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Laboratoire SATIE (UMR CNRS 8029), CY Cergy-Paris Université, 5 mail Gay Lussac, 95031 Neuville Sur Oise, France
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A B S T R A C T

Surface acoustic waves (SAW) are adequate regarding material characterization because they have low geometric 
attenuation compared to bulk waves. SAW can be generated easily by normal excitation using contact trans-
ducers or power lasers and have also a unique elliptic polarization, characterized by two parameters: the 
ellipticity (H/V) ratio between the horizontal and the vertical components of the elliptic motions and the 
orientation angle (θ) between the horizontal axis of the ellipse and the surface. In the case of a viscoelastic 
isotropic material, a complete characterization is achieved by the association of the quantitative measurement of 
the polarization and the propagative characteristics, the complex wavenumber, of the SAW. In practice, this 
operation is performed using 3D lased vibrometry for propagation monitoring in space and time. The post- 
processing is carried out by Quaternion Fourier Transform, the Prony algorithm and the complex Lamé co-
efficients identification for the theoretical model of propagation on the material. Good agreement is observed 
between the obtained results and the ones of the pulse-echo method.

1. Introduction

The study and characterization of viscoelastic materials hold great 
significance since they are encountered when one investigates the 
propagation of acoustic waves through various media and in different 
application domains. Materials used for structural applications may 
manifest viscoelastic behaviors, which have a significant impact on their 
performance. In engineering applications, the viscoelastic behavior of a 
material may exhibit as an unintentional side effect, or for other appli-
cations the viscoelasticity of a material may be deliberately exploited in 
the design process to achieve comportmental goals. Within branches of 
the community of applied mathematics, the mathematical foundations 
of viscoelasticity theory spark interest. More, in materials science, 
metallurgy, and solid-state physics, there is a strong interest in visco-
elasticity because it is causally related to a variety of microphysical 
processes and can be used as an experimental probe of these processes. 
The relationship between viscoelasticity and microstructure is utilized 
in viscoelastic testing as an inspection method and material design. 
Many applications of the viscoelastic materials characterization can be 
found when dealing with natural materials such as stone, earth, and 
wood in the case of building construction and the monitoring of their 

integrity. One can see the diversity in application domains and the 
usefulness of the characterization of the viscoelastic aspect of materials, 
such as bone or soft human tissue monitoring in the case of biomedical 
engineering and medical diagnosis, the study of the behavior and the 
integrity of concrete structures, in the fabrication of tires and the fila-
ment of light bulbs, or in the study of the relaxation of the musical in-
strument strings [1].

The viscoelastic materials behavior is demonstrated through its 
response to dynamic excitation. Various techniques are employed to 
estimate these properties, based on measuring the different material 
deformations resulting from a controlled excitation. Methods like tensile 
testing [2], dynamic mechanical analysis [3] and parallel-plate rheom-
etry [4] are of this type, these lasts are limited to low frequencies. 
Methods based on wave propagation in and on the material can be used 
to overcome this limitation. Such as shear wave dispersion ultrasonic 
vibrometer whose method uses the phase difference of the shear wave 
between two locations along the propagation path to qualitatively es-
timate the dispersion of the velocity. The viscoelastic properties of the 
medium can then be estimated using an inverse model [5]. This method 
can be extended to plate-like structures: in this case, shear waves can be 
replaced by Lamb or Rayleigh waves [6]. This approach uses only the 
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measurement of the wave velocity and does not make use of the decrease 
in the amplitude of the wave (attenuation). Monitoring the propagation 
of the normal component of the surface Rayleigh wave by a 1D laser 
vibrometer, the complex wavenumber can be estimated [7], and via the 
invert problem, the complex shear/elastic moduli can be estimated also.

Compared to the shear waves, which are volume waves, Rayleigh 
waves are more accessible in terms of generation and monitoring as both 
aspects of the wave can be done on the surface, and remotely using a 
power laser for the excitation [8] and Laser vibrometers for the vibration 
detection and monitoring [9]. Also, the theoretical modelization of the 
propagation of Rayleigh waves on the surface of an isotropic linear and 
homogenous viscoelastic medium is well studied over the last century, 
starting with the work of Scholte in 1947 [10] up to the latest ad-
vancements presented by Sharma [11]. In this work, Sharma presented a 
complex analysis technique to simplify and then solve the secular 
equation that governs the propagation of the Rayleigh wave, also the 
expressions for the particle motion are presented in the sagittal plane of 
the propagation. These expressions are of great interest as they define 
the polarization of the surface wave.

In this study the characterization by monitoring both components is 
completed using a 3D laser vibrometer, extracting the complete polari-
zation in the sagittal plane. This operation have been done using a 1D 
laser with an angle of incidence, as demonstrated by [9], but the 
experiment needs to be done twice for each extraction position with 
different angles of incidence, this may affect the repeatability of 
experiment as the small variation can induce large deviation on the 
results. Also, the positions of the extraction need to be on the sagittal 
plane of the wave, out of that plane the three components of the 
deformation are mandatory in order to reproject the signals on the 
sagittal plane. Therefore these limitations are surmounted by the use of a 
3D laser vibrometer. In addition to the propagative properties of the 
wave (complex wave number), and by utilizing the theoretical modeling 
of the propagation and the polarization, an inverse problem allows the 
complete characterization of the viscoelastic medium by estimating the 
complex Lamé coefficients as a function of frequency.

This paper is organized in three parts. Firstly, the theoretical 
modeling of the direct problem allows the estimation of the complex 
wave number and the polarization from the mechanical properties, i.e. 
by the complex Lamé coefficients. Secondly, the inverse problem and the 
algorithms allowing the measurement of the different propagative pa-
rameters of the surface wave are presented. Finally, the experimental 
validation is carried out with the study of a Rayleigh wave propagating 
on a block of Epoxy.

2. Theoretical background

It is well known that the elastic deformation of an isotropic material 
is the superposition of two elementary components, the volume- 
conservative shear deformation that can be estimated by the shear 
modulus G and volume-non conservative elastic deformation that can 
be characterized by bulk modulus K. Lamé coefficients (λ, μ) are a 
combination of G and K and can also be used to model elastic materials, 
as they can simplify the notations. Indeed, when working with Hooke’s 
law in 3D, this last formalism is used for the study of the propagation of 
Rayleigh waves. When subjected to dynamic loading, a viscoelastic 
material experience a delayed deformation from its initial position, 
attributed to internal viscous friction within the material. When exposed 
to harmonic forcing, this delay is evident as a phase shift between the 
applied load and the resulting deformation. The magnitude of this shift 
is directly related to the viscous losses within the material. As a result of 
this phase lag, Lamé coefficients can be treated as frequency-dependent 
complex functions [12]. 
{

λ*(ω) = λʹ(ω) + i⋅λʹ́ (ω)
μ*(ω) = μʹ(ω) + i⋅μʹ́ (ω)

(1) 

The real parts {λ́ (ω), μʹ(ω)} are related to the elastic behavior of the 
material and the imaginary part {λʹ́ (ω), μʹ́ (ω)} to the viscous one. The 
theoretical expression of the variation of the complex Lamé parameters 
as function of the frequency are given by different models, for instance 
by Voigt model, standard Linear model also known as Kelvin or Zener 
model, Maxwell model and fractional order model [13,14].

These models express the real and imaginary parts of Lame co-
efficients as a function of the frequency of the harmonic excitation and 
material-related properties. Being able to measure the variation of the 
complex Lamé parameters as a function of frequency allows us to 
retrieve the mechanical properties by choosing the adequate model to be 
fitted to the measurements.

Let’s consider a viscoelastic material characterized by its complex 
Lamé coefficients and its density (μ*, λ*, ρ), occupying the half-space 
region x3 ≤ 0 (as illustrated in Fig. 1a). The propagation of a Rayleigh 
wave with an angular frequency (ω) on the free surface x3 = 0, 
following the x1 direction, is governed by the secular equation [15]: 

R*3
− 8R*2

+

(

24 − 16
μ*

λ* + 2μ*

)

R* − 16
(

1 −
μ*

λ* + 2μ*

)

= 0 (2) 

where: 

R* =
ρ
μ*⋅

(
ω
k*

R

)2

(3) 

The roots of this equation determine the complex value of R, and 
hence the wavenumber k*

R of the Rayleigh wave propagating on the 
surface of the half-space. k*

R contains the propagative information of the 
Rayleigh wave, the phase velocity 

(
ω/kʹ

R
)

and the attenuation 
(
kʹ́

R
)
. This 

information can be estimated by monitoring the propagation of the wave 
on the propagation surface.

Unfortunately, the inverse problem cannot be only constructed based 
on these two values, as the complete centralization of the medium is 
achieved by estimating the four coefficients (λ́ , μʹ, λʹ́  and μʹ́ ) of Eq. (1). 
One is in a situation of an underdefined inverse problem that can accept 
an infinity of solutions. Other measurable parameters need to be added 
to overcome this situation. These parameters are related to the polari-
zation of the surface wave. As it is well known that surface waves have 
an elliptical particle motion trajectory or polarization [16,17], this po-
larization can be characterized by two parameters: (i) the ellipticity (χ =

arctan(H/V)) calculated from the ratio between the in-plane or hori-
zontal (H) and out-of-plane or vertical (V) components of the particle 
motion and (ii) the orientation of the ellipse (θ) which is the angle be-
tween the major axis of the ellipse and the horizontal axis x1, as illus-
trated in Fig. 1b).

The theoretical expressions of the polarization parameters (χ, θ) as 
function of the complex Lamé parameters can be extracted from the 
components (u1, u3) of the particle displacement u→ in the (x1, x3) plane. 
For a harmonic excitation with an angular frequency (ω) and on the free 
surface (x3 = 0), these components are given by the following expres-
sions [15]: 

Fig. 1. a) Representation of the wave propagation and b) Rayleigh wave 
polarization.
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u*
n = A*

ne
i(k*

Rx1 − ωt), n ∈ {1,3} (4) 

where: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A*
1 =

R*

R* − 2

A*
3 =

R*

2(1 − R*)
1/2

(5) 

A*
1 and A*

3 are the complex normalized amplitudes of the two com-
ponents. Eq. (5) gives the expressions of these amplitudes as function of 
R*, the solution of Eq. (2), and complex Lamé coefficients. The (u1, u3)

components of the particle deformation correspond to the real part of 
the complex 

(
u*

1, u*
3
)

amplitudes.
The theoretical expressions of the polarization parameters (χtheo,

θtheo) as a function of A*
1 and A*

3 are given by the following formulas [15]: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χtheo =

⃒
⃒
⃒
⃒
u*

1

u*
3

⃒
⃒
⃒
⃒ =

⃒
⃒
⃒
⃒
A*

1

A*
3

⃒
⃒
⃒
⃒

θtheo =
1
2

arctan
(

A*
1A*

3 + A*
1A*

3

A*
1A*

1 − A*
3A*

3

) (6) 

For a specific angular frequency (ω), these equations allow us to 
estimate the elliptic parameters of the polarization using the complex 
material properties.

χ and θ are measurable parameters that can be extracted from the 
monitoring of the propagation of the two components on the sagittal 
plane of the surface Rayleigh wave. Adding to these two parameters (χ,
θ), the extraction of the propagative properties of the wave 

(
k*

R =

kŔ +ikʹ́
R
)
, we will have four parameters that will allow us to construct the 

inverse problem to estimate the four complex Lamé coefficients (λ́ ,λʹ́ ,μʹ,
μʹ́ ).

In the present case, the inverse problem is constructed using the Eqs. 
(2), (3) and (6). For a specific value of the angular frequency (ω) and the 
density (ρ), one finds the Lamé coefficients {λ*, μ*} that corresponds to 
the measured values of 

{
χ, θ, k*

R
}
. The optimization process is imple-

mented using a derivative-free method [18] to find the minimum of the 
multivariable error function Err. This function is constructed from the 
absolute value of the relative difference between the theoretically esti-
mated and the experimentally measured values of the polarization and 
the propagation properties of the surface Rayleigh wave: 

Err =
{⃒
⃒
⃒
⃒
χexp − χtheo

χtheo

⃒
⃒
⃒
⃒;

⃒
⃒
⃒
⃒
θexp − θtheo

θtheo

⃒
⃒
⃒
⃒;

⃒
⃒
⃒
⃒
kʹ

Rexp − kʹ
Rtheo

kŔtheo

⃒
⃒
⃒
⃒;

⃒
⃒
⃒
⃒
kʹ́

Rexp − kʹ́
Rtheo

kʹ́
Rtheo

⃒
⃒
⃒
⃒

}

(7) 

The next section proposes a signal processing method that allows us 

to estimate the polarization 
(
χexp, θexp

)
and the propagative 

(
k*

Rexp
)

properties of a propagating wave as a function of frequency and wave-
number, starting from a bivariant space–time signal extracted from the 
monitoring of the propagation of the wave using a 3D lase vibrometer.

3. Polarization 
(

χ exp, θexp

)
estimation of bivariant space–time 

signals using 2D quaternion Fourier transform (2DQFT)

The monitoring of the propagation of the surface Rayleigh wave is 
performed by the measurement of the two components (u1, u3) of the 
particle deformation, in different time instants (t) and space positions 
(x1) in the direction of propagation along the sagittal plane of the wave. 
The retrieved signal is a bicomponents or bivariant space–time 2D ma-
trix, and can be represented either as a vector-valued signal S(x1, t) =

[u1,u3], or as a complex-valued signal: 

S(x1, t) = u1(x1, t)+ i⋅u3(x1, t) (8) 

In this complex representation (8), the bivariant signal can be 

considered as a special type of quaternion-valued signal. This allows us 
to process the signal on its polar form using the 2D quaternion Fourier 
transform (QFT), giving a direct access to the polarization parameters of 
the bivariant signal as a function of the frequency and wavenumber 
[19,20].

Let’s present here the quaternion space and the 2D QFT method 
which are first introduced by Sir William Rowan Hamilton in 1843 [21]. 
They are the generalization of complex numbers for which two com-
ponents are defined: the real and the imaginary part. The quaternion is 
then defined by four components, one real part and three imaginary 
parts, enabling any quaternion to be represented in a hypercomplex 
Cartesian form as: 

q = a+ b⋅i+ c⋅j+ d⋅k (9) 

where a, b, c, d ∈ R are its components. Imaginary units i, j, k complex 
operators (generalization of complex operator i, also denoted j) satisfy 
the fundamental formula for quaternions multiplication: 

i2
= j2

= k2
= ijk = − 1 (10) 

and 

ij = − ji = k
jk = − kj = i
ki = − ik = j

(11) 

For this property, it should be noted that the multiplication of qua-
ternions is not commutative. Care is therefore necessary in using qua-
ternions and in the coding of quaternion-based algorithms to ensure that 
the ordering of operands is correct. However, the usual operations such 
as addition, scalar multiplication, and equality behave similarly to 
complex cases [19]. Similar to complex numbers, any quaternion q can 
be written in the Euler polar form as: 

q = |q|eiθe− kχejφ (12) 

where |q| is the amplitude and φ ∈ [ − π, π] is the phase of the quaternion, 
these parameters are equivalent to those of complex numbers. 
θ ∈ [ − π/2, π/2], χ ∈ [ − π/4, π/4] are the already defined polarization 
parameters. The transition from the cartesian to the polar form and vice 
versa is possible and the theoretical expressions can be found in litera-
ture [19].

Considering two harmonic signals u and v with the same angular 
frequency (ω) and different amplitude and phase, they can define a 
bivariant signal with specific polarization parameters. This signal can be 
embedded by a quaternion in the same form as in Eq. (12), which gives 
direct access to the polarization parameters that we are looking for in 
this study.

This operation can be carried out by the quaternion Fourier trans-
form (QFT), that takes the signal in its complex form as S = u + v⋅i +
0⋅j + 0⋅k, and transform it into the Euler polar form for different fre-
quencies. The QFT was first studied by Jamson in 1970 [22]. In this case, 
the signal is 2D space–time matrixes, which means that one has to 
perform the 2D version of the QFT. This was introduced for the first time 
by Ell for the study and the analysis of linear time-invariant partial 
differential systems [23]. For an arbitrary bivariant space–time signal, 
the 2D quaternion Fourier transform (2DQFT) is defined by: 

Ŝ(k1,ω)≜
∫ ∞

− ∞

∫ ∞

− ∞
S(x1t)⋅e− Λ(k1x1+ωt)dx1dt

= a(k1,ω)eiθ(k1 ,ω)e− kχ(k1 ,ω)ejφ(k1 ,ω) (13) 

This definition is similar to the usual Fourier transform, at the dif-
ference of two fundamental elements. The first is related to the position 
of the Fourier atom e− Λ(k1x1+ωt) with respect to the quaternion values 
signal S(x1, t) which is crucial due to the non-commutative nature of the 
product in the quaternion space. It is chosen to place the Fourier atom on 
the right side of the signal for convenience and to agree with the usual 
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Fourier transform. The second element of difference is the so-called the 
axis of the QFT, Λ, this last is a free parameter. It is only restricted to be a 
pure unit quaternion. The choice of this axis has been argued in litera-
ture [19], it is chosen to be Λ = j in our case as it was recommended in 
the reference.

The implementation of the 2DQFT can be performed using the 
classical 2D Fourier transform (2DFT), and can be executed efficiently 
by using the 2DFFT algorithm. This is possible because the quaternion- 
valued signal S(x1, t) can be decomposed into a pair of complex valued 
signals as follow: 

S(x1, t) = S1(x1, t)+Λ⊥S3(x1, t) (14) 

where Λ⊥ is a pure unite quaternion orthogonal to the axis of the 2DQFT 
(μ).

By linearity of the 2DQFT, one gets: 

Ŝ(k1,ω) = Ŝ1(k1,ω)+Λ⊥ Ŝ3(k1,ω) (15) 

where Ŝ1 and Ŝ3 are the 2DFT complex-valued of S1 and S3.
This confirms the possibility of obtaining the 2DQFT by combining 

two standards 2DFT [19,24].
The use of the 2DQFT on the measured signal Sexp(x1, t) allows to 

estimate the polarization properties of the Rayleigh wave 
(

χexp, θexp

)
as 

a function of the frequency (ω) and wavenumber (k1), as previously 

shown in the theoretical expressions (6). 
(

χexp(ω), θexp(ω)
)

are the first 

two elements of the invers problem: the following part proposes an al-
gorithm for the estimation of the remaining two elements.

4. Estimation of the propagative properties 
(

k*
Rexp

)
of Rayleigh 

wave using the Prony algorithm

Estimation of the propagative properties of Rayleigh wave consists in 
the measurement of the two parts of the complex wavenumber for 
different values of frequency: 

k*
Rexp(ω) = kʹ

Rexp(ω)+ i⋅kʹ́
Rexp(ω) (16) 

These parameters need to be extracted from the space-frequency 
signal 

(
Sexp(x1,ω)

)
, which is a simple 1D time Fourier transform of the 

measured space–time signal (Sexp(x1,t)). From Eq. (4), it can be seen that 
the two components of the wave undergo the same attenuation and 
propagate with the same wavenumber during propagation, which means 
that the choice of one component over the other is indifferent in terms of 
the expected results.

The principle of the Prony method is to identify the unknown pa-
rameters 

(
k*

R
)

by minimizing the quadratic difference between the 
model Smod(x1,ω) and the experimental data Sexp(x1,ω). Considering 
that only one surface wave is propagating, the theoretical expression of 
Smod(x1,ω) is as follow [25–27]: 

Smod(x1,ω) = δ− 1(x1)⋅H(0,ω)⋅e− kʹ́
R(ω)x1 ⋅eikʹ

R(ω)x1 (17) 

where H(0,ω) is the spectral amplitude at the position x1 = 0 the origin 
of observation, and δ− 1(x1) is the Heaviside step function. This mini-
mization problem is not linear in space domain, it can be linearized by 
using the Z transform. On Z domain Smod(z,ω) is a infinite impulse 
response filter that can be written as: 

Smod(z,ω) =
A(ω)

1 − p(ω)z− 1 (18) 

Form this expression, one can see that the optimization problem 
comes to finding the complex values of A(ω) and p(ω) that minimized 
the quadratic error between Smod(x1,ω) and Sexp(x1,ω). The propagative 
properties can be extracted from p(ω) by using the following equations: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kʹ
R(ω) =

arg(p(ω) )
2π⋅Δx1

kʹ́
R(ω) = −

log(|p(ω) | )
Δx1

(19) 

where Δx1 is the distance between two successive measurement 
positions.

The use of the Prony algorithm on the experimental space-frequency 
signal allows to estimate the propagative properties of the Rayleigh 
wave, with these measurements and the polarization properties esti-
mated using the 2DQFT, the algorithm of the inverse problem is com-
plete and can be executed to estimate the complex Lamé coefficients of a 
viscoelastic material as a function of frequency. An experimental work 
has now to be performed for the validation of the proposed method.

5. Experimental validation

In this section, one details the experimental setup and materials used 
to monitor the propagation in space and time of the Rayleigh wave to 
extract the signal Sexp(x1, t). Afterword, the estimation of the Lamé co-
efficients from the application of the proposed method is compared with 
the results of other characterization methods.

A block material and a transducer are mounted in the experimental 
setup (Fig. 2a): the side on which the wave is propagating, is facing the 
vibrometer. The excitation is done by a synchronized JSR Ultrasonics 
DPR3 pulse generator. The time signals of the three (u1, u2, u3) compo-
nents of the particle displacement at different positions are extracted 
using Polytec® Laser Vibrometer PSV 500-3D-V with a sampling fre-
quency of fs = 63MHz. The measurement positions are located on a line 
in the sagittal plane of the wave, with a distance of Δx1 = 1.3mm be-
tween two successive points, with a total number of points Nx = 62.

A 10 × 10 × 3cm3 Epoxy block, with a density of ρ = 1170kg/m3 is 
used as a support for the propagation of the waves (Fig. 2b). The lon-
gitudinal and transversal waves velocities are respectively VL =

2503m/s and VT = 1119m/s. kʹ́
L = 19.1Np/m and kʹ́

T = 46.4Np/m are 
respectively the attenuation of longitudinal and transversal waves. 
These values are measured using the time signals extracted from pulse- 
echo method [28], the waves are generated using two different types of 
transducers with the same central frequency fc = 500kHz, The spectral 
analysis of the measured temporal signal revealed a predominant fre-
quency content centered around fc = 180kHz. This frequency shift is 
attributed to the viscous attenuation of the epoxy, a phenomenon pre-
viously studied in the measurement of shear wave attenuation in soft 
tissues [29,30] and seismic attenuation characterization [31]. The 
measured values of VL, VT, kʹ́

L and kʹ́
T correspond to the central frequency 

of the acquired time signals. Since the pulse-echo method provides 
measurements only at a single frequency, these values are assumed to be 
constant across frequencies for simplicity. This assumption holds true 
for epoxy within a narrow frequency range around fc. Outside this range, 
epoxy exhibits attenuation that increases linearly with frequency. The 
slope of this linear dependency is one of the characteristics of the used 
Epoxy [32].

The values of the complex wavenumbers k*
T and k*

L are calculated 
from ω,VL,VT , kʹ́

T and kʹ́
L, and the coefficients 

(
λ*

theo, μ*
theo

)
are deduced 

from: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ*
theo =

ω2ρ
k*

L
2 − 2μ*

theo

μ*
theo =

ω2ρ
k*

T
2

(20) 

The surface wave is generated using a shear wave transducer 
mounted on the side of the block, with a central frequency of fc = 500kH 
z (Fig. 2b). The transducer applies a force tangent to the surface, this will 
generate a Rayleigh wave in the adjacent face [33], the signals are 
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extracted following a line in the sagittal plane of the wave, Fig. 2b). The 
two components of the measured space–time signal Sexp(x1, t) are shown 
in the Fig. 3.

One can see a surface wave propagating but the elliptic polarization 
of this last is note obvious. In order to visualize this polarization, the 
time signals measured at position x1i = 21.7mm are plotted versus the 
time, and then u3 as a function of u1 (Fig. 4).

In the time signal, the phase delay between the two components can 
be noted, given its unique elliptic trajectory of the particle motion. This 
last can be visualized in the second graph (u3 versus u1).

The geometric properties of this ellipse 
(

χexp, θexp

)
parameters are of 

interest: their estimation as a function of frequency can be performed 
using the 2DQFT applied on Sexp(x1, t).

As expressed in Eq. (14), the Euler polar former of the 2DQFT give 
direct access to the polarization parameter as function of the frequency 
and wavenumber. Fig. 5 shows χexp(k1, ω), θexp(k1,ω) and aexp(k1,ω)

extracted from the 2DQFT of Sexp(x1, t).
In the aexp representation, the maximum energy of the propagating 

modes is observed at fRexp = 111kHz. For the maximum energy the 
propagating wavenumber is kRexp = 104m− 1. From the characteristics of 
the Epoxy block, the theoretical value of the wavenumber of Rayleigh 
wave can be computed for the frequency fRexp : kRtheo = 106m− 1. The 
difference between kRexp and kRtheo can be considered low relative to the 
values (<2%).

Artifact surrounding the area of interest in the images of χexp and θexp 
are often present, and they are related to the equations used to calculate 
these lasts [19], these equations are using the division operation, which 
is known to be numerically sensitive and unstable when used with small 
values. As a solution regarding the extraction of the values of 

polarization, aexp can be used as a mask on χexp and θexp, with this method 
the polarization parameters are directly retrieved for frequencies and 
wavenumbers that have energy, as shown in Fig. 5. For the frequencies 
and wave numbers with energy above 10 % of the maximum of aexp , the 
H/V ration are around 0.6. The values of orientation θexp are varying 
around 1.6rad. The extracted parameters are plotted versus the fre-
quency in Fig. 6.

The retrieved frequencies are in the interval fexp = [57 − 182]kHz. For 
these frequencies, the theoretical values of χtheo and θtheo are computed 
using Eqs. (2) to (7) and the mechanical properties of the Epoxy block 
(λ*

theo, μ*
theo). The theoretical values are plotted and compared to the 

experimental ones in Fig. 6. One can see that, for the ellipticity the 
theoretical and experimental results varies around the value of χ =

− 0.628, and for the orientation the values vary around 1.57rad. The 
relative difference between the experimental and theoretical values is 
plotted in the third graph, the results are in a good agreement, as the 
value of the error is laisse then 5%.

The estimated polarization parameters need to be completed with 
the propagative ones in order to execute the presented inverse problem. 
The Prony algorithm is applied on Sexp(x1,ω) for the frequencies fexp, the 
results regarding the estimation of k*

Rexp 
are plotted in Fig. 7.

The theoretical values of k*
R are calculated from the solution of Eq. 

(2), using (λ*
theo, μ*

theo). One can see that the values of kŔ vary linearly 
between 52m− 1 and 173m− 1, and the values of kʹ́

R are varying between 
15m− 1 and 49m− 1. Compared to the theoretical values, a constant de-
viation is to be noticed for the real part of the wavenumber: this leads to 
the systematic constant relative error of around 5 % that one can be seen 
in the third graph. Regarding the imaginary part, errors up to 25 % were 

Fig. 2. a) Experimental setup b) epoxy block used in the experiment.

Fig. 3. Measured components (u1, u3) of the space–time signal Sexp(x1, t).
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observed at the lower end of the frequency range studied. However, as 
the frequency increases, these errors decrease to values below 7 %.

As the four elements mandatory for the execution of the inverse 
problem are measured experimental, one can run now the optimization 
process for the estimation of the Lame parameters as a function of fre-
quency, starting from the polarization and propagative properties of the 
Rayleigh wave propagating on the block.

The results of the estimation of the complex lamé coefficients 
(

λ*
exp,

μ*
exp

)
from the 

(
χexp, θexp, k*

R

)
measurements are plotted in Fig. 8. The 

deviation relative to the values estimated from the results of the pulse- 
echo tests and equation (20) (λ*

theo, μ*
theo) are represented by the error 

bars: the imaginary parts are negative as they represent losses [15]. In 
Fig. 8, it is the absolute value of the imaginary part that is presented. 
One can note that the results of the two methods have the same order of 
magnitudes. For the real parts, the λ́  values are around 4GPa and the μʹ 

values are 1.5GPa. For the imaginary parts, the λʹ́  values are varying 
between [325 − 520]MPa and the μʹ́  values are between [136 − 218]MPa. 
For the real parts, a good agreement is noticed between the results of the 
two methods. Despite a small deviation in the upper side of the fre-
quency interval, this deviation is noticeable by the relative error be-
tween the two methods, that is around 10 % for these frequencies.

For the imaginary parts, the relative error decreases as the frequency 
approaches 180 kHz. This frequency corresponds to the central fre-
quency of the temporal signals used to characterize the epoxy block 
earlier. Since the theoretical values were calculated for this specific 
frequency and assumed to be constant across frequencies, it is expected 
to observe such a decrease in error. This highlights the limitation of the 
prior assumption regarding the constancy of the theoretical values over 

a broad frequency range. The interpretation of the relative error is 
meaningful for frequencies around 180 kHz, but conclusions cannot be 
drawn for frequencies outside this range. At 180 kHz, the relative error 
in estimating the imaginary parts of the Lamé coefficients is below 10 % 
for (λ́ )́ and (μ́ )́.

These errors are due to the different deviations in the input param-
eters of the inverse problem algorithm. Fig. 7 has ever shown that an 
error about 7 % on the estimation of kʹ́

R and around 5 % on ḱR. Fig. 6 has 
illustrated that the errors on χ and θ are low, less than 5 %, but they still 
contribute to the overall deviation on the estimations. In addition, the 
errors introduced by the optimization process itself, as the problem is 
nonlinear and any errors introduces on the input may lead the process to 
a local minimum rather than a global one.

The large errors on the λ́ʹ estimation can be related to the low 
sensitivity of the Rayleigh waves to this material parameter. For a 10 % 
relative variation on the modulus of the Rayleigh wave velocity, the 
value of the modules of λ* only undergoes a 3.5 % relative variation. 
Considering λ́ʹ , it only represents 10 % of the modulus, meaning that 
this has low influences on the wave properties. Despite all of these 
sources of deviation, the obtained results are still comparable and in 
good agreement with the results of the pulse-echo method for fre-
quencies around 180 kHz.

The obtained results showed that with the proposed method has the 
potential to fully characterize viscoelastic materials, by estimating the 
variation of the complex Lamé coefficients as a function of frequency. 
From the propagative properties and the polarization properties of a 
surface Rayleigh wave, monitored in space and time by a 3D laser 
vibrometer.

Fig. 4. Time signal measured at position x1i = 14.2mm.

Fig. 5. Polarization parameters 
(

aexp, χexp, θexp

)
as a function of frequency and wavenumber of the measured signal Sexp(x1, t).
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6. Discussion

In this study, the pulse-echo method was used for the initial char-
acterization of the epoxy block, it serves as a valuable reference for 
comparing the results obtained from ellipsometry measurements. It is 
important to note that the viscoelastic properties of epoxy depend on the 
mixture ratios used during manufacturing and curing [32], which can 
introduce variability and comparisons with literature results less accu-
rate due to differing fabrication processes. Therefore, characterizing the 
same block using different methods ensures the consistency and reli-
ability of the values obtained across various characterization 
techniques.

Despite the sensitivity of the epoxy material properties to fabrication 
processes, it is still possible to compare the obtained results with those 
found in the literature. For the real parts of the coefficients, the work of 
Oral and Ekrem on the speed measurement of ultrasound propagation in 
epoxy provided the following reference values: λ́literature = 5.08 GPa and 
μʹ

literature = 1.63 GPa [34]. In the study proposed in this paper, the density 
and the velocities of transverse and longitudinal waves are measured 
during the characterization tests. These experiments confirmed the 
order of magnitude of the properties proposed by Krautkrämer for epoxy 
resin [28]. Similar orders of magnitude are also reported by Royer [35]. 
Therefore, one can conclude that the presented results for these real 
coefficients (λ́ and μʹ) are in agreement with the literature.

For the imaginary part, a decreasing trend as a function of frequency 
is observed, which was also noted by Ni et al. over the same frequency 
range [36]. Ni et al. obtained their results using the time–temperature 
equivalence method, allowing them to display results over a broader 
frequency range than that of the excitation used. The obtained curves 
are known as the “Master curves” of the material. This principle assumes 

that the rheological behavior of the polymer material as a function of 
temperature is proportional to its temporal behavior and inversely 
proportional to its behavior versus the frequency. By conducting tests at 
different temperatures within a given frequency range, it is possible to 
determine the material’s rheological behavior (Ni et al., 2020; Royer 
and Valier-Brasier, 2021). In the results obtained by Ni et al., the trend is 
decreasing for frequencies around 105 Hz, as observed in our study. The 
estimated values (136–218 MPa) also fall within the same order of 
magnitude and the range identified by Ni et al. (100–300 MPa).

In terms of accuracy, the proposed method has a 10 % error on the 
estimation of the complex Lamé coefficients as function of frequency, 
this value was based on the relative error obtained for the frequency of 
180 kHz. The Master curve technique based on acoustic waves propa-
gation on different temperatures has an error less than 1 % on the reals 
partes of the coefficients and less than 10 % on the imaginary parts [37]. 
The method based on the reflection of shear waves on the bottom of the 
simple have shown errors that can go up to 9.2 % for the estimation of 
the complex shear modulus of epoxy [38], for viscoelastic materials 
methods based on tensile testing can give rather large errors (~100 %) 
compared to the methods based on wave propagation, due to the viscous 
attenuation of the tested materials [39,40]. A method based on the 
monitoring of Rayleigh wave propagation on the surface a soft material 
showed results with errors varying from 1 % up to 12 % [7]. The dy-
namic mechanical analysis method showed results with less than 16 % 
errors on the estimation of the storage and modulus of viscoelastic 
materials [41].

In terms of accuracy, the proposed method demonstrates a 10 % 
error in estimating the complex Lamé coefficients as a function of fre-
quency, based on the relative error observed at 180 kHz. The Master 
curve technique, which uses acoustic wave propagation at different 

Fig. 6. Extraction of χ and θ as a function of frequency and their comparison with the theoretical values.
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temperatures, achieves errors of less than 1 % for the real parts of the 
coefficients and less than 10 % for the imaginary parts [37]. Methods 
relying on shear wave reflection at the bottom of samples have shown 
errors of up to 9.2 % in estimating the complex shear modulus of epoxy 
[38]. For viscoelastic materials, methods based on tensile testing can 
yield significantly larger errors (up to ~100 %) compared to wave 
propagation methods, primarily due to viscous attenuation of the 

materials [39,40]. A method based on monitoring Rayleigh wave 
propagation on the surface of soft materials reported errors ranging from 
1 % to 12 % [7]. The dynamic mechanical analysis method has shown 
errors of less than 16 % in estimating the storage and loss moduli of 
viscoelastic materials [41].

The proposed method falls within the same range as other methods 
based on wave propagation. In the literature, the complex shear 

Fig. 7. Estimation of k*
R using Prony algorithm and comparison with theoretical values.

Fig. 8. Estimation of the complex Lamé coefficients and comparison with theoretical values.
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modulus is often measured as a function of frequency due to its direct 
relation to shear wave propagation. Extracting material properties from 
longitudinal waves requires prior knowledge of the shear modulus, 
necessitating a dual characterization process using both wave types. The 
method presented here achieves comprehensive characterization using a 
single wave by leveraging the polarization of Rayleigh waves, elimi-
nating the need for a second wave type.

Regarding cost, the method described in this study requires access to 
all three components of the wave, which can be achieved using a 3D 
laser vibrometer, such as those manufactured by Polytech®. Despite the 
high cost, the versatility of laser vibrometer acquisition systems allows 
for efficient scanning of both simple and curved surfaces, significantly 
saving time in measurements. In terms of numerical cost, the proposed 
approach is comparable to other methods because the 2D Quaternion 
Fourier transform is mainly implemented using the FFT algorithm, 
known for its optimal performance in calculating Fourier transforms.

7. Conclusion

In this paper, a method for the characterization of viscoelastic ma-
terials was theoretically introduced and validated experimentally. 
Different application fields of the viscoelastic materials were presented 
and the classical techniques for the estimation of the different parame-
ters of the materials were described with their limitations. The advan-
tages of using surface Rayleigh waves as investigating tool were listed. 
Following that, in the theoretical background, the complex notation of 
the Lamé coefficient, the equation of Rayleigh wave allowing the esti-
mation of the complex wavenumber, and the expressions of the particle 
displacement from which the polarization parameters are extracted, and 
the inverse problem is then presented allowing the estimation of the 
complex lamé coefficients from the surface wave properties.

The quaternion space and the 2DQFT were introduced as a method to 
estimate the polarization properties of the waves as a function of fre-
quency. The Prony algorithm and its theoretical formulation are pre-
sented as tools to estimate the propagative properties of the surface 
wave.

The experimental validation was started by introducing the results 
obtained from the pulse-echo method, the technique that uses a shear 
and pressure wave to characterize the viscoelastic mediums. The results 
of this technique are used for validation. The experimental setup was 
presented including its characteristics. The studied material, a block of 
Epoxy, was also presented, and the extracted bivariant space–time 
signal. The polarization properties extracted from it using 2DQFT are 
explained. The comparison of these results with the theoretical values 
estimated from the results of the pulse-echo tests have been shown in a 
good agreement (relative error <5 %). The estimation of the propagative 
properties of the surface wave was then proposed from the application of 
the Prony algorithm. The comparison of these lasts with the pulse-echo 
tests results showed a relative error <7 % on the real and imaginary 
parts of the wavenumber.

Despite these values, the results obtained for the complex Lamé co-
efficients from the inverse problem were comparable to those obtained 
from pulse-echo tests, with errors less than 10 %. A brief explanation of 
this error is provided by studying the sensitivity of Rayleigh waves to the 
modulus of λ*. The proposed method was compared with existing 
methods in terms of accuracy and cost. In terms of accuracy, the pro-
posed method falls within the same range as other methods based on 
wave propagation and controlled mechanical deformations.

These results show the ability of the proposed method to estimate the 
complex Lamé coefficients as a function of frequency. In our case, the 
method is not completely contact laisse, as the generation of the wave is 
still done with contact transduces, but this aspect can be changed to be 
contactless with the use of power lasers to generate the waves.

The presented approach has the advantage of being independent of 
the rheological model used, meaning that you can run the character-
ization method, and from the obtained results as a function of frequency 

one can choose the adequate model. The propagation of Rayleigh waves 
on different configurations of materials (multilayers, orthotropic, com-
posites), has been already studied and theoretically modularized, using 
these models, the proposed method can be adapted to this configuration.
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[35] Royer D, Valier-Brasier T. Ondes élastiques dans les solides 1: Propagation. vol. 1. 
ISTE Group; 2021.

[36] Ni Y, Song H, Wilcox DA, Medvedev GA, Boudouris BW, Caruthers JM. Rethinking 
the analysis of the linear viscoelastic behavior of an epoxy polymer near and above 
the glass transition. Macromolecules 2020;53:1867–80. https://doi.org/10.1021/ 
acs.macromol.9b02634.

[37] Sutherland HJ, Lingle R. An acoustic characterization of polymethyl methacrylate 
and three epoxy formulations. J Appl Phys 1972;43:4022–6. https://doi.org/ 
10.1063/1.1660868.

[38] Li Y, Chang J, Huang L, Tang Y. Comparative study on viscoelastic evaluation 
methods of polymer materials based on ultrasonic method. Materials 2019;12: 
2948. https://doi.org/10.3390/ma12182948.

[39] Sasmita F, Candra TA, Judawisastra H, Priambodo TA. Young’s modulus 
determination of polyester and epoxy by means of ultrasonic pulse echo testing. 
IOP Conf Ser Mater Sci Eng 2019;547:012045. https://doi.org/10.1088/1757- 
899X/547/1/012045.

[40] Shtark A, Grosbein H, Sameach G, Hilton HH. An Alternative Protocol for 
Determining Viscoelastic Material Properties Based on Tensile Tests Without the 
Use of Poisson’s Ratios. Volume 10: Mechanics of Solids and Structures, Parts A 
and B, ASMEDC; 2007, p. 437–54. https://doi.org/10.1115/IMECE2007-41068.

[41] Chakravartula A, Komvopoulos K. Viscoelastic properties of polymer surfaces 
investigated by nanoscale dynamic mechanical analysis. Appl Phys Lett 2006;88. 
https://doi.org/10.1063/1.2189156.

A. Bouzzit et al.                                                                                                                                                                                                                                 Applied Acoustics 228 (2025) 110312 

10 

https://doi.org/10.1016/j.wavemoti.2003.12.015
https://doi.org/10.1016/j.wavemoti.2003.12.015
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1016/j.acha.2017.05.007
https://doi.org/10.1016/j.acha.2017.05.007
http://refhub.elsevier.com/S0003-682X(24)00463-8/h0110
http://refhub.elsevier.com/S0003-682X(24)00463-8/h0110
https://doi.org/10.1109/CDC.1993.325510
https://doi.org/10.1109/CDC.1993.325510
https://doi.org/10.1109/78.960426
http://refhub.elsevier.com/S0003-682X(24)00463-8/h0125
http://refhub.elsevier.com/S0003-682X(24)00463-8/h0125
http://refhub.elsevier.com/S0003-682X(24)00463-8/h0130
https://doi.org/10.1121/1.419956
https://doi.org/10.1109/TUFFC.2016.2634329
https://doi.org/10.1109/TUFFC.2019.2945620
https://doi.org/10.1109/LGRS.2012.2227933
https://doi.org/10.1121/1.393240
https://doi.org/10.1029/94JB01557
https://doi.org/10.1029/94JB01557
https://doi.org/10.3144/expresspolymlett.2022.44
https://doi.org/10.1021/acs.macromol.9b02634
https://doi.org/10.1021/acs.macromol.9b02634
https://doi.org/10.1063/1.1660868
https://doi.org/10.1063/1.1660868
https://doi.org/10.3390/ma12182948
https://doi.org/10.1088/1757-899X/547/1/012045
https://doi.org/10.1088/1757-899X/547/1/012045
https://doi.org/10.1063/1.2189156

	Ellipsometry of surface acoustic waves using 3D vibrometry for viscoelastic material characterization by the estimation of  ...
	1 Introduction
	2 Theoretical background
	3 Polarization (χexp,θexp) estimation of bivariant space–time signals using 2D quaternion Fourier transform (2DQFT)
	4 Estimation of the propagative properties (kR∗exp) of Rayleigh wave using the Prony algorithm
	5 Experimental validation
	6 Discussion
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


