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Abstract—Dempster-Shafer evidence theory (DST) is a theo-
retical framework for uncertainty modeling and reasoning, with
modeling the basic belief assignment (BBA) as one of its most
crucial and challenging tasks. The prevailing BBA determination
methods have their own pros and cons, and the joint use of them
is expected to provide a better BBA. To realize an end-to-end
BBA modeling without explicitly using various prevailing BBA
modeling methods, a learning-based BBA modeling approach
with multi-method fusion (LBMMF) is proposed in this paper.
Deep learning is used to train a deep network which learns the
mapping from the training samples to the comprehensive BBAs
obtained by jointly using the prevailing BBA modeling methods
as the generalized training labels. Given a test sample, the corre-
sponding BBA can be obtained in an end-to-end manner, which
is the output of the trained deep neural network. Experimental
results show that to use the BBA obtained by our method can
achieve better classification performance.

Index Terms—basic belief assignment (BBA), evidence theory,
deep learning, pattern classification.

I. INTRODUCTION

The theory of belief functions [1], also called Dempster-
Shafer evidence theory (DST), serves as an effective tool for
uncertainty modeling and reasoning. DST has been widely
used in many real-world problems including object recognition
[2], medical diagnosis [3] and intrusion detection [4]. In
DST, a crucial and challenging issue is the representation of
uncertainty, i.e., the determination of the mass function, also
known as the basic belief assignment (BBA). The BBA is
a kind of random set in nature and its determination is the
problem of modeling the distribution of random set [5], and
therefore, the modeling of BBA is difficult and challenging.

Up to now, the existing BBA determination methods can
be categorized into two types: the approaches that directly
determine BBA from data and the approaches that transform
other types of uncertainty representation into BBA.

Several representative approaches that directly determine
BBA from data are as follows. Shafer [1] determined BBA
based on statistical evidence. Selzer et al [6] proposed a
method for automatic target classification, taking the class
number and the target’s neighborhood into account. Valente
et al [7] proposed a method for determining BBA in the
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context of speech recognition via combining the outputs from
different neural networks. Han et al [8] proposed a BBA
determination method based on the uncertainty intervals of
multiple attributes. Qiu et al [9] designed a method for
generating BBA specifically for addressing fuzzy time series
forecasting problems. Masson et al [10] proposed an evidential
version of the fuzzy c-means algorithm to determine BBA.
Kang et al [11] used interval numbers to model each class in
the dataset for BBA determination. Based on Kang’s approach,
Zhang et al [12] used triangular fuzzy numbers and trapezoidal
fuzzy numbers to model each class in the dataset for BBA de-
termination, since they can preserve more information than the
interval number. Tang et al [13] proposed a BBA determination
method for the incomplete data and information.

There are also some approaches transform other types of
uncertainty representation like the fuzzy membership function
(FMF) into BBA. For example, Florea et al [14] determined
BBA from the FMF with focal elements nested in order
using α-cut approach. Han et al [15] proposed two BBA
determination methods from the FMF without predefining
focal elements via uncertainty optimization.

The aforementioned BBA determination approaches have
their own pros and cons. It should be better if their pros
could be promoted while their cons could be prohibited.
Obviously, an intuitive approach is to combine the BBAs
obtained by these methods; however, such a direct approach
lacks efficiency. In this paper, a learning-based BBA model-
ing approach is proposed to jointly use multiple prevailing
BBA determination methods more efficiently, which is called
Learning-based Basic belief assignment Modeling with Multi-
method Fusion (LBMMF). A deep network is trained to
learn the end-to-end modeling of the BBA, which can realize
the comprehensive use of their superiority while avoid the
explicit use of them at the usage stage. For the deep network
training, the inputs are training samples and the outputs are
the comprehensive BBAs as the generalized training labels,
which are the combination results of the BBAs generated
for the training samples by respectively using the prevailing
BBA determination methods. The trained deep network is
used to determine the BBAs of the test samples in an end-
to-end manner. Experimental results show that using LBMMF
can achieve better classification performance than using other



prevailing BBA determination approaches, which demonstrate
the effectiveness of our proposed LBMMF.

II. BASICS OF EVIDENCE THEORY

In DST, the frame of discernment (FOD) Θ con-
tains C mutually exclusive and exhaustive elements Θ =
{θ1, θ2, . . . , θC}. The power set of Θ (the set of all subsets of
Θ) is denoted by 2Θ. The basic belief assignment (BBA, also
called a mass function) m is defined from 2Θ to [0, 1] satisfies∑

A⊆Θ
m(A) = 1,m(∅) = 0 (1)

if m(A) > 0, A is called a focal element, and m(A) represents
the evidence support to A.

Given a BBA on the FOD Θ, the belief function Bel and
plausibility function Pl are defined as:

Bel(A) =
∑
B⊆A

m(B),∀A ⊆ Θ (2)

where Bel(A) and Pl(A) constitute the belief interval
[Bel(A), P l(A)], which represents the degree of imprecision
for the proposition A.

In the theory of belief functions, the evidence combination
is the fusion of the BBAs. Dempster’s rule of combination [1]
is used for combining two or more independent BBAs.

mDempster(A) =

{
0, A = ∅

1
1−K

∑
B∩C=A

m1(B)m2(C)A ̸= ∅
(3)

where m1 and m2 are two independent BBAs on the FOD Θ,
and K =

∑
B∩C=∅ m1(B)m2(C) represents the total conflict

or contradictory mass assignments.
Smets et al proposed the pignistic probability transformation

[16], i.e., BetP , to transform a BBA into a probability. The
transformation is usually used in the probabilistic decision-
making application based on BBA. BetP is defined as:

BetP (θi) ≜
∑

θi∈A

m(A)

|A|
,∀θi ∈ Θ (4)

where |A| denotes the cardinality of A. The element in
FOD which has the highest BetP value is chosen as the
classification result.

III. PREVAILING BBA DETERMINATION METHODS

In this section, several prevailing BBA determination meth-
ods are introduced.

For the BBA determination method using interval numbers
[11], each dimension of the focal element A ∈ Θ is modeled
as an interval number cI (A) = [cI1, cI2], which is shown in
Fig. 1. For a query sample q, it is modeled as an interval
number qI = [q, q]. If the interval number qI is near to the
interval number cI (A), which is the representation of the
training data for the focal element A, a larger belief of q
belongs to A should be assigned. Consequently, the similarity
between cI (A) and qI is defined as:

SI (cI (A) ,qI) =
1

1 + αI · dI (cI (A) ,qI)
(5)
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Fig. 1. Representation of focal elements using interval numbers.

d2I (cI (A) ,qI) =

(
q − cI1 + cI2

2

)2

+
1

12
(cI2 − cI1)

2 (6)

where αI is a parameter to control the similarity and αI > 0.
dI (cI (A) ,qI) is the distance between cI (A) and qI [17].
Finally, the similarities are normalized to determine the BBAs.

For the BBA determination method using triangular fuzzy
numbers [12], each dimension of the focal element A ∈
Θ is modeled as a triangular fuzzy number cT (A) =
[cT1, cT2, cT3], which is shown in Fig. 2. For a query sample
q, it is modeled as a triangular fuzzy number qT = [q, q, q]. If
the triangular fuzzy number qT is near to the triangular fuzzy
number cT (A), which is the representation of the training
data for the focal element A, a larger belief of q belongs to
A should be assigned. Consequently, the similarity between
cT (A) and qT is defined as:

ST (cT (A) ,qT ) =
1

1 + αT · dT (cT (A) ,qT )
(7)

d2T (cT (A) ,qT ) = (q − cT2)

[
q − (cT1 + cT3)

2

]
+

1

9
[(cT3−cT2)−(cT2−cT1)]

2
+
1

9
(cT3−cT2) (cT2−cT1)

(8)

where αT is a parameter to control the similarity and αT > 0.
dT (cT (A) ,qT ) is the distance between cT (A) and qT [17].
Finally, the normalized similarities are used to determine the
BBAs.

For the BBA determination method using trapezoidal fuzzy
numbers [12], each dimension of the focal element A ∈
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Fig. 2. Representation of focal elements using triangular fuzzy numbers.
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Fig. 3. Representation of focal elements using trapezoidal fuzzy numbers.

Θ is modeled as a trapezoidal fuzzy number cTr (A) =
[cTr1, cTr2, cTr3, cTr4], which is shown in Fig. 3. For a query
sample q, it is modeled as a trapezoidal fuzzy number qTr =
[q, q, q, q]. If the trapezoidal fuzzy number qTr is near to the
trapezoidal fuzzy number cTr (A), which is the representation
of the training data for the focal element A, a larger belief of q
belongs to A should be assigned. Consequently, the similarity
between cTr (A) and qTr is defined as:

STr (cTr (A) ,qTr) =
1

1 + αTr · dTr (cTr (A) ,qTr)
(9)

d2Tr(cTr(A),qTr)=

[
q− (cTr2+cTr3)

2

][
q− (cTr1+cTr4)

2

]
+

1

12
(cTr3−cTr2)(cTr4−cTr1)+

1

9
(cTr4−cT3)(cTr2−cTr1)+

1

9
[(cTr4 − cTr3)− (cTr2 − cTr1)]

2

(10)
where αTr is a parameter to control the similarity and αTr >
0. dTr (cTr (A) ,qTr) is the distance between cTr (A) and qTr

[17]. Finally, the normalized similarities are used to determine
the BBAs.

We also use the BBA generation method in ECM (evidential
c-means) [10]. Let {x1, . . . xN} be a set of N samples and
C(2 ≤ C < N) be the number of classes. The centroid
vk(k = 1, ..., C) is used to represent each class. For each
sample xi, ECM can determine the corresponding BBA mi.
The quantity mij

∆
= mi (Aj) is obtained in a way that mij is

inversely proportional to the distance dij between xi and the
focal element Aj . The focal element Aj is represented by a
barycenter v̄j(1 ≤ j ≤ 2C − 1), and v̄j is defined as:

v̄j =
1

Cj

c∑
k=1

skjvk (11)

where Cj is the number of elements in Aj and

skj =
{
1 if θk⊆Aj

0 otherwise. (12)

The distance dij is defined as

dij
2 = ∥xi − v̄j∥2 (13)

The BBA can be determined by the following formula:

mij =
C

−α/(β−1)
j d

−2/(β−1)
ij∑

Ak ̸=∅
C

−α/(β−1)
k d

−2/(β−1)
ik + δ−2/(β−1)

(14)

and mi∅ = 1 −
∑

Aj ̸=∅mij ,∀i = 1, n where α = 1, β = 2,
δ = 10 is suggested in [10], and these parameter settings are
used in this paper.

The aforementioned BBA determination approaches have
shown their superiority in many applications [18]–[20] and
they still have their own limitations in some area. Therefore,
we propose to comprehensively use them through a learning
mechanism.

IV. NEW LEARNING-BASED BBA MODELING APPROACH
WITH MULTI-METHOD FUSION

If the prevailing BBA determination methods are jointly
used, their pros could be promoted while their cons could
be prohibited, and a better BBA modeling approach can be
expected. To the comprehensive use of these methods more
efficiently, we suggest to avoid explicitly using them in the
test stage through a learning mechanism. In our approach, a
deep network is trained to learn the mapping from the training
samples to the corresponding comprehensive BBAs obtained
by jointly using these methods as the generalized training
labels. The BBAs of the test samples can be obtained in an
end-to-end manner through the trained deep network model.

The proposed method mainly contains three stages, which
is shown in Fig. 4.

1) The comprehensive BBAs as the generalized labels of
the training samples are determined.

2) A deep network is trained to learn the end-to-end
modeling of the BBA.

3) The BBAs of the test samples are obtained in an end-to-
end manner through the trained network.

For the first stage in Fig. 4, the combined BBAs as
the generalized labels are obtained through the combination
of different BBAs determined by respectively using several
prevailing BBA determination methods. In our approach, the
BBA determination methods using interval number, the one
using triangular fuzzy number, the one using trapezoidal fuzzy
number and the ECM are used to determine different BBAs,
respectively. Dempster’s rule of combination is then used to
fuse the different BBAs.

For the second stage in Fig. 4, the input of the network
are the training samples while the output of the network are
the corresponding combined BBAs as the generalized labels
obtained in the first stage. Since deep learning is used in our
approach, a crucial issue for training is to determine the loss
function of the network. For our method, the aim of using the
neural network is to learn the modeling of the BBA, and the
loss function should properly measure the difference between
the network’s output and the combined BBA as the generalized
label. Consequently, the evidence distance is used as the
loss function since it specifically measures the dissimilarity
between two BBAs. In this paper, Jousselme distance [21]
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Fig. 4. Three stages of BBA modeling in our approach. In the first stage,
the combined BBAs as the generalized labels are determined. In the second
stage, an end-to-end network is trained. In the third stage, the network is used
for the end-to-end BBA modeling.

is selected since it’s one of the most widely used evidence
distance, which is defined as:

dJ (m1,m2) =

√
0.5 · (m1 −m2)

T
D (m1 −m2) (15)

where m1 and m2 are two independent BBAs be on the FOD
Θ, D is Jaccard matrix

D (A,B) =
|A ∩B|
|A ∪B|

(16)

where A,B ⊆ Θ and A,B ̸= ϕ, D is an
∣∣2Θ − 1

∣∣ dimension
square matrix.

In order to make the output BBA more clear, which might
benefit to the classification decision, the Ambiguity Measure

(AM) [22] is used as a regularization term. The Ambiguity
Measure is defined as:

AM(m) = −
∑
θ∈Θ

BetPm(θ)log2 (BetPm(θ)) (17)

where BetPm(θ) is the probability obtained by the pignistic
transformation.

Thus, the loss function used for the end-to-end deep model
training is defined as follows:

Loss (m̂,m) = dJ (m̂,m) + λ ·AM (m̂) (18)

where m is the BBA as the generalized label, m̂ is the model’s
output, λ is regularization coefficient and λ = 0.05 is used in
this paper for the simplicity. Moreover, the regularization term
is user-specified, one can try different regularization terms
which fit the actual applications.

The specific network model is depend on the type of data.
For the datasets only with few features, e.g., UCI datasets [23],
a fully connected network is used in our work. For the image
datasets, a more complex deep network should be used since
the image contains richer information. ResNet18 [24] is used
in this paper due to its good performance in handling image
data.

To demonstrate the superiority of our approach, we com-
pared the proposed method with several classic BBA determi-
nation methods on both UCI and some typical image datasets.

V. EXPERIMENTS AND RESULTS

In our work, the 2-dimensional feature subspaces are used.
Since the feature dimension of the samples we use is at least
5, the number of the 2-dimensional feature subspaces is at
least C2

5 = 10. Five feature subspaces are randomly selected
from the training data, within which the BBAs are generated
by the prevailing BBA determination approaches. These BBAs
are then combined according to Dempster’s rule, producing a
aggregated BBA as the output BBA for each prevailing BBA
determination method.

The proposed method LBMMF is compared with the BBA
determination methods using interval number (IN), the one
using triangular fuzzy number (TFN), the one using trape-
zoidal fuzzy number (TrFN) and the ECM. In each feature
dimension, the percentiles of training samples are used in
the fuzzy number-based BBA determination approaches. The
20th and 80th percentiles of the training samples in each
feature dimension are used for modeling interval numbers.
The 20th, 50th and 80th percentiles of the training samples
in each feature dimension are used for modeling triangular
fuzzy numbers. The 20th, 40th, 60th and 80th percentiles
of the training samples in each feature dimension are used
for modeling trapezoidal fuzzy numbers. The parameters for
calculating similarity in Eqs. (5-9) are set as 5. The parameter
settings α = 1, β = 2, δ = 10 are suggested in [10], which
are used for ECM.

The methods are evaluated on 8 UCI [23] datasets (Appen-
dicitis, Cancer, Ionosphere, Seeds, Vertebral, Wdbc, Whole-
sales and Wine) and 2 image datasets (CIFAR-10 [25] and



Weather [26]). For the CIFAR-10 dataset, we choose 4 classes
for evaluation (cat, deer, dog, and horse). In each experiment,
60% samples are used as the training data and 40% samples
are used as the test data. The experiments are repeated 100
times for UCI datasets and 20 times for image datasets. The
mean evaluation metrics and their standard deviations on the
test set are calculated from the results of these 100 (for UCI
datasets) and 20 (for image datasets) repetitions.

We transform BBA into probabilities through Eq. (4) to
obtain classification results. The classification results are then
used to evaluate different BBAs, with classification accuracy,
precision, recall and F1-score serving as the evaluation met-
rics. For the binary classification task, the accuracy, precision,
recall and F1-score are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1-Score = 2 · Precision · Recall
Precision + Recall

(22)

where TP represents the number of samples that the clas-
sifier correctly classifies the positive class; FN represents
the number of samples that the classifier incorrectly classifies
the negative class; FP represents the number of samples
that the classifier incorrectly classifies the positive class; TN
represents the number of samples that the classifier correctly
classifies the negative class.

For the multi-class classification task, the accuracy is de-
fined as follows:

Accuracy =
Ncorrect

N
(23)

where N represents the number of samples, Ncorrect repre-
sents the number of samples the classifier correctly classified.
The precision, recall, and F1-score for multi-class classifica-
tion are calculated as the average values of the respective
metrics across all classes.

It is crucial to emphasize that the use of the classification
performance aims specifically at evaluating different BBA
modeling approaches, rather than using them for better clas-
sification results.

The evaluation metrics and the corresponding standard
deviations using the BBAs determined by different approaches
for classification are shown in Table II, and the highest
metric for each row is in bold. The results are only used
for the comparison of different BBA modeling approaches,
which do not represent the best classification results of the
corresponding datasets. We can find that using our approach
to determine BBA generally achieves a better classification
performance on both UCI and image datasets, which means
LBMMF can model the BBA more properly. The reason for
LBMMF achieves better results lies in the joint use of the
prevailing BBA determination approaches. Moreover, the deep

TABLE I
CONFUSION MATRIX FOR BINARY CLASSIFICATION TASK

Predicted values
Positive Negative

Actual values
Positive TP FN

Negative FP TN

network well learns the mapping relationship from the training
samples to the combined BBAs as the generalized training
labels, which realize an efficient end-to-end BBA modeling
for the test samples.

VI. CONCLUSION

In this paper, we proposed a novel approach for BBA
modeling, termed Learning-based BBA Modeling with Multi-
method Fusion (LBMMF), which jointly use the prevailing
BBA determination methods through a learning mechanism.
Our approach realizes an end-to-end BBA modeling for the
test samples. The experiments on the classification applications
have shown our approach can model BBA more properly than
the compared methods. In future, we will focus on the joint
use of multiple diverse BBA determination methods for better
BBA modeling. For better joint use of multiple BBA deter-
mination methods, more combination rules, e.g., PCR6 [27]
will be used. We will also use various evidence distances for
further analysis and comparison. More appropriate uncertainty
measures will be used as the regularization term.
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TABLE II
CLASSIFICATION PERFORMANCE USING DIFFERENT BBA DETERMINATION METHODS (%)

Dataset Metric LBMMF IN TFN TrFN ECM

Appendicitis

Accuracy 84.90 ± 4.72 82.13 ± 5.47 81.93 ± 5.07 82.22 ± 5.08 79.47 ± 5.35
Precision 60.47 ± 5.33 54.49 ± 5.96 53.77 ± 5.38 54.46 ± 5.62 49.07 ± 5.58

Recall 71.85 ± 4.50 70.91 ± 5.39 73.15 ± 4.17 72.91 ± 4.45 75.54 ± 3.84
F1-Score 64.31 ± 3.06 59.92 ± 4.25 60.65 ± 3.53 60.94 ± 3.59 58.41 ± 2.92

Cancer

Accuracy 96.52 ± 1.18 95.04 ± 1.51 95.52 ± 1.35 95.89 ± 1.23 93.14 ± 1.96
Precision 96.19 ± 1.75 95.29 ± 2.09 95.41 ± 1.78 94.54 ± 2.08 94.36 ± 2.22

Recall 93.98 ± 2.79 90.26 ± 4.28 91.58 ± 3.63 93.65 ± 3.04 83.70 ± 5.71
F1-Score 94.13 ± 1.76 92.64 ± 2.46 93.41 ± 2.14 94.05 ± 1.87 89.39 ± 3.37

Ionosphere

Accuracy 73.85 ± 3.40 73.17 ± 4.28 72.19 ± 3.95 72.68 ± 4.30 71.29 ± 3.87
Precision 82.92 ± 4.98 74.39 ± 6.52 78.86 ± 5.08 81.81 ± 5.33 77.46 ± 4.76

Recall 81.51 ± 4.88 83.22 ± 4.19 71.90 ± 4.72 74.43 ± 4.95 78.19 ± 5.86
F1-Score 81.62 ± 5.68 79.80 ± 5.65 76.60 ± 5.87 77.52 ± 6.01 77.95 ± 7.09

Seeds

Accuracy 86.88 ± 3.84 79.02 ± 4.35 80.97 ± 4.80 80.61 ± 4.92 85.80 ± 4.38
Precision 87.23 ± 3.78 80.33 ± 5.94 83.13 ± 4.65 87.23 ± 3.90 82.48 ± 4.67

Recall 86.90 ± 3.59 78.97 ± 4.01 80.92 ± 3.56 80.55 ± 3.68 85.80 ± 4.12
F1-Score 86.32 ± 4.00 74.83 ± 4.89 77.81 ± 4.78 77.23 ± 4.09 84.17 ± 5.28

Vertebral

Accuracy 71.93 ± 4.82 70.58 ± 4.94 71.54 ± 4.85 71.31 ± 4.95 69.92 ± 4.06
Precision 69.70 ± 4.96 68.76 ± 4.91 69.32 ± 4.98 69.10 ± 5.05 66.15 ± 4.23

Recall 70.75 ± 4.68 70.10 ± 4.73 70.09 ± 4.59 70.09 ± 4.71 67.70 ± 4.18
F1-Score 67.82 ± 5.64 66.39 ± 6.03 67.11 ± 5.74 66.92 ± 5.89 65.65 ± 4.39

Wdbc

Accuracy 91.23 ± 3.32 89.91 ± 4.08 89.46 ± 4.10 89.78 ± 4.04 90.12 ± 3.25
Precision 90.27 ± 6.33 87.17 ± 7.33 84.26 ± 7.25 85.29 ± 7.32 92.50 ± 5.28
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