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Abstract—This paper is about the Compromise Ranking Prob-
lem (CRP), a well-known problem in the social choice theory.
According to the famous Arrow’s theorem there is no voting
method which is entirely satisfying and fairness if one accepts
Arrow’s axioms. In this paper we formalize the problem as
a minimisation problem in a discrete finite search space. We
attempt to solve it based on the Least Squares (LS) approach
thanks to some appealing metrics to get the optimal CRP solution.
Surprisingly, we show that the optimal consensus (compromise)
ranking solution disagrees with the commonsense solutions in
four simple interesting examples. The search for an optimal
solution in agreement with the commonsense appears to be
an open very challenging question and our paper warns the
users about the impossibility of the main current methods to
provide acceptable solutions even for the rather simple examples
considered in this work.
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I. INTRODUCTION

This paper is about Compromise Ranking Problem (CRP)

also called the ranking aggregation problem, or the ranking

fusion problem in the literature. This is a well-known im-

portant problem of the social choice theory (i.e. the science

of elections) [1], [2], which studies how a society should

choose among a set of various alternatives1 (or options) based

on the preferences of its individual members. Borda [3] and

Condorcet [4] in the late eighteenth century proposed method-

ologies to make the social choice which are unfortunately

not exempt of shortcomings. The first most influential work

has been achieved in the mid of 20th century by Arrow2

in his milestone book [5] on Social Choice and Individual

Values where he defines a Social Welfare Function (SWF) as

any rule for determining the society’s preferences over the

(social) alternatives from the knowledge of the preferences

of the individual members of the society. The fascinating

Arrow’s result is his famous Impossibility Theorem (IT) which

establishes that if a society has at least two members and three

options to choose from, then no SWF can jointly meet the

following four reasonable expected desiderata (i.e. Arrow’s

axioms):

1The alternatives terminology is a generic here. They refer to candidates
in an election, physical objects of a list, or set of hypotheses, etc., depending
on the problem under concern.

21972 Nobel Memorial Prize in Economic Sciences.

1) D1: (Unrestricted Domain) The SWF must be able

to accept as inputs all possible preference orderings

expressed by the members of the society.

2) D2: (Unanimity3) If all members prefer option A to

option B, then the SWF must rank A over B4.

3) D3: (Non-Dictatorship) The SWF cannot have as its

output the preference orderings of a member, for all

possible preference orderings of that member, i.e. a

member must not dictate his own preference ordering.

4) D4: (Independence of irrelevant alternatives5) Including

a new alternative in the existing set of alternatives

must not impact the preference ordering of the existing

alternatives.

Arrow showed that if a SWF satisfies D1, D2 and D4

desiderata then it must be a dictatorship (i.e. we must have

as its output only the preference orderings of a single indi-

vidual who is the dictator). This important Arrow’s theorem

is frustrating for setting solid bases of democracies and for

social decision-making in general if we consider these four

desiderata as bases for a democracy. The desiderata D1, D2

and D3 are considered as very reasonable and necessary,

but the desideratum D4 is controversial and not unanimously

considered as a necessary criterion. The violation of an

Arrow’s desideratum diminishes the desirability of the SWF

function and many researchers working in social choice theory

consider that D4 is the most acceptable desideratum to violate

because D4 might appear an unrealistically constraining, since

it prohibits information about the intensity (or weights) of

individuals’ preferences for the available choice6. If we take

into account preference intensity information in a SWF, and

we can make meaningful comparisons of such information,

then we can avoid Arrow’s impossibility theorem [6]. However

there are serious difficulties with trying to take account of such

intensities when conducting elections7. In this work, the CRP

3Also named the Pareto property.
4denoted as A ≻ B to mean that A is preferred to B.
5Also known as Rank Reversal paradox.
6For instance in a two-member society, if individual 1 prefers A to B and

individual 2 prefers B to A in each of two preference orderings, then D4
requires that the social preferences between A and B be the same for both
preference orderings (denoted by A ≡ B) despite the possibility that in one
preference ordering, individual 1 may have a strong preference for A over B
and individual 2 may have only a slight preference for B over A.

7as mentioned in Masking’s Preface of the 2012 3rd edition of [5].



statement focuses on purely rank-order information without

any finer grained notion of weighted preferences because the

information about the intensity (or weights) of individuals’

preferences for the choice is rarely available, or very difficult

to obtain precisely. In contrast to Arrow’s axiomatic approach

of the social choice theory (including weakenings of its

axioms to avoid the impossibility theorem), we propose a non-

axiomatic approach for making the social choice in order to get

fusion of rankings. Our proposed method is mainly based on

Kemeny’s and Frobenius distances between preference order-

ings, and we express the CRP as a least squares optimization

problem in a discrete search space [7]. This approach should

be able (at least in theory) to deal with any type of Total

Preference Orderings (TPOs) including those having ties, and

we tolerate that the optimal social choice solution can also

include ties. We do not discuss in this paper the tie-breaking

strategies8 in case of tied-top ranked alternatives which is out

of the scope of this paper. In this work we address CRP when

dealing with TPOs with possibility of ties, which means that

all alternatives in competition enter in the expression of the

Preference Orderings (PO) of each member of the society9.

In this paper we clearly show that the optimal LS solution

of the CRP when dealing with TPOs is far from satisfactory,

and that more research efforts have to be carried out. This

negative result is not vain because it clearly demonstrates

that classical methods for rank aggregation can easily fail to

provide reasonable and acceptable solutions, as well as the

Kemeny’s Optimal Approach (KOA) and Frobenius’ Optimal

Approach (FOA) in their current stage of development.

This paper is organized as follows. In section II we briefly

introduce some notations and present the CRP that we address

in this paper. Section III defines the discrete space of the

solutions of CRP, its dimension with some examples. Section

IV briefly presents classical methods to generate (non-optimal)

solution of CRP. Section V formalizes the CRP as a general

discrete optimization problem based on metrics, with exam-

ples. We show the impossibility of KOA and FOA to provide

the expected solutions for all simple examples we consider in

this paper. Section VI concludes the paper with perspectives

and challenging open questions for future research directions.

II. THE COMPROMISE RANKING PROBLEM (CRP)

The CRP (i.e. the ranking aggregation problem) concerns

the combination of several rankings (or preference orderings10)

in order to obtain a final ranking that satisfies specific criteria.

Let’s consider a set X = {x1, x2, . . . , xn} of n distinct alter-

natives (also named competitors, or options in the literature).

Let’s suppose that we have S distinct sources of information

8using instant runoff value, minimax and the Borda count for instance.
9When some alternatives are missing in a Preference Ordering we say that

we have a Partial Preference Ordering (PPO). For instance if we have three
possible alternatives A, B and C, then A ≻ B ≻ C and (A ≡ B) ≻ C are
two possible TPOs, whereas A ≻ B and (A ≡ B) are only PPOs.

10We use indifferently the terminology ranking and preference orderings

because they are one-to-one. For instance, given an (ordered) set of alter-
natives {A,B, C} the ranking vector r = [r(A), r(B), r(C)] = [3, 1, 2] is
equivalent to the preference ordering B ≻ C ≻ A, and vice-versa.

(i.e. evidences) E1, E2, . . . , and ES (i.e. the members of a

“Society”) that provide their total preference orderings Pref1,

Pref2, . . . , PrefS about these alternatives with eventually ties.

The CRP we address in this paper is on how to obtain

the optimal (in some sense) global aggregated TPO Pref⋆

result that would summarize the whole set of preferences for

making a final decision. In other words how to build a prefer-

ence fusion/aggregation rule or method denoted symbolically

F (Pref1, . . . , PrefS) such that Pref⋆ = F (Pref1, . . . , PrefS) in

order to make the final decision about the best alternative (or

best tied alternatives if any) located at the first rank to select?

For instance, consider the following examples:

• Example 1: Three alternatives A, B, and C, and two

members with the following TPOs

Pref1 : A ≻ C ≻ B, Pref2 : B ≻ C ≻ A.

This example is inspired from the well-known Zadeh’s

example [8] used to question the validity of Dempster’s

rule of combination in Dempster-Shafer Theory [9].

• Example 2: Three alternatives A, B, and C, and three

members with the following TPOs

Pref1 : A ≻ B ≻ C, Pref2 : B ≻ C ≻ A,

Pref3 : C ≻ A ≻ B.

This is the famous Condorcet’s paradox example [4], [5],

where no strict social ordering and clear rational decision

can be drawn to obtain a top winner at the first rank.

• Example 3: Three alternatives A, B, and C, and four

members with the following TPOs

Pref1 : A ≻ B ≻ C, Pref2 : A ≻ B ≻ C,

Pref3 : A ≻ B ≻ C, Pref4 : C ≻ A ≻ B.

• Example 4: Four alternatives A, B, C, and D, and three

members with the following TPOs

Pref1 : A ≻ B ≻ C ≻ D, Pref2 : D ≻ (B ≡ A) ≻ C,

Pref3 : B ≻ C ≻ A ≻ D.

What should be the expected social choice (compromise

ranking) Pref⋆ for these rather simple examples?

The expected (rational) solution for example 1 is

Pref⋆ : (A ≡ B) ≻ C because from Pref1 : A ≻ C ≻ B the

alternative A is the winner (the one at the top 1st rank),

and from Pref2 : B ≻ C ≻ A the alternative B is the winner.

Hence, this means that we must consider A and B as ex-aequo

winners, represented by the tie (A ≡ B). In this example there

is no way to break the ambiguous symmetries based on the

only information we have for breaking the tie. It is not rational

to conclude that C ≻ (A ≡ B) is valid11 because both experts

agree that C must not be the winner. So C must be eliminated

11This is what discussed Zadeh in his famous example [8] against the
validity of Dempster’s rule which will consider C ≻ (A ≡ B) valid. Another
very serious and more general counter-example against Dempster’s rule can
be found in [10], [11].



and what logically remains is the ex-aequo winners A and B
in such situation.

The expected natural (rational) solution for example 2 needs

more attention because in this Condorcet’s paradox example

no single alternative can be the winner w.r.t the others, neither

two tied alternatives can be the definitive winner because

of the circularity of alternatives in the three TPOs. In this

Condorcet’s example the only reasonable (or rational) solution

is to take Pref⋆ : (A ≡ B ≡ C) which characterizes the full

uncertain situation for decision-making. Actually the three

alternatives are tied altogether at the 1st rank because there

is not enough evidence in TPOs to break this tie, unless some

ad-hoc (and always disputable) heuristic method is used. The

expected natural (rational) solution for example 3 should be

Pref⋆ : A ≻ B ≻ C because A is the top winner at rank 1,

then after eliminating A of Pref1, Pref2, Pref3 and Pref4 and

examining them makes B as the top winner for rank 2, and

put C at rank 3. The expected natural (rational) solution for

example 4 is less obvious/immediate and we expect to get

(A ≡ B ≡ D) ≻ C. The solution of these examples based

on KOA and FOA will be discussed in Sections V. At

this stage we already anticipate the difficulty of finding the

best compromise ranking solution in more general (bigger)

problems involving many alternatives and many members of

the society under concern.

III. THE SEARCH SPACE OF THE SOCIAL CHOICE SOLUTION

Consider n >1 distinct alternatives (i.e. elements in compe-

tition, candidates in an election, objects, etc). We denote by

P(n) the set of all possible Total Preference Orderings (TPOs)

that corresponds to the number of ways n objects can rank in a

competition, allowing for the possibility of ties. The dimension

of the search space12 P(n) for a given number of alternatives

n > 1 where CR solution must belong grows much faster than

2n as it will be shown in the next tables and by the formula

of |P(n)| in (2).

To evaluate the cardinality of P(n), let us make a quick

analysis on how many preferences orderings (allowing for the

possibility of ties) we have for two, three and four alternatives

respectively. For two alternatives A and B the set P(2) has

obviously only three TPOs as listed in Table I. For three

alternatives A, B and C the set P(3) includes 13 TPOs as

listed in Table II.

Table I: Set P(2) for 2

alternatives.

A ≻ B
B ≻ A
(A ≡ B)

Table II: Set P(3) for 3

alternatives.

A ≻ B ≻ C A ≻ (B ≡ C)
A ≻ C ≻ B B ≻ (A ≡ C)
B ≻ A ≻ C C ≻ (A ≡ B)
B ≻ C ≻ A (A ≡ B) ≻ C)
C ≻ A ≻ B (A ≡ C) ≻ B)
C ≻ B ≻ A (B ≡ C) ≻ A)

(A ≡ B ≡ C)

For four alternatives A, B, C and D the set P(4) is more

difficult to establish manually because it includes 75 TPOs.

12It corresponds to the set of all the ordered partitions of a set, which is
also named the ordered set partitions.

This set P(4) can decomposed into a subset of 24 strict TPOs

(see Table III), a subset of 8 tied TPOs with three tied objects

among four (see Table IV), a subset of 6 tied TPOs with four

objects tied two-by-two (see Table V), a subset of 36 tied

TPOs with two tied objects among four (see Table VI), and

a subset of only one TPO with the tie of all four elements

(i.e. (A ≡ B ≡ C ≡ D)). Hence the cardinality of P(4) is

|P(4)| = 24 + 8 + 6 + 36 + 1 = 75.

Table III: 24 Strict (non-tied) TPOs for 4 alternatives.

A ≻ B ≻ C ≻ D B ≻ A ≻ C ≻ D
A ≻ B ≻ D ≻ C B ≻ A ≻ D ≻ C
A ≻ C ≻ D ≻ B B ≻ C ≻ D ≻ A
A ≻ C ≻ B ≻ D B ≻ C ≻ A ≻ D
A ≻ D ≻ B ≻ C B ≻ D ≻ A ≻ C
A ≻ D ≻ C ≻ B B ≻ D ≻ C ≻ A
C ≻ A ≻ B ≻ D D ≻ A ≻ B ≻ C
C ≻ A ≻ D ≻ B D ≻ A ≻ C ≻ B
C ≻ B ≻ D ≻ A D ≻ B ≻ C ≻ A
C ≻ B ≻ A ≻ D D ≻ B ≻ A ≻ C
C ≻ D ≻ A ≻ B D ≻ C ≻ A ≻ B
C ≻ D ≻ B ≻ A D ≻ C ≻ B ≻ A

Table IV: 8 Tied Total Preference Orderings (TTPOs) with

three tied alternatives among four.

A ≻ (B ≡ C ≡ D) (B ≡ C ≡ D) ≻ A
B ≻ (A ≡ C ≡ D) (A ≡ C ≡ D) ≻ B
C ≻ (A ≡ B ≡ D) (A ≡ B ≡ D) ≻ C
D ≻ (A ≡ B ≡ C) (A ≡ B ≡ C) ≻ D

Table V: 6 Tied Total Preference Orderings (TTPOs) with four

alternatives tied two-by-two.

(A ≡ B) ≻ (C ≡ D) (C ≡ D) ≻ (A ≡ B)
(A ≡ C) ≻ (B ≡ D) (B ≡ D) ≻ (A ≡ C)
(A ≡ D) ≻ (B ≡ C) (B ≡ C) ≻ (A ≡ D)

Table VI: 36 Tied Total Preference Orderings (TTPOs) with

two tied alternatives among four.

(A ≡ B) ≻ C ≻ D C ≻ (A ≡ B) ≻ D) C ≻ D ≻ (A ≡ B)
(A ≡ B) ≻ D ≻ C D ≻ (A ≡ B) ≻ C) D ≻ C ≻ (A ≡ B)
(A ≡ C) ≻ B ≻ D B ≻ (A ≡ C) ≻ D) B ≻ D ≻ (A ≡ C)
(A ≡ C) ≻ D ≻ B D ≻ (A ≡ C) ≻ B) D ≻ B ≻ (A ≡ C)
(A ≡ D) ≻ B ≻ C B ≻ (A ≡ D) ≻ C) B ≻ C ≻ (A ≡ D)
(A ≡ D) ≻ C ≻ B C ≻ (A ≡ D) ≻ B) C ≻ B ≻ (A ≡ D)
(B ≡ C) ≻ A ≻ D A ≻ (B ≡ C) ≻ D) A ≻ D ≻ (B ≡ C)
(B ≡ C) ≻ D ≻ A D ≻ (B ≡ C) ≻ A) D ≻ A ≻ (B ≡ C)
(B ≡ D) ≻ A ≻ C A ≻ (B ≡ D) ≻ C) A ≻ C ≻ (B ≡ D)
(B ≡ D) ≻ C ≻ A C ≻ (B ≡ D) ≻ A) C ≻ A ≻ (B ≡ D)
(C ≡ D) ≻ A ≻ B A ≻ (C ≡ D) ≻ B) A ≻ B ≻ (C ≡ D)
(C ≡ D) ≻ B ≻ A B ≻ (C ≡ D) ≻ A) B ≻ A ≻ (C ≡ D)

Actually the number |P(n)| of preferential arrangements

of n labeled elements (i.e. alternatives) is the number of

distinct weak orders (represented either as strict weak orders

or as total preorders) on an n-element set. |P(n)| follows the

ordered Bell numbers13 sequence 3, 13, 75, 541, 4683, 47293,

13also named Fubini’s numbers in the literature [12].



545835, . . . (see [13], [14], and the sequence 1191 in [15]

which corresponds to the sequence A000670 in the On-line

Encyclopedia of Integer Sequences (OEIS) [16] with a recent

discussion on OEIS in [17]). Because of the high dimension

of the search space P(n) for n > 4 we will present some

examples only for n ≤ 4 in this paper. In 1962 Gross14 derived

in [18] (p. 7) the following recurrent formula of |P(n)|

|P(n)| = 1 +

n−1
∑

k=1

(

n

k

)

|P(n− k)| (1)

where
(

n

k

)

= n!
(n−k)!k! is the number of k-combinations of

an n-set (i.e. a binomial coefficient15), and |P(0)| = 1. As

explained by Pippenger in [19] (p. 338), for n ≥ 1, we

can construct a preferential arrangement on n alternatives by

first choosing the number k of alternatives tied in the top

equivalence class (with k in the range 1 ≤ k ≤ n), then

choosing in one of n ways k alternatives in this class, and

finally choosing in one of |P(n − k)| ways a preferential

arrangement of the remaining n− k candidates. Another nice

explicit and direct formula derived by Mendelson [20] based

on inclusion-exclusion principle is

|P(n)| =
n
∑

k=1

k
∑

i=1

(−1)k−i

(

k

i

)

in (2)

Interesting additional discussions on the derivation of

|P(n)| from generating function (2 − ex)−1 can be found

in [21]. Some algorithms for generating the set P(n) of

preferential arrangements are presented in [22], and all ordered

partitions can be generated in MatlabTM from the list of

non ordered partitions obtained with Luong’s code [23] for

instance. For Python users, codes for generating set partitions

are provided on GitHub in the Sage Mathematical Software

Systems [24].

IV. CLASSICAL METHODS

Because preference ordering and ranking are one-to-one,

the problem of preferences aggregation is equivalent to the

problem of rankings aggregation and many methods have

been devoted to this problem specially in the social choice

theory, multi-criteria decision-making support, meta-search

engines, etc. We use indifferently the preference formalism or

the ranking formalism depending on the method we present.

We briefly recall here the three main classical methods16

encountered in many applications.

A. Borda’s counting method

Consider n alternatives {x1, . . . , xn} to rank from a set

of S rankings or preferences Prefi (i = 1, . . . , S). Then, for

each Prefi an alternative receives n points (denoted pt(.)) if it

appears at the 1st rank, n−1 points if it appears at the 2nd rank,

and so on. The points are then summed and the alternative

with the most points wins. Borda’s method [3] does not satisfy

14Preference orderings are called preferential arrangements by Gross.
15implemented in nchoosek function in MatlabTM , for instance.
16Detailed presentations of voting methods are given in [2] and [27].

Arrow’s desideratum D4, and it does not always provide the

expected/result when applied. For instance, in our example

1 we get pt1(A) = 3, pt1(C) = 2 and pt1(B) = 1 from

Pref1 : A ≻ C ≻ B, and we get pt2(B) = 3, pt2(C) = 2
and pt2(A) = 1 from Pref2 : B ≻ C ≻ A. Hence the

Borda’s score for each alternative is pt1(A) + pt2(A) = 4,

pt1(B) + pt2(B) = 4 and pt1(C) + pt2(C) = 4, which

means that alternatives A, B and C are ex-aequo according to

Borda. Hence Borda’s solution would be the 3-alternatives tie

(A ≡ B ≡ C), which is clearly counter-intuitive. Borda’s

method is equivalent to add the rank values of a given

alternative in all the preference orderings to get a score, and

order the scores in ascending order (the smallest value being

the most preferred alternative).

B. Copeland’s method

This method17 [26] is a ranked-voting method based on

scoring pairwise wins and losses. It belongs to the class of

Condorcet methods18 [28] which are based on the pairwise

comparisons of alternatives (i.e. 1-to-1 match-ups) in each

preference ordering. Copeland’s method may give rise to tied

results. Each voter (the source of evidence) must give an

ordered preference list on candidates where ties are allowed.

A result n×n matrix M = [mij ] is constructed with mij = 1
if more voters strictly prefers alternative xi to xj , mij = 0 if

more voters strictly prefers alternative xj to xi, and mij = 0.5
otherwise. By convention mii equals 0. The score for candi-

date xi is the sum over j of the mij . If a candidate gets a

score of n− 1 then this candidate is the (necessarily unique)

winner. Otherwise the method produces no clear decision and

the candidates with greatest score value are the Copeland tied

winners. This method satisfies Condorcet’s criterion, i.e. if a

candidate would win against each of their rivals in a one-

on-one vote, this candidate is the winner, but it does not

mean that the result is always rational (i.e. it makes sense)

in other situations as shown for our example 1. Because for

our example 1 we obtain the M matrix and score vector s as

follows

M =





0 0.5 0.5
0.5 0 0.5
0.5 0.5 0



 , and s =





s(A)
s(B)
s(C)



 =





1
1
1



 . (3)

Based on s, we see that all score values are equal which

means that alternatives A, B and C are ex-aequo according

to Copeland’s method. Hence this solution would be the 3-

alternatives tie (A ≡ B ≡ C), which is also clearly counter-

intuitive because we expect to get (A ≡ B) > C.

C. Spearman’s footrule method

Spearman’s [34] L1 distance (named also F-distance

or footrule in [35]) is the sum of the absolute differ-

ences between the rank values of the rankings. Suppose

17actually devised by Llull in 1299, and called also Ranked-Robin method.
A voter who leaves some candidates’ rankings blank is assumed to be
indifferent between them but to prefer all ranked candidates to them.

18where any alternative (or candidate) who wins every one-on-one election
must have the most victories overall. Borda’s method does not always satisfy
this Condorcet’s principle [29].



we have two ranking vectors r1 = [r1(i), i = 1, . . . , n] and

r2 = [r2(i), i = 1, . . . , n] of n alternatives, then Spearman’s

footrule is defined by

F (r1, r2) =

n
∑

i=1

|r1(i)− r2(i)|. (4)

This distance can be normalized by dividing it by n2/2. Rank

aggregation based on Spearman’s footrule has been developed

by Fagin et al. [32], [33] who present heuristic methods to

estimate the optimal aggregated ranking in the footrule sense.

The main problem with this distance is that it is not invariant

under the labeling of the alternatives (or candidates). This

means that we get different results depending of how the set

of alternatives is defined, see counter-example in [38]. This is

we think a serious drawback because the result is not robust

to permutations of candidate labels/indexes. That is why we

do not recommend and use it.

V. ON OPTIMAL SOLUTION OF CRP

In this section we present the optimal theoretical approaches

for solving CRP and we will show that they actually fail to

provide acceptable (i.e. commonsense, natural or expected) so-

lution in very simple interesting examples. This surprising and

disappointing result at the current stage of our investigations

clearly reveals the difficulty of solving CRP to get trustable

solution for general and more complicated problems involving

many TPOs.

The basic idea to get an optimal solution of CRP is simple.

Suppose we have a good (i.e. adequate and powerful) metric

d(Pref1, Pref2) able to measure the distance between two

preferences orderings Pref1 and Pref2, then among the finite

set of all possible (total) preference orderings P(n) the optimal

choice in the Least Squares (LS) sense is to select the best

preference ordering Pref⋆ ∈ P(n) that minimizes the mean

distance between the optimal solution Pref⋆ and the set of

preference orderings {Pref1, . . . , PrefS} we have, that is

Pref⋆ = arg min
Pref∈P(n)

√

√

√

√

S
∑

s=1

d2(Pref, Prefs). (5)

If one wants to take into account the weights of importance

of each sources (i.e. voter) the problem to solve will become

to determinate the social choice Pref⋆ ∈ P(n) such that

Pref⋆ = arg min
Pref∈P(n)

√

√

√

√

S
∑

s=1

usd2(Pref, Prefs), (6)

where us is the given weight of importance of the source of

information Es providing the preference ordering Prefs.

This problem is a priori difficult to solve because we need

to use a good metric d(·, ·) to measure the distance between

two preference orderings, and because of the high dimension

of the discrete search space P(n) where the optimal solution

satisfying (5) (or (6)) must belong.

A. Using classical Kemeny and Frobenius distances

An appealing candidate for d(Pref1, Pref2) is the well-

known Kemeny’s distance [37] which is a metric satisfying

few very reasonable axioms (including the invariance under

labeling desideratum - see condition 2 of [36], p. 587).

Kemeny’s distance between Pref1 and Pref2 is based on the

construction of two n× n pairwise Preference-Score Matrices

(PSM) M1 = [M1(i, j)] and M2 = [M2(i, j)], and the L1

distance as follows19

dK(Pref1, Pref2) =
1

2

n
∑

i=1

n
∑

i=1

|M1(i, j)−M2(i, j)|, (7)

where Ms(i, j) for s = 1, 2 and i, j = 1, . . . , n is defined

from pairwise comparisons by20

Ms(i, j) =











1, if xi ≻ xj in Prefs,

−1, if xi ≺ xj in Prefs,

0, if xi = xj in Prefs.

(8)

By convention, the row index i of Ms corresponds to the

index of elements xi on the left side of preference order xi ≻
xj in Prefs, and the column index j of Ms corresponds to the

index of the element xj on the right side of preference order

xi ≻ xj in Prefs. Kemeny’s distance has been widely used

in many applications because of its appealing properties (true

metric and invariance under labeling), and mainly because it

has been widely claimed to be the unique metric satisfying

Kemeny’s axioms.

Very recently we have proved in [38] that the unicity of

Kemeny’s distance is violated and there is another metric that

also satisfies Kemeny’s axioms which is also invariant under

labeling. More specifically, we can use the Frobenius metric

defined by the L2-norm of the matrix

||M ||F =

√

√

√

√

n
∑

i=1

n
∑

j=1

|M(i, j)|2 =
√

Tr(MTM), (9)

where M
T is the transpose of the matrix M , and Tr(.) is

the trace operator for matrix. Based on this norm, the distance

between Pref1 and Pref2 induced by the two PSM matrices

M1 and M2 is simply defined by21

dF (M1,M2) = ||M1 −M2||F . (10)

The natural question is to know (and verify) if the use of dK
or dF as defined in (7) and (10) are good candidates to provide

optimal solution(s) that fit with what we naturally expect. To

answer to this important question, let us examine the results

obtained for examples 1, 2 and 3 of the section II.

With the example 1, we have to explore only the 13

possibilities of preference orderings Pref listed in Table II, and

19We use the subscript K in our notation to refer to Kemeny.
20Instead of using 1, -1, 0 values we can also use 1, 0 and 0.5 val-

ues. This will not change the normalized distance d̃K(Pref1, Pref2) =
dK(Pref1, Pref2)/dmax

K
, where dmax

K
is the maximum distance between two

preferences orderings of P(n).
21We use the subscript F in our notation to refer to Frobenius.



we calculate dK(Pref, Prefs) and dF (Pref, Prefs) for s = 1, 2.

This is not a big search space to explore. The KOA solution(s)

and for FOA solution(s) are respectively

Pref⋆K = arg min
Pref∈P(n)

√

√

√

√

2
∑

s=1

d2K(Pref, Prefs), (11)

Pref⋆F = arg min
Pref∈P(n)

√

√

√

√

2
∑

s=1

d2F (Pref, Prefs). (12)

Using Kemeny’s distance defined in (7) with a simple

MatlabTM implementation of this search we get three KOA

solutions as follows: Pref
⋆,1
K : C ≻ (A ≡ B), Pref

⋆,2
K :

(A ≡ B) ≻ C, and Pref
⋆,3
K : (A ≡ B ≡ C). Using

Frobenius distance defined in (10) we get only one FOA

solution Pref⋆F : (A ≡ B ≡ C). Clearly, we see that the KOA

and FOA solutions are not acceptable because with Kemeny’s

distance we get multiple solutions and we cannot infer a priori

which one is correct, and with Frobenius distance the FOA

solution does not fit with the expected solution (A ≡ B) ≻ C.

With the (Condorcet’s) example 2, the KOA and FOA so-

lutions are Pref⋆K : (A ≡ B ≡ C), and Pref⋆F : (A ≡ B ≡ C).
These solutions are in agreement with the natural expected

social ordering (A ≡ B ≡ C).

With the (majority) example 3, the KOA and FOA solutions

are Pref⋆K : A ≻ (B ≡ C), and Pref
⋆,1
F : A ≻ B ≻ C and

Pref
⋆,2
F : A ≻ (B ≡ C). These solutions are in disagreement

with the natural expected social ordering A ≻ B ≻ C.

In summary, these simple counterexamples (i.e. example 1

and example 3) suffice to show that the optimal KOA (resp.

FOA) solutions based on basic Kemeny’s (resp. Frobenius)

distance using PSM defined in (8) go against expected so-

lutions in some situations. In fact there is no guarantee that

ranking aggregation based on these distances and LS approach

will give an acceptable solution in general even if it is optimal

in the LS sense. Therefore, a better optimal approach must be

sought to obtain more acceptable aggregated ranking solution.

B. Testing the weighted Kemeny and Frobenius distances

After analyzing the unexpected optimal solutions provided

by the classical Kemeny and Frobenius distances we suspected

that the problem comes from the definition of PSM which

does not take properly into account the rank of alternatives

when making pairwise comparison as done in (8). We thought

that this missing important information was the origin of the

problem that generates unexpected KOA and FOA solutions.

To try to circumvent this drawback, we first attempted to

use the importance weighting vector reflecting the intensity

of the rank of each alternative in the preference ordering

as proposed in [39]. For this, we have tested the weighting

vector w(2) , [1/2, 1/4, 1/8, . . . , 1/2n] which means that the

alternative at rank 1 has a weight equal to 1/2, the alternative at

rank 2 has a weight equal to 1/4, and so on. Then we apply the

weighted Kemeny’s distance dK,w and the weighted Frobenius

distance dF,w defined in [38] for the search of optimal KOA

and FOA solutions. This attempt unfortunately does not work

for examples 1 and 2. The same conclusion is drawn when us-

ing the w
(1) vector defined by w

(1) , [1, 1/2, 1/3, . . . , 1/n].
Therefore the optimal solutions obtained by the weighted

Kemeny and weighted Frobenius distances do not always agree

with the natural expected solutions. So, we have explored a

bit further the question as follows.

C. Proposal for a new definition of PSM

Actually the weighting method proposed in [39] uses the

matrix product W ·M in the weighted Kemeny and weighted

Frobenius distances, and this product of matrices does not

generate an anti-symmetrical matrix in general (the matrix W

being equal to diag(w)).
For instance, if the (ordered) set of objects is {A,B,C} and

if Prefs : B ≻ C ≻ A then rs = [3, 1, 2] and by taking ws ,

[1/3, 1, 1/2] we will obtain a non-anti-symmetrical matrix

W ·M =





1
3 0 0
0 1 0
0 0 1

2



 ·





0 −1 −1
1 0 1
1 −1 0



 =





0 − 1
3 − 1

3
1 0 1
1
2 − 1

2 0





In order to deal with weighted PSM satisfying the anti-

symmetrical property we propose to change the definition of

PSMs given in (8) for taking into account the rank of alterna-

tives. More precisely, we propose the following definition

Ms(i, j) , wi(rs)− wj(rs) (13)

where rs is the ranking vector associated to the preference

ordering Prefs, and wi(rs) = 1/rs(i) and wj(rs) = 1/rs(j)
are the weights of the i-th and j-th alternatives.

Considering again the (ordered) set of objects is {A,B,C}
with Prefs : B ≻ C ≻ A. We have rs = [3, 1, 2]. Hence,

w1 = 1/3, w2 = 1/1 and w3 = 1/2 and the new PSM matrix

based on definition (13) will be

Ms =





0 1
3 − 1 1

3 − 1
2

1− 1
3 0 1− 1

2
1
2 − 1

3
1
2 − 1 0



 =





0 − 2
3 − 1

6
2
3 0 1

2
1
6 − 1

2 0





which is as we can easily verify an anti-symmetrical matrix.

If we prefer using w
(2) , [1/2, 1/4, 1/8, . . . , 1/2n] weight-

ing vector [39], then we will have w1 = 1/8, w2 = 1/2 and

w3 = 1/4 and the new PSM matrix based on definition (13)

will be

Ms =





0 1
8 − 1

2
1
8 − 1

4
1
2 − 1

8 0 1
2 − 1

4
1
4 − 1

8
1
4 − 1

2 0



 =





0 − 3
8 − 1

8
3
8 0 1

4
1
8 − 1

4 0





which is also an anti-symmetrical matrix.

Based on the new weighted PSM definition (13) and the di-

rect use of ws = 1/rs (even when ties occur in the preference

ordering) gives correct/expected solution for examples 1 and

2 with the FOA. The KOA does not give the correct/expected

solution for example 1 but it gives the correct solution for

example 2. Unfortunately the KOA and FOA do not give the

correct solution for example 3. Because of these disappointing



results we have also explored two methods for determining

weights when ties occur in a preference ordering Prefs as

follows:

• Balanced-method: in this method the ranks of tied alter-

natives in rs are just averaged to get a balanced ranking

vector r
′
s within interval [1, n] (n being the number of

alternatives, and then we take w
′
s = 1/r′

s as vector of

weights. For instance, consider six (n = 6) alternatives

A, B, C, D, E and F with Prefs : (A ≡ B ≡
C) ≻ F ≻ (D ≡ E). Then this tied ranking vector

rs = [1, 1, 1, 3, 3, 2] is balanced/adjusted with respect to

the scale [1, 6] as follows

r
′
s = [

1 + 2 + 3

3
,
1 + 2 + 3

3
,
1 + 2 + 3

3
,
5 + 6

2
,
5 + 6

2
, 4]

= [2, 2, 2, 5.5, 5.5, 4]

Hence the modified weighting vector will be

w
′
s = 1/r′

s ≈ [0.5, 0.5, 0.5, 0.18, 0.18, 0.25].

• Readjusting-method: in this method we divide the rank

value of tied alternative by their multiplicity and we

readjust their rank. For instance, consider six (n = 6)

alternatives A, B, C, D, E and F with Prefs : (A ≡ B ≡
C) ≻ F ≻ (D ≡ E). The weights of tied alternatives A,

B and C at rank 1 are set to 1/3, the following ranked

4th alternatives at rank 2 is F so we set its weight to 1/4,

and the following ranked tied alternatives at rank 3 are D
and E so we set their weights to 1/5. With this method

and for this example we will use the modified weighting

vector

w
′
s = [

1

3
,
1

3
,
1

3
,
1

5
,
1

5
,
1

4
].

D. Optimal solution based on the new PSM definition

Based on the balanced-method of setting the weights and

the new PSM definition (13), we get:

• For example 1 (Zadeh’s alike), we obtain

Pref
⋆,1
K : (A ≡ B) ≻ C), and Pref

⋆,2
K : (A ≡ B ≡ C),

Pref⋆F : (A ≡ B ≡ C),

whereas the expected solution is (A ≡ B) ≻ C). In

this example, KOA solution is multiple and FOA solution

does not fit with the natural expected solution.

• For example 2 (Condorcet), we obtain

Pref⋆K : (A ≡ B ≡ C),

Pref⋆F : (A ≡ B ≡ C).

The expected solution is (A ≡ B ≡ C). In this example

KOA and FOA provide the correct expected solution.

• For example 3 (Majority), we obtain

Pref⋆K : A ≻ (B ≡ C),

Pref⋆F : A ≻ B ≻ C.

The expected solution is A ≻ B ≻ C, and we see that

only FOA gives the correct expected solution.

• For example 4, we obtain

Pref⋆K : (A ≡ B ≡ C ≡ D),

Pref⋆F : (A ≡ B ≡ D) ≻ C)

whereas the expected solution is (A ≡ B ≡ D) ≻ C. In

this example only FOA provides a solution in agreement

with the expected solution.

Based on the balanced-method for the weights, we see that

KOA and FOA are not able to provide a correct solution for

all the four simple examples analyzed in this paper.

Based on the readjusting-method of setting the weights and

the new PSM defintion (13), we get:

• For example 1 (Zadeh’s alike), we obtain

Pref
⋆,1
K : (A ≡ B) ≻ C, and Pref

⋆,2
K : (A ≡ B ≡ C),

Pref⋆F : (A ≡ B) ≻ C,

whereas the expected solution is (A ≡ B) ≻ C). In this

example KOA solution is multiple, and FOA solution fits

with the natural expected solution.

• For example 2 (Condorcet), we obtain

Pref⋆K : (A ≡ B ≡ C),

Pref⋆F : (A ≡ B ≡ C).

The expected solution is (A ≡ B ≡ C). In this example

KOA and FOA provide the correct expected solution.

• For example 3 (Majority), we obtain

Pref⋆K : A ≻ C ≻ B,

Pref⋆F : (A ≡ C) ≻ B.

The expected solution is A ≻ B ≻ C, and we see that

KOA and FOA do not provide solutions in agreement

with the expected solution.

• For example 4

Pref⋆K : (A ≡ B) ≻ C ≻ D,

Pref⋆F : (A ≡ B) ≻ D ≻ C,

whereas the unique expected solution is (A ≡ B ≡
D) ≻ C. In this example KOA and FOA do not provide

solutions in agreement with the expected solution.

Based on the readjusting-method for the weights, we see

that KOA and FOA are also not able to provide a correct

solution for all the four simple examples analyzed in this paper.

The results of these two analyses are disappointing because

we see that even for these quite simple examples the KOA

and FOA fail to provide expected results. Our work clearly

shows that the solution of CRP is much more difficult to solve

than anticipated based on KOA and FOA using least squares

criterion.



VI. CONCLUSIONS, PERSPECTIVES AND CHALLENGES

In this work we have shown why classical methods (Borda’s

count, Copeland’s method and Spearman’s footrule) are not

satisfactory to make the ranking aggregation. Based on this

matter of fact we have analyzed how a search method based

on metrics between preference orderings and minimization

of least squares criterion should be in theory possible. A

deep analysis in this direction using Kemeny’s and Frobenius

distances reveals that the optimal solutions we get do not

always fit with the expected solution for different interesting

examples. While this result is disappointing at the current stage

of this research work it is no vain because it casts in doubts the

pertinence or validity of some results of the literature based

on the Kemeny’s optimal approach. This work clearly points

out that the CRP optimal solution must be explored in deep

and cannot be used without the guarantee that the “optimal”

solution makes perfectly sense. This is an open challenging

question. Moreover, even if an optimal powerful approach is

found for solving the CRP the second important challenge

will be to apply it with big discrete search spaces whose

cardinalities follow ordered Bell numbers. We will have also to

be able to extend the method to the case of partial preference

orderings (PPO) based on a suitable distance between PPOs

which will be presented in a forthcoming publication. This

will involve to deal with much greater combinatorics. The

optimization problem addressed in this paper is of prime

importance because if it can be solved efficiently it could

offer a better foundation for the voting system in democracies,

as well as better techniques for decision-making based on

multiple criteria as well because the ranking formalism is the

simplest ways to provide information for making a decision. In

this case each criteria can be considered as a voter providing a

preference order among the different alternatives (interpreted

as candidates running in an election).
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[5] K.J. Arrow, Social Choice and Individual Values, (3rd Edition),
Yale University Press, 2012. (see also https://plato.stanford.edu/entries/
arrows-theorem/)

[6] A. Sen, Collective choice and social welfare, San Francisco: Holden-
Day, 1970.

[7] H. Bury, D. Wagner, Group judgement with ties. A position-based
approach, Operations Research and Decisions, Vol. 19(4), pp. 7–26,
2009.

[8] L.A. Zadeh, On the validity of Dempster’s rule of combination, Memo
M79/24, Univ. of California, Berkeley, USA, 1979.

[9] G. Shafer, A mathematical theory of evidence, Princeton Univ. Press,
1976.

[10] J. Dezert, P. Wang, A. Tchamova, On The Validity of Dempster-Shafer
Theory, in Proc. of Fusion 2012, Singapore, July 2012.

[11] A. Tchamova, J. Dezert, On the Behavior of Dempster’s Rule of

Combination and the Foundations of Dempster-Shafer Theory, Proc. of
IEEE IS’2012, Sofia, Bulgaria, Sept. 6–8, 2012.
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