
HAL Id: hal-04724510
https://hal.science/hal-04724510v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Topological Characterization of Consensus in
Distributed Systems

Thomas Nowak, Ulrich Schmid, Kyrill Winkler

To cite this version:
Thomas Nowak, Ulrich Schmid, Kyrill Winkler. Topological Characterization of Consensus in Dis-
tributed Systems. Journal of the ACM (JACM), 2024, 71 (6), pp.39:1-39:48. �10.1145/3687302�.
�hal-04724510�

https://hal.science/hal-04724510v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Topological Characterization of Consensus in Distributed
Systems
Dedicated to the 2018 Dijkstra Prize winners Bowen Alpern and Fred B. Schneider

THOMAS NOWAK∗, Université Paris-Saclay, CNRS, ENS Paris-Saclay, France and Institut

Universitaire de France, France

ULRICH SCHMID†, TU Wien, Austria

KYRILL WINKLER‡, ITK Engineering, Austria

We provide a complete characterization of both uniform and non-uniform deterministic consensus
solvability in distributed systems with benign process and communication faults using point-set
topology. More specifically, we non-trivially extend the approach introduced by Alpern and Schneider
in 1985, by introducing novel fault-aware topologies on the space of infinite executions: the process-
view topology, induced by a distance function that relies on the local view of a given process in an
execution, and the minimum topology, which is induced by a distance function that focuses on the
local view of the process that is the last to distinguish two executions. Consensus is solvable in a
given model if and only if the sets of admissible executions leading to different decision values is
disconnected in these topologies. By applying our approach to a wide range of different applications,
we provide a topological explanation of a number of existing algorithms and impossibility results
and develop several new ones, including a general equivalence of the strong and weak validity
conditions.

CCS Concepts: • Theory of computation → Distributed algorithms.

Additional Key Words and Phrases: Topological characterization; point-set topology; consensus;

distributed systems; benign faults

ACM Reference Format:
Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. 2024. Topological Characterization of Consensus
in Distributed Systems: Dedicated to the 2018 Dijkstra Prize winners Bowen Alpern and Fred B.
Schneider. 1, 1 (October 2024), 51 pages. https://doi.org/0000001.0000001

∗Thomas Nowak has been supported by the Université Paris-Saclay project DEPEC MODE and the ANR
project DREAMY (ANR-21-CE48-0003).
†Ulrich Schmid has been supported by the Austrian Science Fund (FWF) under project ADynNet (P28182),
RiSE/SHiNE (S11405), DMAC (P32431), and ByzDEL (P33600).
‡Kyrill Winkler has been supported by the Austrian Science Fund (FWF) under project ADynNet (P28182)

and RiSE/SHiNE (S11405). When this work was initiated, Kyrill Winkler was with TU Wien.

Authors’ addresses: Thomas Nowak, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Gif-sur-Yvette, France,

Institut Universitaire de France, Paris, France, thomas@thomasnowak.net; Ulrich Schmid, TU Wien, Vienna,

Austria, s@ecs.tuwien.ac.at; Kyrill Winkler, ITK Engineering, Austria, kyrill.winkler@itk-engineering.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/0000001.0000001

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

2 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

𝐶0

𝐶1 𝐶 ′
1 𝐶 ′′

1

Fig. 1. Comparison of the combinatorial topology approach and the point-set topology approach: The
combinatorial topology approach (left) studies sequences of increasingly refined spaces in which the
objects of interest are simplices (corresponding to configurations). The point-set topology approach
(right) studies a single space in which the objects of interest are executions (i.e., infinite sequences of
configurations).

1 INTRODUCTION

We provide a complete characterization of the solvability of deterministic non-uniform and
uniform consensus in distributed systems with benign process and/or communication failures,
using point-set topology as introduced in the Dijkstra Prize-winning paper by Alpern and
Schneider [4]. Our results hence precisely delimit the consensus solvability/impossibility
border in very different distributed systems such as dynamic networks [27] controlled by a
message adversary [2], synchronous distributed systems with processes that may crash or
commit send and/or receive omission failures [40], or purely asynchronous systems with crash
failures [19], for example. Whereas we will primarily focus on message-passing architectures
in our examples, our topological approach also covers shared-memory systems [34].
Deterministic consensus, where every process starts with some initial input value picked

from a finite set 𝒱 and has to irrevocably compute a common output value, is arguably
the most well-studied problem in distributed computing. Both impossibility results and
consensus algorithm are known for virtually all distributed computing that have been
proposed so far. However, they have been obtained primarily on a case-by-case basis,
using classic combinatorial analysis techniques [18]. Whereas there are also some generic
characterizations [31, 33], i.e., ones that can be applied to different models of computation,
we are not aware of any approach that allows to precisely characterize the consensus
solvability/impossibility border for arbitrary distributed systems with benign process- and
communication-failures.

In this paper, we provide such a characterization based on point-set topology, as introduced
by Alpern and Schneider [4]. Regarding topological methods in distributed computing, one
has to distinguish point-set topology, which considers the space of infinite executions of a
distributed algorithm, from combinatorial topology, which studies the topology of reachable
states of prefixes of admissible executions using simplicial complexes. Fig. 1 illustrates the
objects studied in combinatorial topology vs. point-set topology. As of today, combinatorial
topology has been developed into a quite widely applicable tool for the analysis of distributed
systems [24]. A celebrated result in this area is the Asynchronous Computability Theorem [25],

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 3

[21], for example, which characterizes solvable tasks in wait-free asynchronous shared memory
systems with crashes.

By contrast, point-set topology has only rarely been used in distributed computing. The
primary objects are the infinite executions of a distributed algorithm [4]. By defining a
suitable metric between two infinite executions 𝛾 and 𝛿, each considered as the corresponding
infinite sequence of global states of the algorithm in the respective execution, they can be
viewed as elements of a topological space. For example, according to the common-prefix
metric 𝑑max(𝛾, 𝛿), the executions 𝛾 and 𝛿 are close if the common prefix where no process
can distinguish them is long. A celebrated general result [4] is that closed and dense sets in
the resulting space precisely characterize safety and liveness properties, respectively.

Prior to our paper, however, point-set topology has only occasionally been used for estab-
lishing impossibility results. We are only aware of some early work by one of the authors
of this paper on a generic topological impossibility proof for consensus in compact mod-
els [37], and a topological study of the strongly dependent decision problem [9]. Lubitch and
Moran [31] introduced a construction for schedulers, which leads to limit-closed submodels1

of classic non-closed distributed computing models (like asynchronous systems consisting
of |Π| = 𝑛 processes, up to which 𝑡 < 𝑛 − 1 may crash). In a similar spirit, Kuznetsov,
Rieutord, and He [28] showed, in the setting of combinatorial topology, how to reason about
non-closed models by considering equivalent affine tasks that are closed. Gafni, Kuznetsov,
and Manolescu [20] tried to extend the ACT to also cover some non-compact shared mem-
ory models that way. A similar purpose is served by defining layerings, as introduced by
Moses and Rajsbaum [33]. Whereas such constructions of closed submodels greatly simplify
impossibility proofs, they do not lead to a precise characterization of consensus solvability
in non-closed models: We are not aware of any proof that there is an equivalent closed
submodel for every non-closed model.

Contributions. Building on our PODC’19 paper [38] devoted to consensus in dynamic
networks under message adversaries [2], the present paper provides a complete topolog-
ical characterization of both the non-uniform and uniform deterministic consensus solv-
ability/impossibility border for general distributed systems with benign process and/or
communication faults. To achieve this, we had to add several new topological ideas to the
setting of Alpern and Schneider [4], as detailed below, which not only allowed us to deal
with both closed and non-closed models, but also provided us with a topological explanation
of bivalence [19] and bipotence [33] impossibility proofs. In more detail:

(i) We introduce a simple generic system model for full-information protocols that covers
all distributed system models with benign faults we are aware of. We define new topologies
on the execution space of general distributed algorithms in this model, which allow us
to reason about sequences of local views of (correct) processes, rather than about global
configuration sequences. The 𝑝-view topology is defined by a distance function 𝑑𝑝(𝛾, 𝛿) based
on the common prefix of 𝑝’s local views in the executions 𝛾 and 𝛿. The uniform and non-
uniform minimum topology are induced by the last (correct) process to notice a difference
between two executions. In the appendix, we introduce process-time graphs [8] as a succinct
alternative to configuration sequences in executions, and show that they are equivalent w.r.t.
our topological reasoning. This is accomplished by instantiating our generic system model
as an “operational” system model, based on the widely applicable modeling framework
introduced by Moses and Rajsbaum [33].

1Informally, a model is limit-closed if the limit of a sequence of growing prefixes of admissible executions is

admissible. Note that the wait-free asynchronous model is limit-closed.

, Vol. 1, No. 1, Article . Publication date: October 2024.

4 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

(ii) We show that consensus can be modeled as a continuous decision function ∆ in
our topologies, which maps an admissible execution to its unique decision value. This
allows us to prove that consensus is solvable if and only if all the decision sets, i.e., the
pre-images Σ𝑣 = ∆−1(𝑣) for every decision value 𝑣 ∈ 𝒱, are disconnected from each other.
We also provide a universal uniform and non-uniform consensus algorithm, which rely on
this separation.
(iii) We provide an alternative characterization of uniform and non-uniform consensus

solvability based on the broadcastability of the decision sets and their connected components.
It applies for the usual situation where every vector of values from 𝒱 is an allowed assignment
of the input values of the processes (which is not the case for condition-based consensus
[34], however). Interestingly, our respective results imply that solving consensus with weak
validity and consensus with strong validity is equivalent in any model with benign faults.
Moreover, we provide a characterization of consensus solvability based on the limits of two
infinite sequences of admissible executions, taken from different decision sets. Consensus is
impossible if there is just one pair of such limits with distance 0, which actually coincide
with the forever bivalent/bipotent executions constructed in previous proofs [19, 33].

(iv) We apply our topological approach to different distributed computing models. This
way, we provide a topological explanation of well-known classic results like bivalence proofs
and consensus solvability/impossibility in synchronous systems with general omission faults.
Despite the fact that consensus has been thoroughly studied in virtually any conceivable
distributed computing model, we also provide some new results: We provide a new necessary
and sufficient condition for solving condition-based consensus with strong validity in asyn-
chronous shared-memory systems [34], comprehensively characterize consensus solvability in
dynamic networks with both compact and non-compact message adversaries [2], and give a
novel consensus algorithm that does not rely on an implementation of the Ω failure detector
for systems with an eventually timely 𝑓 -source [3, 26].

Paper organization. In Section 3, we define the elements of the space that will be
endowed with our new topologies in Section 4. Section 5 introduces the consensus problem
in topological terms and provides our abstract characterization result for uniform consensus
(Theorem 5.2) and non-uniform consensus (Theorem 5.3), which also provide universal
algorithms. Alternative characterizations based on limit exclusion and broadcastability
are provided in Section 6 and Section 7, respectively. Our topological characterizations
are complemented by Section 8, which is devoted to applications. Some conclusions in
Section 9 round off our paper. In Appendix A, we introduce process-time graphs and an
operationalization of our generic system model for some classic distributed computing
models.

2 RELATED WORK

Besides the few point-set topology papers [4, 9, 37] and the closed model constructions [20,
28, 31, 33] already mentioned in Section 1, there is an abundant literature on consensus
algorithms and impossibility proofs.
Regarding combinatorial topology, it is worth mentioning that our study of the indistin-

guishability relation of prefixes of executions is closely connected to connectivity properties
of the 𝑟-round protocol complex. However, in non-limit-closed models, we need to go beyond
a uniformly bounded prefix length. This is in sharp contrast to the models usually considered
in combinatorial topology [6, 11], which are limit-closed (typically, wait-free asynchronous).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 5

A celebrated paper on the impossibility of consensus in asynchronous systems with crash
failures is by Fischer, Lynch, and Paterson [19], who also introduced the bivalence proof
technique. This impossibility can be avoided by means of unreliable failure detectors [12] or
condition-based approaches restricting the allowed inputs [34]. Consensus in synchronous
systems with Byzantine-faulty processes has been introduced by Lamport, Shostak, and
Pease [30]. The seminal works by Dolev, Dwork, and Stockmeyer [15] and Dwork, Lynch,
and Stochmeyer [16] on partially synchronous systems introduced important abstractions
like eventual stabilization and eventually bounded message delays, and provided a char-
acterization of consensus solvability under various combinations of synchrony and failure
models. Consensus in systems with weak timely links and crash failures was considered [3, 26].
Algorithms for consensus in systems with general omission process faults were provided by
Perry and Toueg [40].
Perhaps one of the earliest characterizations of consensus solvability in synchronous

distributed systems prone to communication errors is the seminal work by Santoro and
Widmayer [44], where it was shown that consensus is impossible if up to 𝑛− 1 messages may
be lost in each round. This classic result was refined by several authors [13, 45] and, more
recently, by Coulouma, Godard, and Peters [14], where a property of an equivalence relation
on the sets of communication graphs was found that captures exactly the source of consensus
impossibility. Following Afek and Gafni [2], such distributed systems are nowadays known
as dynamic networks, where the per-round directed communication graphs are controlled
by a message adversary. Whereas the paper by Coulouma, Godard, and Peters [14] and
follow-up work [46] studied oblivious message adversaries, where the communication graphs
are picked arbitrarily from a set of candidate graphs, more recent papers [10, 49] studied
eventually stabilizing message adversaries, which guarantee that some rounds with “good”
communication graphs will eventually be generated. Note that oblivious message adversaries
are limit-closed, which is not the case for message adversaries like the eventually stabilizing
ones. Raynal and Stainer explored the relation between message adversaries and failure
detectors [42].

The first characterization of consensus solvability under general message adversaries was
provided by Fevat and Godard [17], albeit only for systems that consist of two processes. A
bivalence argument was used there to show that certain communication patterns, namely,
a “fair” or a special pair of “unfair” communication patterns (see Definition 6.6 for more
information), must be excluded by the message adversary for consensus to become solvable.

3 GENERIC SYSTEM MODEL

We consider distributed message passing or shared memory systems made up of a set of 𝑛
deterministic processes Π with unique identifiers, taken from [𝑛] = {1, . . . , 𝑛} for simplicity.
We denote individual processes by letters 𝑝, 𝑞, etc.

For our characterization of consensus solvability, we restrict our attention to full-information
executions, in which processes continuously relay all the information they gathered to all
other processes, and eventually apply some local decision function. The exchanged informa-
tion includes the process’s initial value, but also, more importantly, a record of all events
(message receptions, shared memory readings, object invocations, . . .) witnessed by the
process. As such, our general system model is hence applicable whenever no constraints
are placed on the size of the local memory and the size of values to be communicated
(e.g., message/shared-register size). In particular, it is applicable to classical synchronous
and asynchronous message-passing and shared-memory models, with benign process and

, Vol. 1, No. 1, Article . Publication date: October 2024.

6 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

communication faults. In Appendix A, we will also provide a topologically equivalent “oper-
ationalization” of our generic system model built on top of process-time graphs [8], based
the modeling framework introduced by Moses and Rajsbaum [33].

Formally, a (full-information) execution is a sequence of (full-information) configurations.
For every process 𝑝 ∈ Π, there is an equivalence relation ∼𝑝 on the set 𝒞 of configurations—
the 𝑝-indistinguishability relation—indicating whether process 𝑝 can locally distinguish two
configurations, i.e., if it has the same view 𝑉𝑝(𝐶) = 𝑉𝑝(𝐷) in 𝐶 and 𝐷. In this case we write
𝐶 ∼𝑝 𝐷. Note that two configurations that are indistinguishable for all processes need not
be equal. In fact, configurations usually include some state of the communication media that
is not accessible to any process.
In addition to the indistinguishability relations, we assume the existence of a function

𝑂𝑏 : 𝒞 → 2Π that specifies the set of obedient processes in a given configuration. Obedient
processes must follow the algorithm and satisfy the (consensus) specification; usually, 𝑂𝑏(𝐶)
is the set of non-faulty processes. Again, this information is usually not accessible to the
processes. We make the restriction that disobedient processes cannot recover and become
obedient again, i.e., that 𝑂𝑏(𝐶) ⊇ 𝑂𝑏(𝐶 ′) if 𝐶 ′ is reachable from 𝐶. We extend the obedience
function to the set Σ ⊆ 𝒞𝜔 of admissible executions in a given model by setting 𝑂𝑏 : Σ→ 2Π,
𝑂𝑏(𝛾) =

⋂︀
𝑡≥0 𝑂𝑏(𝐶𝑡) where 𝛾 = (𝐶𝑡)𝑡≥0. Here, 𝑡 ∈ N0 = N ∪ {0} denotes a notion of

global time that is not accessible to the processes. Consequently, a process is obedient in an
execution if it is obedient in all of its configurations. We further make the restriction that
there is at least one obedient process in every execution, i.e., that 𝑂𝑏(𝛾) ̸= ∅ for all 𝛾 ∈ Σ.
Moreover, we assume that 𝑂𝑏(𝐶) = Π for every initial configuration, in order to make input
value assignments (see below) well-defined for all processes.

We also assume that every process has the possibility to weakly count the steps it has
taken. Formally, we assume the existence of weak clock functions 𝜒𝑝 : 𝒞 → N0 such that
for every execution 𝛿 = (𝐷𝑡)𝑡≥0 ∈ Σ and every configuration 𝐶 ∈ 𝒞, the relation 𝐶 ∼𝑝 𝐷𝑡

implies 𝑡 ≥ 𝜒𝑝(𝐶). Additionally, we assume that 𝜒𝑝(𝐷
𝑡)→∞ as 𝑡→∞ for every execution

𝛿 ∈ Σ and every obedient process 𝑝 ∈ 𝑂𝑏(𝛿). 𝜒𝑝 hence ensures that a configuration 𝐷𝑡

where 𝑝 has some specific view 𝑉𝑝(𝐷
𝑡) = 𝑉𝑝(𝐶) cannot occur before time 𝑡 = 𝜒𝑝(𝐶) in any

execution 𝛿. Our weak clock functions hence allow to model lockstep synchronous rounds by
choosing 𝜒(𝐷𝑡) = 𝑡 for any execution 𝛿 = (𝐷𝑡)𝑡≥0 ∈ Σ, but are also suitable for modeling
non-lockstep, even asynchronous, executions (see Appendix A.2).

For the discussion of decision problems, we need to introduce the notion of input values,
which will also be called initial values in the sequel. Since we limit ourselves to the consensus
problem, we need not distinguish between the sets of input values and output values. We
thus just assume the existence of a finite set 𝒱 of potential input values, and require that
the potential output values are also in 𝒱. Furthermore, the initial configuration 𝐼 = 𝐼(𝛾) of
any execution 𝛾 is assumed to contain an input value 𝐼𝑝 ∈ 𝒱 for every process 𝑝 ∈ Π. This
information is locally accessible to the processes, i.e., each process can access its own initial
value (and those it has heard from). We assume that there is a unique initial configuration
for every input-value assignment of the processes.
A decision algorithm is a collection of functions ∆𝑝 : 𝒞 → 𝒱 ∪ {⊥} such that ∆𝑝(𝐶) =

∆𝑝(𝐷) if 𝐶 ∼𝑝 𝐷 and ∆𝑝(𝐶
′) = ∆𝑝(𝐶) if 𝐶 ′ is reachable from 𝐶 and ∆𝑝(𝐶) ̸=⊥, where

⊥̸∈ 𝒱 represents the fact that 𝑝 has not decided yet. That is, decisions depend on local
information only and are irrevocable. Every process 𝑝 thus has at most one decision value in
an execution. We can extend the decision function to executions by setting ∆𝑝 : Σ→ 𝒱∪{⊥},

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 7

∆𝑝(𝛾) = lim𝑡→∞ ∆𝑝(𝐶
𝑡) where 𝛾 = (𝐶𝑡)𝑡≥0. We say that 𝑝 has decided value 𝑣 ̸=⊥ in

configuration 𝐶 or execution 𝛾 if ∆𝑝(𝐶) = 𝑣 or ∆𝑝(𝛾) = 𝑣, respectively.
We will consider both non-uniform and uniform consensus with either weak or strong

validity as our decision tasks, which are defined as follows:

Definition 3.1 (Non-uniform and uniform consensus). A non-uniform consensus algorithm
𝒜 is a decision algorithm that ensures the following properties in all of its admissible
executions:

(T) Eventually, every obedient process must irrevocably decide. (Termination)
(A) If two obedient processes have decided, then their decision values are equal. (Agreement)
(V) If the initial values of processes are all equal to 𝑣, then 𝑣 is the only possible decision

value. (Validity)

In a strong consensus algorithm 𝒜, weak validity (V) is replaced by

(SV) The decision value must be the input value of some process. (Strong Validity)

A uniform consensus algorithm 𝒜 must ensure (T), (V) or (SV), and

(UA) If two processes have decided, then their decision values are equal. (Uniform Agreement)

Note that we will primarily focus on consensus with weak validity, which is the usual
meaning of the term consensus unless otherwise noted.

By Termination, Agreement, and the fact that every execution has at least one obedient
process, for every consensus algorithm, we can define the consensus decision function
∆ : Σ→ 𝒱 by setting ∆(𝛾) = ∆𝑝(𝛾) where 𝑝 is any process that is obedient in execution 𝛾,
i.e., 𝑝 ∈ 𝑂𝑏(𝛾). Recall that the initial value of process 𝑝 in the execution 𝛾 is denoted 𝐼𝑝(𝛾)
or just 𝐼𝑝 if 𝛾 is clear from the context.
To illustrate2 the difference between uniform and non-uniform consensus, as well as to

motivate the two topologies serving to characterize their solvability, consider the example of
two synchronous non-communicating processes. The set of processes is Π = {1, 2} and the set
of possible values is 𝒱 = {0, 1}. Processes proceed in lock-step synchronous rounds, but do
not communicate. Thus, the only information a process has access to is its own initial value
and the current time. The set of executions Σ and the obedience function 𝑂𝑏 are defined
such that one of the processes eventually becomes disobedient in every execution, but not
both processes. In this model, it is trivial to solve non-uniform consensus by immediately
deciding on one’s own initial value, but uniform consensus is impossible.

4 TOPOLOGICAL STRUCTURE OF FULL-INFORMATION EXECUTIONS

In this section, we will endow the various sets introduced in Section 3 with suitable topologies.
We first recall briefly the basic topological notions that are needed for our exposition. For a
more thorough introduction, however, the reader is advised to refer to a textbook [36].
A topology on a set 𝑋 is a family 𝒯 of subsets of 𝑋 such that ∅ ∈ 𝒯 , 𝑋 ∈ 𝒯 , and 𝒯

contains all arbitrary unions as well as all finite intersections of its members. We call 𝑋
endowed with 𝒯 , often written as (𝑋, 𝒯), a topological space and the members of 𝒯 open
sets. The complement of an open set is called closed and sets that are both open and closed,
such as ∅ and 𝑋 itself, are called clopen. A topological space is disconnected, if it contains a
nontrivial clopen set, which means that it it can be partitioned into two disjoint open sets.
It is connected if it is not disconnected.

2We chose this simplistic illustrating example in order not to obfuscate the essentials. See Section 8 for more
realistic examples.

, Vol. 1, No. 1, Article . Publication date: October 2024.

8 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

A function from space 𝑋 to space 𝑌 is continuous if the pre-image of every open set in 𝑌
is open in 𝑋. Given a space (𝑋, 𝒯), 𝑌 ⊆ 𝑋 is called a subspace of 𝑋 if 𝑌 is equipped with
the subspace topology {𝑌 ∩ 𝑈 | 𝑈 ∈ 𝒯 }. Given 𝐴 ⊆ 𝑋, the closure of 𝐴 is the intersection
of all closed sets containing 𝐴. For a space 𝑋, if 𝐴 ⊆ 𝑋, we call 𝑥 a limit point of 𝐴 if
it belongs to the closure of 𝐴 ∖ {𝑥}. It can be shown that the closure of 𝐴 is the union
of 𝐴 with all limit points of 𝐴. Space 𝑋 is called compact if every family of open sets that
covers 𝑋 contains a finite sub-family that covers 𝑋.
If 𝑋 is a nonempty set, then we call any function 𝑑 : 𝑋 ×𝑋 → R+ a distance function

on 𝑋. Define 𝒯𝑑 ⊆ 2𝑋 by setting 𝑈 ∈ 𝒯𝑑 if and only if for all 𝑥 ∈ 𝑈 there exists some 𝜀 > 0
such that 𝐵𝜀(𝑥) = {𝑦 ∈ 𝑋 | 𝑑(𝑥, 𝑦) < 𝜀} ⊆ 𝑈 .

Many topological spaces are defined by metrics, i.e., symmetric, positive definite distance
functions for which the triangle inequality 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧)+𝑑(𝑧, 𝑦) holds for any 𝑥, 𝑦, 𝑧 ∈ 𝑋.
For a distance function to define a (potentially non-metrizable) topology though, no additional
assumptions are necessary:

Lemma 4.1. If 𝑑 is a distance function on 𝑋, then 𝒯𝑑 is a topology on 𝑋.

Proof. Firstly, we show that 𝒯𝑑 is closed under unions. So let 𝒰 ⊆ 𝒯𝑑. We will show that⋃︀
𝒰 ∈ 𝒯𝑑. Let 𝑥 ∈

⋃︀
𝒰 . Then, by definition of the set union, there exists some 𝑈 ∈ 𝒰 such

that 𝑥 ∈ 𝑈 . But since 𝑈 ∈ 𝒯𝑑, there exists some 𝜀 > 0 such that

𝐵𝜀(𝑥) ⊆ 𝑈 ⊆
⋃︁
𝒰 ,

which shows that
⋃︀
𝒰 ∈ 𝒯𝑑.

Secondly, we show that 𝒯𝑑 is closed under finite intersections. Let 𝑈1, 𝑈2, . . . , 𝑈𝑘 ∈ 𝒯𝑑. We

will show that
⋂︀𝑘

ℓ=1 𝑈ℓ ∈ 𝒯𝑑. Let 𝑥 ∈
⋂︀𝑘

ℓ=1 𝑈ℓ. Then, by definition of the set intersection,
𝑥 ∈ 𝑈ℓ for all 1 ≤ ℓ ≤ 𝑘. Because all 𝑈ℓ are in 𝒯𝑑, there exist 𝜀1, 𝜀2, . . . , 𝜀𝑘 > 0 such that
𝐵𝜀ℓ(𝑥) ⊆ 𝑈ℓ for all 1 ≤ ℓ ≤ 𝑘. If we set 𝜀 = min{𝜀1, 𝜀2, . . . , 𝜀𝑘}, then 𝜀 > 0. Since we have
𝐵𝛾(𝑥) ⊆ 𝐵𝛿(𝑥) whenever 𝛾 ≤ 𝛿, we also have

𝐵𝜀(𝑥) ⊆ 𝐵𝜀ℓ(𝑥) ⊆ 𝑈ℓ

for all 1 ≤ ℓ ≤ 𝑘. But this shows that 𝐵𝜀(𝑥) ⊆
⋂︀𝑘

ℓ=1 𝑈ℓ, which means that
⋂︀𝑘

ℓ=1 𝑈ℓ ∈ 𝒯𝑑.
Since it is easy to check that ∅, 𝑋 ∈ 𝒯𝑑 as well, 𝒯𝑑 is indeed a topology. □

We will henceforth refer to 𝒯𝑑 as the topology induced by 𝑑.
An execution is a sequence of configurations, i.e., an element of the product space 𝒞𝜔.

Since our primary object of study are executions, we will endow this space with a topology
as follows: The product topology, which is a distinguished topology on any product space
Π𝜄∈𝐼𝑋𝜄 of topological spaces, is defined as the coarsest topology such that all projection
maps 𝜋𝑖 : Π𝜄∈𝐼𝑋𝜄 → 𝑋𝑖 (where 𝜋𝑖 extracts the 𝑖-th element of the sequence) are continuous.
Recall that a topology 𝒯 ′ is coarser than a topology 𝒯 for the same space if every open set
𝑈 ∈ 𝒯 ′ is also open in 𝒯 .

It turns out that the product topology on the space 𝒞𝜔 is induced by a distance function,
whose form is known in a special case that covers our needs:

Lemma 4.2. Let 𝑑 be a distance function on 𝑋 that only takes the values 0 or 1. Then
the product topology 𝒯 𝜔 of 𝑋𝜔, where every copy of 𝑋 is endowed with the topology induced
by 𝑑, is induced by the distance function

𝑋𝜔 ×𝑋𝜔 → R , (𝛾, 𝛿) ↦→ 2− inf{𝑡≥0|𝑑(𝐶𝑡,𝐷𝑡)>0}

where 𝛾 = (𝐶𝑡)𝑡≥0 and 𝛿 = (𝐷𝑡)𝑡≥0.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 9

Proof. We first show that all projections 𝜋𝑡 : 𝑋𝜔 → 𝑋 are continuous when endowing 𝑋𝜔

with the product topology 𝒯 𝜔: Let 𝑈 ⊆ 𝑋 be open and 𝐶 ∈ 𝑈 , i.e., 𝑑(𝐶,𝐷) = 0 implies
𝐷 ∈ 𝑈 . Let 𝛾 = (𝐶𝑡)𝑡≥0 ∈ (𝜋𝑡)−1[𝑈] and set 𝜀 = 2−𝑡. Then,

𝐵𝜀(𝛾) =
{︀
𝛿 = (𝐷𝑡)𝑡≥0 ∈ 𝑋𝜔 | ∀0 ≤ 𝑠 ≤ 𝑡 : 𝑑(𝐶𝑠, 𝐷𝑠) = 0

}︀
⊆

{︀
𝛿 = (𝐷𝑡)𝑡≥0 ∈ 𝑋𝜔 | 𝑑(𝐶𝑡, 𝐷𝑡) = 0

}︀
= (𝜋𝑡)−1

[︀
{𝐷 ∈ 𝑋 | 𝑑(𝐶𝑡, 𝐷) = 0}

]︀
⊆ (𝜋𝑡)−1[𝑈],

where the last inclusion follows from the openness of 𝑈 . Since (𝜋𝑡)−1[𝑈] is hence open in
𝒯 𝜔, the continuity of 𝜋𝑡 follows.
Let now 𝒯0 be an arbitrary topology on 𝑋𝜔 for which all projections 𝜋𝑡 are continuous.

We will show that 𝒯 𝜔 ⊆ 𝒯0, which reveals that 𝒯 𝜔 is the coarsest topology with continuous
projections, i.e., the product topology of 𝑋𝜔 where every copy of 𝑋 is endowed by 𝒯𝑑. This
will establish our lemma.

So let 𝐸 ∈ 𝒯 𝜔 and take any 𝛾 = (𝐶𝑡)𝑡≥0 ∈ 𝐸. There exists some 𝜀 > 0 such that
𝐵𝜀(𝛾) ⊆ 𝐸. Choose 𝑡 ∈ N0 such that 2−𝑡 ≤ 𝜀, and set

𝐹 =
(︀ 𝑡∏︁
𝑠=0

𝐵1(𝐶
𝑠)
)︀
×𝑋𝜔 =

𝑡⋂︁
𝑠=0

(𝜋𝑠)−1
[︀
𝐵1(𝐶

𝑠)
]︀

⊆
{︀
𝛿 = (𝐷𝑡)𝑡≥0 ∈ 𝑋𝜔 | ∀0 ≤ 𝑠 ≤ 𝑡 : 𝑑(𝐶𝑠, 𝐷𝑠) = 0

}︀
= 𝐵𝜀(𝛾) .

Then, 𝐹 is open with respect to 𝒯0 as a finite intersection of open sets: After all, every
(𝜋𝑠)−1

[︀
𝐵1(𝐶

𝑠)
]︀
is open by the continuity of the projection 𝜋𝑠. But since 𝐹 ⊆ 𝐵𝜀(𝛾) ⊆ 𝐸,

this shows that 𝐸 contains a 𝒯0-open neighborhood for each of its points, i.e., 𝐸 ∈ 𝒯0. □

4.1 Process-view distance function for executions

In previous work on point-set topology in distributed computing [4, 37], the set of configu-
rations 𝒞 of some fixed algorithm 𝒜 was endowed with the discrete topology, where every
subset 𝑈 ⊆ 𝒞 is open. The discrete topology is induced by the discrete metric 𝑑max(𝐶,𝐷) = 1
if 𝐶 ̸= 𝐷 and 0 otherwise (for configurations 𝐶,𝐷 ∈ 𝒞). Moreover, 𝒞𝜔 was endowed with
the corresponding product topology, which is induced by the common-prefix metric

𝑑max : Σ× Σ→ R+ , 𝑑max(𝛾, 𝛿) = 2− inf{𝑡≥0|𝐶𝑡 ̸=𝐷𝑡} ,

where 𝛾 = (𝐶𝑡)𝑡≥0 and 𝛿 = (𝐷𝑡)𝑡≥0, according to Lemma 4.2. Informally, 𝑑max(𝛾, 𝛿) decreases
with the length of the common prefix where no process can distinguish 𝛾 and 𝛿.

By contrast, we define the 𝑝-view distance function 𝑑𝑝 on the set 𝒞 of configurations for
every process 𝑝 ∈ Π by

𝑑𝑝(𝐶,𝐷) =

{︃
0 if 𝐶 ∼𝑝 𝐷 and 𝑝 ∈ 𝑂𝑏(𝐶) ∩𝑂𝑏(𝐷), or 𝐶 = 𝐷

1 otherwise .

Extending this distance function from configurations to executions, we define the 𝑝-view
distance function by

𝑑𝑝 : Σ× Σ→ R+ , 𝑑𝑝(𝛾, 𝛿) = 2− inf{𝑡≥0|𝑑𝑝(𝐶
𝑡,𝐷𝑡)>0}

where 𝛾 = (𝐶𝑡)𝑡≥0 and 𝛿 = (𝐷𝑡)𝑡≥0.
Figure 2 illustrates the distance function 𝑑𝑝, and Lemma 4.3 reveals that it defines a

pseudometric:

, Vol. 1, No. 1, Article . Publication date: October 2024.

10 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

𝛾0

𝛾0
3𝛾0

2𝛾0
1

𝛿0

𝛿01 𝛿
0
2 𝛿

0
3

𝛾1 𝛿1

𝛾2 𝛿2

Fig. 2. Comparison of the 𝑝-view and common-prefix metric. The first three configurations of each of
the two executions 𝛾 and 𝛿 with three processes and two different possible local states (dark blue and
light yellow) are depicted. We have 𝑑max(𝛾, 𝛿) = 𝑑3(𝛾, 𝛿) = 1 and 𝑑2(𝛾, 𝛿) = 1/2.

Lemma 4.3 (Pseudometric 𝑑𝑝). The 𝑝-view distance function 𝑑𝑝 is a pseudometric,
i.e., it satisfies:

𝑑𝑝(𝛾, 𝛾) = 0

𝑑𝑝(𝛾, 𝛿) = 𝑑𝑝(𝛿, 𝛾) (symmetry)

𝑑𝑝(𝛽, 𝛿) ≤ 𝑑𝑝(𝛽, 𝛾) + 𝑑𝑝(𝛾, 𝛿) (triangle inequality)

Proof. We have 𝑑𝑝(𝛾, 𝛾) = 0 since 𝑑𝑝(𝐶
𝑡, 𝐶𝑡) = 0 for all 𝑡 ≥ 0 where 𝛾 = (𝐶𝑡)𝑡≥0.

Symmetry follows immediately from the definition. As for the triangle inequality, write
𝛽 = (𝐵𝑡)𝑡≥0, 𝛾 = (𝐶𝑡)𝑡≥0, and 𝛿 = (𝐷𝑡)𝑡≥0. We have:

max{𝑑𝑝(𝛽, 𝛾), 𝑑𝑝(𝛾, 𝛿)} = 2− inf{𝑡≥0|𝑑𝑝(𝐵
𝑡,𝐶𝑡)>0 ∨ 𝑑𝑝(𝐶

𝑡,𝐷𝑡)>0}

Since 𝑑𝑝(𝐵
𝑡, 𝐷𝑡) > 0 =⇒ 𝑑𝑝(𝐵

𝑡, 𝐶𝑡) > 0 ∨ 𝑑𝑝(𝐶
𝑡, 𝐷𝑡) > 0, it follows that

inf{𝑡 ≥ 0 | 𝑑𝑝(𝐵𝑡, 𝐷𝑡) > 0} ≥ inf{𝑡 ≥ 0 | 𝑑𝑝(𝐵𝑡, 𝐶𝑡) > 0 ∨ 𝑑𝑝(𝐶
𝑡, 𝐷𝑡) > 0}

and thus
𝑑𝑝(𝛽, 𝛿) ≤ max{𝑑𝑝(𝛽, 𝛾), 𝑑𝑝(𝛾, 𝛿)} ,

which concludes the proof. □

4.2 Uniform topology for executions

The uniform minimum topology (abbreviated uniform topology) on the set Σ of executions
is induced by the distance function

𝑑u(𝛾, 𝛿) = min
𝑝∈Π

𝑑𝑝(𝛾, 𝛿) .

Note that 𝑑u does not necessarily satisfy the triangle inequality (nor definiteness): There
may be executions with 𝑑𝑝(𝛽, 𝛾) = 0 and 𝑑𝑞(𝛾, 𝛿) = 0 but 𝑑𝑟(𝛽, 𝛿) > 0 for all 𝑟 ∈ Π. Hence,
the topology on 𝒞𝜔 induced by 𝑑u lacks many of the convenient (separation) properties of
metric spaces, but will turn out to be sufficient for the characterization of the solvability of
uniform consensus (see Theorem 5.2).
The next lemma shows that the decision function of an algorithm that solves uniform

consensus is always continuous with respect to the uniform topology.

Lemma 4.4. Let ∆ : Σ→ 𝒱 be the consensus decision function of a uniform consensus
algorithm. Then, ∆ is continuous with respect to the uniform distance function 𝑑u.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 11

Proof. Let 𝑣 ∈ 𝒱 and let Σ𝑣 = ∆−1[{𝑣}] be its inverse image under the decision
function ∆. We will show that for all executions 𝛾 ∈ Σ𝑣 there exists a time 𝑇 such that
𝐵2−𝑇 (𝛾) ⊆ Σ𝑣, proving that Σ𝑣 is open. Since the singleton sets {𝑣} form a base of the
discrete topology on 𝒱, continuity follows.

Let 𝛾 ∈ Σ𝑣. Let 𝑇 be a time greater than both the latest decision time of the processes in
𝑂𝑏(𝛾) and the latest time any process becomes disobedient in execution 𝛾 = (𝐶𝑡)𝑡≥0. By the
Termination property and the fact that disobedient processes cannot become obedient again,
we have 𝑇 <∞. Because 𝑇 is larger than the latest time a process becomes disobedient, we
have 𝑂𝑏(𝛾) = 𝑂𝑏(𝐶𝑇).

Using the notation 𝛾 = (𝐶𝑡)𝑡≥0 and 𝛿 = (𝐷𝑡)𝑡≥0, we have:

𝐵2−𝑇 (𝛾) =
{︀
𝛿 ∈ Σ | 𝑑u(𝛾, 𝛿) < 2−𝑇

}︀
=

{︀
𝛿 ∈ Σ | ∃𝑝 ∈ Π: 𝑑𝑝(𝐶

𝑡, 𝐷𝑡) < 2−𝑇
}︀

=
{︀
𝛿 ∈ Σ | ∃𝑝 ∈ Π ∀𝑡 ≤ 𝑇 : 𝐶𝑡 ∼𝑝 𝐷𝑡 ∧ 𝑝 ∈ 𝑂𝑏(𝐶𝑡) ∩𝑂𝑏(𝐷𝑡)

}︀
=

{︀
𝛿 ∈ Σ | ∃𝑝 ∈ Π: 𝐶𝑇 ∼𝑝 𝐷𝑇 ∧ 𝑝 ∈ 𝑂𝑏(𝐶𝑇) ∩𝑂𝑏(𝐷𝑇)

}︀
If 𝛿 ∈ 𝐵2−𝑇 (𝛾), then 𝐶𝑇 ∼𝑝 𝐷𝑇 for some 𝑝 ∈ 𝑂𝑏(𝐶𝑇) ∩ 𝑂𝑏(𝐷𝑇). Since 𝑝 has decided
∆(𝛾) at time 𝑇 in execution 𝛾 and 𝑝 is obedient until time 𝑇 in execution 𝛿, process 𝑝 has
also decided ∆(𝛾) at time 𝑇 in execution 𝛿. By Uniform Agreement and Termination, all
processes in 𝑂𝑏(𝛿) decide ∆(𝛾) = 𝑣 as well. In other words 𝐵2−𝑇 (𝛾) ⊆ Σ𝑣, which concludes
the proof. □

For an illustration in our non-communicating two-process example, denote by 𝛾(𝑇) the
execution in which process 1 has initial value 0, process 2 has initial value 1, and process 1
becomes disobedient at time 𝑇 . Similarly, denote by 𝛿(𝑈) the execution with the same initial
values and in which process 2 becomes disobedient at time 𝑈 . Since there is no means of
communication between the two processes, by Validity, each obedient process necessarily
has to eventually decide on its own initial value, i.e., ∆(𝛾(𝑇)) = 1 and ∆(𝛿(𝑇)) = 0. The
uniform distance between these executions is equal to 𝑑u(𝛾

(𝑇), 𝛿(𝑈)) = 2−max{𝑇,𝑈}. Thus,
every 𝜀-neighborhood of 𝛾(𝑇) contains execution 𝛿(𝑈) if 𝑈 is chosen large enough to ensure
2−𝑈 < 𝜀. The set of 1-deciding executions is thus not open in the uniform topology. But
this means that the algorithm’s decision function ∆ cannot be continuous. Lemma 4.4 hence
implies that there is no uniform consensus algorithm in the non-communicating two-process
model (which is also confirmed by the more realistic application example in Section 8.2).

4.3 Non-uniform topology for executions

Whereas the 𝑝-view distance function given by Section 4.1 is also adequate for non-uniform
consensus, this is not the case for the uniform distance function as defined in Section 4.2.
The appropriate non-uniform minimum topology (abbreviated non-uniform topology) on the
set Σ of executions is induced by the distance function

𝑑nu(𝛾, 𝛿) =

{︃
min𝑝∈𝑂𝑏(𝛾)∩𝑂𝑏(𝛿) 𝑑𝑝(𝛾, 𝛿) if 𝑂𝑏(𝛾) ∩𝑂𝑏(𝛿) ̸= ∅
1 if 𝑂𝑏(𝛾) ∩𝑂𝑏(𝛿) = ∅ .

Like for 𝑑u, neither definiteness nor the triangle inequality need to be satisfied by 𝑑nu.
The resulting non-uniform topology is finer than the uniform topology, however, since the
minimum is taken over the smaller set 𝑂𝑏(𝛾) ∩ 𝑂𝑏(𝛿) ⊆ Π, which means that 𝑑u(𝛾, 𝛿) ≤
𝑑nu(𝛾, 𝛿). In particular, this implies that every decision function that is continuous with
respect to the uniform topology is also continuous with respect to the non-uniform topology.

, Vol. 1, No. 1, Article . Publication date: October 2024.

12 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

Of course, this also follows from Lemma 4.4 and the fact that every uniform consensus
algorithm also solves non-uniform consensus.

The following Lemma 4.5 is the analog of Lemma 4.4:

Lemma 4.5. Let ∆ : Σ→ 𝒱 be the consensus decision function of a non-uniform consensus
algorithm. Then, ∆ is continuous with respect to the non-uniform distance function 𝑑nu.

Proof. We again prove that every inverse image Σ𝑣 = ∆−1[{𝑣}] of a value 𝑣 ∈ 𝒱 is open.
Let 𝛾 ∈ Σ𝑣. Let 𝑇 be the latest decision time of the processes in 𝑂𝑏(𝛾) in execution 𝛾. By

the Termination property, we have 𝑇 <∞. Using the notation 𝛾 = (𝐶𝑡)𝑡≥0 and 𝛿 = (𝐷𝑡)𝑡≥0,
we have:

𝐵2−𝑇 (𝛾) =
{︀
𝛿 ∈ Σ | 𝑑nu(𝛾, 𝛿) < 2−𝑇

}︀
=

{︀
𝛿 ∈ Σ | ∃𝑝 ∈ 𝑂𝑏(𝛾) ∩𝑂𝑏(𝛿) : 𝑑𝑝(𝛾, 𝛿) < 2−𝑇

}︀
=

{︀
𝛿 ∈ Σ | ∃𝑝 ∈ 𝑂𝑏(𝛾) ∩𝑂𝑏(𝛿) : ∀𝑡 ≤ 𝑇 : 𝐶𝑡 ∼𝑝 𝐷𝑡

}︀
If 𝛿 ∈ 𝐵2−𝑇 (𝛾), then 𝐶𝑇 ∼𝑝 𝐷𝑇 for some 𝑝 ∈ 𝑂𝑏(𝛾)∩𝑂𝑏(𝛿). Denote by 𝑇𝑝 the decision time
of process 𝑝 in 𝛾. Since 𝑇𝑝 ≤ 𝑇 , we also have 𝐶𝑇𝑝 ∼𝑝 𝐷𝑇𝑝 But this means that process 𝑝
decides value ∆(𝛾) at time 𝑇𝑝 in both executions 𝛾 and 𝛿, hence ∆(𝛿) = ∆(𝛾) = 𝑣 and
𝐵2−𝑇 (𝛾) ⊆ Σ𝑣. □

For an illustration in the non-communicating two-process example used in Section 4.2, note
that the trivial algorithm that immediately decides on its initial value satisfies ∆(𝛾(𝑇)) = 1
and ∆(𝛿(𝑈)) = 0. The algorithm does solve non-uniform consensus, since it is guaranteed
that one of the processes eventually becomes disobedient. In contrast to the uniform
distance function, the non-uniform distance function satisfies 𝑑nu(𝛾

(𝑇), 𝛿(𝑈)) = 1 since
𝑂𝑏(𝛾(𝑇)) ∩𝑂𝑏(𝛿(𝑈)) = ∅. This means that the minimum distance between any 0-deciding
and any 1-deciding execution is at least 1. It is hence possible to separate the two sets of
executions by sets that are open in the non-uniform topology, so consensus is solvable here,
according to the considerations in the following section. Again, this is confirmed by the more
realistic application example in Section 8.2.

5 GENERAL CONSENSUS CHARACTERIZATION FOR FULL-INFORMATION
EXECUTIONS

In this section, we will provide our main topological conditions for uniform and non-uniform
consensus solvability.

Definition 5.1 (𝑣-valent execution). We call an execution 𝛾𝑣 ∈ Σ, for 𝑣 ∈ 𝒱 , 𝑣-valent, if it
starts from an initial configuration 𝐼 where all processes 𝑝 ∈ Π have the same initial value
𝐼𝑝 = 𝑣.

Theorem 5.2 (Characterization of uniform consensus). Uniform consensus is
solvable if and only if there exists a partition of the set Σ of admissible executions into sets
Σ𝑣, 𝑣 ∈ 𝒱, such that the following holds:

(1) Every Σ𝑣 is a clopen set in Σ with respect to the uniform topology induced by 𝑑u.
(2) If execution 𝛾 ∈ Σ is 𝑣-valent, then 𝛾 ∈ Σ𝑣.

Proof. (⇒): Define Σ𝑣 = ∆−1(𝑣), where ∆ is the decision function of a uniform consensus
algorithm. This is a partition of Σ by Termination, and Validity implies property (2). It
thus only remains to show openness of the Σ𝑣 (which immediately implies clopenness, as

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 13

Σ ∖ Σ𝑣 =
⋃︀

𝑣 ̸=𝑤∈𝒱 Σ𝑤 must be open), which follows from the continuity of ∆ : Σ→ 𝒱 , since
every singleton set {𝑣} is open in the discrete topology.
(⇐): We define a uniform consensus algorithm by defining the decision functions ∆𝑝 : 𝒞 →
𝒱 ∪ {⊥} as

∆𝑝(𝐶) =

{︃
𝑣 if {𝛿 ∈ Σ | ∃𝑡 : 𝐶 ∼𝑝 𝐷𝑡} ⊆ Σ𝑣,

⊥ otherwise,

where we use the notation 𝛿 = (𝐷𝑡)𝑡≥0. The function ∆ is well defined since the sets Σ𝑣 are
pairwise disjoint.
We first show Termination of the resulting algorithm. Let 𝛾 ∈ Σ, let 𝑣 ∈ 𝒱 such that

𝛾 ∈ Σ𝑣, and let 𝑝 ∈ 𝑂𝑏(𝛾). Since Σ𝑣 is open with respect to the uniform topology, there
exists some 𝜀 > 0 such that {𝛿 ∈ Σ | 𝑑u(𝛾, 𝛿) < 𝜀} ⊆ Σ𝑣. By definition of 𝑑u, we have
𝑑u(𝛾, 𝛿) ≤ 𝑑𝑝(𝛾, 𝛿) and hence {𝛿 ∈ Σ | 𝑑𝑝(𝛾, 𝛿) < 𝜀} ⊆ {𝛿 ∈ Σ | 𝑑u(𝛾, 𝛿) < 𝜀} ⊆ Σ𝑣.

Writing 𝛾 = (𝐶𝑡)𝑡≥0, let 𝑇 be the smallest integer such that 2−𝜒𝑝(𝐶
𝑡) ≤ 𝜀 for all

𝑡 ≥ 𝑇 . Such a 𝑇 exists since 𝜒𝑝(𝐶
𝑡) → ∞ as 𝑡 → ∞. Then, for every 𝑡 ≥ 𝑇 , we have

{𝛿 ∈ Σ | ∃𝑠 : 𝐶𝑡 ∼𝑝 𝐷𝑠} ⊆
{︁
𝛿 ∈ Σ | 𝑑𝑝(𝛾, 𝛿) < 2−𝜒𝑝(𝐶

𝑡)
}︁
⊆ Σ𝑣. In particular, ∆𝑝(𝐶

𝑡) = 𝑣

for all 𝑡 ≥ 𝑇 , i.e., process 𝑝 decides value 𝑣 in execution 𝛾.
We next show Uniform Agreement. For the sake of a contradiction, assume that process 𝑞

decides value 𝑤 ̸= 𝑣 in configuration 𝐶 in execution 𝛾 ∈ Σ𝑣. But then, by definition of
the function ∆𝑞, we have 𝛾 ∈ {𝛿 ∈ Σ | ∃𝑡 : 𝐶 ∼𝑞 𝐷𝑡} ⊆ Σ𝑤. But this is impossible since
Σ𝑣 ∩ Σ𝑤 = ∅.
Validity immediately follows from property (2). □

Theorem 5.3 (Characterization of non-uniform consensus). Non-uniform con-
sensus is solvable if and only if there exists a partition of the set Σ of admissible executions
into sets Σ𝑣, 𝑣 ∈ 𝒱, such that the following holds:

(1) Every Σ𝑣 is a clopen set in Σ with respect to the non-uniform topology induced by 𝑑nu.
(2) If execution 𝛾 ∈ Σ is 𝑣-valent, then 𝛾 ∈ Σ𝑣.

Proof. The proof is similar to that of Theorem 5.2, except that the definition of ∆𝑝 is

∆𝑝(𝐶) =

{︃
𝑣 if {𝛿 ∈ Σ | ∃𝑡 : 𝐶 ∼𝑝 𝐷𝑡 ∧ 𝑝 ∈ 𝑂𝑏(𝛿)} ⊆ Σ𝑣,

⊥ otherwise ,

i.e., we just have to add the constraint that 𝑝 ∈ 𝑂𝑏(𝛿) to the executions considered in the
proof. □

If Σ has only finitely many connected components, i.e., only finitely many maximal
connected sets, then every connected component is necessarily clopen. Consequentely, these
characterizations give rise to the following meta-procedure for determining whether consensus
is solvable and constructing an algorithm if it is. It requires knowledge of the connected
components of the space Σ of admissible executions with respect to the appropriate topology:

(1) Initially, start with an empty set Σ𝑣 for every value 𝑣 ∈ 𝒱.
(2) Add to Σ𝑣 the connected components of Σ that contain an execution with a 𝑣-valent

initial configuration.
(3) Add any remaining connected component of Σ to an arbitrarily chosen set Σ𝑣.
(4) If the sets Σ𝑣 are pairwise disjoint, then consensus is solvable. In this case, the sets Σ𝑣

determine a consensus algorithm via the universal algorithm given in the proofs of

, Vol. 1, No. 1, Article . Publication date: October 2024.

14 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

Theorem 5.2 and Theorem 5.3. If the Σ𝑣 are not pairwise disjoint, then consensus is
not solvable.

Obviously, our solution algorithms need to know the decision sets Σ𝑣, 𝑣 ∈ 𝒱. As they
usually contain uncountable many infinite executions, the question of how to obtain them in
practice appears. In Section 8, we will provide several instances of labeling algorithms, which
can be used here. They are based on labeling prefixes of executions, so can in principle even
be computed incrementally by the processes on-the-fly during the executions.

6 LIMIT-BASED CONSENSUS CHARACTERIZATION

It is possible to shed some additional light on our general consensus characterization by
considering limit points. In particular, Theorem 6.4 will show that consensus is impossible if
and only if certain limit points in the appropriate topologies are admissible.

Definition 6.1 (Distance of sets). For 𝐴,𝐵 ⊆ 𝒞𝜔 with distance function 𝑑, let 𝑑(𝐴,𝐵) =
inf{𝑑(𝛼, 𝛽) | 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵}.

Before we state our general results, we illustrate the underlying idea in a slightly restricted
setting, namely when the underlying space Σ of configuration sequences is contained in a
compact set 𝐾 ⊆ 𝒞𝜔. Whereas one cannot assume this in general, it can be safely assumed
in settings where the operationalization of our system model based on process-time graphs,
as described in Appendix A, applies: Since the set of all process-time graphs 𝒫𝒯 𝜔 turns
out to be compact and the transition function 𝜏 : 𝒫𝒯 𝜔 → 𝒞𝜔 is continuous, according to
Lemma A.2, we can consider the compact set 𝐾 = 𝜏(𝒫𝒯 𝜔) instead of 𝒞𝜔. In this case, it is
not difficult to show that 𝑑𝑝(𝐴,𝐵) = 0 if and only if there is a sequence of executions 𝛼𝑘

in 𝐴 and a sequence of executions 𝛽𝑘 in 𝐵 such that both sequences converge to the same
limit with respect to 𝑑𝑝.

This distance-based characterization allows us to distinguish 3 cases that cause 𝑑𝑝(𝐴,𝐵) =

0: (i) If 𝛼̂ ∈ 𝐴 ∩ 𝐵 ̸= ∅, one can choose the sequences defined by 𝛼𝑘 = 𝑏𝑘 = 𝛼̂ = 𝛽, 𝑘 ≥ 1.

(ii) If 𝐴 ∩ 𝐵 = ∅ and 𝛼̂ = 𝛽, there is a “fair” execution [17] as the common limit. (iii) If

𝐴 ∩ 𝐵 = ∅ and 𝛼̂ ≠ 𝛽, there is a pair of “unfair” executions [17] acting as limits, which
have distance 0 (and are hence also common limits w.r.t. the distance function 𝑑𝑝). We note,
however, that due to the non-definiteness of the pseudometric 𝑑𝑝 (recall Lemma 4.3) and
the resulting non-uniqueness of limits in the 𝑝-view topology, (iii) are actually two instances
of (ii). Corollary 6.7 below will reveal that consensus is solvable if and only if no decision set
Σ𝑣 contains any fair or unfair execution w.r.t any Σ𝑤, 𝑣 ̸= 𝑤.

Unfortunately, generalizing the above distance-based characterizaion from 𝑝-view-topologies
to the uniform and non-uniform topologies is not possible: Albeit every convergent infinite
sequence (𝛼𝑡) w.r.t. 𝑑u (Section 4.2) resp. 𝑑nu (Section 4.3) also contains a convergent
subsequence w.r.t. some (obedient) 𝑑𝑝 by the pigeonhole principle, one might observe a

different 𝑑𝑝′ for the convergent subsequence of (𝛽𝑡). In this case, not even 𝑑𝑝(𝛼̂, 𝛽) = 0 or

𝑑𝑝′(𝛼̂, 𝛽) = 0 would guarantee 𝑑u(𝐴,𝐵) = 0 resp. 𝑑nu(𝐴,𝐵) = 0, as the triangle inequality
does not hold in these topologies.

On the other hand, 𝑑u(𝐴,𝐵) = 0 resp. 𝑑nu(𝐴,𝐵) = 0 is trivially guaranteed if it is the case

that 𝛼̂ ∈ 𝐵 or 𝛽 ∈ 𝐴: If, say, 𝛼̂ ∈ 𝐵, one can choose the constant sequence (𝛽𝑡) = (𝛼̂) ∈ 𝐵𝜔,
which obviously converges to 𝛼̂ in any 𝑝-view topology, including the particular 𝑑𝑝 obtained
for the convergent subsequence of (𝛼𝑡)→ 𝛼̂ by the abovementioned pigeonhole argument.
Consequently, 𝑑𝑝(𝐴,𝐵) = 0 and hence also 𝑑u(𝐴,𝐵) = 0 resp. 𝑑nu(𝐴,𝐵) = 0. This implies the

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 15

following “if-part” of our distance-based characterization, which even holds for non-compact
𝒞𝜔:
Lemma 6.2 (General zero-distance condition). Let 𝐴,𝐵 be arbitrary subsets of

𝒞𝜔 with distance function 𝑑. If there are infinite sequences (𝛼𝑘) ∈ 𝐴𝜔 and (𝛽𝑘) ∈ 𝐵𝜔 of

executions, as well as 𝛼̂, 𝛽 ∈ 𝒞𝜔 with 𝛼𝑘 → 𝛼̂ and 𝛽𝑘 → 𝛽 with 𝑑(𝛼̂, 𝛽) = 0 and 𝛼̂ ∈ 𝐵 or

𝛽 ∈ 𝐴, then d(A,B)=0.

In order to obtain the general limit-based consensus characterization stated in Theorem 6.4
below, we will not use set distances directly, however, but rather the following Separation
Lemma 6.3 from [36]:

Lemma 6.3 (Separation Lemma [36, Lemma 23.12]). If 𝑌 is a subspace of 𝑋, a
separation of 𝑌 is a pair of disjoint nonempty sets 𝐴 and 𝐵 whose union is 𝑌 , neither of
which contains a limit point of the other. The space 𝑌 is connected if and only if there exists
no separation of 𝑌 . Moreover, 𝐴 and 𝐵 of a separation of 𝑌 are clopen in 𝑌 .

Proof. The closure of a set 𝐴 in 𝑌 is (𝐴 ∩ 𝑌), where 𝐴 denotes the closure in 𝑋. To
show that 𝑌 is not connected implies a separation, assume that 𝐴,𝐵 are closed and open in
𝑌 = 𝐴∪𝐵, so 𝐴 = (𝐴∩𝑌). Consequently, 𝐴∩𝐵 = 𝐴∩(𝑌 −𝐴) = 𝐴∩𝑌 −𝐴∩𝐴 = 𝐴∩𝑌 −𝐴 = ∅.
Since 𝐴 is the union of 𝐴 and its limit points, none of the latter is in 𝐵. An analogous
argument shows that none of the limit points of 𝐵 can be in 𝐴.
Conversely, if 𝑌 = 𝐴 ∪ 𝐵 for disjoint non-empty sets 𝐴, 𝐵 which do not contain limit

points of each other, then 𝐴 ∩𝐵 = ∅ and 𝐴 ∩𝐵 = ∅. From the equivalence above, we get
𝐴∩𝑌 = 𝐴 and 𝐵∩𝑌 = 𝐵, so both 𝐴 and 𝐵 are closed in 𝑌 and, as each others complement,
also open in 𝑌 as well. □

Applying Lemma 6.3 to the findings of Theorem 5.2 resp. Theorem 5.2, the following
general consensus characterization can be proved:

Theorem 6.4 (Separation-based consensus characterization). Uniform resp.
non-uniform consensus is solvable in a model if and only if there exists a partition of the set
of admissible executions Σ into decision sets Σ𝑣, 𝑣 ∈ 𝒱, such that the following holds:

(1) No Σ𝑣 contains a limit point of any other Σ𝑤 w.r.t. the uniform resp. non-uniform
topology in 𝒞𝜔.

(2) Every 𝑣-valent admissible execution 𝛾𝑣 satisfies 𝛾𝑣 ∈ Σ𝑣.

If consensus is not solvable, then 𝑑u(Σ𝑣,Σ𝑤) = 0 resp. 𝑑nu(Σ𝑣,Σ𝑤) = 0 for some 𝑤 ̸= 𝑣.

Proof. (⇐) We need to prove that if (1) and (2) in the statement of our theorem hold,
then consensus is solvable by means of the algorithm given in Theorem 5.2 resp. Theorem 5.3.
This only requires showing that all of the finitely many Σ𝑣, 𝑣 ∈ 𝒱, are clopen in Σ, which
immediately follows from Lemma 6.3 since Σ𝑣 and Σ ∖ Σ𝑣 form a separation of Σ.
(⇒) We prove the contrapositive, by showing that if (1) and (2) do not hold, then either

some Σ𝑣 is not closed or Σ𝑣∩Σ𝑤 ̸= 0, which does not allow to solve consensus by Theorem 5.2
resp. Theorem 5.3. If, say, 𝐴 = Σ𝑣 contains any limit point of 𝐵 = Σ𝑤 for 𝑣 ̸= 𝑤, this means
that there is a sequence of executions (𝛽𝑘) ∈ 𝐵𝜔 with limit 𝛽𝑘 → 𝛽 and some 𝛼 ∈ 𝐴 ⊆ Σ
with 𝑑u(𝛼, 𝛽) = 0 resp. 𝑑nu(𝛼, 𝛽) = 0. According to Lemma 6.2, we have 𝑑u(𝐴,𝐵) = 0 resp.
𝑑nu(𝐴,𝐵) = 0 in this case. If 𝛼 ̸∈ 𝐵, then 𝐵 = Σ𝑤 is not closed, if 𝛼 ∈ 𝐵, then 𝐴 ∩𝐵 ̸= ∅,
which provides the required contradiction in either case. □

Note that Theorem 6.4 immediately implies the following properties of the distances of
the decision sets in the case consensus is solvable in a model:

, Vol. 1, No. 1, Article . Publication date: October 2024.

16 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

Corollary 6.5 (General decision set distances). If uniform resp. non-uniform
consensus is solvable in a model, it may nevertheless be the case that 𝑑u(Σ𝑣,Σ𝑤) = 0
resp. 𝑑nu(Σ𝑣,Σ𝑤) = 0 for some 𝑣, 𝑤 ̸= 𝑣. On the other hand, if 𝑑u(Σ𝑣,Σ𝑤) > 0 resp.
𝑑nu(Σ𝑣,Σ𝑤) > 0 for all 𝑣, 𝑤 ̸= 𝑣, then uniform resp. non-uniform consensus is solvable.

Our characterization Theorem 6.4 can also be expressed via the exclusion of fair/unfair
executions [17]:

Definition 6.6 (Fair and unfair executions). Consider two executions 𝜌, 𝜌′ ∈ 𝒞𝜔 of some
consensus algorithm with decision sets Σ𝑣, 𝑣 ∈ 𝒱, in any appropriate topology:

∙ 𝜌 is called fair, if for some 𝑣, 𝑤 ̸= 𝑣 ∈ 𝒱 there are convergent sequences (𝛼𝑘) ∈ Σ𝑣 and
(𝛽𝑘) ∈ Σ𝑤 with 𝛼𝑘 → 𝜌 and 𝛽𝑘 → 𝜌.
∙ 𝜌, 𝜌′ are called a pair of unfair executions, if for some 𝑣, 𝑤 ̸= 𝑣 ∈ 𝒱 there are convergent
sequences (𝛼𝑘) ∈ Σ𝑣 with 𝛼𝑘 → 𝜌 and (𝛽𝑘) ∈ Σ𝑤 with 𝛽𝑘 → 𝜌′ and 𝜌 and 𝜌′ have
distance 0.

From Theorem 6.4, we immediately obtain:

Corollary 6.7 (Fair/unfair consensus characterization). Condition (1) in
Theorem 6.4 is equivalent to requireing that the decision sets Σ𝑣, Σ𝑤 for 𝑤 ̸= 𝑣 neither
contain any fair execution nor any pair 𝜌, 𝜌′ of unfair executions.

An illustration of our limit-based characterizations is provided by Figure 4. Note carefully
that, in the uniform case, a fair/unfair execution 𝜌 where some process 𝑝 becomes disobedient
in round 𝑡 implies that the same happens in all 𝛼 ∈ 𝐵2−𝑡(𝜌) ∩ Σ𝑣 and 𝛽 ∈ 𝐵2−𝑡(𝜌) ∩ Σ𝑤.
On the other hand, if 𝑝 does not become disobedient in 𝜌, it may still be the case that 𝑝
becomes disobedient in every 𝛼𝑘 in the sequence converging to 𝜌, at some time 𝑡𝑘 with
lim𝑘→∞ 𝑡𝑘 =∞. In the non-uniform case, neither of these possibilities exists: 𝑝 cannot be
disobedient in the limit 𝜌, and any 𝛼𝑘 where 𝑝 is not obedient is also excluded as its distance
to any other sequence is 1.

7 CONSENSUS CHARACTERIZATION IN TERMS OF BROADCASTABILITY

We will now develop another characterization of consensus solvability, with rests on the
broadcastability of the decision sets Σ𝑣 ⊆ Σ and their connected components Σ𝛾 ⊆ Σ𝑣. It
will explain topologically why the existence of a broadcaster is mandatory for solving the
“standard version” of consensus, where any assignment of inputs from 𝒱 is permitted. We
start with some definitions needed for formalizing this condition:

Definition 7.1 (Heard-of sets). For every process 𝑝 ∈ Π, there is a function 𝐻𝑂𝑝 : 𝒞 → 2Π

that maps a configuration 𝐶 ∈ 𝒞 to the set of processes 𝐻𝑂𝑝(𝐶) that 𝑝 has (transitively)
heard of in 𝐶. Its extension to execution 𝛾 = (𝐶𝑡)𝑡≥0 is defined as 𝐻𝑂𝑝(𝛾) =

⋃︀
𝑡≥0 𝐻𝑂𝑝(𝐶

𝑡).

Heard-of sets have the following obvious properties: For executions 𝛾 = (𝐶𝑡)𝑡≥0, 𝛿 =
(𝐷𝑡)𝑡≥0 and all 𝑡 ≥ 0,

(i) 𝑝 ∈ 𝐻𝑂𝑝(𝐶
𝑡), and 𝐻𝑂𝑝(𝐶

𝑡) = 𝐻𝑂𝑝(𝐷
𝑡) if 𝐶𝑡 ∼𝑝 𝐷𝑡,

(ii) 𝐻𝑂𝑝(𝐶
𝑡) ⊆ 𝐻𝑂𝑝(𝐶

𝑡+1),
(iii) for all 𝑥 ∈ Π, if 𝑥 ∈ 𝐻𝑂𝑞(𝐶

𝑡)∩𝐻𝑂𝑞(𝐷
𝑡) and 𝐶𝑡 ∼𝑞 𝐷𝑡, then 𝐼𝑥(𝛾) = 𝐼𝑥(𝛿) (where 𝐼𝑝(𝛾)

denotes the initial value of process 𝑝 in execution 𝛾).

The independent arbitrary input assignment condition stated in Definition 7.2 secures
that, for every execution 𝛾 with initial value assignment 𝐼(𝛾), there is a an isomorphic
execution 𝛿 w.r.t. the HO sets of all processes that starts from an arbitrary other initial
value assignment 𝐼(𝛿).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 17

Definition 7.2 (Independent arbitrary input assignment condition). Let 𝐼 : Π → 𝒱 be
some assignment of initial values to the processes, and Σ(𝐼) ⊆ Σ be the set of admissible
executions with that initial value assignment. We say that Σ satisfies the independent input
assignment condition, if and only if for any two assignments 𝐼 and 𝐽 , we have Σ(𝐼) ∼= Σ(𝐽),
that is, there is a bijective mapping 𝑓𝐼,𝐽 : Σ(𝐼) → Σ(𝐽) such that for all 𝛾 = (𝐶𝑡)𝑡≥0 ∈ Σ(𝐼)

and 𝛿 = (𝐷𝑡)𝑡≥0 ∈ Σ(𝐼), writing 𝑓𝐼,𝐽(𝛾) = (𝐶𝑡
𝑓)𝑡≥0 and 𝑓𝐼,𝐽(𝛿) = (𝐷𝑡

𝑓)𝑡≥0, the following
holds for all 𝑡 ≥ 0 and all 𝑝 ∈ Π:

(1) 𝑂𝑏(𝐶𝑡) = 𝑂𝑏(𝐶𝑡
𝑓)

(2) 𝐶𝑡 ∼𝑝 𝐷𝑡 if and only if 𝐶𝑡
𝑓 ∼𝑝 𝐷𝑡

𝑓

(3) 𝐻𝑂𝑝(𝐶
𝑡) = 𝐻𝑂𝑝(𝐶

𝑡
𝑓)

(4) 𝐶𝑡 ∼𝑝 𝐶𝑡
𝑓 if 𝐼𝑞 = 𝐽𝑞 for all 𝑞 ∈ 𝐻𝑂𝑝(𝐶

𝑡)

We say that Σ satisfies the independent arbitrary input assignment condition, if it satisfies
the independent input assignment condition for every choice of 𝐼 : Π→ 𝒱.
In the main results of this section (Theorem 7.12 resp. Theorem 7.13), we will not only

provide a necessary and sufficient condition for solving this variant of uniform resp. non-
uniform consensus based on broadcastability, but also establish the general equivalence of
weak validity (V) and strong validity (SV) (recall Definition 3.1). For binary consensus, i.e.,
|𝒱| = 2, this is a well-known fact [7, Ex. 5.1], for larger input sets, it was, to the best of our
knowledge, not known yet.

Since the concise but quite technical proofs of Theorem 7.12 and Theorem 7.13 somehow
obfuscate the actual cause of this equivalence (and the way we actually discovered it), we first
provide an alternative explanation based on the broadcastability of connected components
in the following Section 7.1, which also allows us to establish some basic results needed in
Section 8.4.

7.1 Broadcastability of connected components

Lemma 7.4 below reveals that if consensus (with weak validity) and independent arbitrary
inputs is solvable, then every connected component of Σ needs to be broadcastable.

Definition 7.3 (Broadcastability). We call a subset 𝐴 ⊆ Σ of admissible executions
broadcastable by the broadcaster 𝑝 ∈ Π, if, in every execution 𝛾 ∈ 𝐴, every obedient process
𝑞 ∈ 𝑂𝑏(𝛾) eventually hears from process 𝑝, i.e., 𝑝 ∈ 𝐻𝑂𝑞(𝛾), and hence knows 𝐼𝑝(𝛾).

Lemma 7.4 (Broadcastable connected components). A connected component
Σ𝛾 of a set of admissible executions Σ for uniform resp. non-uniform consensus with
independent arbitrary input assignments that is not broadcastable for some process contains
𝑤-valent executions for every 𝑤 ∈ 𝒱. In order to solve uniform resp. non-uniform consensus
with independent arbitrary input assignments, every connected component must hence be
broadcastable by some process, and lead to the same decision value in each of its executions.

Proof. To prove the first part of our lemma, we consider the finite sequence of executions
𝛾 = 𝛼0, 𝛼1, . . . , 𝛼𝑛 = 𝛾𝑤 obtained from 𝛾 by changing the initial values of the processes
1, . . . , 𝑛 in 𝐼(𝛾) to an arbitrary but fixed 𝑤, one by one (it is here where we need the arbitrary
input assignment assumption). We show by induction that 𝛼𝑝 ∈ Σ𝛾 for every 𝑝 ∈ {0, . . . , 𝑛},
which proves our claim since 𝛼𝑛 = 𝛾𝑤.
The induction basis 𝑝 = 0 is trivial, so suppose 𝛼𝑝−1 ∈ Σ𝛾 according to the induction

hypothesis. If it happens that 𝐼𝑝(𝛼𝑝−1) = 𝐼𝑝(𝛾) = 𝑤 already, nothing needs to be done and
we just set 𝛼𝑝 = 𝛼𝑝−1 ∈ Σ𝛾 . Otherwise, 𝛼𝑝 is 𝛼𝑝−1 with the initial value 𝐼𝑝(𝛼𝑝) changed to
𝑤. Now suppose for a contradiction that 𝛼𝑝 ∈ Σ𝛼𝑝

̸= Σ𝛾 .

, Vol. 1, No. 1, Article . Publication date: October 2024.

18 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

Since Σ𝛾 is not broadcastable by any process, hence also not by 𝑝, there is some execution
𝜂 ∈ Σ𝛾 with 𝜂 = (𝐶𝑡)𝑡≥0 and a process 𝑞 ̸= 𝑝 with 𝑞 ∈ 𝑂𝑏(𝐶𝑡) and the initial value 𝐼𝑝(𝜂)
not in 𝑞’s view 𝑉𝑞(𝐶

𝑡) for every 𝑡 ≥ 0. Thanks to the independent input assignment property
Definition 7.2, there is also an execution 𝛿 = 𝑓𝐼(𝜂),𝐼′(𝜂) ∈ Σ𝛼𝑝 that matches 𝜂, i.e., is the
same as 𝜂 except that 𝐼(𝛿) = 𝐼 ′ with 𝐼 ′𝑞 = 𝐼𝑞(𝜂) for 𝑝 ̸= 𝑞 ∈ Π but possibly 𝐼 ′𝑝 ̸= 𝐼𝑝(𝜂). It
follows that 𝑑𝑞(𝜂, 𝛿) = 0 with 𝑞 ∈ 𝑂𝑏(𝜂) ∩𝑂𝑏(𝛿) and hence 𝑑u(𝜂, 𝛿) = 0 resp. 𝑑nu(𝜂, 𝛿) = 0.
Consequently, 𝛿 ∈ Σ𝛾 and hence Σ𝛼𝑝

= Σ𝛾 , which provides the required contradiction and
completes the induction step.
For the second part of our lemma, assume for a contradiction that there is a non-

broadcastable connected component Σ𝛾 in the decision set Σ𝑣 containing all the 𝑣-valent
executions 𝛾𝑣. By our previous result, it would also contain some 𝑤-valent execution 𝛾𝑤,
𝑤 ̸= 𝑣. Consequently, Σ𝑣 ∩ Σ𝑤 ̸= ∅, which makes consensus impossibly by Theorem 5.2 resp.
Theorem 5.3. That every 𝛿 ∈ Σ𝛾 leads to the same decision value ∆(𝛿) = ∆(𝛾) follows from
the continuity of the decision function and the connectedness of Σ𝛾 . □

In addition, Lemma 7.6 below reveals that any connected broadcastable set has a diameter
strictly smaller than 1.

Definition 7.5 (Diameter of a set). For 𝐴 ⊆ 𝒞𝜔, depending on the distance function 𝑑 that
induces the appropriate topology, define 𝐴’s diameter as 𝑑(𝐴) = sup{𝑑(𝛾, 𝛿) | 𝛾, 𝛿 ∈ 𝐴}.

Lemma 7.6 (Diameter of broadcastable connected sets). If a connected set
𝐴 ⊆ Σ of admissible executions is broadcastable by some process 𝑝, then 𝑑u(𝐴) ≤ 𝑑𝑝(𝐴) ≤ 1/2,
as well as 𝑑nu(𝐴) ≤ 1/2, i.e., 𝑝’s initial value satisfies 𝐼𝑝(𝛾) = 𝐼𝑝(𝛿) for all 𝛾, 𝛿 ∈ 𝐴.

Proof. Our proof below for 𝑑𝑝(𝐴) ≤ 1/2 translates literally to any 𝑑 ∈ {𝑑𝑝, 𝑑u, 𝑑nu}; the
statement 𝑑u(𝐴) ≤ 𝑑𝑝(𝐴) follows from the definition in Section 4.2.
Broadcastability by 𝑝 implies that, for any 𝛾 ∈ 𝐴 with 𝛾 = (𝐶𝑡)𝑡≥0, every process 𝑞

has 𝐼𝑝(𝛾) in its local view 𝑉𝑞(𝐶
𝑇 (𝛾)) for some 0 < 𝑇 (𝛾) <∞ or is not obedient any more.

Abbreviating 𝑡 = 𝑇 (𝛾), consider any 𝛿 ∈ 𝐵2−𝑡(𝛾) ∩ 𝐴 with 𝛿 = (𝐷𝑡)𝑡≥0. By definition
of 𝐵2−𝑡(𝛾), there must be some process 𝑞 ∈ 𝑂𝑏(𝐷𝑡) ∩ 𝑂𝑏(𝐶𝑡) with 𝑉𝑞(𝐷

𝑡) = 𝑉𝑞(𝐶
𝑡).

Definition 7.1.(iii) thus guarantees 𝐼𝑝(𝛿) = 𝐼𝑝(𝛾).
We show now that this argument can be continued to reach every 𝛿 ∈ 𝐴. For a contradiction,

suppose that this is not the case and let 𝑈(𝛾) be the union of the balls recursively defined
as follows: 𝑈0(𝛾) = {𝛾}, for 𝑚 > 0, 𝑈𝑚(𝛾) =

⋃︀
𝛿∈𝑈𝑚−1(𝛾)

(𝐵2−𝑇 (𝛿)(𝛿) ∩ 𝐴), and finally

𝑈(𝛾) =
⋃︀

𝑚≥0 𝑈𝑚(𝛾). As a union of open balls intersected with 𝐴, which are all open in 𝐴,

both 𝑈𝑚(𝛾) for every 𝑚 > 0 and 𝑈(𝛾) is hence open in 𝐴. For every 𝛿 ∈ 𝐴 ∖ 𝑈(𝛾), 𝑈(𝛿) is
also open in 𝐴, and so is 𝑉 (𝛾) =

⋃︀
𝛿∈𝐴∖𝑈(𝛾) 𝑈(𝛿). However, the open sets 𝑈(𝛾) and 𝑉 (𝛾)

must satisfy 𝑈(𝛾) ∩ 𝑉 (𝛾) = ∅ (as they would be the same otherwise) and 𝑈(𝛾) ∪ 𝑉 (𝛾) = 𝐴,
hence 𝐴 cannot be connected. □

Together, Lemma 7.4 and Lemma 7.6 imply:

Corollary 7.7 (Broadcastable Σ𝛾). If uniform resp. non-uniform consensus with
independent arbitrary input assignments is solvable, then every connected component Σ𝛾 ⊆ Σ
must be broadcastable by some process 𝑝. In every execution 𝛾′ ∈ Σ𝛾 , the broadcaster 𝑝 has
the same initial value 𝐼𝑝(𝛾

′), and the decision value is the same ∆(𝛾′) = ∆(𝛾).

To emphasize the key role of the consequences of Corollary 7.7 for the equivalence of
weak validity (V) and strong validity (SV), where in (SV) the consensus decision value
must be the initial value of some process, we first observe that the transition from (V) to

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 19

(SV) in our Theorem 5.2 resp. Theorem 5.3 just requires the replacement of condition 2.,
i.e., “If execution 𝛾 ∈ Σ is 𝑣-valent, then 𝛾 ∈ Σ𝑣”, by “If execution 𝛾 ∈ Σ𝑣, then there
is a process 𝑝 with initial initial value 𝐼𝑝(𝛾) = 𝑣”. This change would result in strong
versions of our theorems, since the above modification is in fact transparent for the proofs
of Theorem 5.2 and Theorem 5.3. Note also that both versions are equivalent for 𝑣-valent
executions. Similarly, to obtain a strong version of our meta-procedure, step (3) “Add any
remaining connected component of Σ to an arbitrarily chosen set Σ𝑣” must be replaced by
“Add every remaining connected component Σ𝛾 ⊆ Σ, where execution 𝛾 ∈ Σ𝛾 is arbitrary,
to any set Σ𝑣, where 𝑣 is the initial value 𝐼𝑏(𝛾) = 𝑣 of a process 𝑏 that is a broadcaster in
every execution 𝛾′ ∈ Σ𝛾”.

The crucial role of Corollary 7.7 is that it makes this modification always possible also
in the case of multi-valued consensus (in the case of binary consensus, it is obvious), as
it reveals that if weak consensus is solvable, then every connected component Σ𝛾 must
have at least one common broadcaster 𝑏 = 𝑏(𝛾′) = 𝑏(Σ𝛾) that has the same initial value
𝐼𝑏(𝛾

′) = 𝐼𝑏(𝛾) = 𝐼𝑏(Σ𝛾) in all executions 𝛾′ ∈ Σ𝛾 . Consequently, if decision sets resp.
a meta-procedure exists that allows to solve consensus with weak validity according to
Theorem 5.2 and Theorem 5.3, one can always reshuffle the connected components to form
strong decision sets, which use the initial value of some broadcaster for assigning a connected
component to a decision set:

Definition 7.8 (Strong decision sets). Let Σ be the set of admissible executions of any
(weak or strong) consensus algorithm with independent arbitrary input assignments. A
strong broadcaster decision set Σ𝑝

𝑣 for broadcaster 𝑝 ∈ Π and decision value 𝑣 ∈ 𝒱 resp. a
strong decision set Σ𝑣 for 𝑣 ∈ 𝒱 satisfies

Σ𝑝
𝑣 =

⋃︁
𝛾∈Σ

𝑏(Σ𝛾)=𝑝
𝐼𝑝(𝛾)=𝑣

Σ𝛾 resp. Σ𝑣 =
⋃︁
𝑝∈Π

Σ𝑝
𝑣.

Note that strong decision sets need not be unique, as some connected component Σ𝛾

might have several broadcasters, any of which could be used for determining its decision
value 𝑣. The canonical choice to make it uniquely defined is to take the lexically smallest
𝑝 = 𝑏(Σ𝛾) among all broadcasters 𝑝′ ≥ 𝑝 in Σ𝛾 . In the rest of our paper, all strong decision
sets will be canonical.

Since the canonical strong decision sets that can be formed via the abovementioned
reshuffling are easily shown to satisfy the strong versions of Theorem 5.2 and Theorem 5.3,
one obtains the broadcast-based characterization of consensus stated in Theorem 7.9. Rather
than proving it by formalizing the reasoning sketched above, however, we will rely on the
general equivalence results Theorem 7.12 resp. Theorem 7.13 developed in in the following
Section 7.2. This way, the somewhat tedious and non-constructive reshuffling of connected
components involved in the direct proof can be replaced by an explicit construction of the
canonical strong decision sets, which utilizes binary consensus.

Theorem 7.9 (Consensus characterization via broadcastability). A model
allows to solve uniform resp. non-uniform consensus with independent arbitrary input
assignments if and only if it guarantees that (i) every connected component Σ𝛾 of the set Σ
of admissible executions is broadcastable for some process 𝑝 = 𝑏(Σ𝛾) starting with the same
input 𝐼𝑝(𝛾

′) in 𝛾′ ∈ Σ𝛾 , and (ii) that the strong broadcaster decision sets Σ𝑝
𝑣, 𝑝 ∈ Π, 𝑣 ∈ 𝒱,

as specified in Definition 7.8, are clopen in Σ in the uniform topology resp. the non-uniform
topology.

, Vol. 1, No. 1, Article . Publication date: October 2024.

20 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

Proof. The broadcastability of the connected components follows from Corollary 7.7,
the clopenness of the strong broadcaster decision sets will be established in the proofs of
Theorem 7.12 resp. Theorem 7.13. □

7.2 General broadcast-based characterization

We will now provide our general broadcast-based characterization for uniform and non-
uniform consensus with arbitrary and independent input assignments according to Defini-
tion 7.2. In a nutshell, it uses a reduction to (the solvability of) binary consensus, where
weak and strong validity are trivially equivalent, for explicitly constructing the canonical
strong broadcaster decision sets.

Let Σ̂ ⊆ Σ denote the set of admissible executions of a multi-valued consensus algorithm
starting from a single initial value assignment 𝐼 : Π→ 𝒱 (any will do, the choice is arbitrary).

Definition 7.10 (Uniform/non-uniform broadcastability). We say that Σ̂ is uniformly resp.

non-uniformly broadcastable if there exist sets Σ̂𝑝 ⊆ Σ̂ for 𝑝 ∈ Π such that:

(1) The sets Σ̂𝑝 are pairwise disjoint and
⋃︀

𝑝∈Π Σ̂𝑝 = Σ̂.

(2) Every Σ̂𝑝 is 𝑑u-clopen resp. 𝑑nu-clopen in Σ̂.

(3) Every Σ̂𝑝 is broadcastable by 𝑝 but not by any lexically smaller 𝑝′ < 𝑝, i.e., every

obedient process 𝑞 ∈ 𝑂𝑏(𝛾) satisfies 𝑝 ∈ 𝐻𝑂𝑞(𝛾) for every 𝛾 ∈ Σ̂𝑝.

Theorem 7.11. If uniform resp. non-uniform binary consensus with arbitrary and inde-
pendent input assignments is solvable, then Σ̂ is uniformly resp. non-uniformly broadcastable.

Proof. By Theorem 5.2 resp. Theorem 5.3 restricted to |𝒱| = 2, there exists a clopen
partition (Σ0,Σ1) of Σ such that Σ0 includes all 0-valent executions and Σ1 includes all
1-valent executions.

For 0 ≤ 𝑝 ≤ 𝑛, let 𝐼𝑝 be the initial value assignment in which all processes 𝑞 ≤ 𝑝
have initial value 1 and all processes 𝑞 > 𝑝 have initial value 0. The assignment 𝐼0 is the
all-0 assignment and 𝐼𝑛 is the all-1 assignment. According to Definition 7.2, there is an
isomorphism 𝑔𝑝 = 𝑓𝐼𝑝−1,𝐼𝑝 : Σ(𝐼𝑝−1) → Σ(𝐼𝑝) for every 1 ≤ 𝑝 ≤ 𝑛, as well as an isomorphism

ℎ = 𝑓𝐼𝑛,𝐼 : Σ(𝐼𝑛) → Σ̂.
We now inductively define the set Σ𝑝,𝑞, for 1 ≤ 𝑝 ≤ 𝑛 and 1 ≤ 𝑞 ≤ 𝑝, which consists of all

1-deciding executions starting from 𝐼𝑝 where 𝑞 is the lexically smallest broadcaster. Note
that both 𝑝 and 𝑝′ might be broadcasters in 𝛾 ∈ Σ𝑝,𝑞, provided 𝑝 < 𝑝′.

(i) Σ1,1 = Σ
(𝐼1)
1 , the set of 1-deciding executions when starting with initial value assign-

ment 𝐼1.
(ii) For 2 ≤ 𝑝 ≤ 𝑛 and 1 ≤ 𝑞 ≤ 𝑝− 1, we set Σ𝑝,𝑞 = 𝑔𝑝[Σ𝑝−1,𝑞].

(iii) For 2 ≤ 𝑝 ≤ 𝑛 and 𝑞 = 𝑝, we set Σ𝑝,𝑝 = Σ
(𝐼𝑝)
1 ∖

⋃︀𝑝−1
𝑞=1 Σ𝑝,𝑞.

A trivial induction reveals that, for every 1 ≤ 𝑝 ≤ 𝑛, Σ𝑝,𝑞 ⊆ Σ(𝐼𝑝), and that the sets Σ𝑝,𝑞

are pairwise disjoint since all the 𝑔𝑝 are bijective. Furthermore, since the decision sets Σ
(𝐼𝑝)
1

are clopen in Σ(𝐼𝑝) and the 𝑔𝑝 are homeomorphisms, every Σ𝑝,𝑞 is clopen in Σ(𝐼𝑝).
We now prove, by induction on 𝑝, that every 1 ≤ 𝑞 ≤ 𝑝 is the lexically smallest broadcaster

in every execution 𝛾 ∈ Σ𝑝,𝑞, i.e., that 𝑞 ∈ 𝐻𝑂𝑟(𝛾) for every 𝑟 ∈ 𝑂𝑏(𝛾), and that there is no
smaller 𝑞′ with this property. We start with the base case 𝑝 = 𝑞 = 1, which is obviously the

lexically smallest. Let 𝛾 ∈ Σ
(𝐼1)
1 and 𝑟 ∈ 𝑂𝑏(𝛾). Assuming by contradiction that 1 ̸∈ 𝐻𝑂𝑟(𝛾),

we get ∆𝑟(𝛾) = ∆𝑟(𝑔
−1
1 (𝛾)) = 0 by Definition 7.2.(4) and Validity (V). This contradicts

𝛾 ∈ Σ
(𝐼1)
1 , however. Now let 2 ≤ 𝑝 ≤ 𝑛. For all 1 ≤ 𝑞 ≤ 𝑝 − 1 and all 𝛾 ∈ Σ𝑝,𝑞, we

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 21

have that 𝑞 ∈ 𝐻𝑂𝑟(𝛾) = 𝐻𝑂𝑟(𝑔
−1
𝑞 (𝛾)) for all 𝑟 ∈ 𝑂𝑏(𝛾) = 𝑂𝑏(𝑔−1

𝑞 (𝛾)) is the lexically
smallest broadcaster by the induction hypothesis. For 𝑞 = 𝑝, assuming by contradiction that
𝑝 ̸∈ 𝐻𝑂𝑟(𝛾) for 𝛾 ∈ Σ𝑝,𝑝 and 𝑟 ∈ 𝑂𝑏(𝛾), we get ∆𝑟(𝛾) = ∆𝑟(𝑔

−1
𝑝 (𝛾)) = 0 by Definition 7.2.(4)

and the fact that (iii) implies Σ
(𝐼𝑝−1)
1 ⊆

⋃︀𝑝−1
𝑞=1 Σ𝑝−1,𝑞 since Σ𝑝−1,𝑝−1 = Σ

(𝐼𝑝−1)
1 ∖

⋃︀𝑝−2
𝑞=1 Σ𝑝−1,𝑞;

the latter also guarantees that there is no lexically smaller broadcaster. This completes our
induction proof.
We finally set Σ̂𝑝 = ℎ[Σ𝑛,𝑝] for 1 ≤ 𝑝 ≤ 𝑛 and show that the result satisfies uniform

broadcastability according to Definition 7.10: (1) Pairwise disjointness of the Σ̂𝑝 follows from

pairwise disjointness of the Σ𝑛,𝑝. The fact that
⋃︀𝑛

𝑝=1 Σ̂𝑝 = Σ̂ follows from the definition

of Σ𝑛,𝑛 and the fact that Σ
(𝐼𝑛)
1 = Σ(𝐼𝑛) by Validity. (2) Clopenness of the Σ̂𝑝 follows from

clopenness of the Σ𝑛,𝑝 and the fact that ℎ is a homeomorphism. (3) For every 𝛾 ∈ Σ̂𝑝 and
𝑞 ∈ 𝑂𝑏(𝛾), we have 𝑝 ∈ 𝐻𝑂𝑞(𝛾) = 𝐻𝑂𝑞(ℎ

−1(𝛾)). This concludes the proof. □

With this result, we can prove the following equivalences Theorem 7.12 resp. Theorem 7.13
for uniform and non-uniform consensus:

Theorem 7.12. For a set of admissible executions Σ where uniform consensus with arbi-
trary and independent input assignments is solvable, the following statements are equivalent:

(1) Uniform binary consensus is solvable.

(2) Foy any input assignment 𝐼 : Π→ 𝒱, the subset of admissible executions Σ̂ ⊆ Σ using

𝐼 is uniformly broadcastable.
(3) Strong uniform consensus is solvable for any set 𝒱 of initial values.
(4)Weak uniform consensus is solvable for any set 𝒱 of initial values.

Proof. The implications (3)⇒(4)⇒(1) are trivial. The implication (1)⇒(2) follows from
Theorem 7.11. To prove the implication (2)⇒(3), we give an algorithm that solves strong
consensus, akin to those used in the proofs of Theorem 5.2.
Let Σ̂ be broadcastable and let Σ̂𝑝 be sets as in the definition of broadcastability. For

every initial value assignment 𝐼 : Π → 𝒱, let 𝑔𝐼 = 𝑓𝐼,𝐼 : Σ̂ → Σ(𝐼) be the corresponding
isomorphism. For 𝑝 ∈ Π and 𝑣 ∈ 𝒱, we define the canonical strong broadcaster decision sets

Σ𝑝
𝑣 =

⋃︁
𝐼:Π→𝒱
𝐼𝑝=𝑣

𝑔𝐼 [Σ̂𝑝] and Σ𝑣 =
⋃︁
𝑝∈Π

Σ𝑝
𝑣 .

The sets Σ𝑝
𝑣 are 𝑑u-open in Σ: For any 𝛾 ∈ Σ𝑝

𝑣, let 𝑇 be a time at which, (i) in execution 𝛾,

all processes have heard from 𝑝 and (ii) 𝐵2−𝑇 (𝑔−1
𝐼 (𝛾)) ⊆ Σ̂𝑝 in Σ̂ for all 𝐼 : Π → 𝒱 with

𝐼𝑝 = 𝑣, and choose the neighborhood

𝒩 =
{︀
𝛿 ∈ Σ | 𝑑u(𝛾, 𝛿) < 2−𝑇

}︀
=

{︀
𝛿 ∈ Σ | ∃𝑞 ∈ Π: 𝐶𝑇 ∼𝑞 𝐷𝑇

}︀
=

{︀
𝛿 ∈ Σ | ∃𝑞 ∈ Π: 𝐶𝑇 ∼𝑞 𝐷𝑇 ∧ 𝑝 ∈ 𝐻𝑂𝑞(𝐶

𝑇) = 𝐻𝑂𝑞(𝐷
𝑇)

}︀
⊆ {𝛿 ∈ Σ | 𝐼𝑝(𝛾) = 𝐼𝑝(𝛿) = 𝑣} ⊆

⋃︁
𝐼:Π→𝒱
𝐼𝑝=𝑣

𝑔𝐼 [Σ̂]

, Vol. 1, No. 1, Article . Publication date: October 2024.

22 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

where we use the notation 𝛾 = (𝐶𝑡)𝑡≥0 and 𝛿 = (𝐷𝑡)𝑡≥0. By assumption (ii) on the choice
of 𝑇 , for every 𝐼 : Π→ 𝒱 with 𝐼𝑝 = 𝑣, we have

𝒩 ∩ 𝑔𝐼 [Σ̂] =
{︁
𝛿 ∈ 𝑔𝐼 [Σ̂] | 𝑑u(𝛾, 𝛿) < 2−𝑇

}︁
=

{︁
𝛿 ∈ 𝑔𝐼 [Σ̂] | 𝑑u

(︀
𝑔−1
𝐼 (𝛾), 𝑔−1

𝐼 (𝛿)
)︀
< 2−𝑇

}︁
=

{︁
𝑔𝐼(𝛿) | 𝛿 ∈ Σ̂ ∧ 𝑑u

(︀
𝑔−1
𝐼 (𝛾), 𝛿

)︀
< 2−𝑇

}︁
⊆

{︁
𝑔𝐼(𝛿) | 𝛿 ∈ Σ̂𝑝

}︁
= 𝑔𝐼 [Σ̂𝑝] .

Combining the last two equations, we get

𝒩 =
⋃︁

𝐼:Π→𝒱
𝐼𝑝=𝑣

(︁
𝒩 ∩ 𝑔𝐼 [Σ̂]

)︁
⊆

⋃︁
𝐼:Π→𝒱
𝐼𝑝=𝑣

𝑔𝐼 [Σ̂𝑝] = Σ𝑝
𝑣 .

The sets Σ𝑝
𝑣, as well as the sets Σ𝑣 as unions of the Σ𝑝

𝑣, are thus 𝑑u-open in Σ. The Σ𝑣 are

pairwise disjoint since the Σ̂𝑝 are. We further have Σ =
⋃︀

𝑣∈𝒱 Σ𝑣.
We now define the strong consensus algorithm. For every configuration 𝐶 ∈ 𝒞, we set

∆𝑞(𝐶) =

{︃
𝑣 if {𝛿 ∈ Σ | ∃𝑡 : 𝐶 ∼𝑞 𝐷𝑡} ⊆ Σ𝑣

⊥ otherwise

The function ∆𝑞 is well-defined since the sets Σ𝑣 are pairwise disjoint.
We first show Termination. Let 𝛾 ∈ Σ, let 𝐼 : Π → 𝒱 be the initial value assignment

of 𝛾, and let 𝑞 ∈ 𝑂𝑏(𝛾). Since Σ𝑣 is 𝑑u-open in Σ, there exists some 𝜀 > 0 such that
{𝛿 ∈ Σ | 𝑑𝑞(𝛾, 𝛿) < 𝜀} = {𝛿 ∈ Σ | 𝑑u(𝛾, 𝛿) < 𝜀} ⊆ Σ𝑣. Letting 𝑇 be the smallest integer such

that 2−𝜒𝑞(𝐶
𝑡) ≤ 𝜀 for all 𝑡 ≥ 𝑇 , we get ∆𝑞(𝐶

𝑡) = 𝑣 for all 𝑡 ≥ 𝑇 , just like in the proof of
Theorem 5.2.
To show Uniform Agreement, assume by contradiction that process 𝑞 decides a value

𝑤 ̸= 𝑣 in configuration 𝐶 in execution 𝛾 ∈ Σ𝑣. Then, by definition of ∆𝑞, we have 𝛾 ∈ {𝛿 ∈
Σ | ∃𝑡 : 𝐶 ∼𝑞 𝐷𝑡} ⊆ Σ𝑤. But this is impossible since Σ𝑣 ∩ Σ𝑤 = ∅.
We finish the proof by showing Strong Validity. Let 𝛾 ∈ Σ𝑣. Then, by definition, there

exists a 𝑝 ∈ Π and an 𝐼 : Π → 𝒱 with 𝐼𝑝 = 𝑣 such that 𝛾 ∈ 𝑔𝐼 [Σ̂𝑝] ⊆ Σ(𝐼). But then, in
particular, 𝐼𝑝(𝛾) = 𝐼𝑝 = 𝑣. □

Theorem 7.13. For a set of admissible executions Σ where non-uniform consensus
with arbitrary and independent input assignments is solvable, the following statements are
equivalent:

(1) Non-uniform binary consensus is solvable.

(2) Foy any input assignment 𝐼 : Π→ 𝒱, the subset of admissible executions Σ̂ ⊆ Σ using

𝐼 is uniformly broadcastable.
(3) Strong non-uniform consensus is solvable for any set 𝒱 of initial values.
(4)Weak non-uniform consensus is solvable for any set 𝒱 of initial values.

Proof. The proof is similar to that of Theorem 7.12.
The implications (3)⇒(4)⇒(1) are trivial. The implication (1)⇒(2) follows from The-

orem 7.11. To prove the implication (2)⇒(3), we give an algorithm that solves strong
consensus, akin to those used in the proofs of Theorem 5.3.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 23

Let Σ̂ be broadcastable and let Σ̂𝑝 be sets as in the definition of broadcastability. For an

initial value assignment 𝐼 : Π→ 𝒱, let 𝑔𝐼 = 𝑓𝐼,𝐼 : Σ̂→ Σ(𝐼) be the isomorphism. For 𝑝 ∈ Π
and 𝑣 ∈ 𝒱, we define the canonical strong broadcaster decision sets

Σ𝑝
𝑣 =

⋃︁
𝐼:Π→𝒱
𝐼𝑝=𝑣

𝑔𝐼 [Σ̂𝑝] and Σ𝑣 =
⋃︁
𝑝∈Π

Σ𝑝
𝑣 .

The sets Σ𝑝
𝑣 are 𝑑nu-open in Σ: For any 𝛾 ∈ Σ𝑝

𝑣, let 𝑇 be a time at which, (i) in execution 𝛾,

all processes have heard from 𝑝 and (ii) 𝐵2−𝑇 (𝑔−1
𝐼 (𝛾)) ⊆ Σ̂𝑝 in Σ̂ for all 𝐼 : Π → 𝒱 with

𝐼𝑝 = 𝑣, and choose the neighborhood

𝒩 =
{︀
𝛿 ∈ Σ | 𝑑nu(𝛾, 𝛿) < 2−𝑇

}︀
=

{︀
𝛿 ∈ Σ | ∃𝑞 ∈ Π: 𝐶𝑇 ∼𝑞 𝐷𝑇 ∧ 𝑞 ∈ 𝑂𝑏(𝛾) ∩𝑂𝑏(𝛿)

}︀
⊆

{︀
𝛿 ∈ Σ | ∃𝑞 ∈ Π: 𝐶𝑇 ∼𝑞 𝐷𝑇 ∧ 𝑝 ∈ 𝐻𝑂𝑞(𝐶

𝑇) = 𝐻𝑂𝑞(𝐷
𝑇)

}︀
⊆ {𝛿 ∈ Σ | 𝐼𝑝(𝛾) = 𝐼𝑝(𝛿) = 𝑣} ⊆

⋃︁
𝐼:Π→𝒱
𝐼𝑝=𝑣

𝑔𝐼 [Σ̂]

where we use the notation 𝛾 = (𝐶𝑡)𝑡≥0 and 𝛿 = (𝐷𝑡)𝑡≥0. By assumption (ii) on the choice
of 𝑇 , for every 𝐼 : Π→ 𝒱 with 𝐼𝑝 = 𝑣, we have

𝒩 ∩ 𝑔𝐼 [Σ̂] =
{︁
𝛿 ∈ 𝑔𝐼 [Σ̂] | 𝑑nu(𝛾, 𝛿) < 2−𝑇

}︁
=

{︁
𝛿 ∈ 𝑔𝐼 [Σ̂] | 𝑑nu

(︀
𝑔−1
𝐼 (𝛾), 𝑔−1

𝐼 (𝛿)
)︀
< 2−𝑇

}︁
=

{︁
𝑔𝐼(𝛿) | 𝛿 ∈ Σ̂ ∧ 𝑑nu

(︀
𝑔−1
𝐼 (𝛾), 𝛿

)︀
< 2−𝑇

}︁
⊆

{︁
𝑔𝐼(𝛿) | 𝛿 ∈ Σ̂𝑝

}︁
= 𝑔𝐼 [Σ̂𝑝] .

Combining the last two equations, we get

𝒩 =
⋃︁

𝐼:Π→𝒱
𝐼𝑝=𝑣

(︁
𝒩 ∩ 𝑔𝐼 [Σ̂]

)︁
⊆

⋃︁
𝐼:Π→𝒱
𝐼𝑝=𝑣

𝑔𝐼 [Σ̂𝑝] = Σ𝑝
𝑣 .

The sets Σ𝑝
𝑣, as well as the sets Σ𝑣 as unions of the Σ𝑝

𝑣, are thus 𝑑nu-open in Σ. The Σ𝑣 are

pairwise disjoint since the Σ̂𝑝 are. We further have Σ =
⋃︀

𝑣∈𝒱 Σ𝑣.
We now define the strong consensus algorithm. For every configuration 𝐶 ∈ 𝒞, we set

∆𝑞(𝐶) =

{︃
𝑣 if {𝛿 ∈ Σ | ∃𝑡 : 𝐶 ∼𝑞 𝐷𝑡 ∧ 𝑞 ∈ 𝑂𝑏(𝛿)} ⊆ Σ𝑣

⊥ otherwise

The function ∆𝑞 is well-defined since the sets Σ𝑣 are pairwise disjoint.
We first show Termination. Let 𝛾 ∈ Σ, let 𝐼 : Π → 𝒱 be the initial value assignment

of 𝛾, and let 𝑞 ∈ 𝑂𝑏(𝛾). Since Σ𝑣 is 𝑑nu-open in Σ, there exists some 𝜀 > 0 such that
{𝛿 ∈ Σ | 𝑑𝑞(𝛾, 𝛿) < 𝜀∧ 𝑞 ∈ 𝑂𝑏(𝛿)} = {𝛿 ∈ Σ | 𝑑nu(𝛾, 𝛿) < 𝜀} ⊆ Σ𝑣. Letting 𝑇 be the smallest

integer such that 2−𝜒𝑝(𝐶
𝑡) ≤ 𝜀 for all 𝑡 ≥ 𝑇 , we get ∆𝑝(𝐶

𝑡) = 𝑣 for all 𝑡 ≥ 𝑇 .
To show Agreement, assume by contradiction that process 𝑞 decides a value 𝑤 ̸= 𝑣 in

configuration 𝐶 in execution 𝛾 ∈ Σ𝑣. Then, by definition of ∆𝑞, we have 𝛾 ∈ {𝛿 ∈ Σ |
∃𝑡 : 𝐶 ∼𝑞 𝐷𝑡 ∧ 𝑞 ∈ 𝑂𝑏(𝛿)} ⊆ Σ𝑤. But this is impossible since Σ𝑣 ∩ Σ𝑤 = ∅.

, Vol. 1, No. 1, Article . Publication date: October 2024.

24 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

We finish the proof by showing Strong Validity. Let 𝛾 ∈ Σ𝑣. Then, by definition, there
exists a 𝑝 ∈ Π and an 𝐼 : Π → 𝒱 with 𝐼𝑝 = 𝑣 such that 𝛾 ∈ 𝑔𝐼 [Σ̂𝑝] ⊆ Σ(𝐼). But then, in
particular, 𝐼𝑝(𝛾) = 𝐼𝑝 = 𝑣. □

We conclude this section by pointing that the practical utility of the equivalence of
consensus with weak and strong validity established in Theorem 7.12 and Theorem 7.13 is
somewhat limited: Since the solution algorithms depend on the a priori knowledge of the
decision sets, they do not give a clue on how to develop a strong consensus algorithm from
a weak consensus algorithm in a given model. In fact, determining and agreeing upon a
broadcaster in executions that are not 𝑣-valent is a very hard problem.

8 APPLICATIONS

In this section, we will apply our topological characterizations of consensus solvability to
several different examples. Apart from providing a topological explanation of bivalence
proofs (Section 8.1) and folklore results for synchronous consensus under general omission
faults (Section 8.2), we will provide a novel characterization of condition-based asynchronous
consensus [34] with strong validity (Section 8.3), a complete characterization of consensus
solvability for dynamic networks with both closed (Section 8.4) and non-closed (Section 8.5)
message adversaries, and a consensus algorithm for asynchronous systems with weak timely
links that does not rely on an implementation of the Ω failure detector (Section 8.6).

8.1 Bivalence-based impossibilities

Our topological results shed some new light on the now standard technique of bivalence-
based impossibility proofs introduced in the celebrated FLP paper [19], which have been
generalized [33] and used in many different contexts: Our results reveal that the forever
bivalent executions constructed inductively in bivalence proofs [10, 44, 45, 49] are just the
common limit of two infinite sequence of executions 𝛼0, 𝛼1, . . . in the 0-decision set Σ0 and
𝛽0, 𝛽1, . . . in the 1-decision set Σ1.

More specifically, what is common to these proofs is that one shows that, for any consensus
algorithm, there is an admissible forever bivalent execution 𝛾. This is usually done inductively,
by showing that there is a bivalent initial configuration and that, given a bivalent configuration
𝐶𝑡−1 at the end of round 𝑡−1, there is a 1-round extension leading to a bivalent configuration
𝐶𝑡 at the end of round 𝑡. By definition, bivalence of 𝐶𝑡 means that there are two admissible
executions 𝛼𝑡 with decision value 0 and 𝛽𝑡 with decision value 1 starting out from 𝐶𝑡, i.e.,
having a common prefix that leads to 𝐶𝑡. Consequently, their distance satisfies 𝑑nu(𝛼𝑡, 𝛾) <
2−𝑡 and 𝑑nu(𝛽𝑡, 𝛾) < 2−𝑡. But then closedness of Σ0 and Σ1 implies that 𝛾 ∈ Σ0 ∩ Σ1, a
contradiction to their disjointness.

By construction, the (𝑡− 1)-prefixes of 𝛼𝑡 and 𝛼𝑡−1 are the same for all 𝑡, which implies

that they converge to a limit 𝛼̂ (and analogously for 𝛽), see Figure 4 for an illustration.
Therefore, these executions match Definition 6.6, and Corollary 6.7 implies that the stipulated
consensus algorithm cannot be correct. A specific example is the lossy-link impossibility [44],
i.e., the impossibility of consensus under an oblivious message adversary for 𝑛 = 2 that
may choose any graph out of the set {←,↔,→}, and the impossibility of solving consensus
with vertex-stable source components with insufficient stability interval [10, 49]. In the case
of the oblivious lossy-link message adversary using the reduced set {←,→} considered by
Coulouma, Godard, and Peters [14], consensus is solvable and there is no forever bivalent
execution. Indeed, there exists a consensus algorithm where all configurations reached after
the first round are already univalent, see Section 8.4.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 25

8.2 Consensus in synchronous systems with general omission process faults

As a more elaborate example of systems where the solvability of non-uniform and uniform
consensus may be different (which also cover the simple running examples used in Section 4),
we take synchronous systems with up to 𝑓 general omission process faults [40]. For 𝑛 ≥ 𝑓 +1,
non-uniform consensus can be solved in 𝑓 + 1 rounds, whereas solving uniform consensus
requires 𝑛 ≥ 2𝑓 + 1.
The impossibility proof of uniform consensus for 𝑛 ≤ 2𝑓 uses a standard partitioning

argument, splitting Π into a set 𝑃 of processes with |𝑃 | = 𝑓 and 𝑄 with |𝑄| = 𝑛− 𝑓 ≤ 𝑓 .
One considers an admissible execution 𝛼0 where all processes 𝑝 ∈ Π start with 𝐼𝑝 = 0, the
ones in 𝑃 are correct, and the ones in 𝑄 are initially mute; the decision value of the processes
in 𝑃 must be 0 by validity. Similarly, 𝛼1 starts from 𝐼𝑝 = 1, all processes in 𝑄 are correct
and the ones in 𝑃 are initially mute; the decision value is hence 1. For another execution
𝛼, where the processes in 𝑄 are correct and the ones in 𝑃 are general omission faulty, in
the sense that every 𝑝 ∈ 𝑃 does not send and receive any message to/from 𝑄, one observes
𝛼 ∼𝑝 𝛼0, i.e., 𝑑𝑝(𝛼, 𝛼0) < 2−𝑡 for all 𝑡 ≥ 0 and all 𝑝 ∈ 𝑃 . Similarly, 𝛼 ∼𝑞 𝛼1 for every 𝑞 ∈ 𝑄.
Hence, 𝑝 and 𝑞 decide on different values in 𝛼.
Topologically, this is equivalent to 𝑑u(𝛼, 𝛼0) = 0 as well as 𝑑u(𝛼, 𝛼1) = 0, which implies

𝛼 ∈ Σ0 as well as 𝛼 ∈ Σ1. Consequently, Σ0 and Σ1 cannot be disjoint, as needed for uniform
consensus solvability. Clearly, for 𝑛 ≥ 2𝑓 + 1, this argument is no longer applicable. And
indeed, algorithms like the one proposed by Parvedy and Raynal [39] can be used for solving
uniform consensus.
If one revisits the topological equivalent of the above partitioning argument for 𝑛 ≤ 2𝑓

in the non-uniform case, it turns out that still 𝑑nu(𝛼, 𝛼0) = 0, but 𝑑nu(𝛼, 𝛼1) = 1 as all
processes in 𝑄 are faulty. Consequently, 𝛼 ̸∈ Σ1. So Σ0 and Σ1 could partition the space of
admissible executions. And indeed, non-uniform consensus can be solved in 𝑓 + 1 rounds
here. In order to demonstrate this by means of our Theorem 5.3, we will sketch how the
required decision sets Σ𝑣 can be constructed. We will do so by means of a simple labeling
algorithm, which assigns a decision value 𝑣 ∈ 𝒱 to every admissible execution 𝛾. Note that
synchronous systems are particularly easy to model in our setting, since we can use the
number of rounds as our global time 𝑡.
Clearly, every process that omits to send its state in some round to a (still) correct

processor is revealed to every other (still) correct processor at the next round at the latest.
This implies that every correct process 𝑝 seen by some correct process 𝑞 by the end of the
(𝑓 + 1)-round prefix 𝛾|𝑓+1 in the admissible execution 𝛾 has also been seen by every other
correct process during 𝛾|𝑓+1 as well, since one would need a chain of 𝑓 + 1 different faulty
processes for propagating 𝑝’s state to 𝑞 otherwise. Thus, 𝑝 must have managed to broadcast
its initial value 𝐼𝑝(𝛾) to all correct processes during 𝛾|𝑓+1.

Consequently, if 𝛾|𝑓+1 ∼ 𝜌|𝑓+1, where ∼ denotes the transitive closure (over all processes
𝑝 ∈ Π) of the indistinguishability relation ∼𝑝 for prefixes, they must have the same set of
broadcasters. Our labeling algorithm hence just assigns to 𝛾 the initial value 𝐼𝑝 of the, say,
lexically smallest broadcaster 𝑝 in 𝛾|𝑓+1. The resulting decision sets are trivially open since,
for every 𝛾 ∈ Σ𝑣, we have 𝐵2−(𝑓+1)(𝛾) ⊆ Σ𝑣 as well. The generic non-uniform consensus
algorithm from Theorem 5.3 resp. Theorem 7.12 can hence be used for solving weak resp.
strong consensus.

, Vol. 1, No. 1, Article . Publication date: October 2024.

26 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

8.3 Asynchronous condition-based consensus

As an example of asynchronous consensus in shared-memory systems, we consider the
condition-based approach presented by Mostefaoui, Rajsbaum, and Raynal [34]. In order to
circumvent the FLP impossibility [19] of consensus in the presence of process crashes, the
authors considered restrictions of the vectors of allowed initial values 𝐼(𝛾) for the admissible
executions 𝛾 ∈ Σ of the 𝑛 processes in the system. To ensure compatibility with the notation
used in the original paper [34], we will write 𝐼[1], . . . , 𝐼[𝑛] instead of 𝐼1, . . . , 𝐼𝑛 for the initial
value assignment of a given admissible execution in this section. For a set 𝐶 ⊆ 𝒱𝑛 of allowed
input vectors (called a condition) that is a priori known to all processes, the authors asked
for properties 𝐶 must satisfy such that uniform consensus can be solved in the presence of up
to 𝑓 crashes. Note carefully that this is an instance of consensus where the arbitrary input
assumption does not apply, albeit the independent input assumption (recall Definition 7.2)
is needed.

Two such properties were identified in [34]: (i) the more practical 𝑓 -acceptability property,
which consists of “elements” that can be directly utilized in a generic solution algorithm,
and (ii) the more abstract 𝑓 -legality condition. Moreover, two different variants of consensus
were considered: (a) non-safe consensus, which only needs to terminate when the initial
values are indeed from 𝐶, and (b) safe consensus, where the processes must also terminate
for arbitrary inputs in well-behaved (in particular, fault-free) executions. Interestingly, it
turned out that (i) and (ii), as well as (a) and (b), are equivalent, and that either variant of
consensus can be solved in the presence of up to 𝑓 crashes if and only if 𝐶 is 𝑓 -legal or/and
𝑓 -acceptable [34, Thm. 5.7] .
The generic non-safe solution algorithm for an 𝑓 -acceptable condition 𝐶 is extremely

simple: It only uses one round, where process 𝑝𝑖 first writes its initial value 𝐼[𝑖] into its entry
𝑉 [𝑖] of a snapshot object 𝑉 that is initialized to 𝑉 [*] = ⊥, and then performs snapshot reads
that provide its current local view 𝑉𝑖 until it finds at least 𝑛− 𝑓 non-⊥ entries in 𝑉𝑖. The
latter condition terminates the round, at the end of which 𝑝𝑖 uses the “elements” making up
𝑓 -acceptability for computing the decision value from its final view 𝑉𝑖. Note that a ⊥ entry
in 𝑉𝑖[𝑗] can be due to a crash of 𝑝𝑗 or just a consequence of the fact that 𝑝𝑗 has just been
slow compared to the at least 𝑛− 𝑓 other processes that managed to provide non-⊥ entries.
To make this algorithm compatible with our setting, where all executions are infinite, we
just add infinitely many empty rounds (where no process changes its state or reads/writes
𝑉). Moreover, we consider all processes to be obedient and just make at most 𝑓 of them
very slow when needed, which allows us to directly use our uniform topology.

The definition of 𝑓 -legality is based on an undirected graph 𝐻(𝐶, 𝑓), whose vertices are
the vectors in 𝐶 and where there is an edge (𝐼1, 𝐼2) if and only if the Hamming distance
between 𝐼1 ∈ 𝐶 and 𝐼2 ∈ 𝐶 is at most 𝑓 . The graph 𝐻(𝐶, 𝑓) can be expanded into a graph
𝐺𝑖𝑛(𝐶, 𝑓) of all the views 𝑉𝑖 possibly obtained by any process 𝑝𝑖 in the above algorithm:
For every 𝐼 ∈ 𝐶, 𝐺𝑖𝑛(𝐶, 𝑓) contains all the vertices that are obtained by replacing up to 𝑓
entries of 𝐼 by ⊥. Two vertices 𝐽1, 𝐽2 ∈ 𝐺𝑖𝑛(𝐶, 𝑓) are connected by an undirected edge if
𝐽1[𝑖] ̸= ⊥ ⇒ 𝐽1[𝑖] = 𝐽2[𝑖] for every 1 ≤ 𝑖 ≤ 𝑛, or vice versa. It is not difficult to see that
𝐼1, 𝐼2 ∈ 𝐻(𝐶, 𝑓) are connected by an edge if and only if the same vertices 𝐼1, 𝐼2 ∈ 𝐺𝑖𝑛(𝐶, 𝑓)
are connected by a path.
A condition 𝐶 is 𝑓 -legal if, for each connected component 𝐺1, . . . , 𝐺𝑥 of 𝐺𝑖𝑛(𝐶, 𝑓), all

the vertices in the component have at least one input value 𝑣 in common [34, Def. 5.2]. This
property translates to the corresponding connected components 𝐻1, . . . ,𝐻𝑥 of 𝐻(𝐶, 𝑓) as:
all vertices in a component must have at least one entry with input value 𝑣 in common, and

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 27

𝑣 appears in 𝑓 +1 entries in every vertex. In fact, without the latter, 𝑣 would disappear from
the view 𝐽 in 𝐺𝑖𝑛(𝐶, 𝑓) where the at most 𝑓 entries holding 𝑣 in 𝐼 ∈ 𝐻(𝐶, 𝑓) are replaced
by ⊥.
The setting for condition-based consensus in [34] differs from the one underlying our

topological results in the previous sections in two aspects: (1) It uses a validity condition
that is stronger than our strong validity (SV), as it does not allow processes to decide on the
initial value of an initially dead process. (2) It does not allow arbitrary input assignments,
which is a pivotal assumption in all our broadcasting-based characterizations in Section 7.
And indeed, as it will turn out, we do not usually have a common broadcaster 𝑝 in the
connected components of a decision set Σ𝑣 here.
In Theorem 8.1 below, we will characterize the solvability of condition-based consensus

with strong validity (SV) using our topological approach. To model (SV), the original
𝑓 -legality condition must be weakened to 𝑓-quasilegality : Rather than assuming that all
input assignments 𝐼 in a connected component 𝐺𝑖 in 𝐺𝑖𝑛(𝐶, 𝑓), i.e., the vertices also lying
in the corresponding connected component 𝐻𝑖 in 𝐻(𝐶, 𝑓), must have a value 𝑣 in common
that appears in at least 𝑓 + 1 entries in 𝐼, 𝑓 -quasilegality only requires a common value 𝑣.
For our proof, we exploit the very simple structure of the set of admissible executions

Σ of the generic condition-based consensus algorithm, and the close relation between Σ
and 𝐺𝑖𝑛(𝐶, 𝑓). In fact, 𝐺𝑖𝑛(𝐶, 𝑓) is a graph on all the possible views of the processes
(at the end of the first round) in any execution. More specifically, for the admissible
execution 𝛼 = 𝛼(𝐼) ∈ Σ starting from the initial value assignment 𝐼, the configuration
𝛼1 = (𝐽1,¸ . . . , 𝐽𝑛) after round 1 satisfies 𝐽𝑗 ∈ 𝐺𝑖 ⊆ 𝐺𝑖𝑛(𝐶, 𝑓) for every 𝑝𝑗 ∈ Π and 𝐽𝑗 = ⊥
otherwise. Herein, 𝐺𝑖 is the connected component in 𝐺𝑖𝑛(𝐶, 𝑓) that contains 𝐼. This holds
since every 𝐽𝑗 is obtained from 𝐼 by replacing at most 𝑓 entries with ⊥ in 𝐺𝑖𝑛(𝐶, 𝑓). Note
carefully that every process can hence unambigously identify the connected component 𝐺𝑖

the current execution belongs to, as it only needs to check in which connected component
its local view lies. Recall that it is assumed that every process knows 𝐶 and hence 𝐻(𝐶, 𝑓)
and 𝐺𝑖𝑛(𝐶, 𝑓) a priori.

Theorem 8.1 (Condition-based consensus characterization). In the asynchro-
nous shared memory system with at most 𝑓 crash faults, condition-based consensus with
strong validity (SV) can be solved for condition 𝐶 if and only if 𝐶 is 𝑓-quasilegal, in the
sense that all the vertices in a connected component of 𝐻(𝐶, 𝑓) have a value 𝑣 in common.

Proof. We first prove that if 𝐶 is 𝑓 -quasilegal, then strong consensus is solvable. With
𝑣𝑖 ∈ 𝒱 denoting the common value a priori chosen for the connected component 𝐻𝑖 (and
hence 𝐺𝑖), we define the decision sets as Σ𝑣𝑖 = {𝛾|𝛾1 ∈ 𝐺𝑖}, where 𝛾1 = 𝐷1 for 𝛾 = (𝐷𝑡)𝑡≥0.
By construction, Σ𝑣 and Σ𝑤 are disjoint for 𝑤 ̸= 𝑣. Since our topology is discrete, as
the finiteness of 𝐺𝑖𝑛(𝐶, 𝑓) implies that there are only finitely many different admissible
executions in Σ, all decision sets (and their connected components) are clopen in Σ. Applying
the algorithm given in Theorem 7.12 hence allows to solve consensus.
On the other hand, to show that consensus cannot be solved if 𝐶 is not 𝑓 -quasilegal,

suppose for a contradiction that there is a correct strong consensus algorithm without it. We
first prove that all executions starting from an input value assignment 𝐼 ∈ 𝐺𝑖 in a connected
component 𝐺𝑖 ⊆ 𝐺𝑖𝑛(𝐶, 𝑓), which necessarily also contains all the possible views of all
processes in 𝐺𝑖, lie in the same connected component in Σ. To prove this, it suffices to show
by induction that, for any two executions 𝛾 = 𝛾(𝐼) and 𝛿 = 𝛿(𝐼 ′) with 𝐼, 𝐼 ′ ∈ 𝐺𝑖, there is a
finite sequence of executions 𝛾 = 𝛼0, 𝛼1, . . . , 𝛼𝑘+1 = 𝛿 such that, for every 0 ≤ 𝑗 < 𝑘 + 1,

, Vol. 1, No. 1, Article . Publication date: October 2024.

28 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

𝛼𝑗 ∈ 𝐺𝑖 and 𝛼𝑗 ∼𝑞𝑗 𝛼𝑗+1 for some process 𝑞𝑗 . This implies 𝑑u(𝛼𝑗 , 𝛼𝑗+1) = 0 and hence also
𝑑u(𝛾, 𝛿) = 0 as needed.
Since 𝐺𝑖 is a connected component containing 𝐼, 𝐼 ′, there must be a chain of 𝑘 ≥ 2

different initial value assignments 𝐼0 = 𝐼1 = 𝐼, 𝐼1, . . . , 𝐼𝑘 = 𝐼𝑘+1 = 𝐼 ′ in 𝐺𝑖 where 𝐼ℓ and
𝐼ℓ+1, 1 ≤ ℓ ≤ 𝑘 − 1, are connected by an edge in 𝐻(𝐶, 𝑓) (and hence by a path in 𝐺𝑖).
Moreover, there must be processes 𝑝1, . . . , 𝑝𝑘−1 such that 𝐼ℓ[𝑝ℓ] ̸= 𝐼ℓ+1[𝑝ℓ]. For the induction
basis ℓ = 1, we choose 𝛼1 = 𝛼1(𝐼1) to be any execution where some process 𝑞0 has the
same view in 𝛼1

0 and in 𝛼1
1, and process 𝑞1 has the same view 𝐽1 in 𝛼1

1 and in 𝛼1
2, so

𝛼0 ∼𝑞0 𝛼1 ∼𝑞1 𝛼2. This choice of 𝛼1 is possible, since 𝛼0 and 𝛼1 start from the same 𝐼,
and since 𝐼1 and 𝐼2 have a Hamming distance between 1 and 𝑓 and can hence have a
common view 𝐽1 with ⊥ for all processes 𝑞, including 𝑞1, where 𝐼1[𝑞] ̸= 𝐼2[𝑞]. Note that
it is here where we need the independent (but not arbitrary!) input assignment property
Definition 7.2. For the induction step, assume that we have already constructed 𝛼ℓ for ℓ ≥ 1.
For 𝛼ℓ+1, we choose an execution where 𝑞ℓ has the same view 𝐽ℓ in 𝛼ℓ and 𝛼ℓ+1 (necessarily
with 𝐽ℓ[𝑞ℓ] = ⊥), and 𝑞ℓ+1 has the same view 𝐽ℓ+1 in 𝛼ℓ+1 and 𝛼ℓ+2 (necessarily with
𝐽ℓ+1[𝑞ℓ+1] = ⊥, unless ℓ+ 1 = 𝑘 already, in which case both 𝛼ℓ+1 and 𝛼ℓ+2 start from 𝐼 ′),
which leads to 𝛼ℓ ∼𝑞ℓ 𝛼ℓ+1 ∼𝑞ℓ+1

𝛼ℓ+2 and completes our induction proof.
Since 𝐶 is not 𝑓 -quasilegal by assumption, there must be a connected component 𝐺𝑖 ⊆

𝐺𝑖𝑛(𝐶, 𝑓) that contains initial configurations 𝐼 and 𝐼 ′, such that 𝐼 ′ does not contain any
value present in 𝐼. In order not to violate strong validity, no executions 𝛾 = 𝛾(𝐼) and
𝛿 = 𝛿(𝐼 ′) may lie in the same decision set. However, we have just shown that they lie in the
same connected component in Σ, which provides the required contradiction. □

8.4 Dynamic networks with limit-closed message adversaries

In this section, we will consider consensus with independent and arbitrary input assignments
in dynamic networks under message adversaries [2] that are limit-closed [47], in the sense
that every convergent sequence of executions 𝛼0, 𝛼1, . . . with 𝛼𝑘 ∈ Σ for every 𝑖 has a limit
𝛼 ∈ Σ. An illustration is shown in Figure 3, where the purple dots represent a sequence
of executions 𝛼𝑖 taken from the connected component Σ𝛾0

and × the limit point 𝛼 at the
boundary. The most prominent examples of limit-closed message adversaries are oblivious
ones [14, 44, 46].
We recall that dynamic networks consist of a set of 𝑛 lock-step synchronous fault-free

processes, which execute a deterministic consensus algorithm that broadcasts its entire local
state via message-passing in each of the communication-closed rounds 1, 2, . . . A message
adversary determines which process 𝑞 receives the message broadcast by a process 𝑝 in
some round 𝑡, via the directed round-𝑡 communication graph 𝒢𝑡. Together with the initial
configuration 𝐶0 of all the processes, the particular sequence of communication graphs
𝒢1,𝒢2, . . . , which is called communication pattern, uniquely determines an execution. For
example, an oblivious message adversary is defined by a set D of allowed communication
graphs and picks every 𝒢𝑡 arbitrarily from this set.
Since all processes are obedient here, we will only consider the uniform topology in the

sequel. The set of all process-time graphs 𝒫𝒯 𝜔 is compact and the transition function
𝜏 : 𝒫𝒯 𝜔 → 𝒞𝜔 is continuous, according to Lemma A.2, so taking 𝜏(𝒫𝒯 𝜔) results in a set of
configuration sequences that is indeed compact. Note that limit-closed message adversaries
are hence sometimes refered to as compact message adversaries.

The following consensus characterization holds even for general message adversaries:

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 29

Corollary 8.2 (Consensus characterization for general MAs). Consensus with
independent arbitrary input assignments is solvable under a general message adversary if and
only if (i) all connected components of the set Σ of admissible executions are broadcastable
for some process, and (ii) the strong broadcaster decision sets Σ𝑝

𝑣, 𝑝 ∈ Π, 𝑣 ∈ 𝒱, given in
Definition 7.8, are closed in Σ.

Proof. Since there are only finitely many Σ𝑝
𝑣, 𝑝 ∈ Π, 𝑣 ∈ 𝒱, closedness is equivalent to

clopenness here. Hence, Theorem 7.9 can be applied. □

Σ𝛾0

Σ𝛾′
0

Σ𝛾1

Σ𝛾′
1

Fig. 3. Examples of two connected components of the decision sets Σ0 = Σ𝛾0 ∪Σ𝛾′
0
and Σ1 = Σ𝛾1 ∪Σ𝛾′

1

for consensus under a limit-closed message adversary. contain all their limit points (marked by ×) and
have a distance > 0 by cor:closeddecsetscompact.

We will start our considerations for limit-closed message adversaries by exploring the
structure of the strong decision sets (recall Definition 7.8) of correct consensus algorithms,
see Fig. 3 for an illustration.

Corollary 8.3 (Strong decision sets for limit-closed MAs). For every correct
consensus algorithm for a limit-closed message adversary, both the strong broadcaster decision
sets Σ𝑝

𝑣, 𝑝 ∈ Π, 𝑣 ∈ 𝒱, and the strong decision sets Σ𝑣, 𝑣 ∈ 𝒱, are disjoint, compact
and clopen in Σ. Moreover, there is some 𝑑 > 0 such that 𝑑u(Σ

𝑝
𝑣,Σ

𝑞
𝑤) ≥ 𝑑 > 0 for any

(𝑣, 𝑝), (𝑣, 𝑝) ̸= (𝑤, 𝑞) ∈ Π× 𝒱, as well as 𝑑u(Σ𝑣,Σ𝑤) ≥ 𝑑 > 0 for every 𝑣, 𝑣 ̸= 𝑤 ∈ 𝒱.
In addition, every connected component Σ𝛾 ⊆ Σ is closed and compact, and for every 𝛾, 𝛿

with Σ𝛾 ̸= Σ𝛿, it holds that 𝑑u(Σ𝛾 ,Σ𝛿) > 0.

Proof. According to Theorem 7.9, all strong broadcaster decision sets Σ𝑝
𝑣 are clopen,

and hence closed, in Σ. Since Σ is compact for a limit-closed message adversary, it follows
that every Σ𝑝

𝑣 is also compact. Corollary 6.5 thus implies 𝑑u(Σ
𝑝
𝑣,Σ

𝑞
𝑤) > 0. Since there are

only finitely many Σ𝑝
𝑣, there is hence some 𝑑 > 0 that guarantees 𝑑u(Σ

𝑝
𝑣,Σ

𝑞
𝑤) ≥ 𝑑 > 0 for

every (𝑣, 𝑝) ̸= (𝑤, 𝑞) ∈ Π× 𝒱. As Σ𝑣 =
⋃︀

𝑝∈Π Σ𝑝
𝑣 is a finite union, the respective results for

the strong decision sets follow immediately as well.
Since every connected component Σ𝛾 of Σ that contains 𝛾 is closed in Σ, as the closure

of a connected subspace is also connected [36, Lem. 23.4] and a connected component is
maximal, Σ𝛾 is also compact, and 𝑑u(Σ𝛾 ,Σ𝛿) > 0 follows from Corollary 6.5. □

Unfortunately, Corollary 8.3 does not allow us to also infer some minimum distance
𝑑 > 0 also for the connected components in general. It does hold true, however, if there
are only finitely many connected components. The latter is ensured, in particular, when Σ
is locally connected, in the sense that every open set 𝑈(𝛿) ⊆ Σ containing 𝛿 also contains

, Vol. 1, No. 1, Article . Publication date: October 2024.

30 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

some connected open set 𝑉 (𝛿): According to [36, Thm. 25.3], all connected components of Σ
are also open in this case. Hence, Σ =

⋃︀
𝛾∈Σ Σ𝛾 is an open covering of Σ, and since Σ is

compact, there is a finite sub-covering Σ = Σ′
𝛾1 ∪ · · · ∪ Σ′

𝛾𝑚 . Every Σ𝛾 must hence be equal
to one of Σ𝛾1 , . . . ,Σ𝛾𝑚 , as connected components are either disjoint or identical.
Unfortunately, however, most limit-closed message adversaries do not guarantee local

connectedness. In the case of oblivious message adversaries, in particular, it has been
argued [22] that isolated “islands” are created in the evolution of the protocol complex,
which further develop like the original protocol complex (that must be not connected for
consensus to be solvable). This phenomenon may be viewed as the result of the “self-similarity”
that is inherent in the communication patterns created by such message adversaries, which
is not compatible with local connectedness.

In general, for limit-closed message adversaries that induce infinitely many connected com-
ponents in Σ, one cannot infer openness (and hence clopenness) of the connected components:
Consider a decision set Σ𝑣 that consists of infinitely many connected components. Whereas
any connected component Σ𝛾 is closed, the set of all remaining connected components
Σ𝑣 ∖ Σ𝛾 need not be closed. It may hence be possible to pick a sequence of executions (𝛼𝑘)
from Σ𝑣 ∖ Σ𝛾 that converges to a limit 𝛼, and a sequence (𝛽𝑘) from Σ𝛾 that converges to
𝛽 ∈ Σ𝛾 , satisfying 𝑑u(𝛼, 𝛽) = 0. By Lemma 6.2, this implies 𝑑u(Σ𝛾 ,Σ𝑣 ∖ Σ𝛾) = 0. It is
important to note, however, that this can only happen for connected components in the
same strong broadcaster decision set Σ𝑝

𝑣, as 𝑑u(Σ
𝑝
𝑣,Σ

𝑞
𝑤) ≥ 𝑑 > 0 prohibits a common limit

across different decision sets. Consequently, consensus solvability is not per se impaired by
infinitely many connected components, as Corollary 8.2 has shown.

We will now make the characterization of Corollary 8.2 for limit-closed message adversaries
more operational, by introducing the 𝜀-approximation of connected components and strong
broadcaster decision sets, typically for some 𝜀 = 2−𝑡, 𝑡 ≥ 0. Informally, it provides the
executions that have a 𝑡-prefix that cannot be transitively distinguished by some process.
Since the number of different possible 𝑡-prefixes is finite, it can be constructed iteratively
using finitely many iterations:

Definition 8.4 (𝜀-approximations). Let 𝛾 ∈ Σ be an admissible execution. In the minimum
topology, we iteratively define Σ𝜀

𝛾 , for 𝜀 > 0, as follows: Σ𝜀
𝛾 [0] = {𝛾}; for ℓ > 0, Σ𝜀

𝛾 [ℓ] =⋃︀
𝛼∈Σ𝜀

𝛾 [ℓ−1](𝐵𝜀(𝛼) ∩ Σ); and Σ𝜀
𝛾 = Σ𝜀

𝛾 [𝑚] where 𝑚 <∞ is such that Σ𝜀
𝛾 [𝑚] = Σ𝜀

𝛾 [𝑚+ 1].

For 𝑝 ∈ Π, 𝑣 ∈ 𝒱, the 𝜀-approximation Σ𝑝,𝜀
𝑣 is defined as Σ𝑝,𝜀

𝑣 =
⋃︀

Σ𝛾⊆Σ𝑝
𝑣
Σ𝜀

𝛾 .

Note carefully that Σ𝜀
𝛾 is generally different (in fact, larger) than the covering of Σ𝛾 with

𝜀-balls defined by
⋃︀

𝛿∈Σ𝛾
𝐵𝜀(𝛿) ∩ Σ. Our 𝜀-approximations satisfy the following properties

(that actually hold for general message adversaries):

Lemma 8.5 (Properties of 𝜀-approximations of connected components). For
every 𝜀 > 0 and every 𝛾, 𝛿 ∈ Σ, 𝜀-approximations have the following properties:

(i) Σ𝜀′

𝛾 ⊆ Σ𝜀
𝛾 for every 0 < 𝜀′ ≤ 𝜀.

(ii) Σ𝜀
𝛾 ∩ Σ𝜀

𝛿 ̸= ∅ implies Σ𝜀
𝛾 = Σ𝜀

𝛿.
(iii) Σ𝛾 ⊆ Σ𝜀

𝛾 .

Proof. To prove (i), it suffices to mention 𝐵𝜀′(𝛼) ⊆ 𝐵𝜀(𝛼). As for (ii), if 𝛼 ∈ Σ𝜀
𝛾 ∩Σ𝜀

𝛿 ̸= ∅,
the iterative construction of Σ𝜀

𝛾 would reach 𝛼, which would cause it to also include the
whole Σ𝜀

𝛿, as the latter also reaches 𝛼. If (iii) would not hold, Σ𝛾 could be separated into
disjoint open sets, which contradicts its connectivity. □

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 31

Obviously, properties (i) and (iii) of the 𝜀-approximation of connected components also
extend to arbitrary unions of those, and hence to strong broadcaster decision sets. In fact, for
limit-closed message adversaries, provided 𝜀 is chosen sufficiently small, we get the following
result:

Lemma 8.6 (𝜀-approximation of strong broadcaster decision sets). For a limit-
closed message adversary that allows to solve consensus, there is some 𝜀 > 0 such that, for
any 0 < 𝜀′ ≤ 𝜀, it holds that 𝑑u(Σ

𝑝,𝜀′

𝑣 ,Σ𝑞,𝜀′

𝑤) > 0 for any (𝑣, 𝑝), (𝑣, 𝑝) ̸= (𝑤, 𝑞) ∈ Π× 𝒱.

Proof. According to Corollary 8.3, there is some 𝑑 > 0 such that 𝑑u(Σ
𝑝
𝑣,Σ

𝑞
𝑤) ≥ 𝑑 > 0. By

the extension of Lemma 8.5.(iii) to strong broadcaster decision sets, for any 𝜀 > 0, Σ𝑝
𝑣 ⊆ Σ𝑝,𝜀

𝑣

and Σ𝑞
𝑤 ⊆ Σ𝑞,𝜀

𝑤 . Therefore, setting 𝜀 < 𝑑/2 secures 𝑑u(Σ
𝑝,𝜀
𝑣 ,Σ𝑞,𝜀

𝑤) > 0. By the extension of

Lemma 8.5.(i) to strong broadcaster decision sets, we hence also get 𝑑u(Σ
𝑝,𝜀′

𝑣 ,Σ𝑞,𝜀′

𝑤) > 0. □

Corollary 8.7 (Matching 𝜀-approximation). For a limit-closed message adversary
that allows to solve consensus, if 𝜀 > 0 is chosen in accordance with Lemma 8.6, then
Σ𝑝,𝜀

𝑣 = Σ𝑝
𝑣 for every 𝑝 ∈ Π, 𝑣 ∈ 𝒱.

Theorem 8.8 (Operational consensus characterization for limit-closed MAs).
A limit-closed message adversary allows to solve consensus if and only if there is some 𝜀 > 0
such that (i) every Σ𝜀

𝛾 , Σ𝛾 ⊆ Σ, is broadcastable for some process, and (ii) every Σ𝑝,𝜀
𝑣 , 𝑝 ∈ Π,

𝑣 ∈ 𝒱, is closed in Σ.

Proof. Our theorem follows from Corollary 8.2 in conjunction with Corollary 8.7. □

Theorem 8.8 implies that if consensus is solvable, then, for every 0 < 𝜀′ ≤ 𝜀, the universal
algorithm from Theorem 7.12 applied to the strong decision sets can be used for actually
solving it. And indeed, the consensus algorithm given by Winkler, Schmid, and Moses [47,
Alg. 1] can be viewed as an instantiation of this fact.

Moreover, Corollary 8.7 implies that checking the broadcastability of all the executions
in Σ𝑝,𝜀

𝑣 can be done by checking the broadcastability of finite prefixes. More specifically,
like the decision function ∆ of consensus, the function 𝑇 (𝛼) that gives the round by which
every process in 𝛼 ∈ Σ has the initial value 𝐼𝑝(𝛼) of the broadcaster 𝑝 in its view is locally
constant for a sufficiently small neighborhood, namely, 𝐵2−𝑇 (𝛼)(𝛼), and is hence continuous
in any of our topologies. Since Σ𝑝

𝑣 = Σ𝑝,𝜀
𝑣 is compact, 𝑇 (𝛼) is in fact uniformly continuous

and hence attains its maximum 𝑇 in Σ𝑝,𝜀
𝑣 . It hence suffices to check broadcastability in the

𝑡-prefixes of Σ𝑝,𝜀
𝑣 for 𝑡 = max{⌊log2(1/𝜀)⌋, 𝑇} in Theorem 8.8.

In [47], this has been translated into the following non-topological formulation (where

MA corresponds to Σ, [𝜎|𝑟] is the set of 𝑟-prefixes of the executions in Σ2−𝑟

𝜎 in the uniform
topology, and Ker(𝑥) is the set of broadcasters in the prefix 𝑥):

Theorem 8.9 ([47, Thm. 1]). Consensus is solvable under a limit-closed message
adversary MA if and only if for each 𝜎 ∈ MA there is a round 𝑟 such that

⋂︀
𝑥∈[𝜎|𝑟] Ker(𝑥) ̸= ∅.

8.5 Dynamic networks with non-limit closed message adversaries

In this section, we consider consensus with independent and arbitrary input assignments
under message adversaries that are not limit-closed [17, 41, 49]. A simple example would
be a message adversary, which guarantees that there is some finite round 𝑟 where the
communication graph 𝒢𝑟 is a clique. The communication pattern where 𝑟 = ∞, i.e., the
limiting case 𝑟 →∞ (where the clique graph never happens) is forbidden.

, Vol. 1, No. 1, Article . Publication date: October 2024.

32 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

As already mentioned in Section 8.4, our consensus characterization Corollary 8.2 also
applies here, as does the generic one in Theorem 7.12, of course. Moreover, they can be
combined with our limit-based characterization Theorem 6.4 and Corollary 6.7.

What does not work here, however, are our 𝜀-approximations according to Definition 8.4,
and everything built on top of it: Even if 𝜀 would be made arbitrarily small, Lemma 8.6
does not hold. An illustration is shown in Figure 4. It is apparent that adding a ball
𝐵𝜀(𝛼) in the iterative construction of some Σ𝜀

𝛾 , where 𝑑u(𝛼, 𝜌) < 𝜀 for some forbidden limit
sequence 𝜌, inevitably lets the construction grow into some Σ𝜀

𝛿 lying in a different strong
broadcaster decision set. Whereas this could be avoided by adapting 𝜀 when coming close
to 𝑟, the resulting approximation would not provide any advantage over directly using our
characterization Corollary 8.2.

Σ𝛾0
Σ𝛾1

Σ𝛾′
0 Σ𝛾′

1

Fig. 4. Examples of two connected components of the decision sets Σ0 = Σ𝛾0 ∪Σ𝛾′
0
and Σ1 = Σ𝛾1 ∪Σ𝛾′

1

for a non-compact message adversary. They are not closed in 𝒞𝜔 and may have distance 0; common
limit points (like for Σ𝛾0 and Σ𝛾1 , marked by ×) must hence be excluded by Corollary 6.4.

These topological findings are of course in accordance with the results on non-limit closed
message adversaries we are aware of. In particular, the binary consensus algorithm for 𝑛 = 2
by Fevat and Godard [17] assumes that the algorithm knows a fair execution or a pair
of unfair executions according to Definition 6.6 a priori, which effectively partition the
execution space into two connected components.3 Such a limit exclusion is also exploited
in the counterexample to consensus task solvability for 𝑛 = 2 via a decision map that is
not continuous [20], which has been suggested by Godard and Perdereau [23]: It excludes
just the unfair execution 𝛼 based on {↔,←,←, . . . }, but not the unfair execution 𝛽 caused
by {→,←,←, . . . }, which satisfies 𝑑𝑝(𝛼, 𝛽) = 0 for the right process 𝑝 and hence makes
consensus impossible.

The (𝐷+1)-VSRC message adversary ♢STABLE𝑛(𝐷+1) [49] generates executions that are
based on single-rooted communication graphs in every round, with the additional guarantee
that, eventually, a 𝐷 + 1-vertex-stable root component (𝐷 + 1-VSRC) occurs. Herein, a root
component is a strongly connected component without in-edges from outside the component,
and a 𝑥-VSRC is a root component made up of the same set of processes in 𝑥 consecutive
rounds. 𝐷 ≤ 𝑛 − 1 is the dynamic diameter of a VSRC, which guarantees that all root
members reach all processes. It has been proved [49] that consensus is impossible with
♢STABLE𝑛(𝑥) for 𝑥 ≤ 𝐷, whereas an algorithm exists for ♢STABLE𝑛(𝐷 + 1). Obviously,

3Note that there are uncountably many choices for separating Σ0 and Σ1 here, however.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 33

♢STABLE𝑛(𝐷 + 1) effectively excludes all communication patterns without any 𝐷 + 1-VSRC.
And indeed, the choice 𝑥 = 𝐷 + 1 renders the connected components of Σ broadcastable by
definition, which is in accordance with Corollary 8.2.

We also introduced and proved correct an explicit labeling algorithm for ♢STABLE𝑛(𝑛) in
[48], which effectively operationalizes the universal consensus algorithm of Theorem 7.12:
By assigning a (persistent) label ∆(𝜎′|𝑟) to the 𝑟-prefixes of 𝜎 ∈ Σ, it effectively assigns a
corresponding unique decision value 𝑣 ∈ 𝒱 to 𝜎, which in turn specifies the strong decision
set Σ𝑣 containing 𝜎. In the language of [48], the requirement of every Σ𝑣 being open (and
closed) in Theorem 7.12 translates into a matching assumption on this labeling function as
follows (herein, MA corresponds to Σ, 𝜎|𝑟 denotes the 𝑟-round prefix of execution 𝜎, and ∼
is the transitive closure over all processes 𝑝 of the prefix indistinguishability relation ∼𝑝):

Assumption 1 ([48, Assumpt. 1]). ∀𝜎 ∈ MA ∃𝑟 ∈ N ∀𝜎′ ∈ MA : 𝜎′|𝑟 ∼ 𝜎|𝑟 ⇒
∆(𝜎′|𝑟) = ∆(𝜎|𝑟) ̸= ∅ .

For ♢STABLE𝑛(𝑛), it has been proved [48, Thm. 12] that the given labeling algorithm
satisfies this assumption for 𝑟 = 𝑟𝑠𝑡𝑎𝑏 + 4𝑛, where 𝑟𝑠𝑡𝑎𝑏 is the round where the (first) 𝐷 + 1-
VSRC in 𝜎 starts. Consensus is hence solvable by a suitable instantiation of the universal
consensus algorithm of Theorem 7.12.

8.6 Consensus in systems with an eventually timely 𝑓-source

It is well-known [15] that consensus cannot be solved in distributed systems of 𝑛 ≥ 2𝑓 + 1
(partially) synchronous processes, up to which 𝑓 may crash, which are connected by reliable
asynchronous communication links. For solving consensus, the system model has been
strengthened by a weak timely link (WTL) assumption [3, 26]: there has to be at least one
correct process 𝑝 that eventually sends timely to a sufficiently large subset of the processes.
In previous work [3], at least one eventually timely 𝑓-source 𝑝 was assumed: After some

unknown initial period where all end-to-end message delays are arbitrary, every broadcast of
𝑝 is received by a fixed subset 𝑃 ⊆ Π with 𝑝 ∈ 𝑃, |𝑃 | ≥ 𝑓 +1 within some possibly unknown
maximum end-to-end delay Θ. The authors showed how to build the Ω failure detector in
such a system, which, in conjunction with any Ω-based consensus algorithm (like the one by
Mostéfaoui and Raynal [35]) can be used to solve uniform consensus.
Their Ω implementation lets every process broadcast a heartbeat message every 𝜂 steps,

which forms partially synchronized rounds, and maintains an accusation counter for every
process 𝑞 that counts the number of rounds the heartbeats of which were not received timely
by more than 𝑓 processes. This is done by letting every process who does not receive 𝑞’s
broadcast within Θ send an accusation message for 𝑞, and incrementing the accusation
counter for 𝑞 if more than 𝑓 such accusation messages from different receivers came in. It is
not difficult to see that the accusation counter of a process that crashes grows unboundedly,
whereas the accusation counter of every timely 𝑓 -source eventually stops being incremented.
Since the accusation counters of all processes are exchanged and agreed-upon as well,
choosing the process with the smallest accusation counter (with ties broken by process ids)
is a legitimate choice for the output of Ω.

This WTL model was further relaxed [26], which allows the set 𝑃 (𝑘) of witnessing receivers
of every eventually moving timely 𝑓-source to depend on the sending round 𝑘. The price
to be paid for this relaxation is the need to incorporate the sender’s round number in the
heartbeat and accusation messages.
In this subsection, we will use our Theorem 7.12 to prove topologically that consensus

with strong validity and independent arbitrary input assignments can indeed be solved in

, Vol. 1, No. 1, Article . Publication date: October 2024.

34 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

the WTL model: We will give and prove correct an explicit labeling algorithm Algorithm 1,
which assigns a decision value 𝑣 ∈ 𝒱 to every execution 𝜎 that specifies the decision set Σ𝑣

containing 𝜎. Applying our universal algorithm to these decision sets hence allows to solve
consensus in this model. Obviously, unlike the existing algorithms, our algorithm does not
rely on an implementation of Ω.

We assume a (slightly simplified) WTL model with synchronous processes and asynchro-
nous links that are reliable and FIFO, with known Θ for timely links. Whereas we will
use the time 𝑡 = 0, 1, 2, . . . our synchronous processes take their steps as global time, we
note that we do not have communication-closed rounds here, i.e., have to deal with general
executions according to Definition A.1 in the appendix. In an admissible execution 𝜎, we
denote by 𝐹 (𝜎) the set of up to 𝑓 processes that crash in 𝜎, and 𝐶(𝜎) = 𝑂𝑏(𝜎) = Π ∖ 𝐹 (𝜎)
the set of correct processes. For an eventual timely 𝑓 -source 𝑝, we will denote with 𝑟stab,𝑝
the stabilization round, by which it has already started to send timely: a message sent in
round 𝑡 ≥ 𝑟stab,𝑝 is received by every 𝑞 ∈ 𝑃 (𝑡) no later than in round 𝑡+Θ − 1, hence is
present in 𝑞’s state at time 𝑡+Θ− 1. Note carefully that this condition is automatically
satisfied when 𝑞 has crashed by that round. We again assume that the processes execute a
full-information protocol, i.e., send their whole state in every round. For keeping the relation
to the existing algorithms, we consider the state message sent by 𝑝 in round 𝑡 to be its
heartbeat(𝑡). Moreover, if the state of process 𝑞 at time 𝑡 + Θ − 1 does not contain the
reception heartbeat(𝑡) from process 𝑝, we will say that 𝑞 broadcasts an accusation message
accusation(𝑝, 𝑡) for round 𝑡 of 𝑝 in round 𝑡+Θ (which is of course just part of 𝑞’s state sent
in this round). If 𝑞 crashes before round 𝑡 + Θ, it will never broadcast accusation(𝑝, 𝑡). If
𝑞 crashes exactly in round 𝑡 + Θ, we can nevertheless assume that it either manages to
eventually communicate accusation(𝑝, 𝑡) to all correct processes in the system, or to none: In
our full information protocol, every process that receives accusation(𝑝, 𝑡) will forward also
this message to all other processes when it broadcasts its own state later on.

Definition 8.10 (WTL elementary state predicates and variables). For process 𝑠 at time
𝑟 ≥ 1, i.e., the end of round 𝑟, we define the following predicates and state variables:

∙ accuse𝑟𝑠(𝑝) = true if and only if 𝑠 did not receive heartbeat(𝑟 − Θ) from 𝑝 by time 𝑟
and thus sent accusation(𝑝, 𝑡).
∙ nottimelyrec𝑟𝑠(𝑞, 𝑝, 𝑡) = true if and only if 𝑠 recorded the reception of accusation(𝑝, 𝑡)
from 𝑞 by time 𝑟.
∙ nottimely𝑟𝑠(𝑝, 𝑡) = true if and only if nottimelyrec𝑟𝑠(𝑞, 𝑝, 𝑡) = true for at least 𝑛 − 𝑓
different 𝑞 ∈ Π.
∙ accusationcounter𝑟𝑠(𝑝) = (|{𝑘 ≤ 𝑟 : nottimely𝑟𝑠(𝑝, 𝑘) = true}|, 𝑝).
∙ heardof𝑟𝑠(𝑝) = |{𝑘 ≤ 𝑟 : 𝑠 received heartbeat(𝑘) from 𝑝 (directly or indirectly) by time 𝑟}|.

Note that a process 𝑞 that crashes before time 𝑡+Θ causes nottimelyrec𝑟𝑠(𝑞, 𝑝, 𝑡) = false
for all 𝑟, and that 𝑝 is appended in accusationcounter𝑟𝑠(𝑝) for tie-breaking purposes only. For
every eventually timely 𝑓 -source 𝑝, the implicit forwarding of accusation messages ensures
that accusationcounter𝑟𝑠(𝑝) will eventually be the same at every correct process 𝑠 in the limit
𝑟 →∞.

We now define some predicates that require knowledge of the execution 𝜎. Whereas they
cannot be computed locally by the processes in the execution, they can be used in the
labeling algorithm.

Definition 8.11 (WTL extended state predicates and variables). Given an execution 𝜎,
let the dominant eventual timely 𝑓 -source 𝑝𝜎 be the one that leads to the unique smallest

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 35

value of accusationcounter∞𝑠 (𝑝𝜎), which is the same at every process 𝑠 ∈ Π ∖ 𝐹 (𝜎). With
𝑟stab,𝜎 = 𝑟stab,𝑝𝜎

denoting the stabilization time of the dominant eventual timely 𝑓 -source
in 𝜎 and 𝐹 (𝜎|𝑟) ⊆ 𝐹 (𝜎) the set of processes that crashed by time 𝑟, we also define

∙ minheardof𝑠(𝜎, 𝑟) = min𝑝∈Π∖𝐹 (𝜎|𝑟) heardof
𝑟
𝑠(𝑝),

∙ oldenough(𝜎, 𝑟) = true if and only if ∀𝑠 ∈ Π ∖ 𝐹 (𝜎|𝑟), both (i) minheardof𝑠(𝜎, 𝑟) ≥
𝑟stab,𝜎 +Θ and (ii) ∀𝑝 ∈ Π ∖ 𝑝𝜎 : accusationcounter𝑟𝑠(𝑝𝜎) < accusationcounter𝑟𝑠(𝑝).
∙ mature(𝜎, 𝑟) = true if and only if ∃𝑟0 < 𝑟 such that both (i) oldenough(𝜎, 𝑟0) = true
and (ii) ∀𝑠 ∈ Π ∖ 𝐹 (𝜎|𝑟) : minheardof𝑠(𝜎, 𝑟) ≥ 𝑟0.

Note that it may occur that another eventual timely 𝑓 -source 𝑝′ ̸= 𝑝𝜎 in 𝜎 has a smaller
stabilization time 𝑟stab,𝑝′ < 𝑟stab,𝑝𝜎

than the dominant one, which happens if 𝑝′ causes more
accusations than 𝑝𝜎 before stabilization in total.

The following properties are almost immediate from the definitions:

Lemma 8.12 (Properties of oldenough and mature). The following properties
hold for oldenough:

(i) If oldenough(𝜎, 𝑟) = true, then accusationcounter𝑡𝑠(𝑝𝜎) = accusationcounter𝑟𝑠(𝑝𝜎) for
every 𝑠 that did not crash by time 𝑡 ≥ 𝑟.

(ii) oldenough(𝜎, 𝑟) is stable, i.e., oldenough(𝜎, 𝑟) = true ⇒ oldenough(𝜎, 𝑡) = true for
𝑡 ≥ 𝑟.

(iii) (i) and (ii) also hold for mature(𝜎, 𝑟), and mature(𝜎, 𝑟) = true⇒ oldenough(𝜎, 𝑟) = true.

Proof. Since oldenough(𝜎, 𝑟) = true entails that every process 𝑠 ∈ Π∖𝐹 (𝜎|𝑟) has received
the accusation messages for all rounds up to 𝑟stab,𝜎 since minheardof𝑠(𝜎, 𝑟) ≥ 𝑟stab,𝜎 + Θ
according to Definition 8.11, (i) follows. This also implies (ii), since the accusation counter
of every process 𝑝 ̸= 𝑝𝜎 can at most increase after time 𝑟. That these properties carry over
to mature is obvious from the definition. □

The following lemma proves that two executions 𝜎 and 𝜌 with indistinguishable pre-
fixes 𝜎|𝑟 ∼𝑠 𝜌|𝑟, i.e., (𝜎|𝑟)𝑡 ∼𝑠 (𝜌|𝑟)𝑡 for 0 ≤ 𝑡 ≤ 𝑟, cannot both satisfy oldenough(𝜎, 𝑟)
resp. oldenough(𝜌, 𝑟), and, hence, mature(𝜎, 𝑟) resp. mature(𝜌, 𝑟), except when the dominant
eventual timely 𝑓 -source is the same in 𝜎 and 𝜌:

Lemma 8.13. Consider two executions 𝜎 and 𝜌 with 𝜎|𝑟 ∼𝑠 𝜌|𝑟 for some process 𝑠 that is
not faulty by round 𝑟 in both 𝜎 and 𝜌. Then,

(oldenough(𝜎, 𝑟) = true ∧ oldenough(𝜌, 𝑟) = true)⇒ 𝑝𝜎 = 𝑝𝜌.

Proof. As oldenough(𝜎, 𝑟) = true, Definition 8.11 implies ∀𝑝 ∈ Π∖𝑝𝜎 : accusationcounter𝑟𝑠(𝑝𝜎) <
accusationcounter𝑟𝑠(𝑝), and similarly ∀𝑝 ∈ Π∖𝑝𝜌 : accusationcounter𝑟𝑠(𝑝𝜌) < accusationcounter𝑟𝑠(𝑝).
Since 𝜎|𝑟 ∼𝑠 𝜌|𝑟, this is only possible if 𝑝𝜎 = 𝑝𝜌. □

Finally, we need the following technical lemmas:

Lemma 8.14 (Indistinguishability precondition). Suppose 𝜏 |𝑟′ ∼𝑠′ 𝜎|𝑟′ is such that
𝑠′ received a message from 𝑠 ̸= 𝑠′ containing its state in the sending round 𝑟′0 ≤ 𝑟′ − 1
by round 𝑟′ in 𝜎|𝑟′ and hence also in 𝜏 |𝑟′ . Analogously, suppose 𝜎|𝑟 ∼𝑠 𝜌|𝑟 is such that 𝑠
received a message from 𝑠′ containing its state in the sending round 𝑟0 ≤ 𝑟 − 1 by round 𝑟
in 𝜎|𝑟 and hence also in 𝜌|𝑟. Then,

(i) 𝜏 |𝑟′0 ∼𝑠 𝜎|𝑟′0 ,
(ii) 𝜏 |min{𝑟′0,𝑟} ∼𝑠 𝜌|min{𝑟′0,𝑟},
(iii) 𝜎|𝑟0 ∼𝑠′ 𝜌|𝑟0 ,

, Vol. 1, No. 1, Article . Publication date: October 2024.

36 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

(iv) 𝜏 |min{𝑟0,𝑟′} ∼𝑠′ 𝜌|min{𝑟0,𝑟′}.

Proof. If (i) would not hold, since 𝑠 sends a message containing its state in round 𝑟′0 to
𝑠′ both in 𝜏 |𝑟′ and in 𝜎|𝑟′ , these two states would be distinguishable for 𝑠, which contradicts
our assumption. The analogous argument proves (iii). Statement (ii) follows from combining
(i) with 𝜎|𝑟 ∼𝑠 𝜌|𝑟, (iv) follows from combining (iii) with 𝜏 |𝑟′ ∼𝑠′ 𝜎|𝑟′ . □

Lemma 8.15 (Heardof inheritance). Suppose 𝜎|𝑟 ∼𝑠 𝜌|𝑟 and minheardof𝑠(𝜌, 𝑟) ≥ 𝑟0
for some 1 ≤ 𝑟0 < 𝑟, as it arises in mature(𝜌, 𝑟) = true, for example. Then, ∀𝑝 ∈ Π ∖ 𝐹 (𝜌|𝑟),
it also holds in 𝜎|𝑟 that heardof𝑟𝑠(𝑝) ≥ 𝑟0, but not necessarily heardof𝑟𝑠(𝑝

′) ≥ 𝑟0 for 𝑝′ ∈
(Π ∖ 𝐹 (𝜎|𝑟)) ∩ 𝐹 (𝜌|𝑟). Consequently, it may happen that minheardof𝑠(𝜎, 𝑟) < 𝑟0.

Proof. Since the state of 𝑠 is the same in 𝜎|𝑟 and 𝜌|𝑟, but the sets 𝐹 (𝜌|𝑟) and 𝐹 (𝜎|𝑟)
may be different, the lemma follows trivially. □

With the abbreviation 𝐶(𝜎|𝑟) = Π ∖ 𝐹 (𝜎|𝑟) for all non-faulty processes in 𝜎|𝑟, and
𝜎|𝑟 ∼𝑄 𝜌|𝑟 for ∀𝑞 ∈ 𝑄 : 𝜎|𝑟 ∼𝑞 𝜌|𝑟, we define the short-hand notation 𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟
to express indistinguishability for a majority of (correct) processes, defined by ∃𝑄 ⊆
𝐶(𝜎|𝑟) ∩ 𝐶(𝜌|𝑟), |𝑄| ≥ 𝑛− 𝑓 such that ∀𝑞 ∈ 𝑄 : 𝜎|𝑟 ∼𝑞 𝜌|𝑟.
The following lemma guarantees that prefixes that are indistinguishable only for strictly

less than 𝑛− 𝑓 processes are eventually distinguishable for all processes:

Lemma 8.16 (Vanishing minority indistinguishability). Given 𝜌|𝑟0 , there is a round
𝑟, 𝑟0 ≤ 𝑟 <∞, such that for every 𝜎|𝑟0 with 𝜌|𝑟0 ̸∼≥𝑛−𝑓 𝜎|𝑟0 , it holds that 𝜌|𝑟 ̸∼ 𝜎|𝑟.

Proof. Due to our reliable link assumption, for every process 𝑠 that does not fail in 𝜌,
there is a round 𝑟 > 𝑟0 where minheardof𝑠(𝜌, 𝑟) ≥ 𝑟0. Now assume that there is some 𝜎|𝑟0
with 𝜌|𝑟0 ∼𝑄 𝜎|𝑟0 for a maximal set 𝑄 with 1 ≤ |𝑄| < 𝑛− 𝑓 , but 𝜌|𝑟 ∼𝑠 𝜎|𝑟 for some process
𝑠. Since 𝑠 receives round-𝑟0 messages from |𝐶(𝜌|𝑛)| ≥ 𝑛− 𝑓 processes in 𝜌|𝑟, and 𝜌|𝑟 ∼𝑠 𝜎|𝑟,
process 𝑠 must receive exactly the same messages also in 𝜎|𝑟. As at most |𝑄| < 𝑛 − 𝑓 of
those messages may be sent by processes that cannot distinguish 𝜌|𝑟0 ∼𝑄 𝜎|𝑟0 , at least one
such message must originate in a process 𝑞′ with 𝜌|𝑟0 ̸∼𝑞′ 𝜎|𝑟0 . In this case, Lemma 8.14.(iii)
prohibits 𝜌|𝑟 ∼𝑠 𝜎|𝑟, however, which provides the required contradiction. □

The following lemma finally shows that majority indistinguishability in conjunction with
mature prefixes entails strong indistinguishability properties in earlier rounds:

Lemma 8.17 (Majority indistinguishability precondition). Suppose 𝜏 |𝑟 ∼≥𝑛−𝑓

𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 and mature(𝜌, 𝑟) = true. Then, for the round 𝑟0 imposed by the latter, it holds
that 𝜏 |𝑟0 ∼𝐶(𝜌|𝑟) 𝜎|𝑟0 ∼𝐶(𝜌|𝑟) 𝜌|𝑟0 , and hence also 𝜏 |𝑟0 ∼𝐶(𝜌|𝑟) 𝜌|𝑟0 .

Proof. Let 𝑆 resp. 𝑄 be the set of at least 𝑛 − 𝑓 processes causing 𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟
resp. 𝜎|𝑟 ∼≥𝑛−𝑓 𝜏 |𝑟. Since 𝑄 ∩ 𝑆 ̸= ∅ by the pigeonhole principle, let 𝑠 ∈ 𝑄 ∩ 𝑆. Clearly,
𝜏 |𝑟 ∼𝑠 𝜎|𝑟 ∼𝑠 𝜌|𝑟, and hence also 𝜏 |𝑟 ∼𝑠 𝜌|𝑟. Since mature(𝜌, 𝑟) = true, Lemma 8.14.(i) in
conjunction with Lemma 8.15 implies 𝜌|𝑟0 ∼𝐶(𝜌|𝑟) 𝜎|𝑟0 , as well as 𝜌|𝑟0 ∼𝐶(𝜌|𝑟) 𝜏 |𝑟0 , and
hence also 𝜎|𝑟0 ∼𝐶(𝜌|𝑟) 𝜏 |𝑟0 as asserted. □

With these preparations, we can define an explicit labeling algorithm Algorithm 1 for the
WTL model, i.e., an algorithm that computes a label ∆(𝜎|𝑟) for every 𝑟-prefix 𝜎|𝑟 of an
admissible execution 𝜎 in our WTL model. A label can either be ∅ (still undefined) or else
denote a single process 𝑝 (which will turn out to be a broadcaster), and will be persistent in
𝜎 in the sense that ∆(𝜎|𝑟) = 𝑝 ⇒ ∆(𝜎|𝑟+𝑘) = 𝑝 for every 𝑘 ≥ 0. Note that we can hence

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 37

uniquely also assign a label ∆(𝜎) to an infinite execution. Note that, for defining our decision
sets, we will assign 𝜎 to Σ𝐼𝑝 , where 𝐼𝑝 is the initial value of 𝑝 = ∆(𝜎) in 𝜎.
Informally, our labeling algorithm works as follows: If there is some unlabeled mature

prefix 𝜌|𝑟, it is labeled either (i) with the label of some already labeled but not yet mature 𝜎|𝑟
if the latter got its label early enough, namely, by the round 𝑟0 where oldenough(𝜌, 𝑟0) = true,
or else (ii) with its dominant 𝑝𝜌.

Algorithm 1: Computing ∆ for each 𝑟-prefix 𝜎|𝑟 in the WTL model.

1 Initially, let ∆(𝜎|0) = ∅.
2 for 𝑟 = 1, 2, . . . do
3 foreach 𝜎|𝑟 do ∆(𝜎|𝑟)← ∆(𝜎|𝑟−1)

4 foreach 𝜌|𝑟 with ∆(𝜌|𝑟) = ∅ do
5 if ∃𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 with ∆(𝜎|𝑟) = 𝑝 ̸= ∅ and mature(𝜎, 𝑟) = true then
6 ∆(𝜌|𝑟)← 𝑝

7 foreach 𝜌|𝑟 with ∆(𝜌|𝑟) = ∅ and mature(𝜌, 𝑟) = true do
8 if ∃𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 with ∆(𝜎|𝑟0) = 𝑝 ̸= ∅ for 𝑟0 satisfying

oldenough(𝜌, 𝑟0) = true then
9 ∆(𝜌|𝑟)← 𝑝

10 foreach 𝜌|𝑟 with ∆(𝜌|𝑟) = ∅ and mature(𝜌, 𝑟) = true do
11 if ∃𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 with ∆(𝜎|𝑟) = 𝑝 ̸= ∅ and mature(𝜎, 𝑟) = true then
12 ∆(𝜌|𝑟)← 𝑝 // Only happens when 𝜎|𝑟 got its label in line 9

13 else
14 ∆(𝜌|𝑟)← 𝑝𝜌

The following Theorem 8.18 in conjunction with Lemma 8.19shows that Algorithm 1
computes labels, which result in strong decision sets that are compatible with the needs of
Theorem 7.12. Strong consensus in the WTL model can hence be solved by means of our
universal algorithm.

Theorem 8.18 (Strong decision sets for WTL algorithm). The set Σ(𝑝) = {𝜎 |
∆(𝜎) = 𝑝} is open in the uniform topology, and so is the strong decision set Σ𝑣 = {𝜎 |
(∆(𝜎) = 𝑝) ∧ (𝐼𝑝 = 𝑣)}.

Proof. We show that, if 𝜎 is assigned to the partition set Σ(𝑝), then 𝐵2−(𝑖+𝐷(𝜎))(𝜎) ⊆ Σ(𝑝),
where 𝑖 is the smallest round where mature(𝜎, 𝑖) = true and 𝐷(𝜎) is the maximum number
of rounds required for a minority indistinguishability in 𝜎𝑖 to go away (𝐷(𝜎) = 𝑟 − 𝑟0 in
the notation of Lemma 8.16), which implies openness of Σ(𝑝). Note that the corresponding
property obviously also holds for the decision set Σ𝑣 = {𝜎 | (∆(𝜎) = 𝑝) ∧ (𝐼𝑝 = 𝑣)}.
First of all, in Algorithm 1, ∆(𝜎|𝑖) gets initialized to ∅ in line 1 and assigns a label ̸= ∅

at the latest when mature(𝜎, 𝑖) = true. Once assigned, this value is never modified again as
each assignment, except the one in line 3, may only be performed if the label was still ∅.

For an unlabeled prefix 𝜎|𝑖 that is indistinguishable to a mature labeled prefix 𝜌|𝑖, there
are two possibilities: Either, its indistinguishability is a majority one, in which case 𝜎|𝑖 gets
its label from 𝜌|𝑖 in line 6, or else the minority indistinguishability will go away within 𝐷(𝜎)
rounds. It thus suffices to show that if a label ∆(𝜌|𝑟)← {𝑝} is assigned to a round 𝑟 prefix
𝜌|𝑟, then every majority-indistinguishable prefix 𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 has either ∆(𝜌|𝑟) = ∆(𝜎|𝑟)
or ∆(𝜎|𝑟) = ∅.

, Vol. 1, No. 1, Article . Publication date: October 2024.

38 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

We prove this by induction on 𝑟 = 0, 1, The base for 𝑟 = 0 follows directly from line 1.
For the step from 𝑟 − 1 to 𝑟, assume by hypothesis that, for all round 𝑟 − 1 prefixes that
already had {𝑝} assigned, all their majority-indistinguishable prefixes have label {𝑝} or ∅.
For the purpose of deriving a contradiction, suppose that a label ∆(𝜌|𝑟) ̸= ∅ is assigned
to a round 𝑟-prefix 𝜌|𝑟 in iteration 𝑟 and there exists some 𝜎|𝑟 with 𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 and
∅ ̸= ∆(𝜎|𝑟) ̸= ∆(𝜌|𝑟). Let 𝑆 be the set of involved processes, i.e., 𝜎|𝑟 ∼𝑠 𝜌|𝑟 for 𝑠 ∈ 𝑆 with
|𝑆| ≥ 𝑛− 𝑓 .
We need to distinguish all the different ways of assigning labels to 𝜌|𝑟.
Suppose 𝜎|𝑟 nor 𝜌|𝑟 get their labels in round 𝑟, but not in line 6. Since both mature(𝜎, 𝑟) =

true and mature(𝜌, 𝑟) = true, Lemma 8.12.(iii) in conjunction with Lemma 8.13 reveals that
𝑝𝜎 = 𝑝𝜌 since 𝜎|𝑟 ∼≥𝑛−𝑓 𝜌|𝑟. In all cases except for the one where both 𝜌|𝑟 and 𝜎|𝑟 get
their labels in line 9, we immediately get a contradiction since ∆(𝜌|𝑟) = ∆(𝜎|𝑟) in any
case. Finally, if 𝜌|𝑟 and 𝜎|𝑟 get their labels in line 9, there is some 𝜏 |𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 with
mature(𝜏, 𝑟) = false but ∆(𝜏 |𝑟0) ̸= ∅, where 𝑟0 is such that oldenough(𝜌, 𝑟0) = true, and some
𝜔𝑟 ∼≥𝑛−𝑓 𝜎|𝑟 with the analogous properties in round 𝑟′0. Let 𝑄

′ resp. 𝑄′′ be the sets of at
least 𝑛−𝑓 processes involved in 𝜏 |𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 resp. 𝜔𝑟 ∼≥𝑛−𝑓 𝜎|𝑟. Since mature(𝜌, 𝑟) = true,
Lemma 8.17 implies 𝜌|𝑟0 ∼𝐶(𝜌|𝑟) 𝜎|𝑟0 ∼𝐶(𝜌|𝑟) 𝜏 |𝑟0 and also 𝜌|𝑟′0 ∼𝐶(𝜌|𝑟) 𝜎|𝑟′0 ∼𝐶(𝜌|𝑟) 𝜔𝑟0 ,
which establishes 𝜔𝑟0 ∼𝐶(𝜌|𝑟) 𝜏 |𝑟0 . Since, by the induction hypothesis, ∆(𝜔𝑟0) = ∆(𝜏 |𝑟0), we
again end up with ∆(𝜌|𝑟) = ∆(𝜎|𝑟), which provides the required contradiction.
However, we also need to make sure that inconsistent labels cannot be assigned in

line 6 and any of the other lines, possibly in different rounds. For a contradiction, we
assume a “generic” setting that can be fit to all cases: We assume that 𝜎|𝑟′ got its label
∆(𝜎|𝑟′) = ∆(𝜏 |𝑟′) ̸= ∅ assigned in iteration 𝑟′ ≤ 𝑟 in line 6 or line 12, since there was
some already labeled 𝜏 |𝑟′ ∼≥𝑛−𝑓 𝜎|𝑟′ with mature(𝜏, 𝑟′) = true but mature(𝜎, 𝑟′) = false.
Moreover, we assume that 𝜌|𝑟 gets assigned its label ∆(𝜎|𝑟) ̸= ∆(𝜌|𝑟) = ∆(𝜔𝑟) ̸= ∅ in
iteration 𝑟 ≥ 𝑟′ > 𝑟stab,𝜏 +Θ also in line 6 or in line 12, since there is some already labeled
𝜔𝑟 ∼≥𝑛−𝑓 𝜌|𝑟 with mature(𝜔, 𝑟) = true but mature(𝜌, 𝑟) = false. Note carefully that we can
rule out the possibility that there are two different, say, 𝜎|𝑟′ and 𝜎′|𝑟′ , with inconsistent
labels, which both match the condition of line 6 or line 12: This is prohibited by the induction
hypothesis, except in the case of 𝑟′ = 𝑟, where the above generic scenario applies.
To also cover the cases where 𝜌|𝑟 gets it label assigned in the other lines, we can set

𝜌|𝑟 = 𝜔𝑟 in our considerations below. Note that the induction hypothesis again rules out the
possibility that there are two different, say, 𝜎|𝑟0 and 𝜎′|𝑟0 , with inconsistent labels, which
both match the condition of line 9 here, since 𝑟0 < 𝑟.
Let 𝑄′ ⊆ 𝐶(𝜏 |𝑟′) be the set of at least 𝑛 − 𝑓 processes causing 𝜏 |𝑟′ ∼≥𝑛−𝑓 𝜎|𝑟′ , and

𝑄′′ ⊆ 𝐶(𝜔𝑟) be the set of at least 𝑛− 𝑓 non-faulty processes causing 𝜔𝑟 ∼≥𝑛−𝑓 𝜌|𝑟. Since
mature(𝜏, 𝑟′) = true and mature(𝜔, 𝑟) = true, Lemma 8.17 implies

𝜏 |𝑟′0 ∼𝐶(𝜏 |𝑟′) 𝜎|𝑟′0 ∼𝐶(𝜏 |𝑟′) 𝜌|𝑟′0
𝜎|𝑟0 ∼𝐶(𝜔𝑟) 𝜌|𝑟0 ∼𝐶(𝜔𝑟) 𝜔𝑟0

We first consider the case 𝑟′0 ≤ 𝑟0 ≤ 𝑟′: Since 𝑄′ ⊆ 𝐶(𝜏 |𝑟′), 𝜏 |𝑟′ ∼𝑄′ 𝜎|𝑟′ also implies
𝜏 |𝑟0 ∼𝑄′ 𝜎|𝑟0 . As oldenough(𝜏, 𝑟′0) = true, Lemma 8.12.(ii) also ensures oldenough(𝜏, 𝑟0) =
true. Moreover, since obviously 𝑄′ ∩ 𝐶(𝜔𝑟) ̸= ∅ as well, we finally observe that actually
𝜏 |𝑟0 ∼𝑄′∩𝐶(𝜔𝑟) 𝜔𝑟0 . By Lemma 8.13, we hence find that 𝑝𝜔 = 𝑝𝜏 . Now there are two
possibilities: If actually 𝜏 |𝑟0 ∼≥𝑛−𝑓 𝜔𝑟0 holds, line 9 implies that ∆(𝜔𝑟) = ∆(𝜏 |𝑟0). Otherwise,
every process will eventually be able to distinguish 𝜏 |𝑟 and 𝜔𝑟 and, hence, 𝜌|𝑟 and 𝜎|𝑟 by

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 39

Lemma 8.16. Both are contradictions to one of our assumptions ∆(𝜔𝑟) ̸= ∆(𝜏 |𝑟0) and
𝜌|𝑟 ∼≥𝑛−𝑓 𝜎|𝑟.
To handle the case 𝑟′0 > 𝑟0, we note that we can repeat exactly the same arguments as above

if we exchange the roles of 𝜔𝑟 and 𝜏 |𝑟′ and 𝜎|𝑟 and 𝜌|𝑟. In the only possible case of 𝑟0 ≤ 𝑟′0 ≤ 𝑟,
since 𝑄′′ ⊆ 𝐶(𝜔𝑟), 𝜔𝑟 ∼𝑄′′ 𝜌|𝑟 also implies 𝜔𝑟′0

∼𝑄′′ 𝜌|𝑟′0 . As oldenough(𝜔, 𝑟0) = true,
Lemma 8.12.(ii) also ensures oldenough(𝜔, 𝑟′0) = true. Moreover, since obviously 𝑄′′ ∩
𝐶(𝜏 |𝑟′) ̸= ∅ as well, we finally observe that actually 𝜔𝑟′0

∼𝑄′′∩𝐶(𝜏 |𝑟′) 𝜏 |𝑟′0 . By Lemma 8.13,
we hence find again that 𝑝𝜔 = 𝑝𝜏 . The same arguments as used in the previous paragraph
establish the required contradictions.
In the remaining case 𝑟′0 ≤ 𝑟0 but 𝑟0 > 𝑟′, we have the situation where 𝜎|𝑟′ has already

assigned its label before round 𝑟0, where oldenough(𝜌, 𝑟0) = true. In general, every process
may be able to distinguish 𝜌 and 𝜎 (not to speak of 𝜏 and 𝜔) after 𝑟0, and usually 𝑝𝜏 ̸= 𝑝𝜔,
so nothing would prevent ∆(𝜎|𝑟) ̸= ∆(𝜌|𝑟) if the labeling algorithm would not have taken
special care, namely, in line 9: Rather than just assigning ∆(𝜌|𝑟) = {𝑝𝜔}, it uses the label
of 𝜎|𝑟0 and therefore trivially avoids inconsistent labels. Note carefully that doing this is
well-defined: If there were two different eligible 𝜎|𝑟0 and 𝜎′|𝑟0 available in line 9, (14) reveals
that 𝜎|𝑟0 ∼≥𝑛−𝑓 𝜎′|𝑟0 , such that their labels must be the same by the induction hypothesis.
This completes the proof of our theorem. □

The following Lemma 8.19 finally confirms that a non-empty label 𝑝 assigned to some
prefix 𝜎|𝑟 is indeed a broadcaster:

Lemma 8.19. If ∆(𝜎|𝑟) = {𝑝} is computed by Algorithm 1, then (𝑝, 0, 𝐼𝑝(𝜎)) is contained
in the view 𝑉𝑞(𝜎|𝑟) of every process 𝑞 ∈ Π ∖ 𝐹 (𝜎|𝑟) that has not crashed in 𝜎|𝑟.

Proof. We distinguish the two essential cases where 𝜌|𝑟 ∈ Σ𝑝 can get its label {𝑝}:
If ∆(𝜌|𝑟) was assigned via line 14, the dominant 𝑝𝜌 must indeed have reached all correct
processes in the system according to Definition 8.11 of oldenough(𝜌, 𝑟0), which is incorporated
in mature(𝜌, 𝑟). In all other cases, ∆(𝜌|𝑟) was assigned since there is some 𝜎|𝑟′ ∼𝑠′ 𝜌|𝑟′ , 𝑟′ ≤ 𝑟,
with at least oldenough(𝜎, 𝑟′) = true. By the same argument as before, the dominant 𝑝𝜎
must have reached every correct process in 𝜎|𝑟′ already. As minheardof𝑠′(𝜎, 𝑟

′) ≥ 𝑟stab,𝜎 +Θ
according to the definition of oldenough(𝜎, 𝑟′) implies also minheardof𝑠′(𝜌, 𝑟

′) ≥ 𝑟stab,𝜎 +Θ
since 𝜎|𝑟′ ∼𝑠′ 𝜌|𝑟′ , it follows that 𝑝𝜎 has also reached all correct processes in 𝜌|𝑟′ already. □

9 CONCLUSIONS

We provided a complete characterization of both uniform and non-uniform deterministic
consensus solvability in distributed systems with benign process and communication failures
using point-set topology. Consensus can only be solved when the space of admissible
executions can be partitioned into disjoint decision sets that are both closed and open in
our topologies. We also showed that this requires exclusion of certain (fair and unfair) limit
sequences, which limit broadcastability and happen to coincide with the forever bivalent
executions constructed in bivalence and bipotence proofs. The utility and wide applicability
of our characterization was demonstrated by applying it to several different distributed
computing models.

Part of our future work will be devoted to a generalization of our topological framework
to other decision problems. Since the initial publication of our results, this generalized study
has been started by Attiya, Castañeda, and Nowak [5]. Another very interesting area of
future research is to study the homology of non-compact message adversaries, i.e., a more
detailed topological structure of the space of admissible executions.

, Vol. 1, No. 1, Article . Publication date: October 2024.

40 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

ACKNOWLEDGMENTS

We gratefully acknowledge the suggestions of the reviewers, which stimulated the inclusion
of several additional results and pointed out many ways to improve our paper.

REFERENCES

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. 1993. Atomic
snapshots of shared memory. J. ACM 40, 4 (1993), 873—-890. https://doi.org/10.1145/153724.153741

[2] Yehuda Afek and Eli Gafni. 2013. Asynchrony from Synchrony. In Proceedings of the 14th International
Conference on Distributed Computing and Networking (ICDCN 2013), Davide Frey, Michel Raynal,
Saswati Sarkar, Rundrapatna K. Shyamasundar, and Prasun Sinha (Eds.). Lecture Notes in Computer

Science, Vol. 7730. Springer, Heidelberg, 225–239. https://doi.org/10.1007/978-3-642-35668-1 16

[3] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. 2004. Communication-
efficient Leader Election and Consensus with Limited Link Synchrony. In Proceedings of the 23th ACM
Symposium on Principles of Distributed Computing (PODC 2004), Shay Kutten (Ed.). ACM Press,
New York, 328–337. https://doi.org/10.1145/1011767.1011816

[4] Bowen Alpern and Fred B. Schneider. 1985. Defining liveness. Inform. Process. Lett. 21, 4 (1985),
181–185. https://doi.org/10.1016/0020-0190(85)90056-0

[5] Hagit Attiya, Armando Castañeda, and Thomas Nowak. 2023. Topological Characterization of Task

Solvability in General Models of Computation. In Proceedings of the 37th International Symposium on
Distributed Computing (DISC 2023), Rotem Oshman (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, 24:1–24:23. https://doi.org/10.4230/LIPIcs.DISC.2023.5

[6] Hagit Attiya, Armando Castañeda, and Sergio Rajsbaum. 2020. Locally Solvable Tasks and the
Limitations of Valency Arguments. In Proceedings of the 24th International Conference on Principles
of Distributed Systems (OPODIS 2020), Quentin Bramas, Rotem Oshman, and Paolo Romano (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 18:1–18:16. https://doi.org/10.4230/LIPIcs.
OPODIS.2020.18

[7] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing (2nd ed.). John Wiley & Sons, Hoboken.

[8] Ido Ben-Zvi and Yoram Moses. 2014. Beyond Lamport’s happened-before: on time bounds and the
ordering of events in distributed systems. J. ACM 61, 2 (2014), 13:1–13:26. https://doi.org/10.1145/

2542181

[9] Martin Biely and Peter Robinson. 2019. On the Hardness of the Strongly Dependent Decision Problem.
In Proceedings of the 20th International Conference on Distributed Computing and Networking (ICDCN

2019). ACM Press, New York, 120–123. https://doi.org/10.1145/3288599.3288614

[10] Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler. 2018. Gracefully
degrading consensus and k-set agreement in directed dynamic networks. Theor. Comput. Sci. 726

(2018), 41–77. https://doi.org/10.1016/j.tcs.2018.02.019

[11] Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and Corentin
Travers. 2019. Synchronous t-Resilient Consensus in Arbitrary Graphs. In Proceedings of the 21st

Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2019), Mohsen Ghaffari,
Mikhail Nesterenko, Sébastien Tixeuil, Sara Tucci, and Yukiko Yamauchi (Eds.). Springer, Heidelberg,
53–68. https://doi.org/10.1007/978-3-030-34992-9 5

[12] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure detectors for reliable distributed
systems. J. ACM 43, 2 (March 1996), 225–267. https://doi.org/10.1145/226643.226647

[13] Bernadette Charron-Bost and André Schiper. 2009. The Heard-Of model: computing in distributed

systems with benign faults. Distrib. Comput. 22, 1 (April 2009), 49–71. https://doi.org/10.1007/
s00446-009-0084-6

[14] Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. 2015. A characterization of oblivious

message adversaries for which Consensus is solvable. Theor. Comput. Sci. 584 (2015), 80–90. https:
//doi.org/10.1016/j.tcs.2015.01.024

[15] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. 1987. On the minimal synchronism needed for

distributed consensus. J. ACM 34, 1 (1987), 77–97. https://doi.org/10.1145/7531.7533
[16] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the presence of partial

synchrony. J. ACM 35, 2 (1988), 288–323. https://doi.org/10.1145/42282.42283
[17] Tristan Fevat and Emmanuel Godard. 2011. Minimal Obstructions for the Coordinated Attack Problem

and Beyond. In Proceedings of the 25th IEEE International Symposium on Parallel and Distributed

Processing, (IPDPS 2011). 1001–1011. https://doi.org/10.1109/IPDPS.2011.96

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1145/153724.153741
https://doi.org/10.1007/978-3-642-35668-1_16
https://doi.org/10.1145/1011767.1011816
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.4230/LIPIcs.DISC.2023.5
https://doi.org/10.4230/LIPIcs.OPODIS.2020.18
https://doi.org/10.4230/LIPIcs.OPODIS.2020.18
https://doi.org/10.1145/2542181
https://doi.org/10.1145/2542181
https://doi.org/10.1145/3288599.3288614
https://doi.org/10.1016/j.tcs.2018.02.019
https://doi.org/10.1007/978-3-030-34992-9_5
https://doi.org/10.1145/226643.226647
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1016/j.tcs.2015.01.024
https://doi.org/10.1145/7531.7533
https://doi.org/10.1145/42282.42283
https://doi.org/10.1109/IPDPS.2011.96

Topological Characterization of Consensus in Distributed Systems 41

[18] Faith Fich and Eric Ruppert. 2003. Hundreds of impossibility results for distributed computing.
Distributed Computing 16 (2003), 121–163. https://doi.org/10.1007/s00446-003-0091-y

[19] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed

consensus with one faulty process. J. ACM 32, 2 (1985), 374–382. https://doi.org/10.1145/3149.214121
[20] Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. 2014. A Generalized Asynchronous Computability

Theorem. In Proceedings of the 33rd ACM Symposium on Principles of Distributed Computing (PODC

2014), Shlomi Dolev (Ed.). ACM Press, New York, 222––231. https://doi.org/10.1145/2611462.2611477
[21] Hugo Rincon Galeana, Sergio Rajsbaum, and Ulrich Schmid. 2022. Continuous tasks and the asynchro-

nous computability theorem. In Proceedings of the 13th Innovations in Theoretical Computer Science

Conference (ITCS 2022), Mark Braverman (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
73:1–73:27. https://doi.org/10.4230/LIPIcs.ITCS.2022.73

[22] Hugo Rincon Galeana, Ulrich Schmid, Kyrill Winkler, Ami Paz, and Stefan Schmid. 2023. Topological
Characterization of Consensus Solvability in Directed Dynamic Networks. http://arxiv.org/abs/2304.
02316

[23] Emmanuel Godard and Eloi Perdereau. 2020. Back to the Coordinated Attack Problem. Math. Struct.
Comput. Sci. 30, 10 (2020), 1089–1113. https://doi.org/10.1017/S0960129521000037

[24] Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. 2013. Distributed Computing Through Com-

binatorial Topology. Morgan Kaufmann. https://store.elsevier.com/product.jsp?isbn=9780124045781
[25] Maurice Herlihy and Nir Shavit. 1999. The topological structure of asynchronous computability. J.

ACM 46, 6 (1999), 858–923. https://doi.org/10.1145/331524.331529

[26] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidong Zhou. 2009. Chasing the weakest system
model for implementing Omega and consensus. IEEE T. Depend. Secure 6, 4 (2009), 269–281. https:
//doi.org/10.1109/TDSC.2008.24

[27] Fabian Kuhn and Rotem Oshman. 2011. Dynamic networks: models and algorithms. SIGACT News
42(1) (2011), 82–96. https://doi.org/10.1145/1959045.1959064

[28] Petr Kuznetsov, Thibault Rieutord, and Yuan He. 2018. An Asynchronous Computability Theorem for

Fair Adversaries. In Proceedings of the 37th ACM Symposium on Principles of Distributed Computing
(PODC 2018), Idit Keidar (Ed.). ACM Press, New York, 387–396. https://doi.org/10.1145/3212734.

3212765

[29] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (1978), 558–565. https://doi.org/10.1145/359545.359563

[30] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine generals problem. ACM T.

Progr. Lang. Sys. 4, 3 (1982), 382–401. https://doi.org/10.1145/357172.357176
[31] Ronit Lubitch and Shlomo Moran. 1995. Closed Schedulers: A Novel Technique for Analyzing Asyn-

chronous Protocols. Distrib. Comput. 8, 4 (June 1995), 203–210. https://doi.org/10.1007/BF02242738
[32] Friedemann Mattern. 1989. Virtual time and global states of distributed systems. In Proceedings of the

International Workshop on Parallel and Distributed Algorithms, Michel Cosnard, Yves Rober, Patrice

Quinton, and Michel Raynal (Eds.). North Holland, Amsterdam, 215–226.
[33] Yoram Moses and Sergio Rajsbaum. 2002. A layered analysis of consensus. SIAM J. Comput. 31, 4

(2002), 989–1021. https://doi.org/10.1137/S0097539799364006

[34] Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. 2003. Conditions on input vectors for
consensus solvability in asynchronous distributed systems. J. ACM 50, 6 (2003), 922—-954. https:
//doi.org/10.1145/950620.950624

[35] Achour Mostéfaoui and Michel Raynal. 2001. Leader-based consensus. Parallel Process. Lett. 11, 1
(2001), 95–107. https://doi.org/10.1142/S0129626401000452

[36] James Munkres. 2000. Topology (2nd ed.). Prentice Hall, Hoboken.

[37] Thomas Nowak. 2010. Topology in Distributed Computing. Master’s thesis. Embedded Computing
Systems Group, Technische Universität Wien.

[38] Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. 2019. Topological Characterization of Consensus
under General Message Adversaries. In Proceedings of the 28th ACM Symposium on Principles of

Distributed Computing (PODC 2019), Faith Ellen (Ed.). ACM Press, New York, 218–227. https:

//doi.org/10.1145/3293611.3331624
[39] P. R. Parvedy and M. Raynal. 2003. Uniform agreement despite process omission failures. In Proceedings

of the 17th International Parallel and Distributed Processing Symposium (IPDPS 2003), Jack Dongarra

(Ed.). IEEE Press, New York, 22–26. https://doi.org/10.1109/IPDPS.2003.1213388
[40] Kenneth J. Perry and Sam Toueg. 1986. Distributed agreement in the presence of processor and

communication faults. IEEE T. Software Eng. SE-12, 3 (1986), 477–482. https://doi.org/10.1109/TSE.

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1007/s00446-003-0091-y
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/2611462.2611477
https://doi.org/10.4230/LIPIcs.ITCS.2022.73
http://arxiv.org/abs/2304.02316
http://arxiv.org/abs/2304.02316
https://doi.org/10.1017/S0960129521000037
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://doi.org/10.1145/331524.331529
https://doi.org/10.1109/TDSC.2008.24
https://doi.org/10.1109/TDSC.2008.24
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1145/3212734.3212765
https://doi.org/10.1145/3212734.3212765
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/BF02242738
https://doi.org/10.1137/S0097539799364006
https://doi.org/10.1145/950620.950624
https://doi.org/10.1145/950620.950624
https://doi.org/10.1142/S0129626401000452
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1145/3293611.3331624
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888

42 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

1986.6312888

[41] Daniel Pfleger. 2018. Knowledge and Communication Complexity. Master’s thesis. Embedded Computing
Systems Group, Technische Universität Wien.

[42] Michel Raynal and Julien Stainer. 2013. Synchrony Weakened by Message Adversaries vs Asynchrony
Restricted by Failure Detectors. In Proceedings of the 32nd ACM Symposium on Principles of
Distributed Computing (PODC 2013), Gadi Taubenfeld (Ed.). ACM Press, New York, 166–175. https:

//doi.org/10.1145/2484239.2484249

[43] Peter Robinson and Ulrich Schmid. 2011. The Asynchronous Bounded-Cycle model. Theor. Comput.
Sci. 412, 40 (2011), 5580–5601. https://doi.org/10.1016/j.tcs.2010.08.001

[44] Nicola Santoro and Peter Widmayer. 1989. Time is Not a Healer. In Proceedings of the 6th Annual
Symposium on Theoretical Aspects of Computer Science (STACS 1989). Springer, Heidelberg, 304–313.

[45] Ulrich Schmid, Bettina Weiss, and Idit Keidar. 2009. Impossibility results and lower bounds for
consensus under link failures. SIAM J. Comput. 38, 5 (2009), 1912–1951. https://doi.org/10.1137/
S009753970443999X

[46] Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. 2023. The Time
Complexity of Consensus Under Oblivious Message Adversaries. In Proceedings of the 14th Innovations
in Theoretical Computer Science Conference (ITCS 2023), Yael Tauman Kalai (Ed.). Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, Dagstuhl, 100:1–100:28. https://doi.org/10.4230/LIPIcs.ITCS.2023.100
[47] Kyrill Winkler, Ulrich Schmid, and Yoram Moses. 2019. A Characterization of Consensus Solvability

for Closed Message Adversaries. In Proceedings of the 23rd International Conference on Principles of

Distributed Systems (OPODIS 2019). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl,
17:1–17:16. https://doi.org/10.4230/LIPIcs.OPODIS.2019.17

[48] Kyrill Winkler, Ulrich Schmid, and Thomas Nowak. 2021. Valency-Based Consensus Under Message

Adversaries Without Limit-Closure. In Prceedings of the 23rd International Symposium on Fundamentals
of Computation Theory (FCT 2021), Evripidis Bampis and Aris Pagourtzis (Eds.). Springer, Heidelberg,

457–474. https://doi.org/10.1007/978-3-030-86593-1 32

[49] Kyrill Winkler, Manfred Schwarz, and Ulrich Schmid. 2019. Consensus in directed dynamic net-
works with short-lived stability. Distrib. Comput. 32, 5 (2019), 443–458. https://doi.org/10.1007/

s00446-019-00348-0

A PROCESS-TIME GRAPHS

In the main body of our paper, we have formalized our topological results in terms of
admissible executions in the generic system model introduced in Section 3. In this section,
we will show that they also hold a topological space consisting of other objects, namely,
process-time graphs [8]. In a nutshell, a process-time graph describes the process scheduling
and all communication occurring in a run, along with the set of initial values.

Actually, since we consider deterministic algorithms only, a process-time graph corresponds
to a unique execution (and vice versa). This equivalence, which actually results from a
transition function that is continuous in all our topologies (see Lemma A.2), will eventually
allow us to use our topological reasoning in either space alike.
In order to define process-time graphs as generic as possible, we will resort to an inter-

mediate operational system model that is essentially equivalent to the very flexible general
system model from Moses and Rajsbaum [33]. Crucially, it will also instantiate the weak
clock functions 𝜒𝑝(𝐶

𝑡) stipulated in our generic model in Section 3, which must satisfy
𝜒𝑝(𝐶

𝑡) ≤ 𝑡 in every admissible execution (𝐶𝑡)𝑡≥0 ∈ Σ. Since 𝑡 represents some global notion
of time here (called global real time in the sequel), ensuring this property is sometimes
not trivial. More concretely, whereas 𝑡 is inherently known at every process in the case of
lock-step synchronous systems like dynamic networks under message adversaries [49], for
example, this is not the case for purely asynchronous systems [19].

, Vol. 1, No. 1, Article . Publication date: October 2024.

https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1145/2484239.2484249
https://doi.org/10.1145/2484239.2484249
https://doi.org/10.1016/j.tcs.2010.08.001
https://doi.org/10.1137/S009753970443999X
https://doi.org/10.1137/S009753970443999X
https://doi.org/10.4230/LIPIcs.ITCS.2023.100
https://doi.org/10.4230/LIPIcs.OPODIS.2019.17
https://doi.org/10.1007/978-3-030-86593-1_32
https://doi.org/10.1007/s00446-019-00348-0
https://doi.org/10.1007/s00446-019-00348-0

Topological Characterization of Consensus in Distributed Systems 43

A.1 Basic operational system model

Following Moses and Rajsbaum [33], we consider message passing or shared memory dis-
tributed systems made up of a set Π of 𝑛 ≥ 2 processes. We stipulate a global discrete clock
with values taken from N0 = N ∪ {0}, which represents global real time in multiples of some
arbitrary unit time. Depending on the particular distributed computing model, this global
clock may or may not be accessible to the processes.
Processes are modeled as communicating state machines that encode a deterministic

distributed algorithm (protocol) 𝒫. At every real time time 𝑡 ∈ N0, process 𝑝 is in some
local state 𝐿𝑡

𝑝 ∈ ℒ𝑝 ∪ {⊥𝑝}, where ⊥𝑝 ̸∈ ℒ𝑝 is a special state representing that process 𝑝 has

failed.4 Local state transitions of 𝑝 are caused by local actions taken from the set ACT𝑝,
which may be internal bookkeeping operations and/or the initiation of shared memory
operations resp. of sending messages; their exact semantics may vary from model to model.
Note that a single action may consist of finitely many non-zero time operations, which are
initiated simultaneously but may complete at different times. The deterministic protocol
𝒫𝑝 : ℒ𝑝 → ACT𝑝, representing 𝑝’s part in 𝒫 , is a function that specifies the local action 𝑝 is
ready to perform when in state 𝐿𝑝 ∈ ℒ𝑝. We do not restrict the actions 𝑝 can perform when
in state ⊥𝑝.

In addition, there is an additional non-deterministic state machine called the environment
𝜖, which represents the adversary that is responsible for actions outside the sphere of control
of the processes’ protocols. It controls things like the completion of shared memory operations
initiated earlier resp. the delivery of previously sent messages, the occurrence of process and
communication failures, and (optionally) the occurrence of external environment events that
can be used for modeling oracle inputs like failure detectors [12]. Let act𝜖 be the set of all
possible combinations of such environment actions (also called events for conciseness later
on). We assume that the environment keeps track of pending shared-memory operations resp.
sent messages in its environment state 𝐿𝜖 ∈ ℒ𝜖. The environment is also in charge of process
scheduling, i.e., determines when a process performs a state transition, which will be referred
to as taking a step. Formally, we assume that the set ACT𝜖 of all possible environment actions
consists of all pairs (Sched, 𝑒), made up of the set of processes Sched ⊆ Π that take a step
and some 𝑒 ∈ act𝜖 (which may both be empty as well). The non-deterministic environment
protocol 𝒫𝜖 ⊆ 𝒢 × (ACT𝜖 × ℒ𝜖) is an arbitrary relation that, given the current global state
𝐺 ∈ 𝒢 (defined below, which also contains the current environment state 𝐿𝜖 ∈ ℒ𝜖), chooses
the next environment action 𝐸 = (Sched, 𝑒) ∈ ACT𝜖 and the successor environment state
𝐿′
𝜖 ∈ ℒ𝜖. Note carefully that we assume that only 𝐸 is actually chosen non-deterministically

by 𝒫𝜖, whereas 𝐿
′
𝜖 is determined by a transition function 𝜏𝜖 : 𝒢 × ACT𝜖 → ℒ𝜖 according to

𝐿′
𝜖 = 𝜏𝜖(𝐺,𝐸).
Finally, a global state of our system (simply called state) is an element of 𝒢 = ℒ𝜖 × ℒ1 ×

· · · × ℒ𝑛. Given a global state 𝐺 ∈ 𝒢, 𝐺𝑖 denotes the local state of process 𝑖 in 𝐺, and 𝐺𝜖

denotes the state of the environment in 𝐺. Recall that it is 𝐺𝜖 that keeps track of in-transit

4This failed state ⊥𝑝 is the only essential difference to the model of Moses and Rajsbaum [33], where
faults are implicitly caused by a deviation from the protocol. This assumption makes sense for constructing

“permutation layers”, for example, where it is not the environment that crashes a process at will, but rather

the layer construction, which implies that some process takes only finitely many steps. Such a process just
remains in the local state reached after its last computing step. In our setting, however, the fault state of all
processes is solely controlled by the omniscient environment. Hence, we can safely use a failed state ⊥𝑝 to

gain simplicity without losing expressive power.

, Vol. 1, No. 1, Article . Publication date: October 2024.

44 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

(i.e., just sent) messages, pending shared-memory operations etc.5 We also write 𝐺 = (𝐺𝜖, 𝐶),
where the vector of the local states 𝐶 = (𝐶1, . . . , 𝐶𝑛) = (𝐺1, . . . , 𝐺𝑛) of all the processes is
called configuration. Given 𝐶, the component 𝐶𝑖 denotes the local state of process 𝑖 in 𝐶,
and the set of all possible configurations is denoted as 𝒞. Note carefully that there may be
global configurations 𝐺 ̸= 𝐺′ where the corresponding configurations satisfy 𝐶 = 𝐶 ′, e.g., in
the case of different in-transit messages.

A joint action is a pair (𝐸,𝐴), where 𝐸 = (Sched, 𝑒) ∈ ACT𝜖, and 𝐴 is a vector with index
set Sched such that 𝐴𝑝 ∈ ACT𝑝 for 𝑝 ∈ Sched. When the joint action 𝐸 is applied to global
state 𝐺 where process 𝑝 is in local state 𝐺𝑝, then 𝐴𝑝 = 𝒫𝑝(𝐺𝑝) is the action prescribed by 𝑝’s
protocol. Note that some environment actions, like message receptions at process 𝑝 require
𝑝 ∈ Sched, i.e., “wake-up” the process. For example, a joint action (𝐸,𝐴) that causes 𝑝 to
send a message 𝑚 to 𝑞 and process 𝑟 to receive a message 𝑚′ sent to it by process 𝑠 earlier,
typically works as follows: (i) 𝑝 is caused to take a step, where its protocol 𝒫𝑝 initiates the
sending of 𝑚; (ii) the environment adds 𝑚 to the send buffer of the communication channel
from 𝑝 to 𝑞 (maintained in the environment state 𝐿𝜖); (iii) the environment moves 𝑚′ from
the send buffer of the communication channel from 𝑠 to 𝑟 (maintained in the environment
state 𝐿𝜖) to the receive buffer (maintained in the local state of 𝑟), and (iv) causes 𝑟 to take
a step. It follows that the local state 𝐿𝑟 of process 𝑟 reflects the content of message 𝑚′

immediately after the step scheduled along with the message reception.
With ACT denoting the set of all possible joint actions, the transition function 𝜏 :

𝒢 × ACT → 𝒢 describes the evolution of the global state 𝐺 after application of the joint
action (𝐸,𝐴), which results in the successor state 𝐺′ = 𝜏(𝐺, (𝐸,𝐴)). A run of 𝒫 is an
infinite sequence of global states 𝐺0, 𝐺1, 𝐺2, . . . generated by an infinite sequence of joint
actions. In order to guarantee a stable global state at integer times, we assume for simplicity
that the joint actions occur atomically and instantaneously at times 0.5, 1.5, 2.5, . . . , i.e.,
that 𝐺𝑡+1 = 𝜏(𝐺𝑡, (𝐸𝑡.5, 𝐴𝑡.5)). 𝐺0 is the initial state of the run, taken from the set of
possible initial states 𝒢0. Finally, Ψ denotes the subset of all admissible runs of our system.
Ψ is typically used for enforcing liveness conditions like “every message sent to a correct
process is eventually delivered” or “every correct process takes infinitely many steps”.
Unlike Moses and Rajsbaum [33], we handle process failures explicitly in the state of

the processes, i.e., via the transition function: If some joint action (𝐸𝑡.5, 𝐴𝑡.5) contains
𝐸𝑡.5 = (Sched, 𝑒), where 𝑒 requests some process 𝑝 to fail, this will force 𝐺𝑡+1

𝑝 = ⊥𝑝 in the

successor state 𝐺𝑡+1 = 𝜏(𝐺𝑡, (𝐸𝑡.5, 𝐴𝑡.5)), irrespective of any other operations in 𝑒 (like the
delivery of a message) that would otherwise affect 𝑝. All process failures are persistent, that

is, we require that all subsequent environment actions 𝐸𝑡′.5 for 𝑡′ ≥ 𝑡 also request 𝑝 to fail.
As a convention, we consider every 𝐸𝑡′.5 where 𝑝 fails as 𝑝 taking a step as well. Depending
on the type of process failure, failing may cause 𝑝 to stop its protocol-compliant internal
computations, to drop all incoming messages, and/or to stop sending further messages. In the
case of crash failures, for example, the process may send a subset of the outgoing messages
demanded by 𝒫𝑝 in the very first failing step and does not perform any protocol-compliant
actions in future steps. A send omission-faulty process does the same, except that it may send
protocol-compliant messages to some processes also in future steps. A receive omission-faulty
process may omit to process some of its received messages in every step where it fails,
but sends protocol-compliant messages to every receiver. A general omission-faulty process
combines the possible behaviors of send and receive omissions. Note that message loss can

5A different, but equivalent, conceptual model would be to assume that the state of a processor consists of a
visible state and, in the case of message passing, message buffers that hold in-transit messages.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 45

also be modeled in a different way in our setting: Rather than attributing an omission failure
to the sender or receiver process, it can also be considered a communication failures caused
by the environment. The involved sender process 𝑝 resp. receiver process 𝑞 continue to act
according to its protocol in this case, i.e., would not enter the fault state ⊥𝑝 resp. ⊥𝑞 here.

Since we only consider deterministic protocols, a run 𝐺0, 𝐺1, 𝐺2, . . . is uniquely determined
by the initial configuration 𝐶0 and the sequence of tuples (𝐿0

𝜖 , 𝐸
0.5), (𝐿1

𝜖 , 𝐸
1.5), . . . consisting

of tuples (𝐿𝑡
𝜖, 𝐸

𝑡.5) of environment state and environment actions for 𝑡 ≥ 0. Let 𝒢𝜔 resp. 𝒞𝜔
be the set of all infinite runs resp. executions (configuration sequences), with Ψ ⊆ 𝒢𝜔 resp.
Σ ⊆ 𝒞𝜔 denoting the set of admissible runs resp. executions that result from admissible
environment action sequences 𝐸0.5, 𝐸1.5, . . . ; after all, they may be required to satisfy
liveness constraints like fairness that cannot be expressed via the transition function.

Our assumptions on the environment protocol, namely, 𝐿𝑡+1
𝜖 = 𝜏𝜖(𝐺

𝑡, 𝐸𝑡.5), actually imply
that a run 𝐺0, 𝐺1, 𝐺2, . . . , and thus also the corresponding execution 𝐶0, 𝐶1, 𝐶2, . . . , is
already uniquely determined by the initial state 𝐺0 = (𝐿0

𝜖 , 𝐶
0) and the sequence of chosen

environment actions 𝐸0.5, 𝐸1.5, Since 𝐿0
𝜖 is fixed and the environment actions abstract

away almost all of the internal workings of the protocols and their complex internal states,
it should be possible to uniquely describe the evolution of a run/execution just by means of
the sequence 𝐸0.5, 𝐸1.5, In the following, we will show that this is indeed the case.

A.2 Implementing global time satisfying the weak clock property

Our topological framework crucially relies on the ability to distinguish/not distinguish two
local states 𝛼𝑡

𝑝 and 𝛽𝑡
𝑝 in two executions 𝛼 and 𝛽 at global real time 𝑡. Clearly, this is easy

for an omniscent observer who knows the corresponding global states and can thus verify
that 𝛼𝑡

𝑝 and 𝛽𝑡
𝑝 arise from the same global time 𝑡. Processes cannot do that in asynchronous

systems, however, since 𝑡 is not available to the processes and hence cannot be included in 𝛼𝑡
𝑝

and 𝛽𝑡
𝑝. Consequently, two different sequences of environment actions (called events in the

sequel for conciseness) 𝐸0.5
𝛼 , 𝐸1.5

𝛼 , . . . , 𝐸
(𝑡−1).5
𝛼 and 𝐸0.5

𝛽 , 𝐸1.5
𝛽 , . . . , 𝐸

(𝑡′−1).5
𝛽 , applied to the

same initial state, may produce the same state 𝛼𝑡
𝑝 = 𝛽𝑡′

𝑝 . This happens when they are causal
shuffles of each other, i.e., reorderings of the steps of the processes that are in accordance
with the happens-before relation [29]. Hence, the (in)distinguishability of configurations does
not necessarily match the (in)distinguishability of the corresponding event sequences.

Whereas our generic system model does not actually require processes to have a common
notion of time, it does require that the weak clock functions 𝜒𝑝 do not progress faster than
global real time. We will accomplish this in our operational system model by defining some
alternative notion of global time that is accessible to the processes. Doing this will also rule
out the problem spotted above, i.e., ensure that runs (event sequences) uniquely determine
executions (configuration sequences).

There are many conceivable ways for defining global time, including the following possibil-
ities:

(i) In the case of lock-step synchronous distributed systems, like dynamic networks under
message adversaries [38, 47, 48], nothing needs to be done here since all processes inherently
know global real time 𝑡.

(ii) In the case of asynchronous systems with a majority of correct processes, the arguably
most popular approach for message-passing systems (see e.g. [3, 26, 35]) is the simulation
of asynchronous communication-closed rounds: Processes organize rounds 𝑟 = 1, 2, . . . by
locally waiting until 𝑛− 𝑓 messages sent in the current round 𝑟 have been received. These
𝑛− 𝑓 messages are then processed, which defines both the local state at the beginning of the

, Vol. 1, No. 1, Article . Publication date: October 2024.

46 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

next round 𝑟 + 1 and the message sent to everybody in this next round. Late messages are
discarded, and early messages are buffered locally (in the state of the environment) until the
appropriate round is reached. The very same approach can also be used in shared-memory
systems with immediate snapshots [1], where a process can safely wait until it sees 𝑛− 𝑓
entries in a snapshot. Just using the round numbers as global time, i.e., choosing 𝑡 = 𝑟, is
all that is needed for defining global time in such a model.

(iii) In models without communication-closed rounds [19, 43], a suitable notion of global
time can be derived from other6 definitions of consistent cuts [32]. We will show how this can
be done in our operational system model based on Mattern’s vector clocks. Our construction
will exploit the fact that a local state transition of a process happens only when it takes
a step in our model: In between the ℓth and (ℓ + 1)th step of any fixed process 𝑝, which
happens at time (𝑡𝑝(ℓ)− 1).5 and (𝑡𝑝(ℓ+ 1)− 1).5, respectively, only environment actions
(external environment events, message deliveries, shared memory completions), if any, can
happen, which change the state of the environment but not the local state of 𝑝.

We will start out from the sequence of arbitrary cuts [32] 𝐼𝐶0, 𝐼𝐶1, 𝐼𝐶2, . . . (indexed by
an integer index 𝑘 ≥ 0) occurring in a given run 𝐺0, 𝐺1, 𝐺2, . . . (which itself is indexed by the
global real time 𝑡), where the frontier 𝐼𝐹 𝑘 of 𝐼𝐶𝑘 is formed by the local states of the processes

after they have taken their 𝑘th step, i.e., 𝐼𝐹 0 = 𝐼𝐶0 = 𝐶0 and 𝐼𝐹 𝑘 = (𝐺
𝑡1(𝑘)
1 , . . . , 𝐺

𝑡𝑛(𝑘)
𝑛)

for 𝑘 ≥ 1, with (𝑡𝑝(𝑘) − 1).5 being the time when process 𝑝 takes its 𝑘th step. Note that
the latter is applied to 𝑝’s state 𝐼𝐹 𝑘−1

𝑝 in the frontier 𝐼𝐹 𝑘−1 of 𝐼𝐶𝑘−1 and processes all
the external environment events and all the messages received/shared memory operations
completed since then. Recall the convention that every environment action where process 𝑞
fails is also considered as 𝑞 taking a step.

Clearly, except in lock-step synchronous systems, 𝑡𝑝(𝑘) ̸= 𝑡𝑞(𝑘), so 𝐼𝐶0, 𝐼𝐶1, 𝐼𝐶2, . . . can
be viewed as the result of applying a trivial “synchronic layering” in terms of Moses and
Rajsbaum [33]. Unfortunately, though, any 𝐼𝐶𝑘 may be an inconsistent cut, as messages
sent by a fast process 𝑝 in its (𝑘 + 1)th step may have been received by a slow process 𝑞
by its 𝑘th step. 𝐼𝐶𝑘 would violate causality in this case, i.e., would not be left-closed w.r.t.
Lamport’s happens-before relation [29].
Recall that we restricted our attention to consensus algorithms using full-information

protocols, where every message sent contains the entire state transition history of the sender.
As a consequence, we do not significantly lose applicability of our results by further restricting
the protocol and the supported distributed computing models as follows:

(i) In a single state transition of 𝒫𝑝, process 𝑝, can
∙ actually receive all messages delivered to it since its last step,
∙ initiate the sending of at most one message to every process, resp.,
∙ initiate at most one single-writer multiple-reader shared memory operation in the
shared memory owned by some other process (but no restriction on operations in its
own shared memory portion).

(ii) In addition to (optional) external environment events, the environment protocol only
provides
∙ fail(𝑞) ∈ act𝜖, which tells process 𝑞 to fail,
∙ delv(𝑞, 𝑝, 𝑡𝑘) ∈ act𝜖, which identifies the message 𝑚 to be delivered to process 𝑞 (for
reception in its next step) by the pair (𝑝, 𝑡𝑘), where 𝑝 is the sending process and 𝑡𝑘.5
is the time when the sending of 𝑚 has been initiated, resp.,

6We note that both synchronous and asynchronous communication-closed rounds, as well as the executions

𝒞𝜔 defined in our generic system model in Section 3, are of course also sequences of consistent cuts.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 47

∙ done(𝑞, 𝑝, 𝑡ℓ, 𝑡𝑘) ∈ act𝜖, which identifies the completed shared memory operation (to
be processed in its next step), in the shared memory owned by 𝑝, as the one initiated
by process 𝑞 ̸= 𝑝 in its step at time 𝑡ℓ.5; in a read-type operation, it will return to 𝑞
the shared memory content based on 𝑝’s state at time 𝑡𝑘, with 𝑡ℓ ≤ 𝑡𝑘.

In such a system, given any cut 𝐼𝐶𝑘, it is possible to determine the unique largest
consistent cut 𝐶𝐶𝑘 ⊆ 𝐼𝐶𝑘 [32]. By construction, 𝐶𝐶0 = 𝐼𝐶0, and the frontier 𝐶𝐹 𝑘 of 𝐶𝐶𝑘,
𝑘 ≥ 1, consists of the local states of all processes 𝑞 ∈ Π reached by having taken some ℓ(𝑞)th

step, 0 ≤ ℓ(𝑞) ≤ 𝑘, with at least one process 𝑝 having taken its 𝑘th step, i.e., ℓ(𝑝) = 𝑘 and

thus 𝐶𝐹 𝑘
𝑝 = 𝐼𝐹 𝑘

𝑝 , and 𝐶𝐹 𝑘
𝑞 = 𝐼𝐹

ℓ(𝑞)
𝑞 with 0 ≤ ℓ(𝑞) ≤ 𝑘 for all processes 𝑞. Note carefully

that ℓ(𝑞) < 𝑘 happens when, in 𝐼𝐶𝑘, process 𝑞 receives some message/data initiated at some
step > 𝑘 at or before its own 𝑘th step but after its ℓ(𝑞)th step.
Whereas the environment protocol could of course determine all the consistent cuts

𝐶𝐶0, 𝐶𝐶1, 𝐶𝐶2, . . . based on the corresponding sequence of global configurations, this is
typically not the case for the processes (unless in the special case of a synchronous system).
However, in distributed systems adhering to the above constraints, processes can obtain
this knowledge (that is to say, their local share of a consistent cut) via vector clocks [32].
More specifically, it is possible to implement a vector clock 𝑘𝑝 = (𝑘1𝑝, . . . , 𝑘

𝑛
𝑝) at process

𝑝, where 𝑘𝑝𝑝 counts the number of steps taken by 𝑝 itself so far, and 𝑘𝑞𝑝, 𝑞 ≠ 𝑝, gives the
number of steps that 𝑝 knows that 𝑞 has taken so far. Vector clocks are maintained as follows:
Initially, 𝑘𝑝 = (0, . . . , 0), and every message sent resp. every shared memory operation data
written by 𝑝 gets 𝑘𝑝 as piggybacked information (after advancing 𝑘𝑝𝑝). At every local state
transition in 𝑝’s protocol 𝑃𝑝, 𝑘

𝑝
𝑝 is advanced by 1. Moreover, when a previously received

message/previously read data value (containing the originating process 𝑞’s vector clock value

𝑘𝑞) is to be processed in the step, 𝑘𝑝 is adjusted to the maximum of its previous value and

𝑘𝑞 component-wise, i.e., 𝑘𝑞𝑝 = max{𝑘𝑞𝑝, 𝑘𝑞𝑞} for 𝑞 ̸= 𝑝. Obviously, all this can be implemented
transparently atop of any protocol 𝒫 running in the system.
Now, given the sequence of global states 𝐴𝐶0, 𝐴𝐶1, 𝐴𝐶2, . . . of the processes running

the so augmented protocol in some run 𝐺0, 𝐺1, 𝐺2, . . . , there is a well-known algorithm for
computing the maximal consistent cut 𝐴𝐶𝐶𝑘 for the non-consistent cut 𝐴𝐼𝐶𝑘 formed by
the frontier 𝐴𝐼𝐹 𝑘 of the local states of the processes after every process has taken its 𝑘th

step: Starting from ℓ := 𝑘, process 𝑝 searches for the sought ℓ(𝑝) by checking the vector clock
value 𝑘𝑝(ℓ) of the state after its own ℓth step. It stops searching and sets ℓ(𝑝) := ℓ iff 𝑘𝑝(ℓ) is

less or equal to (𝑘, . . . , 𝑘) component-wise. The state 𝐴𝐼𝐹
ℓ(𝑝)
𝑝 is then process 𝑝’s contribution

in the frontier 𝐴𝐶𝐹 𝑘 of the consistent cut 𝐴𝐶𝐶𝑘. Clearly, from 𝐴𝐶𝐶0, 𝐴𝐶𝐶1, 𝐴𝐶𝐶2, . . . ,
the sought sequence of the consistent cuts 𝐶𝐶0, 𝐶𝐶1, 𝐶𝐶2, . . . can be obtained trivially by
discarding all vector clock information. Therefore, even the processes can compute their
share, i.e., their local state, in 𝐶𝐶𝑘 for every 𝑘.
By construction, the sequence of consistent cuts 𝐶𝐶0, 𝐶𝐶1, 𝐶𝐶2, . . . , and hence the

sequence of its frontiers 𝐶𝐹 0, 𝐶𝐹 1, 𝐶𝐹 2, . . . , completely describe the evolution of the local
states of the processes in a run 𝐺0, 𝐺1, 𝐺2, In our operational model, we will hence just
use the indices 𝑘 of 𝐶𝐶𝑘 as global time for specifying executions: Starting from the initial
state 𝐶𝐶0, we consider 𝐶𝐶𝑘 as the result of applying round 𝑘 ≥ 1 to 𝐶𝐶𝑘−1 (as we did in
the case of lock-step rounds).

A.3 Defining process-time graphs

No matter how consistent cuts, i.e., global time, is implemented, from now on, we just
overload the notation used so far and denote by 𝐶𝑘 the frontier 𝐶𝐹 𝑘 in the consistent cut at

, Vol. 1, No. 1, Article . Publication date: October 2024.

48 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

global time 𝑘. So given an infinite execution 𝛼, we again denote by 𝛼𝑡 the 𝑡th configuration
(= the consistent cut with index 𝑡) in 𝛼.

Clearly, by construction, every 𝐶𝑘 is uniquely determined by 𝐶0 and all the events that
cause the steps leading to 𝐶𝑘. In particular, we can define a vector of events 𝐸𝑘, where 𝐸𝑘

𝑝

is a set containing all the events that must be applied to 𝐶𝑘−1
𝑝 in order to arrive at 𝐶𝑘

𝑝 . Note

carefully that a process 𝑝 that does not make a step, i.e., is not scheduled in 𝐸𝑘 and thus
has the same non-⊥𝑝 state in 𝐶𝑘−1 and 𝐶𝑘, does not have any event delv(𝑝, *, *) ∈ 𝐸𝑘

𝑝 (resp.

done(𝑝, *, *) ∈ 𝐸𝑘
𝑝) by construction, i.e., 𝐸𝑘

𝑝 = ∅. Otherwise, 𝐸𝑘
𝑝 contains a “make a step”

event, all (optional) external environment events, and delv(𝑝, *, *) for all messages that have
been sent to 𝑝 in steps within 𝐶𝑘−1 and are delivered to 𝑝 after its previous step but before
or at its 𝑘th step (resp. done(𝑝, *, *, *) for all completed shared memory operation initiated
by 𝑝 in steps within 𝐶𝐶𝑘−1 and completed after 𝑝’s previous step but before or at its 𝑘th

step). Note that 𝐸1
𝑝 cannot contain any delv(𝑝, *, *), as no messages have been sent before

(resp. no done(𝑝, *, *, *), as no shared memory operations have been initiated before).
As a consequence of our construction, the mismatch problem spotted at the beginning of

Appendix A.2 no longer exists, and we can reason about executions and the corresponding
event sequences alike.

Rather than considering 𝐶0 in conjunction with 𝐸1, . . . , 𝐸𝑘, however, we will consider
the corresponding process-time graph 𝑘-prefix 𝑃𝑇𝐺𝑘 [8] instead, which we will now define.
Since we are only interested in consensus algorithms here, we assume that every process has
a dedicated initial state for every possible initial value 𝑣, taken from a finite input domain 𝒱 .
For every assignment of initial values 𝑥 ∈ 𝒱𝑛 to the 𝑛 processes in the initial configuration
𝐶0, we inductively construct the following sequence of process-time graph prefixes 𝑃𝑇𝐺𝑡:

Definition A.1 (Process-time graph prefixes). For every 𝑘 ≥ 0, the process-time graph
𝑘-prefix 𝑃𝑇𝐺𝑘 of a given run is defined as follows:

∙ The process-time graph 0-prefix 𝑃𝑇𝐺0 contains the nodes (𝑝, 0, 𝐼𝑝) for all processes
𝑝 ∈ Π, with initial value 𝐼𝑝 ∈ 𝒱, and no edges.
∙ The process-time graph 1-prefix 𝑃𝑇𝐺1 contains the nodes (𝑝, 0, 𝐼𝑝) and (𝑝, 1, 𝑓) for
all processes 𝑝 ∈ Π, where 𝑓 = ⊥ if fail(𝑝) ∈ 𝐸1 (which models the case of an initially
dead process [19]), and 𝑓 = * otherwise, where * is some encoding (e.g., some failure
detector output) of the external environment events ∈ 𝐸1. It contains a (local) edge
from (𝑝, 0, 𝐼𝑝) to (𝑝, 1, 𝑓) and no other edges.
∙ The process-time graph 𝑘-prefix 𝑃𝑇𝐺𝑘, 𝑘 ≥ 2, contains 𝑃𝑇𝐺𝑘−1 and the nodes (𝑝, 𝑘, 𝑓)
for all processes 𝑝 ∈ Π∖{𝑞 | 𝐸𝑘

𝑞 = ∅}, where 𝑓 = ⊥ if fail(𝑝) ∈ 𝐸𝑘, and 𝑓 = * otherwise.
It contains a (local) edge from (𝑝, ℓ, 𝑓ℓ) to (𝑝, 𝑘, 𝑓) (if the latter node is present at
all, i.e., when 𝐸𝑘

𝑝 ̸= ∅), where ℓ is maximal among all nodes (𝑝, *, *) in 𝑃𝑇𝐺𝑘−1. For
message passing systems, it also contains an edge from (𝑝, 𝑠, 𝑓𝑠), 1 ≤ 𝑠 < 𝑘, to (𝑞, 𝑘, 𝑓)
iff delv(𝑞, 𝑝, 𝑠) ∈ 𝐸𝑘. For shared memory systems, it contains an edge from (𝑝, ℓ, 𝑓ℓ),
1 ≤ ℓ < 𝑘, to (𝑞, 𝑘, 𝑓) if and only if done(𝑞, 𝑝, 𝑠, ℓ) ∈ 𝐸𝑘; this reflects the fact that the
returned data originate from 𝑝’s step ℓ and not from the step 𝑠 where 𝑞 has initiated
the shared memory operation.

The round-ℓ process-time graph 𝑃𝑇 ℓ, for 0 ≤ ℓ ≤ 𝑘, which represents the contribution of
round ℓ to 𝑃𝑇𝐺𝑘, is defined as (i) 𝑃𝑇 0 = 𝑃𝑇𝐺0 and the set of vertices 𝑃𝑇 ℓ = 𝑃𝑇𝐺ℓ ∖
𝑃𝑇𝐺ℓ−1 along with all their incoming edges (which all originate in 𝑃𝑇𝐺ℓ−1).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 49

(1, 0, 1) (2, 0, 0) (3, 0, 1)

(1, 1, *) (2, 1, *) (3, 1, *)

(1, 2, *) (2, 2, *) (3, 2, *)

(1, 3, *) (2, 3, *) (3, 3, *)

𝑃𝑇𝐺0

𝑃𝑇𝐺1

𝑃𝑇𝐺2

𝑃𝑇𝐺3

Fig. 5. Example of a process-time graph prefix 𝑃𝑇𝐺3 of a lock-step execution at time 𝑡 = 3, for 𝑛 = 3
processes and initial values 𝑥 = (1, 0, 1). Process 1’s view 𝑉1(𝑃𝑇 2) is highlighted in bold green.

Figure 5 shows an example of a process-time graph prefix occuring in a run with lock-step
synchronous or asynchronous rounds. The nodes are horizontally aligned according to global
time, progressing along the vertical axis.

Figure 6 shows an example of a process-time graph prefix occuring in a run with processes
that do not execute in lock-step rounds and may crash. Nodes are again horizontally aligned
according to global time, progressing along the vertical axis. The frontier 𝐶𝑘 of the 𝑘th

consistent cut, reached at the end of round 𝑘, is made up of 𝐶𝑘
𝑝 = {(𝑝, ℓ𝑝(𝑘), *) ∈ 𝑃𝑇𝐺𝑘 |

0 ≤ ℓ𝑝(𝑘) ≤ 𝑘 is maximal}. That is, starting from the (possibly inconsistent) cut made up
of the nodes (𝑝, 𝑘, *) of all processes, one has to go down for process 𝑝 until the first node is
reached where no edge originating in a node with time > 𝑘 has been received.

Let 𝒫𝒯 𝑡 be the set of all possible process-time graph 𝑡-prefixes, and 𝒫𝒯 𝜔 be the set of
all posible infinite process-time graphs, for all possible runs of our system. Note carefully
that 𝒫𝒯 𝑡, as well every set 𝒫ℓ of round-ℓ process-time graphs for finite ℓ, is necessarily
finite (provided the encoding (*) for external environment events has a finite domain, which
we assume). Clearly, 𝒫𝒯 𝑡 resp. 𝒫𝒯 𝜔 can be expressed as a finite resp. infinite sequence
(𝑃 0, . . . , 𝑃 𝑡) ∈ 𝒫0 × 𝒫1 × · · · × 𝒫𝑡 = 𝒫𝒯 𝑡 resp. (𝑃 0, 𝑃 1, . . .) ∈ 𝒫0 × 𝒫1 × · · · = 𝒫𝒯 𝜔 of
round-ℓ process time graphs.7

We will denote by 𝑃𝑆 ⊆ 𝒫𝒯 𝜔 the set of all admissible process-time graphs in the given
model, and by Σ ⊆ 𝒞𝜔 the corresponding set of admissible executions. Note carefully that
process-time graphs are independent of the (decision function of the) consensus algorithm,
albeit they do depend on the initial values.
Due to the one-to-one of process-time graphs and executions established before, the

topological machinery developed in Section 4–Section 5 for Σ ⊆ 𝒞𝜔 can also be applied to
𝑃𝑆 ⊆ 𝒫𝒯 𝜔. Since, in sharp contrast to the set of configurations 𝒞, the set of process-time

7Note that we slightly abuse the notation 𝒫𝒯 𝜔 here, which normally represents 𝒫𝒯 × 𝒫𝒯 ×

, Vol. 1, No. 1, Article . Publication date: October 2024.

50 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler

(1, 0, 1) (2, 0, 0) (3, 0, 1)

(1, 1, *) (2, 1, *) (3, 1,⊥)

(1, 2, *) (3, 2,⊥)

(1, 3, *) (3, 3,⊥)

(1, 4, *) (2, 2, *) (3, 4,⊥)

(1, 5, *) (2, 3, *) (3, 5,⊥)

𝑃𝑇𝐺0

𝑃𝑇𝐺1

𝑃𝑇𝐺2

𝑃𝑇𝐺3

Fig. 6. Example of a process-time graph prefix in a non-lockstep execution of a system of 𝑛 = 3 processes
with initial values 𝑥 = (2, 0, 1), where process 𝑝3 crashes in its step at time 1, in round 1. The vertical
axis is the global time axis, and nodes at the same horizontal level occur at the same global time. The
length of the edges represent end-to-end delay of a message resp. the access latency of a shared memory
operation. Process 1’s local view 𝑉1(𝑃𝑇𝐺3) in 𝑃𝑇𝐺3 is highlighted in bold green.

graphs 𝒫𝒯 𝑡 is finite for any time 𝑡 and hence compact in the discrete topology, Tychonoff’s
theorem8 implies compactness of the 𝑝-view topology on 𝒫𝒯 𝜔.
Whereas this is not necessarily the case for 𝒞𝜔, we can prove compactness of the image

of 𝒫𝒯 𝜔 under an appropriately defined operational transition function: Given the original
transition function 𝜏𝜖 : 𝒢 × ACT𝜖 → ℒ𝜖, it is possible to define a PTG transition function
𝜏 : 𝒫𝒯 𝜔 → 𝒞𝜔 that just provides the (unique) execution for a given process-time graph. The
following Lemma A.2 shows that 𝜏 is continuous in any of our topologies.

Lemma A.2 (Continuity of 𝜏). For every 𝑝 ∈ Π, the PTG transition function 𝜏 :
𝒫𝒯 𝜔 → 𝒞𝜔 is continuous when both 𝒫𝒯 𝜔 and 𝒞𝜔 are endowed with any of 𝑑𝑝, 𝑝 ∈ Π, 𝑑u,
𝑑nu.

Proof. Let 𝑈 ⊆ 𝒞𝜔 be open with respect to 𝑑𝑝, and let 𝑎 ∈ 𝜏−1[𝑈]. Since 𝑈 is open and
𝜏(𝑎) ∈ 𝑈 , there exists some 𝜀 > 0 such that 𝐵𝜀

(︀
𝜏(𝑎)

)︀
⊆ 𝑈 . Let 𝑡 ∈ N such that 2−𝑡 ≤ 𝜀. We

8Tychonoff’s theorem states that any product of compact spaces is compact (with respect to the product
topology).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Topological Characterization of Consensus in Distributed Systems 51

will show that 𝐵2−𝑡(𝑎) ⊆ 𝜏−1[𝑈]. For this, it suffices to show that 𝜏
[︀
𝐵2−𝑡(𝑎)

]︀
⊆ 𝑈 . By the

equivalence of process-time graph prefixes and the corresponding consistent cuts, which is
ensured by construction, it follows for the views of process 𝑝 that 𝑉𝑝(𝑎

𝑡) = 𝑉𝑝(𝑏
𝑡) implies

𝑉𝑝(𝜏(𝑎)
𝑡) = 𝑉𝑝(𝜏(𝑏)

𝑡). Using this in Section 4.1 implies

𝜏
[︀
𝐵2−𝑡(𝑎)

]︀
⊆ 𝐵2−𝑡(𝜏(𝑎)) ⊆ 𝐵𝜀(𝜏(𝑎)) ⊆ 𝑈 ,

which proves that 𝜏−1[𝑈] is open as needed.
The proof for 𝑑u resp. 𝑑nu is analogous, except that Section 4.1 must be replaced by

Section 4.2 resp. Section 4.3. □

Since the image of a compact space under a continuous function is compact, it hence
follows that the set 𝜏 [𝒫𝒯 𝜔] ⊆ 𝒞𝜔 of admissible executions is a compact subspace of 𝒞𝜔. The
common structure of 𝒫𝒯 𝜔 and its image under the PTG transition function 𝜏 , implied by
the continuity of 𝜏 , hence allows us to reason in either of these spaces. In particular, with
Definition A.3, the analog of Theorem 5.2 and Theorem 5.3 read as follows:

Definition A.3 (𝑣-valent process-time graph). We call a process-time graph 𝑧𝑣, for 𝑣 ∈ 𝒱,
𝑣-valent, if it starts from an initial configuration where all processes 𝑝 ∈ Π have the same
initial value 𝐼𝑝 = 𝑣.

Theorem A.4 (Characterization of uniform consensus). Uniform consensus is
solvable if and only if there exists a partition of the set 𝑃𝑆 of admissible process-time graphs
into sets 𝑃𝑆𝑣, 𝑣 ∈ 𝒱, such that the following holds:

(1) Every 𝑃𝑆𝑣 is an open set in 𝑃𝑆 with respect to the uniform topology induced by 𝑑u.
(2) If process-time graph 𝑎 ∈ 𝑃𝑆 is 𝑣-valent, then 𝑎 ∈ 𝑃𝑆𝑣.

Theorem A.5 (Characterization of non-uniform consensus). Non-uniform con-
sensus is solvable if and only if there exists a partition of the set 𝑃𝑆 of admissible process-time
graphs into sets 𝑃𝑆𝑣, 𝑣 ∈ 𝒱, such that the following holds:

(1) Every 𝑃𝑆𝑣 is an open set in 𝑃𝑆 with respect to the non-uniform topology induced
by 𝑑nu.

(2) If process-time graph 𝑎 ∈ 𝑃𝑆 is 𝑣-valent, then 𝑎 ∈ 𝑃𝑆𝑣.

, Vol. 1, No. 1, Article . Publication date: October 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Generic System Model
	4 Topological Structure of Full-Information Executions
	4.1 Process-view distance function for executions
	4.2 Uniform topology for executions
	4.3 Non-uniform topology for executions

	5 General Consensus Characterization for Full-Information Executions
	6 Limit-based Consensus Characterization
	7 Consensus Characterization in Terms of Broadcastability
	7.1 Broadcastability of connected components
	7.2 General broadcast-based characterization

	8 Applications
	8.1 Bivalence-based impossibilities
	8.2 Consensus in synchronous systems with general omission process faults
	8.3 Asynchronous condition-based consensus
	8.4 Dynamic networks with limit-closed message adversaries
	8.5 Dynamic networks with non-limit closed message adversaries
	8.6 Consensus in systems with an eventually timely f-source

	9 Conclusions
	References
	A Process-Time Graphs
	A.1 Basic operational system model
	A.2 Implementing global time satisfying the weak clock property
	A.3 Defining process-time graphs

