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Abstract: Background: Three-dimensional motion analysis using optoelectronic cameras and force
platforms is typically used to quantify gait disorders. However, these systems have various limita-
tions, particularly when assessing patients in an ecological environment. To address these limitations,
several wearable devices have been developed. However, few studies have reported metrologi-
cal information regarding their repeatability and sensitivity to change. Methods: A healthy adult
performed 6 min walking tests with FeetMe® system insoles under different walking conditions
overground and on a treadmill. The standard error of measurement (SEM), the minimum detectable
differences (MDDs), and the effect size (ES) were calculated for spatio-temporal parameters, and the
ground reaction force was calculated from the 16,000 steps recorded. Results: SEM values were below
3.9% for the ground reaction force and below 6.8% for spatio-temporal parameters. ES values were
predominantly high, with 72.9% of cases between overground and treadmill conditions with induced
asymmetry, and 64.5% of cases between treadmill conditions with and without induced asymmetry
exhibiting an ES greater than 1.2. The minimum detectable differences ranged from 4.5% to 10.7% for
ground reaction forces and 2.1% to 18.9% for spatio-temporal parameters. Conclusion: Our study
demonstrated that the FeetMe® system is a reliable solution. The sensitivity to change showed that
these instrumented insoles can effectively reflect patient asymmetry and progress.

Keywords: gait; insoles; wearable; minimum detectable change

1. Introduction

Three-dimensional (3D) analysis of movement using optoelectronic cameras and force
platforms is commonly used to quantify gait parameters for monitoring gait disorders
and their therapeutic management [1]. Although three-dimensional motion analysis in
a laboratory setting enables physiologically realistic quantification through the use of
biomechanical models [2] and repeatable protocols [3], this assessment only reflects a
portion of a patient’s locomotor potential.

Analysis of walking with wearable sensors offers the possibility of quantifying move-
ment in environments typically encountered by a patient, such as slopes, descents, inclines,
holes, etc. These sensors also enable the collection of a greater number of steps, making
it possible to quantify spatio-temporal fluctuations in order to understand motor control
during walking, or to quantify the effect of therapeutic treatments [4–8]. Del Din et al.
proposed an analysis of the relevance, validity, and interest of using an inertial measure-
ment unit (IMU) positioned at the lumbar level to quantify the gait of Parkinson’s disease
patients [4]. This comparative work on numerous gait parameters highlights that an IMU
placed at this location does not provide the precision expected by clinicians but allows
the detection of movement situations. According to these authors, the use of embedded
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sensors facilitates monitoring of movement quantity, particularly for the studied popula-
tion. This work underscores the scientific community’s interest in evaluating these new
technological solutions for clinical use. This point is also emphasized by other authors [1],
who recommend, in addition to clinical gait disorder analysis service management, that the
reliability of data collected by these solutions is paramount.

Over the last decade, a number of wearable devices were designed to quantify the
spatio-temporal parameters of walking [9]. These authors have analyzed the use and
characteristics of existing solutions such as instrumented socks and insoles for quantifying
gait parameters and foot pressure. Although this analysis provides researchers with a
comprehensive view of existing solutions, it is also necessary for the scientific commu-
nity to continue testing the practical validity of these solutions independently of their
metrological precision.

Among recent devices, instrumented insoles (FeetMe® Monitor, Paris, France; Loadsol®

Novel, Munich, Germany; and Xsensor®, Calgary, Canada) appear to be attractive and
reliable solutions for quantifying gait cycle parameters and offer an estimation of ground
reaction forces [10–20]. To integrate instrumented insoles into the ecosystem of 3D motion
analysis laboratories [20], it is crucial to conduct metrological validations of these sensors
in accordance with COSMIN recommendations [21]. McGinley et al. conducted a literature
review to evaluate the reliability of joint kinematic measurements using biomechanical
models with optoelectronic camera systems [20]. The authors noted two points: First, the
average joint angle measurement error is 5◦, but this error varies with different joints and
degrees of freedom quantified. In evaluating industrial or scientific movement analysis so-
lutions, this study highlights the impact of choosing the appropriate biomechanical model
for joint kinematics quantification. It also emphasizes the gap between the sensor metrol-
ogy’s reliability and the calculated parameters after sensor data processing. Specifically, the
marker localization inaccuracy is about 1 mm for many optoelectronic camera-based solu-
tions, whereas the biomechanical model’s inaccuracy is due to simplification assumptions.
Users must consider both the solution’s precision and the calculated parameters’ validity
within their clinical context.

Recently, ref. [10] conducted a study on the validity of the Feetme® system for spatio-
temporal gait cycle parameters. The authors quantified differences in spatio-temporal
gait parameters in healthy volunteers using the Feetme® system and a reference system
(GAITRite®). They found a high concordance between the two systems in measuring these
parameters. Whilst the accuracy of FeetMe® insoles were studied [10,12], the literature
lacks information about repeatability and sensitivity to change, which are both essential
for clinical decision-making [22–26] and patient monitoring [27–32]. Boekesteijn et al.
conducted a literature review to determine the feasibility of using inertial measurement
units to quantify gait disorders in individuals with knee osteoarthritis [28]. Although
the authors did not find standardized positioning for the inertial units, their analysis
clearly showed that inertial sensors could detect gait disorders in individuals with knee
osteoarthritis. According to these authors, spatiotemporal parameters sufficiently reflect
gait disorders in this population, making them relevant for monitoring mobility. This
study highlights a new aspect of using these technological solutions. Indeed, we have
indicated that the metrological validity of sensors and the calculated parameters, such as
spatiotemporal gait cycle parameters, are crucial, as evidenced by numerous studies [33–41].
However, it is equally important for clinical applications to determine if these solutions can
detect changes. This concept is also known as minimal detectable difference (MDD). Wells
et al. emphasize its importance in clinical study design and have reviewed methods for
quantifying it [25].

Induced asymmetry is utilized to simulate gait abnormalities commonly observed in
clinical populations, such as stroke patients or individuals with musculoskeletal disorders,
who often exhibit asymmetric gait patterns [13,42]. By introducing controlled asymmetry
in a healthy individual, we can rigorously assess the FeetMe® system’s capacity to detect
and measure variations in gait parameters, which is a crucial factor for its application in
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clinical settings [27]. This approach enables us to evaluate the system’s responsiveness and
reliability in identifying clinically relevant changes, thereby ensuring its effectiveness for
monitoring and evaluating therapeutic interventions in patients with gait disorders [25,43].

Our study builds on the scientific community’s work on the validity and reliability
of embedded technological solutions for quantifying spatiotemporal gait cycle param-
eters, particularly in detecting sensitivity to change. The aim of our study is to mea-
sure the repeatability of FeetMe® system output data, i.e., estimating ground reaction
forces and spatio-temporal parameters, as well as sensitivity to change by using induced-
asymmetry walking.

2. Materials and Methods
2.1. Participant

An asymptomatic adult (60 kg, 1.75 m, 25 years) completed all 24 6 min walking
tests, taking 8363 left-foot steps and 8359 right-foot steps. A single model of shoe was
used during the different conditions (Kiprun KD500). At the start of each test, the insoles
were placed in the subject’s shoes and calibrated according to the FeetMe® recommended
calibration procedure [10]. For each walking condition, data were recorded after a 5 min
accommodation period on a treadmill. This evaluation was carried out within the frame-
work of a database of healthy subjects for the “No-Barriers” study, aimed at identifying the
barriers to physical activity for people with disabilities (NCT05294068).

2.2. Material: Insole System

FeetMe® system insoles consist of an IMU and 18 capacitive cells. The IMU samples at
a frequency of 140 Hz and comprises an accelerometer (±8 g) and a gyroscope (±1000 dps).
The capacitive cells have a surface area of 15 mm², an 8-bit digital signal, and an acquisition
frequency of 110 Hz. The internal algorithm of the insoles uses the pressure values of the
capacitive cells to calculate the spatio-temporal parameters of the gait cycle (i.e., duration of
the stance phase, duration of the single stance phase, duration of the double stance phase,
and duration of the oscillating phase). The detection of initial contact is calculated from the
sum of the signal from the sensors in each cell over time (S) and the derivative of the sum of
the sensor signals (dS/dt) [10]. A Savitzky–Golay filter is then applied [44]. Initial contact
is detected when the derivative of the sum of the sensor signals is greater than 0.2 at time (t)
and the sum of the signal from the sensors in each cell is greater than 50 at time (t + 100 ms).
Toe-off is detected if the sum of the signals in each cell is less than 30 at time (t) and the
sum of the signal from the sensors in each cell is less than 30 at time (t + 100 ms) [10]. All
the pressure sensors in the capacitive cells provide the distribution of the ground reaction
force along the vertical axis. All the signal processing described above is performed by the
internal algorithms of the FeetMe® system insoles as described by Jacobs et al. [10].

2.3. Procedure and Data Analysis

We used a dual-belt force-instrumented treadmill (M-Gait®, Motek Medical B.V., Ams-
terdam, The Netherlands) to induce asymmetry by modifying the speed of its belts [45–47].
We asked the subject to perform 6 min walk tests (TDM6) in different conditions as de-
scribed in Table 1 (Table 1). For each walking condition, three TDM6 were performed in
order to limit intra-individual variability [20]. These three tests were carried out during the
same session, with 5 min rest periods between each test. All walking tests were performed
over two consecutive days, ensuring adequate rest periods for the participant to mitigate
the impact of fatigue. The order of the different walking conditions was randomized.
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Table 1. Summary of the walking conditions for the 6-minute walk tests (TDM6).

N◦ Condition Description
Belt Speed (m/s) Belt Speed (m/s)

Asymmetry
Right Left

1 TDM6-SYM-GROUND TDM6 overground N/A N/A Symmetric

2 TDM6-SYM-MGAIT TDM6 treadmill: equal belt
speeds 1.2 1.2 Symmetric

3 TDM6-ASYM-MGAIT-16L TDM6 treadmill: 16% left
asymmetry 1.2 1.4 s +16% left

asymmetry

4 TDM6-ASYM-MGAIT-33L TDM6 treadmill: 33% left
asymmetry 1.2 1.6 +33% left

asymmetry

5 TDM6-ASYM-MGAIT-50L TDM6 treadmill: 50% left
asymmetry 1.2 1.8 +50% left

asymmetry

6 TDM6-ASYM-MGAIT-16R TDM6 treadmill: 16% right
asymmetry 1.4 1.2 +16% right

asymmetry

7 TDM6-ASYM-MGAIT-33R TDM6 treadmill: 33% right
asymmetry 1.6 1.2 +33% right

asymmetry

8 TDM6-ASYM-MGAIT-50R TDM6 treadmill: 50% right
asymmetry 1.8 1.2 +50% right

asymmetry

All the parameter recordings provided by the FeetMe® system are accessible from two
comma-separated values files. We specifically selected the following from among all the
available parameters:

- Mean force during single stance phase: the ground reaction force in the vertical axis,
representing the force exerted by the ground on a body in contact with it;

- Stance duration: the duration of the support phase, representing the time during
which the foot is in contact with the ground supporting the body’s weight;

- Single stance duration: the duration of the single support phase, representing the time
when only one foot is in contact with the ground while the other foot is in the air;

- Double stance duration: the duration of the double support phase, representing the
time when both feet are simultaneously in contact with the ground;

- Swing duration: the duration of the oscillating phase, representing the time when the
foot is swinging through the air between ground contacts.

All the raw data from the FeetMe® insoles were collected and processed using Python
3.9.7 to create a database stored in a CSV file. A custom Python 3.9.7 module, containing
various classes and functions for calculating the parameters listed in Table 2, was developed
and is available on GitHub (https://github.com/NathanMartinCOE/semelle_connecte (16
September 2024)). All statistical analyses were performed using R software 4.2.1.

To assess the repeatability of the FeetMe® system outputs, the Intraclass Correlation
Coefficient (ICC) was calculated using a two-way mixed-effects model, specifically ICC(3,k).
The ICC(3,k) assesses the reliability of the average of multiple measurements. The formulas
for these calculations are based on the variance components derived from an ANOVA table,
following the guidelines outlined by Shrout and Fleiss [48,49].

The standard error of measurement (SEM) was calculated using the following for-
mula [50]:

SEM =

√
∑i=n

i=1 σ2
i

n

where SEM = standard error of measurement; n = the number of tests per condition; and
σ2

i = the variance measured for test i.

https://github.com/NathanMartinCOE/semelle_connecte
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Table 2. Summary of value, standard error of measure (SEM), minimal detectable difference (MDD95), and effect size for all gait parameters.

Gait
Parameters

Overground Walking
(TDM6-SYM-GROUND)

Treadmill without Induced Asymmetry
(TDM6-SYM-MGAIT)

Treadmill with Induced Asymmetry
(TDM6-ASYM-MGAIT) Effect Size

Values
Mean (sd)

SEM
Value (%)

MDD95
Value (%)

Values
Mean (sd)

SEM
Value (%)

MDD95
Value (%)

Values
Mean (sd)

SEM
Value (%)

MDD95
Value (%)

O-TA
Value

T-TA
Value

Mean force during
single stance phase

(kg·cm−2)

8.13 (0.02)
8.75 (0.01)

0.31 (3.8%)
0.34 (3.9%)

0.86 (10.58%)
0.94 (10.74%)

8.32 (0.05)
8.72 (0.04)

0.09 (1.1%)
0.14 (1.6%)

0.25 (3%)
0.39 (4.47%)

8.04 (0.03)
8.6 (0.03)

0.08 (0.9%)
0.31 (3.7%)

0.22 (2.56%)
0.86 (10.23%) - -

Stance duration
(ms)

730.3 (19.2)
744.8 (18.5)

42.89 (5.9%)
47.82 (6.4%)

118.89 (16.28%)
132.55 (17.8%)

706.9 (11.5)
719.5 (11.7)

3.44 (0.5%)
6.14 (0.9%)

9.54 (1.33%)
17.02 (2.41%)

583.8 (9.8)
714.1 (13.4)

0.91 (0.1%)
12.17 (1.8%)

2.52 (0.36%)
33.73 (5.01%)

−7.85
−1.66

−10.7
−0.46

Single stance
duration (ms)

413.6 (24.2)
428.6 (18.0)

23.99 (5.8%)
29.22 (6.8%)

66.5 (16.08%)
80.99 (18.9%)

395.3 (16.2)
407.5 (20.0)

3.17 (0.8%)
6.3 (1.6%)

8.79 (2.16%)
17.46 (4.42%)

314.9 (10.9)
420.7 (11)

1.8 (0.4%)
8.84 (2.6%)

4.99 (1.19%)
24.5 (7.16%)

−5.78
−0.28

−4.96
0.71

Double stance
duration (ms)

314.9 (17.9)
315.3 (13.4)

19.28 (6.1%)
19.76 (6.3%)

53.44 (16.97%)
54.77 (17.37%)

310.6 (16.0)
310.9 (12.5)

2 (0.6%)
2.37 (0.8%)

5.54 (1.78%)
6.57 (2.12%)

268.2 (8.6)
297.9 (11.1)

1.43 (0.5%)
5.12 (1.7%)

3.96 (1.45%)
14.19 (4.78%)

−3.51
−1.01

−3.36
−0.79

Swing duration
(ms)

414.5 (14.3)
429 (13.9)

24.24 (5.8%)
29.04 (6.8%)

67.19 (16.21%)
80.49 (18.76%)

395.7 (11.7)
408.3 (10.4)

2.45 (0.6%)
6.77 (1.7%)

6.79 (1.66%)
18.77 (4.74%)

315.0 (10.9)
420.7 (11.0)

1.77 (0.4)
8.32 (2.5%)

4.91 (1.17%)
23.06 (7.07%)

−7.47
−0.51

−8
1.19

Values are expressed as mean (standard deviation) and SEM; MDDs are expressed as value (%); effect size is expressed as value. For SEM, MDD, and effect size, the values indicated are
the smallest (1st cell line) and the largest (2nd cell line). Effect sizes were calculated between the overground (O) and treadmill with induced asymmetry (TA) conditions and between the
treadmill without induced asymmetry (T) and treadmill with induced asymmetry (TA) conditions.
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For the parameter of mean force during the single support phase, the SEM was
calculated at each instant of the gait cycle, and then averaged. The SEMs were calculated
separately for each leg (right and left), and the lowest and highest average values are
reported in the results. The SEMs calculated for the test–retest were reported both in the
actual unit and expressed as percentages of the mean values (SEM%). A smaller score
indicates a more reliable measurement [51].

To assess the degree of sensitivity to change, the minimum detectable difference (MDD)
was calculated at 95% using the following formula [25]:

MDD95% = 1.96 × SEM ×
√

2

where MDD95% = minimum detectable difference at 95%; and SEM = standard error
of measurement.

The MDD is defined as the minimum change that can occur during the measurement
that is not due to random variation. Since it represents the degree of sensitivity to change,
the MDD is needed to assess whether or not a real change occurs during the execution
of two sessions [52]. The authors report that a 90% confidence interval is commonly
used, but some studies employ a 95% confidence interval. We chose to use a stricter 95%
confidence interval.

The MDDs were calculated for each parameter in three conditions: (i) TDM6 over-
ground, (ii) TDM6 on a treadmill without induced asymmetry, and (iii) TDM6 on a treadmill
with induced asymmetry. For the condition TDM6 on a treadmill with induced asymmetry,
the maximum SEM value for all conditions with induced asymmetry was used. To obtain a
single MDD value for each parameter, the largest SEM value between the right and left leg
was used. Absolute reliability indexes were examined in terms of raw units (MDD) and
percentages to the parameter mean value (MDD%) [53].

To assess the magnitude of sensitivity to change, the effect size (ES) was calculated
using the following formula [43,54]:

ES =
xasym − xwithout asym

σwithout asym

where ES = effect size; xasym = the mean during walking with induced asymmetry; xwithout asym
= the mean during walking without induced asymmetry; and σwithout asym = the standard
deviation measured during a walk without induced asymmetry.

In addition, statistical tests were carried out to assess whether asymmetry in different
gait parameters was detected when inducing asymmetry on the treadmill. The effect size
was used to measure the magnitude of the differences observed [54]. These authors also
mention that the absolute effect size is useful when the studied variables have intrinsic
significance. In our study, preserving the value of spatiotemporal parameters is crucial
as they hold significance for the clinical community. Since we had only one participant,
comparison of the time series did not seem relevant to us as the results would be too
influenced by the individual walking pattern. Therefore, we decided not to calculate the
effect size or any other comparison on the ground reaction forces curves. This is different
from spatio-temporal parameters, which are much less related to an individual’s pattern
in healthy subjects. The spatio-temporal parameters are more robust and less affected by
individual variability, making them more suitable for meaningful analysis and comparison
in this context.

3. Results

This section is divided by subheadings. It provides a concise and precise description
of the experimental results, their interpretation, and the conclusions that can be drawn
from the experiment.
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3.1. Standard Error of Measurement

The SEM% found for the ground reaction forces did not exceed 3.9% for overground
walking, 1.6% for treadmill walking without induced asymmetry, and 3.7% for treadmill
walking with induced asymmetry (Table 2). The SEM% found for the spatio-temporal
parameters did not exceed 6.8% for overground walking, 1.7% for treadmill walking
without induced asymmetry, and 2.6% for treadmill walking with induced asymmetry
(Table 2).

3.2. Repeatability

High repeatability was observed when computing ICC values. More specifically, the
ICC values were very good (ICC > 0.80) in most cases (44); good (0.60 < ICC < 0.80) in three
cases; moderate (0.40 < ICC < 0.60) in two cases; and poor (ICC < 0.40) in one case (Table 3).

Table 3. Intraclass Correlation Coefficient (ICC) for all spatio-temporal gait parameters.

Condition Leg Stance
Duration

Single Stance
Duration

Double Stance
Duration Swing Duration

TDM6-SYM-GROUND
Left 0.989 0.991 0.943 0.95

Right 0.963 0.948 0.939 0.99

TDM6-SYM-MGAIT
Left 0.996 0.991 0.972 0.978

Right 0.988 0.978 0.971 0.991

TDM6-ASYM-MGAIT-16L
Left 0.976 0.981 0.941 0.875

Right 0.453 0.881 0.956 0.988

TDM6-ASYM-MGAIT-33L
Left 0.992 0.994 0.935 0.95

Right 0.913 0.951 0.936 0.994

TDM6-ASYM-MGAIT-50L
Left 0.999 0.999 0.999 0.999

Right 0.999 0.999 0.999 0.999

TDM6-ASYM-MGAIT-16R
Left 0.994 0.969 0.982 0.995

Right 0.997 0.995 0.984 0.983

TDM6-ASYM-MGAIT-33R
Left 0.943 0.995 0.948 0.994

Right 0.964 0.985 0.975 0.995

TDM6-ASYM-MGAIT-50R
Left 0.904 0.958 0.917 0.995

Right 0.994 0.995 0.917 0.958
ICC(3,k) values were computed following guidelines outlined by Shrout and Fleiss [48,49].

3.3. Magnitude of Sensitivity to Change; Effect Size (ES)

Very large ESs were observed when comparing conditions with and without induced
asymmetry. More specifically, the ESs were very large (ES > 1.2) in most cases (72.9%); large
(0. 8 < ES < 1.2) in four cases (8.3%); moderate (0.5 < ES < 0.8) in seven cases (14.6%); small
(0.2 < ES < 0.5) in two cases (4.2%); and no effect size was very small (ES < 0.2) (Table 2).

3.4. Degree of Sensitivity to Change; Minimum Detectable Difference (MDD)

The MDD% values calculated in our study are low for both ground reaction force
(range: [4.5 to 10.7%]) and spatio-temporal parameters (range [2.1 to 18.9%]). More specifi-
cally, the smallest MDD% (2.1%) was found for the duration of the double stance phase
during a treadmill walking test without induced asymmetry and the largest MDD% (18.9%)
was found for the duration of the single stance phase during the overground walking test.

4. Discussion

Our study provides essential metrological information for the clinical application of
FeetMe® system insoles by examining their repeatability and responsiveness to change.
Complementing previous accuracy investigations [10–13], we demonstrate that FeetMe®

system insoles offer a reliable solution. Farid et al. quantified the precision and reliability of
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the Feetme® system compared to a reference system (GAITRite®) [11]. The authors demon-
strated that this system is reliable for quantifying spatio-temporal gait cycle parameters
in a population of 29 adult post-stroke patients. However, they noted a lower Intraclass
Correlation Coefficient (ICC) for quantifying the swing phase duration on the paretic side.
The authors explained that this result might be related to testing conditions, suggesting
that more cycles would be needed for stronger concordance. Our study, aiming to analyze
sensitivity to change, was based on more than 16,000 recorded gait cycles from our trials.
Granja et al. also focused on the concordance of walking speed, cadence, and stride during
a timed 25-foot walk test (T25WT) in adult patients with multiple sclerosis [12]. They
observed a high ICC across three patient groups categorized by their Expanded Disability
Status Scale (EDSS) scores. This work highlights the relevance of using this embedded
solution to monitor disease progression characterized by gait cycle parameter deteriora-
tion. Parati et al. focused specifically on the impact of experimental conditions [13]. This
work complements previous studies showing that for the Feetme® system compared to
a GAITRite® system when the same patient is subjected to a condition that could alter
their gait, minimal detectable changes are low and acceptable. Our study complements
previous work by indicating that the Feetme® insole system’s sensitivity to changes in
spatio-temporal parameters effectively identifies gait variations in individuals.

The minimum detectable difference (MDD) of the spatio-temporal parameters is
lower than the differences deemed significant for quantifying changes in various patient
populations, such as children with cerebral palsy, patients with Parkinson’s disease, and
stroke patients [55–58]. Yang et al. showed significant differences between the spatio-
temporal parameters of the paretic and non-paretic legs in stroke patients, with a 6.18%
difference in stance and swing phases [58]. The MDD for ground reaction forces falls
within the physiological range of asymmetry observed in healthy subjects (−5 to 5%) [59].
Furthermore, the MDD for spatio-temporal parameters aligns with those detected using an
OPTOGait photoelectric cell system (6.0–16.5%) [60]. Our study also confirmed the insoles’
high magnitude of sensitivity to change, with very large effect sizes observed between
conditions with and without induced asymmetry. Notably, the use of a dual-band treadmill
yielded an effect size that increased with the speed of induced asymmetry.

The standard error of measurement (SEM) [SEM%] (<0.34 kg·cm−2, [0.9–3.9%]) for
ground reaction forces and (<48 ms [0.1–6.8%]) for spatio-temporal parameters indicated
high reliability. These SEM values are comparable to those found by Lee et al. (SEM < 30 ms
[2.8–6%]) using the OPTOGait photocell system [60]. For ground reaction forces, the SEM
values were also comparable to those reported by Farius et al., who used force platforms [26].
However, the SEM scores cannot be directly compared with the literature due to the use
of different units (kg·cm−2 vs. the conventional N·kg). Nevertheless, these scores are
consistent with the sensor margin of error provided by the manufacturer (±0.85 kg·cm−2

above 5 kg·cm−2) [10].
The participants’ response to induced asymmetry revealed two trends. Firstly, there

was a reduction in the variability of gait parameters as the level of induced asymmetry
increased. Secondly, the spatio-temporal parameters evolved differently depending on
whether the leg was driven by the increase in speed. The increase in speed tended to reduce
the duration of the stance phase, single stance phase, and swing phase for the leg that was
driven by the treadmill, while these phases remained constant for the leg that was not
driven by the treadmill. The duration of the double support phase decreased similarly for
both legs with increased speed.

Our study has several limitations. Only one subject was included, preventing general-
ization of the observed functional trends. However, this single inclusion does not impact
our metrological findings. The SEM values are robust and can be adjusted based on the
number of participants and repetitions [61]. A second limitation concerns the reaction force
profile. The force profiles used in our study were calculated from raw capacitive cell data,
which depend on the configuration of the capacitive cells and are not representative of
typical force profiles measurable by a force platform.
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5. Conclusions

Our study reveals the reliability and high sensitivity to change of FeetMe® system
insoles. These instrumented insoles could be integrated into the array of measurement tools
available to motion analysis laboratories, thereby broadening the scope of investigations by
enabling the assessment of subjects in ecological situations.
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