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torical data needed. In [5], a fully annotated dataset of recent
RGB images are translated into historical images using a gen-
erative neural network (GAN). These translated images are
used to train a CNN to predict LULC classes historical maps.
While still using an adversarial approach, [6] aims to con-
struct semantic segmentation features invariant between two
datasets of historical images over Central Africa, one with la-
bel and one unlabelled.

As with these previous datasets, our data include multiple
unlabelled images, with the image sampling and colorimetry
changing between the years. These colorimetric changes are
due to the lighting condition and the parameters such as expo-
sure time set manually for each acquisition campaign as well
as the digitisation parameters in the case of analog images.
This article aims first at evaluating the performance losses due
to these differences. Then, instead of considering a problem
with a fixed ensemble of target domains, we evaluate the ca-
pacity of data augmentation to train a model robust to these
changes.

In section 2, we present the dataset used in this study.
Then, in section 3, we present the domain adaption methods
studied. Finally, in section 4, we assess the capacity of data
augmentation to facilitate transfer between years.

2. DATASET

The area of interest is a 166 km2 peri-urban area located in the
Massif Central region of France, near Clermont-Ferrand (see
Figure 1). It is composed of different topographic profiles,
with the west of the area being located in the Chaı̂ne des Puys
mountain range and the east of the area being located in the
Limagne alluvial plains. The altitude ranges from 321m to
1025m. Due to the nature of the terrain, the validation and test
sets were divided into three 10 km2 sub-areas, selected to be
representative of the terrain’s topography: one mountainous
area in the West, one plain area in the East and a transition
area in the center. The southern part of those areas is used for
model validation, the northern one as a test set after model
training as represented in Figure 1.

This study is based on 15 orthomosaics constructed from
aerial surveys conducted by IGN between 1946 and 2019. Be-

ABSTRACT

Agricultural abandonment is a global trend leading to vegeta-
tion succession and Forests expansion. Manual annotations of 
1946 and 2019 aerial surveys images from a peri-urban area 
in Massif Central shows Land Use and Land Cover (LULC) 
evolution in this period. We propose to use a convolutional 
neural network trained on labelled years images to predict 
LULC maps from 13 intermediate years unlabelled images. 
However, sensors variety used for acquisition during this time 
induce variability in ground sampling distances and colorime-
try. We have shown using transfer between labelled years 
that sampling distances have to be the same in the training 
and testing set, and that coarse scaling offer sufficient perfor-
mances for the considered LULC classes. Colorimetric data 
augmentations were individually used after sampling unifica-
tion to make models more robust to sensors and illumination 
changes, but proved to be inconsistent in transfer on interme-
diate years.
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1. INTRODUCTION

Agricultural abandonment is a global trend with 150 million 
Ha abandoned between 1700 and 1992 [1] generally followed 
by vegetation succession and Forests expansion [2]. How-
ever, it exhibits regional differences [3]. A recent study over 
an urban hinterland in Auvergne (France) showed that 23 %
of agricultural lands were abandoned between 1946 and 2019 
[4]. This study was conducted by manually annotating or-
thomosaics from aerial images acquired in 1946 and in 2019 
by the National Institute of Geographical and forestry infor-
mation (IGN). However, multiple aerial surveys conducted 
between these two dates were not exploited. The automatic 
annotation of these images would provide a better temporal 
resolution of Land Use and Land Cover (LULC) changes.

Neural networks have already been used in remote sensing 
for semantic segmentation tasks on aerial historical orthopho-
tos for land cover semantic segmentation. Adversarial meth-
ods have been used to reduce the amount of annotated his-
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Fig. 1: (a) Study area (B, black line) in Puy-de-Dôme department (A, B, orange line) (figure from [4], p.39). 1946 (b) and 2019
(d) orthomosaics and their corresponding annotations, and 1974 (c) unannotated orthomosaic. ■ Background, ■ Forests, ■
Shrubs, ■ Urban and artificial, ■ Orchards, ■ Transportation routes. The ■ square is the validation set and the ■ square is the
test set.

fore 1989, the images are collected in the remonter le temps
IGN service [7] The orthomosaics have been constructed us-
ing Agisoft Metashape. From 2000 onward, RGB images are
available and orthomosaics were directly downloaded from
the CRAIG database [8]. In this study, the RGB images were
converted to grayscale to keep the number of channels consis-
tent in the timeserie. Sampling varies from 1m for the 1946
image to 0.20m for the 2019 image.

The 1946 and 2019 orthomosaics are hand-labelled, the
other 13 remain unlabelled. Eight Land Use and Land Cover
(LULC) classes were selected for the agricultural abandon-
ment study [4], including Urban and artificial areas, Water
and Transportation routes and 5 vegetation classes captur-
ing the vegetation succession: Agricultural lands, Orchards,
Shrubs, Planted forests and Forests. Due to the geographic
constraints in the choice of the validation and test sets, some
classes were missing from these sets. The classes Agricul-
tural lands and Water were merged in a Background class and
the class Planted Forests was merged to the Forests class.

3. METHOD

We train a U-Net architecture with a EfficientNet encoder pre-
trained on Imagenet. During training, random 256x256 px2

patches with at least 80% of labelled pixels and that don’t
overlap validation and test sets are selected on the fly. To
train all our models, we used 120 epochs of 250 batches of 8
patches. Pixel labels prediction are highly dependent on con-
text due to the nature of CNNs, especially in our case where
we want to predict LULC classes, where a same object can
have different labels based on context. As our dataset is small
and a fixed tiling for patch selection limits the variability of
training data, we increase the number of possible patches by
randomly selecting them to ensure the same pixels are seen
with different context. To further increase our models’ robust-
ness, we use spatial data augmentations techniques by apply-
ing one of several operations with a 50% probability: ˘ 90°
or 180° rotations and horizontal or vertical flip.

To train the models, we minimise the weighted multiclass

cross entropy. Because our dataset class distribution is im-
balanced and some classes, like Orchards or Roads, are al-
most absent, we use weights for each term of the loss func-
tion pk “ 1

fk
with fk the kth class frequency in the dataset,

so that classification mistakes for the least occurring classes
are penalised regardless of their occurrences.

During the study, we only consider two samplings: the 1m
sampling of the 1946 orthomosaic and the 0.20m sampling of
the 2019 orthomosaic. When undersampling images to the
1m grid of the 1946 orthomosaic, a low-pass filter is applied
to avoid aliasing. Label maps are undersampled using nearest
neighbour interpolation.

The sensor changes do not only modify the resolution,
they also lead to changes in the image appearance, that can
be combined with changes in acquisition condition, to create
a dataset shift from one year to another. We analyse the im-
pact of the following four data augmentation to mitigate these
distribution shifts :

• M˚: Modifying the brightness and the contrast

• Mγ : Applying a power law

• MEQ: Histogram equalisation

We also consider Fourier Domain Adaptation [9], MFDA, a
domain adaptation technique that replaces the source domain
low frequencies with the target domain low frequencies, to
assess how introducing information from the target domain
compares to the colorimetric data augmentation. In FDA, we
applied a Hamming window instead of a Rectangular window
to avoid spectrum discontinuities.

For quantitative evaluation, we use the Intersection over
Union (IoU) metric, averaged over the classes without weight-
ing. In this study, we conducted two types of experiments.
The first one is a transfer between the two annotated ortho-
mosaics of 1946 and 2019. It enables to measure the loss
in performances compared to models without transfer. The
performances are evaluated on the test set presented in Figure
1. A second type of experiment is the inference on unlabelled



intermediate years. We evaluated the model on the labels that
did not change between 1946 and 2019 hypothesising that
these labels were stable for the whole period. They represent
60% of the 1946 labels. For the test set and the intermediate
year images inference, we used a 64 pixel stride for our tiling
so that each pixel could be predicted 16 times with different
context like during training. These different network out-
puts were then averaged, weighted by the distance d between
the considered pixel and the centre of the patch during the
inference.

4. RESULTS

4.1. Without transfer

Table 1 shows models performance with resolution adaptation
on labelled years. Best IoU scores are obtained when the year
and sampling remain unchanged between training and testing.

These good performances can be observed in Figure 2c
and 2i for 1946 and 2019 respectively. However, in Figure
2 (i) we can see two majors confusions that highlights the
difficulties of considering LULC classes :

• A park area in the south east of the city was classified
as a mix of forest, shrubs and background

• A road in the north east of the city was classified as
urban areas.

Indeed, since our labels are constituted of both LU and LC
classes, thus the same object, such as a tree or a road, can
belong to different classes depending on its surrounding.

For the 2019 image, training and testing with a 1m sam-
pling leads to more homogeneous prediction map, that yield
better IoU than with a 0.2m sampling.

4.2. Transfer between 1946 and 2019

4.2.1. Sampling adaptation

When changing the year between training and testing while
keeping their original sampling, models performs badly. The
prediction of M1m

1946pI0.2m
2019 q are very scattered. As it can be

seen in Figure 2j, instead of detecting one homogeneous Ur-
ban area, houses are being individually detect as Urban area,
road between them as Transportation routes and their gardens
as Orchards. On the contrary, the prediction of M0.2m

2019 pI1m
1946q

are too homogeneous with Shrubs being over-represented as
shown in Figure 2d.

When transferring between years with a common a 1m
spacing, the performances of M1m

1946 and M1m
2019 increases

both of more than 0.1 of IoU. M1m
1946, illustrated in Figure 2k

performs better than M1m
2019, that over-predicts Background

as illustrated in Figure 2e. The model trained on I1m
1946 seems

thus more robust to illumination change than the model train
on I1m

2019.

I1
1946 I1

2019 I0.2
2019

M1m
1946 0.56 0.40 0.24

M1m
2019 0.23 0.71 0.28

M0.2m
2019 0.11 0.27 0.66

Table 1: Mean IoU for sampling change.

MEQ
1946 MFDA

1946 Mγ
1946 M˚

1946 MEQ
2019 MFDA

2019 Mγ
2019 M˚

2019

I1
1946 0.57 0.57 0.58 0.58 0.37 0.38 0.38 0.42

I1
2019 0.41 0.50 0.34 0.37 0.70 0.70 0.71 0.70

Table 2: Mean IoU for colorimetric data augmentation.

4.2.2. Colorimetric data augmentation

Table 2 shows the model performances with different colori-
metric data augmentations when evaluated on the same year
or in transfer to another year. For same year prediction, there
is very few modifications of the IoU when using colorimet-
ric data augmentation. Even the FDA, that takes information
from the target year, didn’t degrade the results on the source
year.

When transferring between years, data augmentation im-
pacts the IoU, especially for the 2019 to 1946 transfer where
the brightness and contrast data augmentation improve the
IoU up to 0.19. This increase in IoU is reflected in the larger
presence of Shrubs and Orchards areas as represented figure
2l. For the 1946 to 2019 transfer, only FDA increases the IoU.
Despite a large increase in the precision and recall of the Ur-
ban areas prediction the gain in mean IoU is only of 0.1 due
to an overprediction of the Shrubs class in Forest areas it can
been seen in figure 2f.

4.3. Transfer for intermediate years

For the model trained without colorimetric data augmenta-
tion, table 3 shows that the models trained on 1946 have bet-
ter results up to the year 2000, underlying again the robustness
of the training on lower quality data. However, for the model
trained on the 1946 image, colorimetric data augmentation
does not significantly improve models. The model trained
without augmentations even perform better for some interme-
diate years. On the other hand, models trained on the 2019
image gain from colorimetric data augmentation. Apart from
1954 and 1962 that are the two years the closest to 1946,
the models trained on the 2019 image outperform the mod-
els trained on the 1946 image. However, no colorimetric data
augmentation has consistent performances between years.
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Fig. 2: (a),(g) 1946 and 2019 central test zones image (see Fig. 1) ; (b),(h) ground truth ; (c),(i) LULC map predictions from
models trained in the same year with same sampling ; (d),(j) transfer without sampling changes; (e), (k) with sampling changes
; (f),(l) transfer with sampling changes and colorimetric data augmentation from best models , M˚

2019 and MFDA
1946 respectively

(see Tab. 2).

1946 1954 1962 1974 1978 1981 1984 1986 1989 2000 2004 2009 2013 2016 2019
M1946 0.31 0.33 0.29 0.39 0.33 0.32 0.32 0.31 0.36 0.32 0.27 0.31 0.36 0.37
M˚

1946 0.33 0.3 0.26 0.37 0.35 0.32 0.3 0.31 0.34 0.35 0.15 0.29 0.34 0.36
Mγ

1946 0.31 0.31 0.32 0.37 0.39 0.31 0.27 0.3 0.3 0.31 0.23 0.23 0.32 0.33
MEQ

1946 0.32 0.27 0.28 0.35 0.35 0.33 0.30 0.32 0.32 0.3 0.24 0.26 0.30 0.30
MFDA

1946 0.30 0.29 0.30 0.35 0.31 0.32 0.30 0.31 0.35 0.35 0.34 0.31 0.39 0.3
M2019 0.23 0.13 0.26 0.27 0.28 0.29 0.23 0.30 0.29 0.41 0.40 0.35 0.48 0.54
M˚

2019 0.36 0.26 0.27 0.37 0.42 0.35 0.31 0.42 0.34 0.48 0.49 0.45 0.47 0.55
Mγ

2019 0.33 0.22 0.29 0.37 0.44 0.23 0.36 0.45 0.39 0.48 0.44 0.30 0.47 0.50
MEQ

2019 0.36 0.27 0.24 0.39 0.43 0.40 0.33 0.44 0.35 0.45 0.48 0.40 0.50 0.53
MFDA

2019 0.33 0.15 0.27 0.36 0.42 0.18 0.34 0.44 0.37 0.5 0.46 0.38 0.50 0.57

Table 3: Table of the mean IoU on common labels for intermediate years. Best score is underlined and best score within each
training year is in bold. Top rows are models trained with 1946 dataset, bottom rows with 2019 dataset. All orthomosaics are
undersampled to the 1m 1946 grid.

5. CONCLUSION

In this work, we investigate the possibility to automatically
annotate LULC on a temporal stack of 15 orthomosaics con-
structed from aerial survey, with only the two extreme images,
1946 and 2019, annotated by hand. These orthomosaics ex-
hibit changes in sampling between 1m and 0.2m and changes
in colorimetry.

We first investigate the impact of sampling changes. We
showed that the features learned by our model are sensitive
to scaling, but that the model trained on the 2019 image un-
dersampled to 1m yields slightly better result than the model
trained on the 2019 image at a 0.2m sampling. Its prediction
maps are more homogeneous and closer to the ground truth
composed of LULC classes and not object classes.

When transferring between years with a constant 1m sam-
pling, colorimetric data augmentation improve the transfer
from 2019 to 1946. Only the FDA, that mixes low frequen-
cies of 2019 image and high frequencies of the 1946 image
increase the transfer between 1946 and 2019. When testing
on intermediate years, the transfer from 2019 with colorimet-

ric data augmentation outperform the transfer from 1946 that
has stable IoU between 0.3 and 0.4. However, no single col-
orimetric data augmentation could compensate for all the ap-
pearance change in the intermediate images. Using all the
colorimetric data augmentations at once could improve results
consistency for intermediate years.

Moreover, due to memory limitations, we always pre-
dicted 256x256 px2 patches, which limits the field of view
for network trained on images with 0.2m sampling. Given
the nature of the LULC classes of this dataset, we would like
to investigate using larger patches could help to improve the
homogeneity of the output map of network trained on images
at 0.2m sampling.
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