅

end
else

Ej0 ← Ej0 \ D
if isDLeader then

/* D is added to the leaders
ℓ */

ED← {D}
insert D in ℓ

else
/* D moves between

coalitions */
wt is the weight of the current leaders ℓ

X is the sizes of the coalitions of the
current leaders ℓ

k ← D.call( Algo 4 Best Response(wt ,X ))
Eℓk ← Eℓk ∪ {D}

end
end

until convergence

the leaders are fixed, the game of the attribution of devices
where devices use the marginal costs as utilities becomes a
potential game admitting the total cost as a potential. A best
response dynamics on that game converges to the unique
Nash equilibrium, which is the actual optimum for the list
of leaders, and in turn, for the global problem.

Algorithm 4 Best Response, Device Attribution for
an Unassociated Non Leader Device, Used in Algo 3
Input : Current ordered list of the weight w of the

leaders, current list of size X
Output : Index of joined coalition
for j leaders do

Compute marginal cost uj← 2Xjwj
end
return argminj(uj)

Algorithm 5 Leader Selection, Used in Algo 3
Input : current ordered list of leaders’ weight w,

own weight v, number of devices n
Variables : list of leader weight wp, previous setHp

from the last call on this device
Output : boolean isLeader
if v < w.last// criterion 1
then

return true
else

if wp ̸= w then
BuildHw∪v

1···n
Hp
← Hw∪v

1···n
wp← w

end

Compute d ←
⌊
Hp
n

wD

⌋
Compute the cost differential

1C ←
d∑
i=1

(
Hp
n−i+1(m)

)
−

d(d−1)
2 wD − β

return 1C > 0 // criterion 2
end

2) COMPLEXITY OF ALGORITHM 3
We provide the complexity analysis of Algorithm 3 by
analyzing that of the two embedded algorithms 4 and 5.

a: CONVERGENCE OF THE LIST OF LEADERS
Starting from all devices being leaders (or from the list
of leaders being all devices with weights lower than a
sufficiently high value), the only device that can change its
status is the onewith the greatest weight, removing itself from
the list and reducing the size of the leaders set by one. This
preserves the property that the set of leaders being the ones
of lowest values and Criterion 2 ensures that the size of the
list remains greater or equal to mopt .
This repeats until reaching mopt , in at most an average of

(n− mopt ) · n calls.
Conversely, starting from an arbitrary list will trigger calls

to devices having weights lower than the greatest weight
among leaders and adding themselves to the list of leaders
until having the previous structure, in a variant of the coupon
collector [13] on the missing elements, so in O(n log n) calls.
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This bounds the expectancy of the number of calls
needed for the list of leaders to converge to O(n2), so a
total complexity of O(n2) in terms of communication and
O(n3 log n) in terms of computation, mostly from buildingH
in the Leader Selection algorithm (Algorithm 3).

The computation cost could be made lower by keeping w
and H in memory for each device and simply updating H
when needed.

b: ATTRIBUTION OF DEVICES TO FORMED COALITIONS
This part is characterized by the fact that the branches in line
8 and line 21 are not taken, but the Leader Selection procedure
is still called.

To show that this dynamics converges, we can compare the
coalitions’ sizes with those characterizing the closest optimal
solution and use the sum of the positive part of the difference
d(X ,Xopt ) =

∑
i∈ℓ max

(
Xi − X

opt
i , 0

)
=
||X−Xopt ||1

2 as a
distance. Specifically, we consider the smallest distance
between such configuration and the set of optimal solutions,
which is always positive and only reaches 0 on one of the
optimal configurations.

We consider a step of the dynamics, and the intermediary
configuration obtained after separating the device but before
reinserting it to the coalition corresponding to its best
response. This intermediary configuration only has n −
1 devices, one less than the closest optimal solution which
has n devices. Thus, it has at least one coalition with a size
strictly lower than its size in the closest optimal solution.

If we recall Lemma 1, we can see that the marginal cost of
the coalitions is monotonic in their sizes and that the optimal
solutions have consecutive values ofH asmarginal costs, thus
a marginal cost of a coalition of the current solution is strictly
lower than the marginal costs of all coalitions in any optimal
solution if and only if the corresponding size is strictly lower
than that of the current solution.

Moreover, the best response dynamics chooses the coali-
tion of smallest marginal cost. Since there is a coalition whose
size is strictly lower than its size in the optimal solution,
then there is a coalition of marginal cost below the smallest
marginal cost of the optimal solution. In turn, the coalition
chosen by the best response has a marginal cost strictly
lower than this threshold, thus a size strictly lower than the
corresponding size in the closest optimal solution. Thismeans
that if the device was chosen from a coalition with too many
elements, the number of devices in excess decreases by 1,
else, it remains unchanged.

We can thus bound the number of devices in excess both
by the number of devices in coalitions that have a too large
size, and by the total number of devices. The distance to the
closest optimal solution during the dynamics can be treated
as a Markov chain. The transitions between states are either
to keep the same value or to decrease it by 1. The probability
of the latter is lower bounded by the proportion of devices in
coalitions whose size is greater in the current configuration

than in the closest optimum

∑
Xi≥X

(opt)
i

Xi

n . This is itself greater

than the proportion of devices in excess, which is the distance
divided by the number of devices d

n .
As a state of the chain is a number of devices, so at

most equal to n. The solution is optimal when the Markov
chain state reaches 0. Thus, we can use the Markov chain to
bound the number of expected calls by the chain convergence
time. The expected convergence time can be obtained through
the Poisson equations, writing T (i) the expected time to
convergence from state i, with T (0) = 0, we have what
follows: T (i) = 1 + P(i → i − 1)T (i − 1) + (1 − P(i →
i−1))T (i), T (i) = 1

(1−P(i→i−1))+T (i−1) =
∑ 1

(1−P(i→i−1)) .
Substituting the probability above, we obtain

∑
0≤i≤n−1

n
n−i =∑ n

i = Hn = n log n+ γ + o(1) = O(n log n).

c: TOTAL COMPLEXITY
This gives us a total of O(n2) calls during the first
phase, which corresponds to the time between the start of
Algorithm 3 and the convergence of the list of leaders,
and O(n log n) calls during the second phase, from the
convergence of the list of leaders to the termination of
Algorithm 3. Each call requires signaling to inform the
device about the actual configuration and the computation
cost of building or updating H, so the complexity of the
communications would be O(n2), most of which comes
from the first phase. In fact, during the first phase, the
devices need to rebuild H fully in most steps, taking a
time O(n logm) in each step. During the second phase,
the list of leaders remains unchanged, allowing devices to
avoid those computations, and reducing the cost to O(m)
per step.

This gives us a global complexity of O(n3 log n).

FIGURE 6. Number of calls to convergence of the list of leaders algorithm
and of the attribution of devices algorithm through Algorithm 3.

In Figure 6, we depict the number of calls necessary to
Algorithms 4 and 5 before the global Algorithm 3 converges.
The dynamics was emulated by sequential and uniform
activation of devices. The weight were chosen uniformly
between 1 and 3. The additional line (in red) is a regression
of the convergence time of the list of leaders, confirming that
the proposed bound is very tight.
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VI. CONCLUSION
Federated learning enables devices to learn collaboratively
from information collected from all devices without sharing
the original data, addressing privacy concerns and reducing
the need for hefty data transfer to a central server. Learning
on larger datasets reduces the variance in the learned model,
and in turn its error. However, federating the learning process
inflects a communication cost among learning devices
that must be taken into account. Therefore, autonomous
IoT devices engage in a non cooperative game to form
learning coalitions to reduce both the learning error and
the communication cost. In this paper, the optimal size of
learning coalitions is computed in a realistic setting where
devices are supposed to be heterogeneous with regard to their
ability to federate the learning process. Various algorithms are
designed to form the optimal sized learning coalitions in a
semi-distributed fashion and their complexity duly assessed.
In future work, we intend to apply the proposed framework
to more complex learning models.

We provide in the appendix the proofs for both the
comparison parenthesis, the proof for Theorem 3 and the
proof for Lemma 2.

APPENDIX.
PROOF OF THE COMPLEXITY LOWER BOUND
PARENTHESIS
For that, recall the proof of Theorem 2, mainly, the expression
of the difference in total cost (14):

C(m)− C(m+ 1) =
d(m+1)∑
i=1

(Hn−i+1(m)− i · wm+1)− β

Replacing d by its definition, and bounding the elements
Hn−d toHn byHn, we get:

C(m)− C(m+ 1)

≤ d(m)Hn − wm+1
d(m) · (d(m)+ 1)

2
− β

≤
Hn

wm+1
Hn −

(
H2
n

2wm+1

)
− β =

H2
n

2wm+1
− β

≤

(
n− m

2

)2
2wm+1

(∑
j≤m+1

1
wj

)2 − β

As this expression is a (reversed) difference of successive
values in a function we know to be convex, we can express
a lower bound of mopt as the 0 of that expression. Using the
increasing order on the wj to lower bound the denominator∑

j≤m+1
1
wj

by m
wm+1

and m
w̄ , upper bounding the expression

and in turn lower bounding its zero again, this gives us:

C(m)− C(m+ 1) ≤

(
n− m

2

)2
m2 w̄− β (15)

⇒ mopt ≥ n

(√
β

w̄
−

1
2

)
= 2(n) (16)

APPENDIX.
PROOF OF THEOREM 2

Proof: Let’s take the number of coalitions m fixed
(w1 · · ·wm are also fixed). We define En an optimal solution
for n devices and Fn+1 an optimal solution for n+ 1 devices.
We will show that there exists j ∈ [1,m] such that adding the
n+ 1th device to En gives a solution at least as good as Fn+1

First, since F is a partition of a greater set than E , there
exists j such that |Enj | < |Fn+1j |. Since Enj is a non trivial
set, then Fn+1j contains at least 2 elements, so removing one
does not modify the number of coalitions in the solution.
Hence, removing one element from this coalition form a valid
partition Fn of n devices in exactly m coalitions with weights
w1 · · ·wm. Conversely, adding the n+1th device toEj creates a
valid partitionEn+1 of the n+1 devices over the sameweights
w1 · · ·wm.
En is optimal for n, (wi)i, so in particular, it is at least as

good as Fn: C(Fn)− C(En) ≥ 0.

FIGURE 7. Relation between En, F n, En+1 and F n+1: En and F n+1 are
optimal solutions, En+1 and F n are built from them.

Recall that En+1k ̸=j = Enk , E
n+1
j = Enj ∪ {n+ 1}, Fn+1k ̸=j = Fnk

and Fn+1j = Fnj ∪{n+1}, accordingly, we have what follows:

C(Fn)− C(En) =
m∑
i=1

wi|Fni |
(
|Fni | − 1

)
−

m∑
i=1

wi|Eni |
(
|Eni | − 1

)
C(Fn)− C(En) =

∑
i≤m,i ̸=j

wi|F
n+1
i |

(
|Fn+1i | − 1

)
+ wj

(
|Fn+1j | − 1

) (
|Fn+1j | − 2

)
−

m∑
i=1

wi|Eni |
(
|Eni | − 1

)
C(Fn)− C(En) =

m∑
i=1

wi|F
n+1
i |

(
|Fn+1i | − 1

)
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− 2wj
(
|Fn+1j | − 1

)
−

m∑
i=1

wi|Eni |
(
|Eni | − 1

)
Now, we write the same difference between the solutions for
n+1, since Fn+1 is the optimal. This difference is negative or
zero C(Fn+1)− C(En+1) ≤ 0 and is equal to what follows:

C(Fn+1)− C(En+1) =
m∑
i=1

wi
(
|Fn+1i | − 1

)2
−

m∑
i=1

wi
(
|En+1i | − 1

)2
C(Fn+1)− C(En+1) =

m∑
i=1

wi
(
|Fn+1i | − 1

)2
−

m∑
i≤m,i ̸=j

wi
(
|Eni | − 1

)2
+ wj

(
|Enj |

)2
C(Fn+1)− C(En+1) =

m∑
i=1

wi
(
|Fn+1i | − 1

)2
−

m∑
i=1

wi
(
|Eni | − 1

)2
+ 2|Enj | − 1

We can notice that the difference is the same in both
expressions, so(

C(Fn+1)− C(En+1)
)
−
(
C(Fn)− C(En)

)
= 2

(
|Fn+1j | − |Enj | − 1

)
Since we choose j such that Enj < Fn+1j , then the expression

2
(
|Fn+1j | − |Enj | − 1

)
is positive or 0. We have then that

the sum of two negative or null terms is positive or zero,
thus both are null. We deduce that En+1 is as good as the
optimal solution Fn+1, and is thus optimal itself. This proves
that extending an optimal solution optimally gives an optimal
solution.

Similarly, Fn is as good as the optimal solution En.
We deduce that for any optimal solution for n + 1 devices,
there exists an optimal solution for n devices that can be
extended into the former.

APPENDIX.
PROOF OF LEMMA 1

Proof: Recall the definition of the fitted size in
Definition 2: each size Xi takes the value (or pair of values)[

τ̃
wi
+

1
2

]
, which can be rewritten as τ̃

wi
+

1
2 + ri with ri being

the rounding error, bounded in absolute value by 1
2 .

Summing the coalition sizes and separating the ri gives
what follows:

∑
xi =

∑
τ̃
wi
+
∑ 1

2 +
∑
ri =

(∑ 1
wi

)
τ̃ +

m
2 +

∑
ri =

(∑ 1
wi

)
n−m

2∑ 1
wi

+
m
2 +

∑
ri = n +

∑
ri. Thus,

summing the actual value and comparing to n gives the sum
of the rounding errors ri, each bounded by ± 1

2 . The sum of
the bounds over the coalitions bound the sum of the ri, so the
difference between the sum of the sizes and n is in the interval[
−
m
2 , m2

]
.

Lemma 3: Average Error: The average error of the
effective number of devices in a solution with fixed m built
using τ̃ is

√
m

12 .
Proof: In order to define the average error, we replace τ̃

by a list of independent random variables chosen uniformly
in an interval whose size is a multiple of the weight of the
corresponding coalition: It is mostly equivalent to choosing
the inverse of the weights uniformly while keeping their
actual values for the final expression, and it allows us to see
the rounding error as a uniformly chosen variable in

]
−

1
2 ,

1
2

[
.

Thus, the error caused by the rounding is a sum of
independent uniform laws of same amplitude, an Irvin Hall
distribution of parameter m with an offset of m

2 . Its variance

is m
12 , and thus the average error is

√
m

2
√
3
.
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