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Early Palaeozoic sites with soft-tissue preservation are predominantly
found in Cambrian rocks and tend to capture past tropical and temperate
ecosystems. In this study, we describe the diversity and preservation of

the Cabriéres Biota, a newly discovered Early Ordovician Lagerstitte from
Montagne Noire, southern France. The Cabriéres Biota showcases a diverse
polar assemblage of both biomineralized and soft-bodied organisms
predominantly preserved iniron oxides. Echinoderms are extremely scarce,
while sponges and algae are abundantly represented. Non-biomineralized
arthropod fragments are also preserved, along with faunal elements
reminiscent of Cambrian Burgess Shale-type ecosystems, such as armoured
lobopodians. The taxonomic diversity observed in the Cabriéres Biota mixes
Early Ordovician Lagerstdtten taxa with Cambrian forms. By potentially
being the closest Lagerstitte to the South Pole, the Cabriéres Biota probably
served as abiotic refuge amid the high-water temperatures of the Early
Ordovician, and shows comparable ecological structuring to modern polar
communities.

Early Palaeozoic sites with soft-tissue preservation’ provide awealth of
information on the evolution of past life and enhance our understand-
ing of previous ecosystems®?, but are unequally distributed in time and
space. While approximately 100 assemblages with soft-tissue preserva-
tion* have been described from the Cambrian, around 30 are known
from the Ordovician®", and only a few Lagerstitten are discovered in
Early Ordovicianrocks®.

The distribution of Early Palaeozoic Lagerstdtten is also palaeo-
geographically skewed, as approximately 97% of discovered biotas
represent tropical and temperate ecosystems within 65° north and

south of the palaeoequator*. This pattern is particularly true for the
Ordovician, where very few Lagerstitten are known from polar environ-
ments*. Among the most famous Ordovician Lagerstitten, the Soom
Shale (Upper Ordovician, South Africa), Big Hill (Late Ordovician,
United States) and Winneshiek (Middle Ordovician, United States)
biotasare indicative of tropical ecosystems™ ** (Extended Data Fig.1).
The Liexi Fauna, along with the Fenxiang and Tonggao biotas from
the Early Ordovician of China, represent tropical to warm temperate
ecosystems”” (Extended Data Fig.1). The Afon Gam (Early Ordovician,
United Kingdom), Castle Bank (Middle Ordovician, United Kingdom)
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Fig.1| Biomineralized taxa of the Cabriéres Biota. a, Trilobite of the genus
Ampyx (UCBL-FSL713598). b, Gastropods associated with a tube-like structure,
probably the conulariid Sphenothallus (UCBL-FSL713599). ¢, Biomineralized
conulariid cnidarian (UCBL-FSL713600). d, Articulated brachiopods attached
to apossible leptomitid sponge (UCBL-FSL713601). e, Assemblage formed of

articulated brachiopods (centre), flattened carapaces probably of bivalved
arthropods (centre left and right) and a calymenine trilobite cranidium
(left; UCBL-FSL713602). f, A hyolith with possible internal organs (UCBL-
FSL713603).Scale barsrepresent4 mminaande,1cminbandd,5mminc,
and2mminf.

and Llanfawr (Middle Ordovician, United Kingdom) biotas provide
valuable information on cold to temperate Ordovician communities
near the polar circle®*'° (Extended Data Fig. 1). The Early Ordovician
Fezouata (Morocco) and Klabava (Czech Republic) biotas are the rare
exceptionsto this pattern, providing insights into strictly polar ecosys-
tems''® (Extended Data Fig. 1). Taken together, all these sites exhibit
amix of typical Cambrian and later Palaeozoic taxa, and suggest that
marine assemblages were in transition between two early biodiver-
sification events, the Cambrian Explosion and the Great Ordovician
Biodiversification Event’®".

Considering the rarity of Ordovician Lagerstitten (Extended Data
Fig.1) and their skewed palaeogeographic distribution (Extended Data
Fig.1), the discovery of new biotas with soft-tissue preservation beyond
the aforementioned palaeogeographic zones and environmentsis cru-
cial for expanding our understanding of this time period and gaining
better insights into the factors driving the rise of animal diversity on
Earth. In this study, we describe a new fossil assemblage with soft-tissue
preservation, the Cabriéres Biota, fromthe Early Ordovician of southern
Montagne Noire, France. The taxonomic diversity of this fossil
biota is described, and the preservation of the fossils is investigated.

Therecent findings are thendiscussedin light of other Early Ordovician
Lagerstétten. This newly discovered biotais of particularimportance as
itisaclose Ordovician Lagerstétte to the contemporaneous South Pole
(Extended Data Fig. 1), constituting a cornerstone for understanding
ancient polar ecosystems and their evolution.

Results and discussion

Stratigraphy and environmental context

The Early Ordovician Cabriéres Biota is anewly discovered assemblage
from the southern Montagne Noire, France (Extended Data Fig. 2).
During the Early Ordovician, the Montagne Noire was an open marine
environment located in the Southern Hemisphere at high polar lati-
tudes on the margin of the supercontinent Gondwana® (Extended Data
Fig.1). The biotais preserved in stratigraphically equivalent layers to
the Landeyran Formation, but more to the east than traditional locali-
ties, specifically within the Apatokephalus incisus trilobite biozone* %,
which dates it to an upper Floian age” (F13; Extended Data Fig. 2). The
Landeyran Formation corresponds to an offshore environment depos-
ited in a transgressive phase?®?, succeeding the sandy shoreface to
upper offshore Foulon Formation®*”. However, a proper investigation
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based onrecent knowledge of mud deposition®®is needed to properly
frame the sedimentary context. Soft-tissue preservation occurs
withinaninterval of 1 mthickness (Extended DataFig.2),located 15 m
above the base of the Landeyran Formation (Extended Data Fig. 2).

Faunal content

Thebiota contains numerous taxa that exhibit biomineralization (Fig. 1
and Extended Data Fig. 3). These include animals such as molluscs
(14%), trilobites (12%), brachiopods (9%), hyoliths (7%) and cnidarians
(6%) (Extended Data Fig. 3). Trilobites are primarily represented by
the genera Ampyx (Fig. 1a), Asaphellus and calymenine trilobites (pos-
sibly Colpocoryphe) (Fig.1e), whichisinaccordance with depositionin
an open marine offshore environment®. Gastropods can be found in
association with elongated tubes probably representing the enigmatic
cnidarian (possible conulariid) Sphenothallus (Fig. 1b). Biomineral-
ized conulariid cnidarians showing a quadrilateral aperture and phos-
phatized body are also preserved (Fig. 1c). Articulated brachiopods,
mostly orthids, are abundant in the Cabriéres Biota and can be observed
either attached to possible leptomitid sponges with long monaxons™
(Fig.1d, and Extended DataFigs. 4 and 5) or randomly positioned near
trilobites and possible non-biomineralized bivalved arthropods
(Fig. 1e). Hyoliths are also present, although they are often poorly
preserved. In one instance, a hyolith preserves possible traces of
internal organs, probably representing the gut (Fig. 1f). An interest-
ing feature of the Cabriéres Biota is the rarity of echinoderms, which
are represented by three specimens only (Extended Data Fig. 3).

Inadditionto trilobites, brachiopods, cnidarians, gastropods and
hyoliths, the Cabriéres Biotais characterized by a prevalence of sponges
and branching algae constituting 26% of allidentified fossils (Extended
DataFig.3). Probable cylindrical demosponges canreach large sizes in
excess of 10 cm. Specimen UCBL-FSL713604 is large with well-preserved
subelliptical ostia within a thin dermal layer formed of fine fibres that
are occasionally visibly spiculate (Fig. 2a and Extended Data Fig. 6). The
termination of this fossil is unclear owing to incomplete preservation,
obscuring whether it is a branched individual or two individuals close
to each other (Fig. 2a). At the distal ends of the specimens, the oscula
arenotclearly defined (Fig. 2a). Other sponge specimens show detailed
preservation (Fig. 2b), and the use of multispectral imaging allows for
the differentiation of their soft tissues and skeleton (Fig. 2c). Algae of
the Cabriéres Biotavary in shape and size (Extended DataFig. 7), includ-
ing forms withathick branchingstructure (Fig. 2d), delicate branching
forms (Fig.2e) and more intricate morphologies consisting of multiple
compact branches and nodes (Fig. 2f). This site also preserves speci-
mens (Fig. 2g) similar to Margaretia from the Burgess Shale, an organ-
ism previously attributed to green algae® but recently reinterpreted as
organic tubes of the enteropneust hemichordate Oesia®.

The Cabriéres Biota also showcases a variety of bivalved arthro-
pod carapaces forming 16% of identified fossils (Figs. 1e and 3a,b, and
Extended Data Fig. 8). Most notable are the elongate suboval valves
ornamented with very closely spaced, longitudinal striations (Fig. 3a,b),
on rare occasions associated with abdominal segments not covered
by the carapace (Fig. 3a), which represent a new taxon of phyllocarid
crustacean. In addition, numerous fragments of non-biomineralized
arthropods are present, including structures resembling chelicerate
gnathobases (Fig. 3¢c) and aspiny appendage that could belong to either
Radiodonta or Chelicerata (Fig. 3d). Some fossils of non-biomineralized
arthropods exhibit segmented bodies adorned with ornamentation
resembling that seen in chelicerates (Fig. 3e,f), sometimes with pos-
sible segmented appendages (Fig. 3f and Extended Data Fig. 9). One
specimen also preserves what probably is a lunar-shaped eye and a
rectangular prosoma (Fig. 3e), both of which are consistent with fea-
tures seen in eurypterids, synziphosurids or even chasmataspids®>*.
The post-prosomal anatomy of this specimen reveals a possible
opisthosoma divided into a pre-abdomen and an abdomen (Fig. 3e
and Extended DataFig. 9).

Some vermiformorganisms are also present in the Cabriéres Biota
(~1% ofidentified fossils), one of which exhibits external ornamentation
consisting of many tiny nodes and preserves gut remains (Fig. 4a).
Two other specimens consist of a partially preserved elongated and
annulated soft body bearing two thick oval plates (Fig. 4b,c). These
plates are approximately 2 mm and 6 mm long in the first and second
specimens, respectively, and present acomplexinternal morphology
(Fig.4b,c) withan outer surface showing somereticulate ornamentation
in places where thickness is preserved (Fig. 4d,e). A lateral extension
at the base of one of the plates in the first specimen probably repre-
sents the remains of the proximal part of an appendage (?lo; Fig. 4b).
At asimilar position in the second specimen, a strong annulated area
endslaterallyintoaseries of lateral outgrowths (Fig.4d,e) that probably
represent spines or appendicules. The combination of asoft annulated
body (and potentially appendages) and sclerite platesis characteristic
of armoured lobopodians.

Preservation mode
Fossils from the Cabriéres Biotacommonly exhibitbrown, red or orange
huesand are embedded within asiliciclastic matrix composed of mud-
stone and siltstone, which can range in colour from blue to green and
yellow (Figs.1-4).Scanning electron microscopy (SEM) backscattered
electron and energy-dispersive X-ray (EDX) analyses indicate that the
fossils are made of dense, shapelessiron oxide crystals lacking distinct
framboids or euhedral minerals (Fig. 5a-c), surrounded by a matrix of
aluminium-rich phyllosilicates (Fig. 5c). Synchrotron-based investiga-
tions of the chemical speciation ofiron using Fe K-edge X-ray absorption
near edge structure (XANES) spectroscopy show thatironis present as
Fe(lll) oxides and hydroxides (Fig. 5d; see Extended Data Fig.10 for the
position of the spectrum). Inaddition, black films, probably represent-
ing carbonaceous material, can be observed on some fossils (Fig. 5a).
The preservation of the Cabriéres Biota exhibits similarities with
the preservation seen in the Fezouata Biota, including comparable
fossil colours and chemical signatures®?°. At least part of the iron
oxides and hydroxides in the Cabriéres Biota (Fig. 5a-d), such as the
Fezouata Shale*®, may result from alteration by modern precipitation
events because weathering products, suchas manganese and arsenic,
are deposited on the surface of the samples (Fig. 5e,f and Extended
Data Fig. 10). The future collection of an expanded range of fossils
will enable amore comprehensive taphonomic analysis of the modes
and mechanisms of preservation within the Cabriéres Biota and will
facilitate comparisons with other Lagerstitten® ",

Taxonomic and taphonomic importance
Many organisms of the Cabriéres Biota are not fully mineralized and
exhibit preservation of sclerotized, that is, toughened cuticle, inaddi-
tion to cuticularized and cellular structures. As such, the Cabriéres
Biota is considered a Lagerstitte. Although the Montagne Noire
region contains numerous fossil sites® with a wide range of tempo-
ral and palaeogeographical distributions, its Ordovician outcrops
were previously recognized mainly for their biomineralized elements,
such as trilobites?****** echinoderms***¢, molluscs, brachiopods,
hyoliths? and conulariids*” as well as heavily sclerotized organisms
such as graptolites*®. The discovery of the Cabriéres Biota expands
the range of preserved tissue types found in the Ordovician of
Montagne Noire, revealing entirely soft taxonomic groups such as algae
and non-biomineralized animals (Figs. 2-4 and Extended Data Fig. 3).
Preliminary quantifications of the overall diversity within this
biotareveal that organisms with biomineralized body walls (for exam-
ple, brachiopods, echinoderms, trilobites) that do not preserve soft
tissues make up approximately 41% of the total diversity. By contrast,
over half of the total diversity comprises non-biomineralized organ-
isms, such as bivalved arthropods, chelicerates, lobopodians and
hemichordates, or biomineralized animal groups that do preserve
soft tissues, such as the figured sponges (Fig. 2a,b). It is worth noting
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Fig.2|Sponges, algae and possible hemichordates from the Cabriéres Biota.

a, Alarge sponge from the Cabriéres Biota, possibly ademosponge (UCBL-
FSL713604).b, Sponge (UCBL-FSL713605). ¢, Same specimen showing clear
differentiation between the soft tissues (pink) and the mineralized skeleton (green)
under multispectral imaging. d, Thick branching algae (UCBL-FSL713606).

e, Thin branching algae (UCBL-FSL713607). f, More complex algae (UCBL-
FSL713608). g, Organic tube of an Oesia-like enteropneust hemichordate
(=Margaretia; UCBL-FSL713609). Scale bars represent1cminaand f,5mmin
e, and3mminb-dandg.

that these percentages are comparable to those of other well-known
Lagerstitten from the Early Ordovician, such as the Fezouata Biota,
which has approximately 44% of its taxa®*%, preserving only biominer-
alized remains. Moreover, many organisms in the Cabriéres Biota can
be fragmentary, which may indicate that they were either exposed to
decay for relatively long periods of time or transported by sedimentary
flows. Regardless of the processes responsible for such fragmenta-
tion, which will require further investigations, similar preservation
is also observed in some localities from the Fezouata Biota, in which
animals are dominantly fragmentary, with fully articulated organisms
being the exception rather than the norm*. Despite the difference
in collection efforts between the Fezouata Biota and the Cabriéres
Biota, which was only recently discovered, the latter still yielded some

complete organisms. Many animals are preserved in high detail as well,
asexemplified by the longitudinal striations observed on the bivalved
arthropod carapaces and the ornamentations on the chelicerates and
the worms (Figs. 3a,b,e,fand 4, and Extended Data Figs. 8 and 9).

All animal groups in the Cabriéres Biota are known from other
Cambrianand Ordovician Lagerstitten, yet the taxonomic composition
of the Cabriéres Biota is particularly unique for the Early Ordovician.
The newly described biota is almost as diverse as the range of clades
seenin the Liexi Fauna® and Fezouata Biota®, yet echinoderms, which
are otherwise abundant in the Ordovician, are extremely rare in this
biota. This scarcity of echinoderms in the Cabriéres Biota is similar
to that in the Fenxiang Biota’ and the Klabava Biota'® but differs from
that of other Early Ordovician Lagerstétten such as the Leixi Fauna
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Fig.3|Non-biomineralized arthropods of the Cabriéres Biota. a, Phyllocarid
carapace valves ornamented with very closely spaced, longitudinal striations and
associated with abdominal segments (UCBL-FSL713609). b, Phyllocarid carapace
valve with longitudinal striations preserved near a graptolite (UCBL-FSL713610).
¢, Possible chelicerate gnathobase (UCBL-FSL713611). d, Spiny arthropod
appendage (UCBL-FSL713612). e, Segmented arthropod with chelicerate-like

Nature Ecology & Evolution | Volume 8 | April 2024 | 651-662

ornamentation and an eye (UCBL-FSL713613).f, Part of a segmented arthropod
with chelicerate-like ornamentation and an appendage (UCBL-FSL713614). ap,
appendage; co, chelicerate ornamentation; ey, eye; Is, longitudinal striations; sb,
segmented body. Scale barsrepresent2 mmina; 8 mminb, cand f;5mmind and
e;and 4 mminj.
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Fig. 4| Vermiform organisms from the Cabriéres Biota. a, Unidentified
vermiform organism UCBL-FSL713615, with possible remains of the gut and
external ornamentation of tiny nodes. b,¢, Incomplete armoured lobopodians
UCBL-FSL713616 (b) and UCBL-FSL713617 (c) exhibiting two sclerite plates
along an elongated soft body with annulations. A lateral extension in b possibly
represents remains of the proximal part of alobopod (?lo). d,e Close-up
three-dimensional lateral (d) and top (e) views of part of UCBL-FSL713617,

from the dotted box in c. Arrowheads point to lateral outgrowths associated

with annulations that could represent spines or lobopod appendicules. an,
annulations; gu, gut; lo, lobopod; otn, ornamentation of tiny nodes; ro, reticulate
ornamentation; sp, sclerite plates. Scale bars represent 5mminaand c¢,and 1mm
inband e; note that due to the three-dimensional rotation, no scale bar is given
for dand the reader is instead invited to refer to scale barsincande.

and particularly the Fezouata Shale®*~*° (Extended Data Fig. 3). The
Cabriéres Biota yields a higher diversity of arthropods compared
with the Fenxiang Biota and lacks evidence of nematodes, scalidoph-
orans and corals. Furthermore, there are no bryozoans present in
the Cabriéres Biota in contrast to the Klabava Biota. The Cabriéres
Biota preserves an abundance of algae and sponges (Fig. 2a-f and
Extended Data Fig. 3), similar to the Afon Gam Biota’, but with agreater
number of non-biomineralized arthropods (Fig. 3a-f). The Cabriéres

Biota provides further evidence that armoured lobopodians (Fig. 4b,c)
persisted until at least the Ordovician. Armoured lobopodians
were important components of Cambrian ecosystems and are highly
abundant in Cambrian Lagerstitten, such as the Chengjiang Biota®,
and can be present in Ordovician ecosystems®®. With the discovery of
the Cabriéres Biota, it is becoming clearer that many elements of the
classic Cambrian fauna persisted into the Ordovician. Findings such
as these are increasingly connecting the Cambrian Explosion and the
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Normalized intensity (a.u.)

Montagne noire| © Fossil (%) Matrix (%)
Oxygen 45 51
Silicium 13 28
Fe oxide and hydoxide| ~Aluminium 8 14
Potassium 1 3
Iron 32 2
Siderite| Magnesium 1 1
Sodium (9] 1
Pyrite
T T T T
7100 7,200

Energy (eV)

Fig. 5| Mode of fossil preservation. a, Backscattered electron microscopy
image revealing white iron oxide minerals and some limited black carbonaceous
material within the fossils of the Cabriéres Biota. b, Theiron oxides appear
shapeless, lacking distinct framboids or euhedral minerals. ¢, Semi-quantitative
elemental proportions from SEM-EDX analyses indicate that the fossils exhibit a
higher iron content compared with their surrounding aluminosilicate matrices.

d, Fe K-edge XANES spectroscopy shows that the iron present in the Montagne
Noire fossils exists in the form of oxides and hydroxides. e f, Synchrotron pXRF
major-to-trace elemental mapping shows that modern weathering elements such
as manganese and arsenic are deposited on the surface of the samples. Scale bars
represent100 pmina, 50 pminband Smmineandf.

Great Ordovician Biodiversification Event* albeit existing differences
between them®,

Ecological and evolutionary implications

The Cabriéres Biota represents a close Lagerstétte to the Ordovician
South Pole (Extended Data Fig. 1). High-latitude marine habitats can
offerarange of favourable spatiotemporal conditions supporting high
speciesrichness®, and play a crucial role as taxonomic refugia during
periods of environmental stress®* **. Given the extremely warm waters
ofthe Early Ordovician®, the high-latitude Cabriéres Biota would have
experienced less extreme temperatures compared with lower-latitude
regions, fostering the development of a unique diversity of taxa that
had shifted southwards into cooler climatic bands. For instance,
trilobite fauna from Montagne Noire shares taxa with Iran such as
Taihungshania and Damghanampyx. The latter genusis only knownin
these two regions, while Taihunghsania also occurs in Turkey, United
Arab Emirates and South China®*’, The Montagne Noire also shares
numerous taxa with the Anti-Atlasin Morocco’® 7. This melting potin
the Montagne Noire is restricted to the Lower Ordovician, and faunal
affinities become strictly Gondwanan during the Upper Ordovician™”,
The unique taxonomic diversity of the Montagne Noire during the
Early Ordovician might have been facilitated by the oceanic circula-
tion permitting taxa to migrate towards the pole from warmer, more
stressful, lower latitudes®®, and might have been made easy by a pos-
sible position of the Montagne Noire inaslightly more easternlocation
within the polar circle”™ %,

Some modern polar biotas, similar to the Cabriéres Biota, can
be dominated by algae and sponges’® 2. Macroalgae possess specific
characteristics and adaptations in polar settings, which explain
their ecological success in these environments®. Sponges play a key

rolein the community dynamics of polar settings®* and can attain large
sizes®, as was observed in the Cabriéres Biota. The prevalence of
sponges in the Cabriéres Biota cannot be ascribed to environmental
factors such as oxygen depletion, even though sponges typically thrive
in hypoxic environments. This is because hypoxic environments are
characterized by low diversity, which is clearly not the case for the
Cabriéres Biota preserving a diverse array of organisms, including
brachiopods, trilobites, bivalved arthropods, lobopodians, worms,
cnidarians, hyoliths and molluscs. The diversity of arthropodsin polar
ecosystems is comparable to that of less harsh environments in the
sub-Arcticand low-Arctic regions®®, which could explain the similarities
ingeneral arthropod diversity between the Cabriéres Biotaand nearby
Lagerstétten, such as the Fezouata Biota (that is, the presence of trilo-
bites, bivalved arthropods, chelicerates and possibly radiodonts)®*°.
Cnidariansarealso presentin modern polar ecosystems’’, asis the case
in the Cabriéres Biota. Their success is related to their wide range of
diets and opportunistic behaviour, enabling them to take advantage
of the available food sources in these extreme ecosystems”.

The patterns for echinoderms are more complex. Echinoderms
can be found in the Arctic and on the Antarctic margins®°>. However,
their diversity is lower in these regions compared with other areas
such as the Atlantic or Indo-Pacific oceans’. Within a certain polar
setting, echinoderms can be locally abundant®*2, The scarcity of echi-
nodermsinthe Cabriéres Biota could be attributed toits polar settings,
among other local factors, especially that other sites from the Early
Ordovician of Montagne Noire* have yielded diverse assemblages of
echinoderms. Thus, similarly to modern polar ecosystems, echino-
derms did not colonize the entire seafloor in the Montagne Noire. In
fact, echinoderms thrive when the diversity of other animal groups is
limited®. By adapting to oligotrophic conditions, echinoderms are
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Fig. 6| Artistic reconstruction of the Cabriéres Biota. In the foreground, arow
of Ampyx (trilobites) and various shelly organisms, including brachiopods and
ahyolith (bottom left corner). Behind the trilobites, alobopodian, a chelicerate,
cnidarians (blue), sponges (green), thin branching algae (red and green) and

hemichordate tubes (purple), along with some molluscs. Bivalved arthropods
inhabit the water column along with graptolites. Credit: Christian McCall
(PrehistoricaArt).

often found in low-diversity, low-competition assemblages, where the
conditions of the water column did not allow for the colonization of
other animal groups, a pattern that is also respected in the Fezouata
Biota. Forinstance, whenexamined at high resolution, echinoderms are
abundantly foundinlevels of specific bathymetry where other animals
are not diverse, constituting the building blocks for the high echino-
derm diversity in the Fezouata Biota®. It is likely that echinoderms
arerarely found in the Cabriéres Biota owing to its high diversity and
therefore increased competition, unlike nearby environments from
the Montagne Noire that were favourable for echinoderm coloniza-
tion. This pattern would have been accentuated if the bathymetric
conditions in the Cabriéres Biota were unfavourable for echinoderm
colonization. This would explain echinoderm abundanceintraditional
Montagne Noire localities and their absence in the specific level yield-
ing the Cabriéres Biota.

The position of the Cabriéres Biota in the polar zone, the preserva-
tionofadiverse assemblage, the dominance of sponges and algae, and the
habitat selectivity of echinoderms, among other observed patterns such
as the absence of bryozoans that are dominantly found in tropical and
temperate waters, all support the notion that this assemblage represents
apolarecosystem characteristic of the Early Ordovician. Theresemblance
betweenthe Cabriéres Biota (Fig. 6) and modern polar ecosystems raises
questions on how warmer Early Ordovician polar regions® supported
similar niche partitioning and structuring to colder modern-world polar
ecosystems. Moreover, considering the global cooling happening after
the Early Ordovician, similar ecosystems to the high-latitude Cabriéres
Biota can be anticipated in low-latitude environments during Middle to
Late Ordovician. Further global-scaleinvestigations are required to con-
firm this trend, despite the presence of local palaeontological evidence
suggesting the existence of low-latitude sponge-dominated Lagerstétten
inthe Late Ordovician of China®. Yet, itis possible to suggest that refugial
zones found at high latitudes in the Early Ordovician migrated to lower
latitudes during the subsequent Ordovician cooling.

Methods

Thesearch for Lagerstittenin the Early Ordovician of Montagne Noire
(France) has gained momentum over the past decade. In 2018, the first
potential soft tissues were discovered, and new discoveries by two
authors (E.M.andS.M.), from the ‘écailles de Cabriéres’, followed since.
The fossiliferous sites are found in outcrops within a1 km radius of
the Cabriéres village (Extended Data Figs. 1and 2). Over 400 fossils
have been collected so far, and all are registered and housed under
the collection ‘Monceret’ at the University of Lyon (Université Lyon 1,
Villeurbanne, France), under the acronym UCBL-FSL.

Collectedfossilswere examined witha WILD type 308700 (x6.4, X16
and x40) binocular microscope. Optical photos were taken with a
Canon 800D camera coupled to a Canon MP-E 65 mm macro lens
equipped with a polarizing filter. Various lighting conditions, includ-
ing normal and polarized light, as well as dry and alcohol-submerged
photography, were used. Z-stacks were processed using Helicon Focus
software and the pyramid function. Three-dimensional surfaceimages
were produced for one specimen through an automatic vertical stack-
ing process using a Keyence VHX-7000 digital microscope equipped
witha VH-ZOOT Macro lens (x0-50 magnification) connected to a VXH-
7020 high-performance 3.19-megapixel complementary metal-oxide
semiconductor (CMOS) camera.

Some specimens were further documented using multispectral
imaging at the Institute of Earth Science of the University of Lausanne
(Switzerland) to see whether certain anatomies are better seen under
different light combinations. Reflection and luminescence images in
various spectral ranges were collected using a set-up consisting of a
low-noise 2.58-megapixel back-illuminated sSCMOS camera with high
sensitivity from 200 to 1,000 nm, fitted with a UV-VIS-IR 60 mm 1:4
Apo Macro lens (CoastalOptics) in front of which is positioned afilter
wheel holding eight interference band-pass filters (Semrock) to col-
lect images in eight spectral ranges from 435 to 935 nm. lllumination
was provided by 16 light-emitting diodes, with wavelengths ranging
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from 365 nm to 700 nm (CoolLED pE-4000), coupled to a liquid light
guide fitted with a fibre-optic ring light guide. As such, more than 90
different illumination and detection couples are available, and the
resulting greyscale images can be combined into false-colour RGB
images to enhance morphological contrasts or reveal details invisible
in traditional photography using only visible light. Stacking, image
registration of the different couples (excitation/emission of 385/935,
660/775 and 365/571) and production of false-colour RGB composites
were performed using Image).

Four specimens were analysed using an FEI Quanta 250 SEM at the
Electron Microscopy Facility of the Faculty of Biology and Medicine of
the University of Lausanne to investigate the mode of preservation of
the Cabriéres Biota fossils and their mineralogical composition. The
SEM was equipped with backscattered and secondary electron detec-
tors in addition to an EDX analyser. To detect heavy elements such
asiron, specimens were analysed uncoated in environmental mode
using a 10 keV beam. Elemental percentages (semi-quantifications)
were obtained using the associated Bruker Nano Analytics software.

The trace elemental composition of two fossils was further investi-
gated using synchrotron micro-X-ray fluorescence (LXRF) mapping at
the PUMA beamline of the SOLEIL synchrotron source (France) to better
constrainthe differences between matrices and fossils. Theincoming
monochromatic X-ray beam was focused using Kirkpatrick-Baez mir-
rors down to aspotsize of ~7 x 5 um? (Horizontal x Vertical, full width
at half maximum) and set to an energy of 18,500 eV optimized for the
excitation of elements from phosphorus to zirconium (K-lines) and
from cadmium to uranium (L-lines). The sample was mounted on a
scanner stage allowing 150 mmand 100 mm movements (in horizontal
and vertical directions, respectively) with micrometre accuracy, and
oriented at 60°to the incident beam, producing an effective beam size
of ~10 x 5 um? (Horizontal x Vertical) on the sample. XRF data were col-
lected using a SiriusSD silicon drift detector (SGX Sensortech, 100 mm?
active area) oriented at 90° to the incident beam, in the horizontal
plane. Two-dimensional spectral images, that is, images for which
each pixelis characterized by a full XRF spectrum, were collected with
a60-80 msdwelltimeatal00-200 pm lateral resolution depending on
the samples (see figure captions for the precise scanning parameters).
The results are shown herein as false-colour RGB overlays of three
elemental distributions reconstructed from full spectral decomposi-
tion using the batch-fitting procedure of the PyMCA data-analysis
software”, with polynomial baseline subtraction, and assuming a
Hypermet peak shape. XANES spectroscopy at the Fe K-edge was per-
formed to determineiron speciation. Fe XANES spectra were collected
influorescence modeinthe 7,050-7,550 eV range with energy steps of
5eVbetween 7,050 and 7,100 eV, 0.5 eV between 7,100 and 7,200 eV,
and2 eVbetween 7,200 and 7,250 eV. The count time was set to 2 s per
energy step. Energy was calibrated using areference metallic Fe foil and
setting the firstinflection point of the Fe K-edge at 7,111 eV.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All the data needed to reproduce this paper are available in the main
textand the extended data figures. All material canbe accessed at the
public collections of the University of Lyon (France).
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3

Extended Data Fig. 4 | Additional views of the possible leptomitid sponge UCBL-FSL713601 shown in Fig. 1d. (a) Optical photograph under polarised light of the
entire specimen. (b) Close-up view under polarised light from the box in (a) showing projected longitudinal spicules. Scale bars represent1cmin (a), and 5 mmin (b).
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Extended DataFig. 5| Another possible leptomitid sponge, associated to the thin branching algae UCBL-FSL713607. (a) Optical photograph under polarised
light of the entire specimen. (b) Close-up view under polarised light from the box in (a) showing longitudinal skeletal elements. Scale bars represent1cmin (a), and
Immin (b).

Nature Ecology & Evolution



http://www.nature.com/natecolevol

https://doi.org/10.1038/s41559-024-02331-w

Extended Data Fig. 6 | Additional views of the large sponge UCBL-FSL713604 osculum from the boxin (b). (d, ) Close-up views under polarised light showing
showninFig. 2a. (a) Optical photograph of the entire organism. (b) Close-up the skeletal framework, from the corresponding boxes in (c). Scale bars represent
view of one side of the organism, from the box in (a). (c) Close-up view of the 1cmin(a)and (b),5mmin(c),and1mmin (d) and (e).
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I e >
Extended DataFig. 7 | Additional views of the algae shown in Fig. 2. (a)
Optical photograph of the thick branching algae UCBL-FSL713606 shown in
Fig.2d. (b) Close-up view under polarised light of basal branches, from the
boxin (a). (c) Optical photograph under polarised light of the thin branching
algae UCBL-FSL713607 shown in Fig. 2e. (d) Close-up view under polarised light
from the box in (c) highlighting textural differences between algae (right) and

Nature Ecology & Evolution
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sponges (left). (e) Optical photograph under low angle and polarised light of the
more complex algae UCBL-FSL713608 shown in Fig. 2f. (f) Close-up view under
polarised light from the box in (e) highlighting branched clumps of flat kidney-
shaped segments. Scale bars represent 5 cmin (a), (b), (c) and (f), Immin (d),
andlcmin(e).
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Extended Data Fig. 8 | Phyllocarid crustaceans from the Cabriéres Biota. located anteriorly to the top valve (light blue) may represent a rostral plate.

(a, b) Optical photograph (a) and interpretative line drawing (b) of the (c,d) Optical photograph (c) and interpretative line drawing (d) of the left valve

counterpart of UCBL-FSL713609 shown in Fig. 3a. The specimen contains two UCBL-FSL713610 shown in Fig. 3b. Abbreviations: al, anterodorsal lobe;

left valves ornamented with very closely spaced, longitudinal striations. The as, abdominal segments; cc, cephalic carina; co, carapace ornamentation;

bottom valve (white) is associated with a few abdominal segments. Fossil remains ~ mdp, median dorsal plate; rp, rostral plate. Scale bars represent 5 mm.
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Extended Data Fig. 9 | Additional images and interpretative drawings of
the cheliceratesin Fig. 3e, f. (a, b) Optical photograph (a) and interpretative
line drawing (b) of the chelicerate UCBL-FSL713613. The presence of a prosoma
lacking enlarged axial nodes on opisthosomal tergites, reduced genal spines,
and an opisthosoma that is largest at the third and fourth tergite, likely suggest
chasmataspid affinities. (c) Close up of the eye and the ornamentation.

(d-g) Optical photographs under polarised light of the part (d) and the
counterpart (f), and corresponding interpretative line drawings (e, g) of the

(uswopqeald) eWOSO0ld

uswopqy

chelicerate UCBL-FSL713614. Green highlights ventral features. Pale purple
shows dorsal features. The sample displays a carapace, three tergites, and
apossible appendage. The presence of a possible metastoma suggest non-
arachnid dekatriatan affinities. (h, i) Close-up photographs showing the
ornamentation. Abbreviations: appendage (ap); (ax) axis; cardiac lobe (cdl);
doublure (db); ornamentation (or); eye (ey); metastoma (m); and tergite (t). Scale
barsrepresent2 mmin (c)sand (i), 3 mmin (h),5 mmin (a) and (b),and 8 mmin
(d), (e), (f),and (g).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Synchrotron-based X-ray fluorescence major-to-
elemental mapping of the Cabriéres Biota. (a) Optical photograph under
polarised light of the assemblage UCBL-FSL713602 shown in Fig. 1e. (b, c) False-
colour overlays of manganese (red), iron (green) and potassium (blue) (b), and
arsenic (red), iron (green) and potassium (blue) (c) distributions from the box in
(a). Acquisition parameters: 200 um steps, 80 ms dwell time, 51,100 pixels.

(d) Optical photograph under polarised light of sponge UCBL-FSL713618.

(e) Close-up view from the box in (d). (f, g) False-colour overlays of manganese

(red), iron (green) and potassium (blue) distributions from the corresponding
boxes in (e) and (f). Acquisition parameters: 200 um steps, 60 ms dwell time,
6,150 pixelsin (f); 100 um steps, 60 ms dwell time, 4,800 pixels in (g). The white
circlein (g) locates the XANES analysis shown in Fig. 4d. (h) Average uXRF spectra
and main elemental contributions from the corresponding numbered boxes in

c (156 pixels) and f (208 pixels). Scale bars represent 1 cmin (a), (b), (c) and (d),
Smmin (e) and (f),and1mmin (g).
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