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HALVING DIFFERENTIAL ADDITIONS ON KUMMER LINES

DAMIEN ROBERT AND NICOLAS SARKIS

ABSTRACT. We study differential additions formulas on Kummer lines that factorize through
a degree 2 isogeny ¢. We call the resulting formulas half differential additions: from the
knowledge of ¢(P),p(Q) and P — @, the half differential addition allows to recover P + Q.
We explain how Mumford’s theta group theory allows, in any model of Kummer lines, to
find a basis of the half differential relations. This involves studying the dimension 2 isogeny

(P,Q)— (P+Q,P—Q).

We then use the half differential addition formulas to build a new type of Montgomery
ladder, called the half-ladder, using a time-memory trade-off. On a Montgomery curve with
full rational 2-torsion, our half ladder first build a succession of isogeny images P; = p;(Pi—1),
which only depends on the base point P and not the scalar n, for a pre-computation cost
of 28 + 1mg by bit. Then we use half doublings and half differential additions to compute
any scalar multiplication n - P, for a cost of 4M + 2S 4+ 1mg by bit. The total cost is then
4M + 4S + 2my, even when the base point P is not normalized. By contrast, the usual
Montgomery ladder costs 4M + 4S + 1m + 1mg by bit, for a normalized point.

In the appendix, we extend our approach to higher dimensional ladders in theta coordinates.

1. INTRODUCTION

1.1. Motivation. Elliptic curves are widely used in cryptography, from Diffie-Hellman key
exchange (ECDH) to signature schemes (ECDSA), and are part of the TLS layer [Resl8|. The
efficiency of these protocols relies on the speed of scalar multiplications. Montgomery provided a
method known as the Montgomery ladder [Mon87] that, given the a-coordinate x(P) of a point
P on a Montgomery curve, can compute z(n - P) for any integer n. This algorithm relies on two
operations: differential addition — that is computing z(P + Q) from z(P), (Q) and z(P — Q) —
and doubling of a point, which are both efficient on a Montgomery curve. One perk of working
only with the x-coordinate is that it saves storage and bandwidth, and since the ladder also
computes z((n + 1) - P), this enables one to recover y(n - P), hence the full point on the curve.
We refer to the survey |CS18| for more details.

Working only with the xz-coordinate amounts to identifying the points P and —P on an elliptic
curve F, and the correct object to study is the Kummer line K = E/ + 1 associated to the
elliptic curve. In [RS24], the authors provided a framework on Kummer lines to derive efficient
2-isogenies formulas, yielding doubling formulas by composing with the dual isogeny. They also
give a slightly modified version of the Montgomery ladder to benefit from slightly better doubling
formulas on other models of Kummer lines while still using the usual differential addition formulas
from Montgomery curves.

In this paper, we extend this framework to find differential addition formulas on models of
Kummer lines, with a particular focus on formulas (called half differential additions) that factor
through a 2-isogeny ¢. The core idea is to re-use the computation of ¢(P) and ¢(Q) which
happens during the doubling to also determine P + @ on the Kummer line. A half doubling is
the special case where P = @, in which case we have 2- P = $(p(P)), so half doubling amount
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to applying the dual isogeny. Combined with a time/memory trade off to compute all needed
isogeny images once, this leads to a new ladder — called half ladder — which is competitive
with the Montgomery one. Instead of performing doublings and differential additions at the same
time, we first pre-compute images of our base point P via 2-isogenies ¢1, ..., @, and we then
go backwards with duals and half differential addition formulas to recover n - P. A comparison
is available in Table [I] below. We stress that the half ladder formulas cost that we give are
only available on Montgomery curves with full rational two torsion, whereas the standard ladder
formulas are available on all Montgomery curve. On the other hand, for these curves, our half
ladder allows us to gain a 1mg — 1m trade-off on a normalized base point P, and a 1lmy — 2M
trade-off on a non normalized base point.

Montgomery ladder  Half ladder, our contribution

Non-normalized base point 6M + 4S + 1myg

Normalized base point AM 4+ 4S + 1m + 1my AM + 48 + 2m,

TABLE 1. Ladder costs per bit with no pre-computation

Similarly to what was done in |[RS24], we use Mumford’s theta group theory to prove the
existence of formulas and to determine them. If ¢ : E — E’ is a 2-isogeny on elliptic curves,
we relate sections above the divisor 2(Op/) * 2(Op/) of E' x E’ compatible with the diagonal
isogeny ® = (i, ) with sections above the divisor 2(Og) * 2(Og) of E x E compatible with the
differential addition isogeny F' : (P,Q) — (P 4+ Q, P — Q). Generators of the relations between
the sections are what we call half differential addition formulas.

1.2. Related work. In [Oli+17, Alg. 4], the authors provide a variant of the Montgomery ladder,
performing the operation from right-to-left (RtL), instead of the traditional left-to-right (LtR).
This approach implies a pre-computation of points of the form 2° - P. Since our half ladder also
contains a form of pre-computation, it is more relevant to compare to this version. Tables [2 and [3]
compare the pre-computation of Montgomery ladder right-to-left and our half ladder with our best
formulas, which happens over a Montgomery curve with full rational 2-torsion. It appears that on
each step we lose 1myg, but our pre-computation is significantly faster in both cases, saving 2M.
Moreover, our approach generalizes well in higher dimension as explained in Appendix [A] whereas
the natural generalization of the RtL ladder is not interesting, to the best of our knowledge, in
dimension g > 1.

Algorithm Pre-computation Step
Montgomery ladder LtR — AM +4S + 1m + 1mg
Montgomery ladder RtL 2M + 2S + 1my 4M + 2S

Half ladder, our contribution 2S + 1mg 4M + 2S + 1myg

TABLE 2. Ladder costs per bit with a pre-computation but no normalization

Ln inversions can be reduced to 1I + (3n — 3)M thanks to Montgomery’s trick, see [SB0O1, Lem. 3.1]
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Algorithm Pre-computation Normalizatiorﬂ Step
Montgomery Ladder LtR — — AM + 4S 4+ Im + 1mg
Montgomery Ladder RtL ~ 2M +2S + 1my 11+ 1M = 4M 3M + 28

asy

Half ladder, our contribution 2S 4+ 1my 1I+1M = 4M 3M +2S + 1myg

TABLE 3. Ladder costs per bit when normalizing the pre-computation

1.3. Our contributions. In summary, our contributions are first a systematic way to derive
half differential addition formulas using Mumford’s theory of the theta group, and secondly the
existence of a new kind of pre-computed Montgomery like ladder: the half ladder.

As described in more details in Section [4] the key principle behind the half ladder is as
follows. Using half doubling and half differential addition formulas, one way to compute the
usual Montgomery ladder, is at each step to start with U;—y = m;_1 - P,V;_1 = (m;—1 + 1) - P,
compute ©(U;_1),(V;_1), and use one half doubling and one half differential addition to recover
2U;,U; + V; (or U; + V;,2V; depending on the current bit). This costs two isogeny images, one
half doubling, and one half differential addition by steps.

Our idea, is that rather than interleaving the isogeny images and half doublings and differential
additions at each step, we can instead pre-compute several iterated isogeny images P; (pre-
computation which only depend on the base point and bit length of the scalar m), and then
“unstack” these images at each step by doing one half doubling and one half differential addition.
The key point in changing the order, is that one of the two isogeny images we need to compute is
the image of the neutral point O, which is “free”. This help us save one isogeny image by bit,
at the cost of a slightly more expensive half differential addition, because the differences will be
given by the isogeny images P; rather than by the same base point P, hence are not normalized
any more even if P was.

We provide an implementation at https://gitlab.inria.fr/nsarkis/half-diff-add. An
alternative, more experimental, implementation is also available at https://gitlab.inria.fr/
roberdam/kummer-1line.

1.4. Notations. We will use the following notations for computational costs:

I is a generic inversion,

M is a generic multiplication,

S is a generic squaring,

my is a multiplication by a curve constant,

m is specific to Montgomery ladder and designate a multiplication by the base point
coordinates. It can represent 2M (for a non normalized point) or 1M for a normalized
point, depending on the context.

1.5. Roadmap. In Section [2] we introduce our terminology, in particular sections of a divisor,
Weierstrass coordinates and Kummer lines. In Section [3] we discuss the main isogeny of interest
of this article, F: (P,Q) — (P + Q,P — @), and we define half differential addition formulas.
Assuming we have explicit half differential addition formulas, we then introduce our half ladder
in Section [d] Finally, Section [f] details Mumford’s theta group theory and how to find these half
differential addition formulas in practice, altogether with an example. In Appendix [A] we extend
the half ladder to abelian varieties in the level 2 theta model. In Appendix [B] we use the context
of Curve25519 as another example to find half differential addition formulas.


https://gitlab.inria.fr/nsarkis/half-diff-add
https://gitlab.inria.fr/roberdam/kummer-line
https://gitlab.inria.fr/roberdam/kummer-line
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2. PRELIMINARIES

In this whole article, k is a perfect field of characteristic different from 2. We recall in this
section some results and tools introduced in [RS24].

2.1. Weierstrass coordinates. Let F/k be an elliptic curve given by an affine short Weierstrass
equation y? = 2 4 agx? + a4z + ag. Let D be a divisor on E, we recall that a local section
on a Zariski open U of F is a function s € k(E) from the function field k(FE) of E such that
div sjy + Dy > 0. The set of local sections associated to D on U is denoted by I'(U, D), or T'(D)
when U = F and in that case we say that s € I'(D) is a global section. We finally denote by
O (D) the line bundle associated to D; this is the sheaf given by the local sections of D, i.e.
Op(D)(U) =T(U,D) on a Zariski open U. It is convenient to work with projective coordinates
to avoid divisions, which is naturally given by the line bundle point of view; the elliptic curve has
a projective equation Y?2Z = X3 4+ a2 X2Z 4+ a4 X Z? + agZ?> in P2.

Let Dn = TL(OE), we have F(Dl) = <Z0>7 F(Dg) = <X0,Zg>, F(Dg) = <XOZ0,Y, Zg>, the
projective coordinates are X = XZp and Z = Z3. Notice that the affine coordinate x = X/Z
verifies x = Xo/Z3. Since we are only interested in models of Kummer lines in this paper,
we will change notations and denote I'(Ds) = (X, Z), where Z = Z2. With this notation,
the full projective Weierstrass coordinates are X Zy,Y, ZZ,, and the affine coordinate verifies
x=X7Zy/ZZy = X/ Z.

It will be convenient to work with models of Kummer lines where the neutral point is not at
infinity. If (X : Z) are projective Weierstrass coordinates, this amounts to allow working with the
projective coordinates (X' : Z') = (aX 4+ bZ : ¢X + dZ). We remark that X', Z’ are still sections
of the line bundle O g (D).

2.2. Kummer lines. Let E be an elliptic curve defined over k. If E is in short Weierstrass form,
then the map £ — P!, (2,y) — (z : 1),0p + oo is a degree 2 cover with ramification at the
2-torsion E[2] of the elliptic curve E. This also yields an isomorphism of curves E/ +1 ~P!. A
Kummer line is a generalization of this construction.

Definition 2.1. A Kummer line is a degree 2 covering m : E — P! with 4 distinct ramification
points, one of which is rational and marked:

1 ZfPE {O,Tl,TQ,Tg},

30 € E(k),3Ty, T2, T3 € E with #n*(7(P)) = )
2 otherwise.

This is equivalent to having a degree 2 cover 7 : E — P! with exactly 4 ramification points,
one of which is marked. F is then an elliptic curve thanks to Riemann-Hurwitz formula, and it
can be shown that the ramification corresponds to the 2-torsion and that the fibres are given by
7 1(x(P)) = {~P, P}.

Kummer lines will be described only by their ramification like in Example 2:2] below. They
will usually be denoted by K where K ~ P!, and we will forget about the 7 notation when it is
not ambiguous, we will then write [P] = n(P) where P € E. Similarly, since this whole article
covers arithmetic of Kummer lines, we may drop the bracket notation and write P,Q € K, as
well as P + @ even though there is no addition law on .

Example 2.2. The marked point is denoted with a x. If the ramification on the Kummer line is
given by

(1:0)7, (a1 : 1), (a2 : 1), (ag : 1),
with the «; potentially defined over an extension of k, then the corresponding elliptic curve has
equation, with some 8 € k:

(1) E: By =(z—a)(r — )z — as).
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Conversely, starting from Eq. , if the point at infinity is denoted O, then the following map is
a degree 2-covering with 4 ramification points which correspond to the 2-torsion:

7:E =P (2,9)— (x:1),0 — cc.

The addition law does not hold any more on the Kummer line, however there exists differential
addition formulas that, given [P], [@] and [P — @], return [P 4+ @]. They are our main focus in
this article.

Lemma 2.3 (Translation by a 2-torsion point). Let E be an elliptic curve with a rational
2-torsion point T € E[2|(k) and « : E — P! a Kummer line. Then the translation by T map
tr : w(P) — w(P+T) is well-defined and is a homography on P*.

Proof. Since T = —T, if P,Q € E with P = +Q then n(P + T) = n(Q + T), hence the map
P — m(P +T) factors through 7 and tr is well-defined and is a morphism of P! because the
translation on E is a morphism of algebraic curves. It is bijective because the translation on F is
surjective and if 7(P +T) = 7(Q + T) then m(P) = 7(Q) since T is a 2-torsion point. Therefore,
tr is a homography. ([

Understanding how ¢ acts on the coordinates X and Z will be essential in Section [5] It also
helps to determine the 4-torsion on a Kummer line. We end this part by giving some models we
will be studying in the sequel.

Example 2.4.

(1) The Kummer line associated to a Montgomery curve By*> = x(z* + Az + 1) has the
following ramification:

(1:0), (0:1), (a:b), (b:a),

where A = —§ — g. % may not be rational, however we always have A € k. We denote it
M(a :b). There is a rational 4-torsion point [I'] = (1: 1) and (—1: 1) above [T] = (0: 1).
(Indeed, because 3T' = T' +T = =T’ on the curve, we can find [T'] via the equation
tr([T"]) = [T"], which becomes (X¢ : Zy) = (Zy : Xo) on the Montgomery line).

(2) Let § € k, the theta model 6(a : b) has the following ramification points:

(a:b)", (—a: ), (b:a), (=b:a).

The translation by T = (—a : b) is given by tp : (X : Z) — (=X : Z), there are 4-torsion
points above (—a : b) given by (1:0) and (0: 1), as well as above (b : a) given by (1:1)
and (=1:1).

(3) Let § € k, the theta squared model 0(a : b) has the following ramification points:

(a:b)", (b:a), (1:0), (0:1).

The translation by T = (b: a) isty : (X : Z) — (Z : X) and the 4-torsion above T is
given by (1 : 1) and (=1 :1). Given the shape of the ramification, it is isomorphic to
M (a : b) via the involution (X : Z) — (aX —bZ : bX —aZ).

(4) Let § € k, the theta twisted model 0;(a : b) has the following ramification points:

(a:b)", (—a: ), (1:1), (—1:1).

The translation by T = (—a : b) istr : (X : Z) = (=X : Z) and the 4-torsion above
T is given by (1 : 0) and (0 : 1). It is isomorphic to 0s(a’ : b') via the Hadamard
transform H : (X : Z) = (X +Z : X — Z) where (¢’ : V') = (a+b:a—0b), and
therefore to M(a' : b'). The isomorphism to the Montgomery model M (a' : V") is given
by (X :2Z)—~ (VX +dZ:dZ—-VX). Its inverse is (X : Z) — (a(X — Z) : b(X + Z)).
Hence, a Montgomery curve has a theta squared or equivalently a theta twisted model if
and only if it has full rational 2-torsion.
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Remark 2.5. The names theta squared and theta twisted come from the fact that given a theta
model 0(a : b), there is a 2-isogeny f: 0(a : b) — O5(a? : b%) given by f : (X : Z) — (X? : Z?) and
an isomorphism g : 0(a : b) — 0;(a® : b?) given by g : (X : Z) — (aX : bZ).

3. HALF DIFFERENTIAL ADDITION

Doubling formulas on Kummer lines are essential to perform scalar multiplication. One natural
way to find such formulas is by computing a 2-isogeny ¢ : E — E’ and compose it with its dual
@ such that [2] = @ o ¢. This decomposition is often more efficient, as computing directly the
doubling — which is a degree 4 isogeny — can be slower than splitting it into two degree 2
isogenies. [RS24| discusses how to find such formulas on Kummer lines.

The other important operation on a Kummer line is the differential addition. In this section
we study the map

F:ExE—EXxXE, (PQ— (P+Q,P—Q).

It is a (2, 2)-isogeny with kernel Kp = {(T,T) | T € E[2]}, the diagonal of the 2-torsion. Having
formulas for F yields differential addition ones. Similarly to the case of doubling with 2-isogenies,
we would like to factor it.
Let ¢ : E — E' be a 2-isogeny with kernel {Og,T}. We will consider the (2,2)-diagonal
isogeny
D:ExE—E xE, (P,Q) (o(P),¢(Q),

its kernel is K¢ = (T') x (T'). Ideally, one would like to factor F' through ®, unfortunately this is
not possible because there is no inclusion of the kernels, in fact Kp N K¢ = {(Og, Og), (T,T)}.

Definition 3.1. Let o : E — E’ be a 2-isogeny of elliptic curves, K and K' the Kummer lines
corresponding respectively to E and E', P,Q € E. Formulas that can recover [P+ Q] € K from
the data of [p(P)], [¢(Q)] € K’ and [P — Q] € K will be called half differential addition formulas.
We will denote such algorithm HalfDiffAdd,(p(P), ¢(Q), P — Q).

If we have ¢(P), applying the contragedient isogeny @ to it yields 2 - P = @ o ¢(P). By
analogy with the half differential additions, we will also denote this operation as 2 - P =
HalfDouble, (¢(P)).

In Section [f] we will explain how to find explicit half differential formulas using the theta group
theory. We will first discuss an application of such formulas to build a half ladder in Section [

4. LADDERS

In this section, assuming we know how to compute half differential addition formulas — which
will be discussed in Section [5| —, we explain how to build a new ladder based on those, and we
compare it to the Montgomery one.

4.1. The Montgomery ladder. We first recall some results about the Montgomery ladder,
introduced in [Mon87]. Given a Kummer line K with differential addition and doubling formulas,
one can compute n - P € K for any n € Z, P € K using Algorithm [I] It is clear that each step
of the ladder costs exactly one differential addition and one doubling. Table [4] gives the cost of
these on the models discussed in this article, as well as the total Montgomery ladder cost.

The 1m in the differential addition corresponds to the multiplication by the base point P
coordinates. Depending on the context, this multiplication could be either 2M if the point is
generic and not normalized or 1M if the point is generic and normalized (for instance while
recovering the shared secret key during a key exchange). In the best case scenario, this point is
set in the protocol and has a small coordinate, in that case 1m reduces to 1my, this can happen
for instance in a signature scheme or the first step of a key exchange.
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Montgomery curve Theta model Theta squared / twisted
[Mon87] |GL09, § 6.2] |GLO09, § 6.2, Thm. 2]
Diff. add. 2M + 2S + 1m 2M +4S+ 1m+ 1mg  2M + 2S + 1m + 1mg
Doubling 2M + 2S + 1my 4S 4+ 2my 4S + 2my

Total cost 4M+4S+1m+1myg 2M+8S+1m+3myg 2M +6S 4+ 1m + 3mg

TABLE 4. Montgomery ladder cost on several Kummer lines

Remark 4.1. The Montgomery ladder on theta squared / twisted models was slightly improved in
JRS24), § 5] via a hybrid ladder combining differential addition of Montgomery curves and theta
doubling, saving 1myg for a total cost of 2M + 6S + 1m + 2my.

Algorithm 1: Scalar multiplication with the Montgomery ladder

Input: n = (1,bs—2,...,bo) an £-bits integer, P a point on K
Output: n- P

Function MontgomeryLadder (n, P):
U<+ P;
V < Doubling(P);
for i+ ¢ —2to 0do
if b; =0 then
V < DiffAdd(U,V, P);

U < Doubling(U);
else if b, = 1 then

U « DiffAdd(U,V, P);

© 0 g o Uk W N -

10
11 end
12 return U;

V < Doubling(V);

As discussed in the introduction, there is a variant of the Montgomery ladder including pre-
computations described in [Oli+17, Alg. 4]. The authors give an algorithm going through the
binary decomposition of n from right-to-left (RtL), whereas Algorithm [1| goes from left-to-right
(LtR). The main difference is that for each bit, only one differential addition is needed, given
the pre-computation of the points P; = 2 - P. However, the difference of the points U and V
involved in the differential addition in their algorithm is stored in an accumulator and can change
throughout the algorithm, hence a differential addition costs 4M + 2S. By going further with
the pre-computation by normalizing the points P;, the differential addition can be reduced to
3M + 28, this corresponds to the discussion in Section 5.2 of their article. To summarize:

o The Montgomery ladder right-to-left requires the pre-computation of points 2¢ - P;, at the
cost of one doubling per bit, which is 2M + 2S 4 1my.

e If for each P; = (X, : Z;), we further pre-compute a constant u; = %, the cost per
bit in the main loop is the one of a differential addition performed in 3M + 2S. This
pre-computation is 1I + 1M per bit, which can be reduced to 4M asymptotically thanks
to Montgomery’s trick, see [SB0O1, Lem. 3.1].

e Otherwise, each differential addition is performed in 4M + 28S.
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P1 P2 e
]CO ’Cl A ]CZ

Py Py P,

FIGURE 1. Half ladder context

The two situations are described in Tables [2| and [3| at the beginning of the article. Since our
approach also involves pre-computations, we will also compare to this version of the Montgomery
ladder.

4.2. Half ladder.

4.2.1. Principle. We will work in the following context, we want to compute n - Py where n is an
£-bit integer and Py is a point on the Kummer line ICy. The i-th bit of n is written b;. Assume
we have Kummer lines Iy, ..., Ky and 2-isogenies @1, ..., @y where p; : ;-1 — K; for 1 <14 < /4.
We also denote P; = ¢;(P;_1). The situation is represented in Fig.[l] In practice, we will simply
use a 2-isogeny ¢ : Ko — K; and its dual ¢ iteratively: ¢q; = ¢ and 9,41 = @.

Finally, we assume that for each isogeny ¢;, we have half differential addition formulas which
given ;(P), p;(Q) and P — @, computes P + @ on the Kummer line K;_;. We will denote such
algorithm HalfDiffAdd,, (;(P), ¢:(Q), P — Q).

The main idea is that instead of computing at each step the doubling of a point via a 2-isogeny
and its dual as well as the differential addition of these two points, we will first pre-compute
every image Py, ..., Py of our base point P = Py, and then go backwards with half doublings and
half differential addition formulas.

Assume on Kummer line K;, we know U; = u; - P, and V; = (u; + 1) - P;, with 1 < ¢ < /L.
In particular, because P; = ¢;(P;—1), we have U; = ¢;(u; - P,—1) and V; = ¢;((u; +1) - Pi—1)
With the knowledge of P;_1, using HalfDiffAdd,, (U;, Vi, P;—1), we can compute (2u; +1)- P;_;
With the dual @;, we can also compute either 2u; - P,_1 = @;(U;) or 2(u; +1) - Pi_1 = ;(V;). We
set Uj—1 = 2ul + bi—l such that we can recover Ui—l = Uj—1 * Pi—l and ‘/i—l = (ui—l + 1) . Pi—l
using one computation with HalfDiffAdd,, and one with ¢;, i.e. HalfDouble,,.

With the initial situation being U, = O, the neutral element on K, and V; = P, this process
can be iterated and one can derive the formula w; = bp_12¢717% 4+ by_92¢=27% 4 ... 4+ ;29 for all
0 <i<{. A corollary is that ug = n and consequently Uy = n - Py, which is the point we were
looking for. The generic algorithm is described in Algorithm 2]

In terms of cost, we first need to compute the images via 1, ..., @, then when going backwards
we require a computation with each @1, ..., o, and one HalfDiffAdd,, for all 1 <4 < £. Similarly
to the Montgomery right-to-left ladder, we could pre-compute when possible the images, and
even normalize them if this is meaningful, depending on the context. We will look at an example
in the following section.

4.2.2. Application to theta model. In this section, we focus on the theta model §(a : b) described
in Example and given by ramification points

(a:b)", (—a: ), (b:a), (=b:a),
where § € k. We will start with the case where there is a 8-torsion point (r : s) above (—a : b).
As seen in [RS24, Ex. B.4], if (A: B) := (r? + s? : r2 — s?), then (4% : B?) = (a® + V% : a® — b?)
and the following 2-isogeny ends on the theta model (A : B):

0:(X:Z)€eb(a:b)— (B(X*+Z?%): A(X? - Z%).
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Algorithm 2: Scalar multiplication with the half ladder
Input: n = (by—1,bp—2,...,by) an £-bits integer, P a point on Ky
Output: n- P
Data: IC; is a Kummer line, ¢; : ;1 — K; a 2-isogeny for 1 < i </

1 Function HalfLadder (n, P):

2 Py + P;
3 for i < 1 to ¢/ do // Potentially a pre-computation
4 | P pi(Pic1);
5 end
6 U + Oy; // Neutral point on Ky
7 V + Pg;
8 for i + / to 1 do
9 if bi—l =0 then
10 V < HalfDiffAdd,, (U,V, Pi_1);
11 U < HalfDouble,, (U);
12 else if b,_; = 1 then
13 U < HalfDiffAdd,, (U,V, P;_1);
14 V < HalfDouble,, (V);
15 end
16 return U;

Its dual is simply given by ¢ : (X : Z) € 0(A: B) — (b(X? + Z2) : a(X? — Z?)).

To build our half ladder, if n is an ¢-bit integer, we set Kq; = 0(a : b), Kai41 = 0(A : B), and
Y21 = @, pair1 = @ for 0 < 2¢,2i + 1 < £. The framework of Section [5| gives the following half
differential addition formulas, where (R,S) = (P +Q,P — Q):

e HalfDiffAdd, (o(P), 9(Q).S) (P.Q € 6(a: b)):

XoP)Xo(@) T Zo(P) 2@
XXS:ZZS:<‘”( ¢ P(P)Z0(Q) )
(Xr 125) =\ X oo X @) = Zitp) Zoic

e HalfDiffAdd>(@(P), 4(Q),5) (P,Q € 6(A: B)):
(XrXs: ZrZs) = (XE(P)EE(Q) igf“))gf@))
#(P)"o(Q) e(P)"¢(Q)
Each operation has the following cost:
e A p evaluation is 2S + 1myg, as well as a ¢ evaluation.
e A half differential addition with respect to ¢ is 4M, as well as a half differential addition
with respect to ¢. We can save 1M by normalizing the points P, ..., P.

The costs are completely symmetric whether we work with ¢ or @, hence an image is 2S + 1m,
and a half differential addition is 4M. This leads to the following costs per bit:

e If we do not perform any sort of pre-computation, the cost per bit is 4M + 4S + 2my,
which is the best case scenario of Montgomery ladder left-to-right on a Montgomery curve
where the base point is normalized and has a small z-coordinate, and is in general better
than the Montgomery ladder left-to-right on a theta squared model.

e If we pre-compute the images Py, ..., P, but we don’t normalize them, the pre-computation
costs 2S + 1myg per bit, and the main loop is 4M + 2S 4+ 1mg. The pre-computation saves
2M over Montgomery ladder right-to-left whereas the main loop loses 1my.
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e If we moreover normalize the pre-computed points, the pre-computation cost raises to
4M + 2S + 1mg thanks to Montgomery trick, and the main loop is then 3M + 2S + 1my.
The difference with the Montgomery ladder left-to-right is the same as above, saving 2M
on the pre-computation but losing 1mg in the main loop.

If one wants to work with a theta model with no additional assumptions, the isogenies can
be chosen differently. We still set (A2 : B%) = (a® + b2 : a®> — b?). The 2-isogeny given by
0:(X:Z)€eb(a:b)— (X?:Z?) ends on the theta squared model 6,(a? : b?) with ramification

(a®: %), (b% : a?), (1:0), (0:1).
The dual isogeny is then
P (X :2Z)€bs(a®: b
— (W(BX(X + Z2)* + A%(X — 2)*) : a(B*(X + 2)° — A%(X — 2)%)).
The isogenies were computed using [RS24, Ex. B.3] and the isomorphism between Montgomery
model and theta squared model from Example 2.4.3]

If n is an £-bit integer, we set Ko; = 0(a : b), Kojy1 = 0s(a? : b?) for 0 < 2i,2i + 1 < £, and
w2 = @, p2i+1 = ¢. The differential addition formulas are the following according to Section
where (R,S)=(P+Q,P —Q):

e HalfDiffAdd, (¢(P),¢(Q),S):
(XpXs: ZrZs) =
(B;(Xw(m +Zo()(Xo(@) + Zo(@) + A2 (Xo(r) = Zo(r)(Xo(@) — Zq:(@))
B2 (Xo(p) + Zo(P)) (Xo(@) + Zo@) = A(Xopp) = Zp(p))(Xp(@) = Zp(@)
o HalfDiffAdd(3(P),(Q),S):

(Xr+ Zg)(Xs + Zs) : (Xr — Zr)(Xs — Zs)) =
20y~ Y~ SN
<A2<X¢(P>Xsa<@> t Z@(P)Zw(Q))> _
XXz ~ ZamZs
As we can see:

e A ¢ evaluation is 28S.
e A ¢ evaluation is 2S 4 2my.
e A half differential addition with respect to ¢ is 4M + 1myg, as well as a half differential
addition with respect to .
Since half of the images are via ¢ and the other is via @, an image costs 2S + 1mg on average. We
see that using these isogenies is a bit less efficient. We will tackle this issue in the next section.

4.2.3. A variant on the theta twisted model. In this section, we work on the theta twisted model
O(a : b) as described in Example with ramification points

(a:b)", (—a: ), (1:1), (—=1:1)
with ¢ € k, and set (a’ : b') =(a+b:a—b). f P=(X:Z) € 0i(a:b), weset P* = (bX :aZ).
The following 2-isogeny from 6;(a : b) to 0:(a’ : ¥') can be derived from [RS24) Thm. 4.4] and the
isomorphisms between theta squared, twisted and Montgomery models from Example We get

2) 0 (X:2)— (bX*+aZ?:bX* —aZ?)

Its dual is @ : (X : Z) — (' X2 +a’'Z?% : b/ X% — a’ Z?). The half differential addition formulas are
then:
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e HalfDiffAdd, (¢(P),¢(Q),S):

a(t' X oy X0y + @' Zoi oy Zoo)
XoXeo: ZnZa) = P(P)o(Q) P(P)2o(Q)) )
(XrXs : Zpls) (b(b/Xsa(P)Xsa(Q)_a/Zw(P)Zw(Q))

e HalfDiffAdd>(o(P), $(Q),S5):

Cl/(bX X +aZypyZ )
XpXg:ZpZsg) = e(P)(Q) sa( )2e(Q)) )
( RAS R S) (lﬂ(bX(p(P)X Q) — aZ o(P) W(Q))

R can be computed with 4M + 2mg. However, if we use the point ¢(P)”, we can recover R* in
4M thanks to the following formula:

X . ¢ Q)+Z P)XZ @)
Xpx X : Zpx Zs :( o (P)* el P(P)*2(Q) )
( R R ) XQO(P)X XW(Q) - Z‘P(P)X ZSD(Q)

The roles of ¢(P)™ and ¢(Q) are interchangeable, as well as those of ¢ and @ because of the
symmetries of the formulas. Moreover, it is also possible to compute @(P) with the knowledge of
P* because
P(P)=(WX3+dZ% VX% —d'Z%) = (/X2 +V 25 :d' X3 —VZ%)).

The cost is 2S + 1mg whether we use P or P*. Hence, we can adapt Algorithm into Algorithm
below for theta twisted models by storing either (U*, V') or (U, V*) and by keeping track of this
information. Evaluation by ¢ and ¢ always costs 2S 4+ 1mg, and in this context half differential
addition cost 4M, so the cost per bit of Algorithm [3]is the same as the case of a theta model
with a 8-torsion point. This is the variant we compare to in Tables |l| to |3| in the introduction.

Hence, we can always achieve the best case scenario of the Montgomery ladder left-to-right if
we have a Montgomery curve with full rational 2-torsion, even if the base point is not normalized,
and we can significantly improve the pre-computation of the Montgomery ladder right-to-left at
the cost of 1myg in the main loop. In the last section on half ladder, we discuss the case where the
2-torsion of the Montgomery curve is not completely rational, but there is a rational 8-torsion
point.

4.2.4. Scalar multiplication on Curve25519. Curve25519|Ber06| is a Montgomery curve over I,
with p = 2255 — 19 and equation C : y* = z(2? + Az + 1) where A = 486662. It is a well-known
curve used in several cryptographic protocols. Its 2-torsion is not rational, however it has a
rational 8-torsion point above (0:1). We will then work in the following context: let M (A : B)
be a Kummer line associated to a Montgomery curve with ramification

(1:0)", (0:1), (A: B), (B:A),
as described in Example We will not assume % € k, however we suppose there is a rational
8-torsion point T' = (r : s) above T" = (1 : 1), itself above T' = (0 : 1). According to [RS24,
Thm. 4.11], we have a 2-isogeny from this curve to a Montgomery curve C’ with full rational
2-torsion. We can then compose it with the isomorphism from Example We set the
constants (y:0) = (4rs: (r—s)%), (a:b) = (y=0:y+6) and (¢’ : V) = (a+b:a—b) = (—7: 5).
We have the following 2-isogeny v : M(A : B) — 0;(a : b) given by
(X :Z) = (ab(X — 2)° —ad(X + 2Z)* 1 ab(X — Z)° + b8(X + 2)?).
The dual is given by
V(X :2) s (aZ? —bX?+20X7 : aZ? — bX? — 26X Z).

We can afford to have these two isogenies being a bit slower than usual since they will only
intervene once during the computations. The details on how we obtain the half differential
addition formulas below are available in Appendix
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Algorithm 3: Scalar multiplication on theta twisted model with the twisted half ladder

Input: n = (by_1,bp—2,...,bp) an £-bits integer, P a point on 6¢(a : b)
Output: n- P
Data: Ko; = 6i(a:b), Kojr1 = 0:(a’ : V), 021 =, w201 =@, with 0 < 24,20+ 1< ¢

1 Function TwistedHalfLadder(n, P):

2 Py + P;
3 for i < 1 to ¢ do // Potentially a pre-computation
4 | P pi(Pim1);
5 end
6 U+ O =(1:1); // Neutral point on K,
7 V «— Py
8 by 1;
9 for i+ /¢ to 1 do
10 if b,_1 =0 then
11 if b; = 0 then // Known points: U,V*
12 V* ¢ HalfDiffAdd,, (U, V>, P;_1);
13 U < HalfDouble,, (U)
14 end
15 else if b; = 1 then // Known points: U,V
16 V* ¢ HalfDiffAdd,, (U*,V, P;_1);
17 U < HalfDouble,, (U*);
18 end
19 else if b,_; = 1 then
20 if b; = 0 then // Known points: U,V*
21 U* « HalfDiffAdd,, (U, V>, P;_1);
22 V < HalfDouble,, (V*);
23 end
24 else if b; = 1 then // Known points: UX,V
25 U* + HalfDiffAdd,, (U*,V,P;_1);
26 V < HalfDouble,, (V);
27 end
28 end
29 return U; // Derived from U* if by =1

We then set Ko = M(A : B), o1 = ¢, Koy = 0:(a’ : V'), Koiy1 = 0:(a : D), o2, = ¢ and
Y2i+r1 = @ when 1 < 2¢,2i + 1 < ¢, where ¢ is the 2-isogeny of Eq. .

Using the tools from Section 5] we can derive half differential addition formulas for . If
P,Q e Ko, (R,S)=(P+Q,P—Q), HalfDiffAddy (¢)(P), ¥(Q), S) is given by

aZz, Z, —bX X
(G 2005+ 260 (= 25 = 290 = (GO W700)

Again, we can afford to spend a bit more time on this step because it is used only once. The
steps on O;(a : b) and 6;(a’ : b') can be done using Algorithm [3| and the last step to go back to

M(A : B) is done via HalfDiffAdd, and 1/1 as in Algorithm [2| so the cost per step is the same as
Algorithm 3]
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Hence, the conclusion from previous section also holds on a Montgomery curve with a rational
8-torsion point above (0 : 1), like Curve25519. There is however one very important caveat: using
the half ladder, the mq correspond to the curve constant on C’ rather than on C. In the specific
case of Curve25519, although the curve constant on C is small, this is unfortunately not the same
for its isogenous curve C’ where the Montgomery constant is A’ = 246641155144536865283063325
64023014466748285880603927312212995014455267148607. Hence, this reduces the utility of the
half ladder for Curve25519, at least when the pre-computations are not reused.

5. A FRAMEWORK TO DERIVE HALF DIFFERENTIAL ADDITION FORMULAS

We now give more details on the framework yielding half differential addition formulas. The
whole theory is based on the theta group defined by Mumford in [Mum66|.

5.1. Generalities on the theta group. In this section, we first introduce some general notations
on the theta group over a generic abelian variety. The reason is that in the upcoming sections,
we will specialize the study to an elliptic curve E and a product of elliptic curves F x E. We
will denote the abelian variety A. While Mumford uses the language of ample line bundles, for
convenience we use the one of ample divisors in this paper. In this section we work over an
algebraically closed field k = k.

Two divisors D and D’ are linearly equivalent if there is a section s € k(A) such that
divs = D — D', this is an equivalence relation denoted ~ and the set of linear equivalence classes,
denoted [D] for D a divisor, is the Picard group Pic(A). It is also a proper group scheme, and
we denote the connected component of [0] by Pic’(A), a subgroup of Pic(A) which is an abelian
variety: the dual abelian variety A of A.

Let D be a divisor on A, it induces a polarization A(D) : A — Pic’(A) which maps an element
x € A to the element [t:D — D] € Pic’(A), where t, : A — A is the translation by z. We denote
its kernel H(D) = ker A(D). Two divisors D and D’ are algebraically equivalent if A(D) = A(D’).
For ample divisors this is equivalent to D being linearly equivalent to ¢%D’ for some z € A. In
particular, if D and D’ are linearly equivalent, then they are algebraically equivalent, but the
converse does not hold in general.

If € H(D), then there is an element s € k(A) such that divs = t:D — D, this is how we
construct the theta group:

Definition 5.1. Let D be a divisor on A, we set
G(D) ={9, € k(A) | 3z € H(D),divg, =t;D — D}.
If 92,9y € G(D) for some x,y € H(D), we set gy - gz : 2 — g2(2)gy(z + ).

One can verify that divg, - g, =t;,,D — D, which then defines a group law on G(D). There
is also an action of g, € G(D) over s € I'(D) given by g, - s : 2 + g, 1(2)s(z — ) where g, ! is
the inverse for the group law in the theta group, one can compute g,

= t* 9z’
By considering the map from G(D) to H(D) sending an element g, € G(D) to the corresponding
point z € H(D), the following sequence is exact:

0—k*— G(D)— H(D) — 0.
We are particularly interested in subgroups of H (D) preserving this sequence, they are defined in

[Mum66), § 1, Def. p. 291].

Definition 5.2. A level subgroup K C G(D) is a subgroup such that k* N K= {0}, that is K
is isomorphic to its image K C H(D). If K C H(D), any level subgroup K C G(D) such that
K ~ K is called a lift of K.
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In particular, a level subgroup is necessarily abelian; a level subgroup exists over k iff it is
isotropic for the commutator pairing, which is equal (up to a sign) with the polarized Weil pairing.

Let 1 : z € A+ —x, this is an involution of A. If D is a divisor, D is symmetric if t*D ~ D.
For such a divisor, an element g, € G(D) is said to be symmetric if t*g, = g, *.

If f: A — B is an isogeny between two abelian varieties, a divisor D’ on B is a descent of a
divisor D on A if f*D’ is linearly equivalent to D. Mumford’s theory helps to understand those
descents. The main theorem we will be using from Mumford is the following:

Theorem 5.3 (Mumford). Let D be a divisor on A, K a subgroup of H(D), and f : A — A/K
the isogeny with kernel K. Let D’ be a descent of D wvia f, that is f*D’ ~ D.

(1) Let o € k(A) such that divae = D — f*D’ and set K = {tTTO‘ | 2 € K}. The set K does
not depend on the choice of v, it is a lift of K and the map [D'] € Pic(A/K) — K is a
ijectwn between the set of descents of D via f and the set of lifts of K.

(2) f~Y(H(D')) C H(D) and, if C(K) is the centralizer of K in G(D), then

C(K) ={g, € G(D) | x € H(D) and f(z) € H(D')}.

Moreover, C(K )/K G(D') canonically.

(3) We have T'(D)" ~T'(D'), where F(D)K is the set of sections of T'(D) invariant by the
action of K C G(D).

(4) Assume D is symmetric. Then D’ is symmetric if and only if the elements of K are
symmetric.

Proof. Ttem [1| corresponds to [Mum66}, § 1, Prop. 1] and the preceding discussion, it is based in
particular on Grothendieck descent theory. B
Item [2|is [Mum66} § 1, Prop. 2], the isomorphism comes from the map from C(K) to G(D')

that to some g, associate the only g, such that g, = f*gy, where y = f(z) and « is as in
Ttem (1 l It is a surjective HlOI‘phlSIIl and the kernel is K.

To prove Item we set p: s € (D) — f s where a is as in Item l We have
divp(s’) + D = f*(divs' + D’) > 0,

t’iz

, g7t = === which yields:

f*sf) G [y AL D Y AL
a ) altt,a) .

so ¢(s') € (D), and if g, = t:;a

g - (s )—gxlt_x<

The last equality holds because x € K so fot_, = f, hence imp C F(D)K. @ is clearly a
morphism, if ¢(s') = 0 then f*s’ = 0 and because f is surjective, f* is injective so s’ = 0: ¢ is
injective. Let s € I'(D)™, we set s” = as, this is an element of I'(f*D’). Moreover, if z € K
and g, € K is the associated element, we have g, - s = s which is equivalent to t* ,(as) = as.
Hence, for any = € K, tfs” = §”, it is invariant by K and can then be factored by f: there is
s e k(A/K) such that s” =s'of=f* s0p(s") =s and p is surjective.

We now prove Item [d] We have the following linear equivalences: D ~ t*D ~ * f*D’ ~ f*1*D’.
Hence, +* D’ also descends to D, the corresponding kernel being L*K So D' being symmetric
is equivalent to [1*D’] = [D'] and by Item [1] this is the same as *K = K. Assume first that
D' is symmetric. If gz € K is above z E K, then 1*g, € K is above —x, but the only element
above —z in K is g, 1, hence 1*g, = g; ! and the elements of K are symmetric. Conversely, if K
consists of symmetric elements, it is clear that ¢ *K = K and therefore that D’ is symmetric. [
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5.2. Theta group on an elliptic curve. In this section, we recall the study of the descents
of 2(Og) and 4(Og) on an elliptic curve E from [RS24, § 3.1], which will be useful in the next
section. Assume there is a rational 2-torsion point T € E[2](k), let K = {Og,T}, and set
¢: E — FE' = E/K be the 2-isogeny with kernel K. Let E[2] = {Og,T1,T%,T5} with T} =T,
the remaining points may not be rational. Set also 77 and T} the two 4-torsion points above 17,
which again may not be rational, and finally set T} = ¢(T3) = ¢(T3), T4 = ©(T1) and T4 = p(T1).
T/ is always rational on E’, even if T5 and T3 are not.

To understand the theta group of a divisor D of F, we must first look at the kernel of the
polarization H(D). On an elliptic curve, two divisors D and D’ are algebraically equivalent if
and only if they have the same degree. Hence, if deg D = n, we can look at D,, = n(Og), then
A(D) = A(Dy,) and H(D) = H(D,,). But A(D,,)(P) = n(P) —n(Og) for P € E and on an
elliptic curve, this divisor is equivalent to 0 if and only if n- P —n-Og = O, i.e.n- P = Og.
So H(D) = E[n], this is why we focus on divisors of the form n(Og), which are symmetric.

Let D = 2n(Og), it is symmetric and of even degree, hence E[2] C E[2n] = H(D). Let
P # Og be a 2-torsion point, there is a corresponding element gp € G(D). A result of Mumford
[Mum66|, § 2, Prop. 2, p. 307] then states that (*gp = gp, so gp is of order 2 if and only if
gp = g;l, i.e. if and only if t*gp = g;l. So gp is of order 2 if and only if gp is symmetric in this
situation.

5.2.1. Descents of 2(Og). We start by studying the descents of Dy = 2(Op). If D’ is a descent of
Ds, there is a lift K of K to G(D3) by Theorem This lift must be generated by an element
gr above T' € E[2], and gr is of order 2, that is symmetric by the above discussion. So K is
composed of symmetric elements and D’ must be symmetric by Theorem [5.3.4

We also have ¢* D’ linearly equivalent to Ds, so deg ¢* D’ must be 2, which implies deg D’ = 1
because deg *D’ = (deg ¢)(deg D’). Finally, because this is up to linear equivalence, we can look
at D’ > 0. These two conditions forces D’ ~ (P) for some P € E’, and because D’ is symmetric,
*D" = D' i.e. (—P) ~ (P), which happens if and only P € E’[2]. We then have four possible
descents for Do, but:

e 0" (Og) = (0Og)+ (T1) » Dy because T; # Op.

o o*(T)) = (Tz) + (T3) » Dy because Ty + T3 =T} # OF.

o o (T4) = (T1) + (Ty + T1) ~ Dy because 2-T1 + T, =2-T) = Op.
o ©*(T3) = (Th) + (IL + T1) ~ Dy because 2 - Ty + Ty =2 - T} = Op.

In the end, there is at most two descents of D, and those are distinct because (T3) » (T%) since
T, # T4. We now try to compute a symmetric element gr € G(D3) above T.

Let gr € G(D3) be above T', with no further assumption. This exists because we assumed that
T is rational. Because T is a 2-torsion point, we must have div g% = 0, hence there is Ay € k*
such that g2 = Ar. This element, called the type of T', is well-defined up to a square as explained
in [RS24, § 3.1, Def. 3.3]. Moreover, the element g7 = \}]TLT does not depend on the choice of gr
and is symmetric, but may not be rational. This is the symmetric element we were looking for,
as well as —gr, they are the two elements giving the descents of Ds.

5.2.2. Descents of 4(Og). The situation is easier when regarding descents of Dy = 4(Og). The
goal of [RS24] was to find descents of Dy to D} = 2(Op/) with associated lift K, to then exploit

the isomorphism T'(D}) ~ I'(D4)™ from Theorem [5.3.3] to find 2-isogenies formulas.

If D’ is a descent of Dy with respect to ¢, let K be the associated lift of the kernel to G(Dy).
By the same argument as in the case of Dy, K consists of symmetric elements, so we must look for
a symmetric D’. Furthermore, by the degree we must have deg D’ = 2 and since we are looking for
divisors up to linear equivalence, we can look at D’ > 0. We can therefore restrict to D’ ~ 2(P)
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or D' ~ (P)+ (Q) for P,Q € E'. But 2(P) ~ (2P) + (Op') and (P) + (Q) ~ (P — Q) + (Og),
we then are looking at D’ ~ (P) + (Op) for some P € E’. This last divisor is symmetric if and
only P € E'[2], we have once again four potential choices for descents of Dy:

©*(2(0p)) = 2(0g) +2(T1) ~ D4 because 2 - T} = Op.

o*(T]) + (Ogr)) = (T2) + (T3) + (Og) + (T1) ~ Dy because Th + T + T3 =2 - T1 = Op.

e (TH) +(Op)) = (T1) + (T1 +T1) + (Og) + (T1) » Dy because 2-Ty +2-Ty = T1 # Og.
(p*(( 3)+(0p)) = (Th)+ (Th+T1)+ (Op) 4+ (Th) » Dy because 2-Ty +2- Ty =Ty # Op.
There are only two descents, we can give the elements of G(D,) generating the lifts. If gr is
a symmetric element in G(D,) above T, we consider gr°% : P s gr(P)? (the tensor product
here is the usual scalar multiplication of sections, not the product in G(Dz)). This is an element

of G(Dy), it preserves symmetry and it is above T, so it is of order 2 and generates a lift K.
®2
On top of that, if gr = \;TLT’ then gAf®2 = g)\LT, which is always rational. Moreover, this §f®2

does not depend on the choice of sign in g7 and the lift K corresponds to the descent of Dy
to D} ~ 2(T4) ~ 2(T}), because of the shape of the kernels in Theorem [5.3.1] We obtain an
3

isomorphism ['(Dy)?" =~ T(D}).
The other descent of Dy to (T7) + (Op) is then given by —gr®>. We will reuse these elements
in the upcoming section on the product of elliptic curves.

5.3. Theta group on a product of elliptic curves. In this section, we will extend the notions
of Section [5.2] to the case of E x E where E is an elliptic curve. Recall from Section [3] that our
goal is to study the isogeny F' : (P,Q) — (P + Q,P — Q).

Remark 5.4. For the sake of simplicity and because this is the context we are working on, the
results in this section are only stated on E X E, however most of those still hold on A X B where
A and B are abelian varieties.

5.3.1. Product divisor. Let my : E X E — E and w3 : E X EE — E be the projection on the first
and the second component respectively, 71 : (P,Q) — P and 75 : (P, Q) — Q.

Definition 5.5. Let Dy and Dy be divisors on E. wi Dy and 75Ds are divisors on E x E, we
define the product divisor on E X E as Dy % Dy := 15 D1 + 15 Ds.

This is the correct notion of product because it has good compatibility with the tools from
Section .1} If f,g € k(E), we define f ® g € k(E x E) as:

3) V(P,Q) e EXE, f®g(P,Q):=f(P)g(Q)

Lemma 5.6. Let f,g € k(E), then div(f ® g) = (div f) = (div g).
Proof. We have f ® g = (77 f)(7%g) where 7] f and 7w}g are elements of k(E x FE). Hence,
div(f ® g) = div(nif) + div(nsg) = 75 (div f) + 73 (div g) = (div f) * (div g). O

Let Dy, D5 be divisors on E. We can relate the global sections of Dy and Dy over E to the
global sections of Dy * Dy over E X E:

Lemma 5.7. Let Dy and Do be divisors on E. The following canonical map is an isomorphism
of vector spaces:

F(Dl) & F(DQ) = F(Dl * Dz)
f@g— f®yg

where on the left side, f ® g is an element of k(E) ® k(E) and on the right side f ® g is the
element defined in Eq. (3)).
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Proof. This is a particular case of Kiinneth formula where n = 0, see [The24, Lemma 0BED|. O

Since we want to study the theta group on E x E for product divisors, we have to study
the associated polarization. We recall that we have a canonical identification Pic’(A x B) =~
Pic’(A) x Pic’(B) via (D1, Dy) — D; % Dy, and that we can see Pic’(A) inside Pic’(A x B) via
the pullback 77. Modulo these identifications applied to A = B = E, we have

A(Dy * Dy) : E x E — Pic’(E) x Pic’(E) : (P,Q) — (Ap,(P), Ap,(Q))

Unraveling the identifications, we need to check that if Dy and D5 are divisors on E, the

polarization associated to Dy x Ds is
A(Dy * Dy) : E x E — Pic’(E x E)
(P.Q)— [tfP,Q)(Dl * Dy) — Dy * D).
If (P,Q) € E x E, since m ot(p gy =tpom and 13 0t(pg) = tg o ma, we get:
t(p,g)(D1x D2) = t{p gymi D1+ t(p o753 Da = mitp D1 + w5t Do = (tpD1) * (toD2).

Because of this, A(D; * D3)(P,Q) = A(D1)(P) * A(D2)(Q).

The kernel is thus given by:
Lemma 5.8. Let D1 and Dy be two divisors on E, then H(Dy * Dg) = H(D1) x H(D2).

We then recover a statement similar to Lemma, on the theta group (see [Mum66, § 3,
Lem. 1, p. 323])

Lemma 5.9. Let Dy and Ds be divisors on E. The following canonical map is a surjective
morphism of groups:

G(Dl) X G(DQ) — G(Dl * Dg)
(f,9) — fog.
Its kernel is given by {(\,A71) | X € k*} ~ k*. Moreover, if f € G(D) lies above P € H(D;)
and g € G(D3) lies above Q € H(D3), then f ® g lies above (P, Q) € ker H(D; * D5).

Proof. The surjectivity and the computation of the kernel correspond to [Mum66, § 3, Lem. 1,
p. 323]. Consider f, g, P and @ as in the statement, then, by Lemmadiv f®g=div fxdivg.
As seen above, div f x divg = t’(“P Q)(Dl * Do) — Dy % Do, hence f ® g lies above (P, Q). O

Finally, a straight-forward computation shows that the action of G(D; * D3) on T'(Dq % Da) is
compatible with these maps. Let s; € T'(Dy), s2 € I'(D2), g1 € G(D1) and g2 € G(D3), then:
(91 ® g2) - (51 ® s2) = (g1 - 51) ® (g2 - 52).
5.3.2. A commutative diagram for half differential additions. We set the following divisors on F
and E': Dy =2(Opg), D) = 2(0Og/) and Dy = 4(Ofg). Recall that F is the differential addition
isogeny and @ is the diagonal isogeny of ¢, where ¢ is a 2-isogeny on E, as in Section [3]
Because of Lemma if R,S € E with coordinates (Xg : Zg) and (Xg : Zg) — each
coordinate being a section above Dy — then a natural basis of I'(Dy % Ds) is given by:

XrXs XgpZ
I(DQ*LE)—><Z§X§ Z§Z§>.

By general theory, because of the uniqueness of totally symmetric line bundles in their algebraic
equivalent classes, Dy * Dy descends to Ds x Do via F' (since both are totally symmetric). This

descent corresponds to a lift of the kernel K ; then we obtain an isomorphism I'(Dy * D4)K ~
I'(D3 * D2) by Theorem from which we can express a basis of I'(Dy % Ds) via a basis of
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FIGURE 2. Factoring G = Fyo ® = &y o F through F and &

(D4 * Dy), which we can also compute. This give differential addition formulas, and with a more
thorough study of those descents that are compatible with a suitable descent of D4 * D4 through
®, we are able to find half differential addition formulas. We now give more details.

As discussed in Section [3 if Kp and K¢ are the kernels of F and ® respectively, then
KrNKge = {(Og,0F),(T,T)}, so we can’t factor ® through F or the converse. We then consider
the isogeny G : E x E — A with kernel Kg = Kr + K¢, where A is an abelian variety, with a
polarization of type (1,2) (hence which is not principal). Since Kr, K¢ C K¢, we can factor F'
and ® through G. Let &y : Ex E — A and Fy: E' x E' — A be such that G = Fyo® = ®yo F.
The situation is summarized in Fig. 2]

The kernel of ®¢ is K¢, = F(Kg) = F(Ke) = {(Og,Og), (T,T)}. Similarly, the kernel of Fy
is KFO = ‘P(Kg) = (I)(KF) = {(OE/,OE/), (T/7T/)}7 where T" = Lp(To) for Ty € E[Q} \ {OE,T}

5.3.3. Descents of Dy * Dy with respect to ®. We have seen in Section [5.2] - that D, descends to
D}, via ¢, the lift of the kernel Kw is generated by a symmetric element gr gT 2 of order 2. Let

a € k(E) with divisor Dy — ¢ D27 then gr%% =
If we look at the image of K X K via the map of Lemma E we get a subgroup

tTa
«

K={191, g®*01, 10 55°, gr%* ® gr°?}.
If we look for instance at the second element, for (P, Q) e ExE:

tra(P) _ a(P+T)a(Q) _ troa®af Q)

(gr* @ 1)(P,Q) = aP)  aP)alQ)  aoa(P,Q)

With a similar computation,

- {tfo’o)aééa t?T’O)(I@Oé tZ‘QT)oz@a t?T)T)a®oz}

K: ) b )
a® o a® o a® o a® o

and we check that it is a lift of K¢ to G(Dy * D4). We just have to compute diva ® «, which
can be done using Lemma

diva® a =7 (Dy — p*Djy) + 75(Dy — ¢* D) = Dy x Dy — (750" Db + w50 D}).
For i = 1,2, if 7] is the projection from E’ x E’ on the i-th component of E’, then 7)o ® = pom;
by construction, hence 7} ¢* D} = ®*r/* D}, which leads to diva® a = Dy * Dy — <I>*(D’ * Dj).

To summarize Dy * Dy descends to D) D) with respect to ® and the lift of the kernel K = Kq>
is naturally constructed as the product of the lift K o With itself.

This gives an isomorphism I'(Dy x Dy)* ~ I'(D}, % D}) by Theorem M

5.3.4. Descents of D4 D4 with respect to F'. The isogeny F' is not diagonal this time. Fortunately,
if D is a symmetric divisor on F, [Mum66, § 3, Prop. 1, p. 320] states that F*(D*D) ~ (2D)*(2D).
Considering D = Dy, we get F*(Dg % Da) ~ Dy * Dy. So Dy * Dy descends to Dy * Do with
respect to F, we denote by IN(F the lift of Kr to G(D4 % D4). Moreover, the elements of f(p
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are of the shape gp ® gp for P € E[2] and gp € G(D,4). This implies g% ® gr®? € Ky is the
element above (T,T).

This gives an isomorphism I'(Dy * D4)KF ~ I'(Dg % Dy), which permits to recover differential
addition formulas by expressing sections of Dy * Dy — which are coordinates — in terms of
sections of Dy * D, invariant by F.

5.3.5. Descents of Do x Dy and DY x D} with respect to ®y and Fy. Since T is a rational 2-torsion
point on E, we have seen in Section that there are elements gr € G(Ds) such that g% = A
where the class of Ay modulo squares is the type of T. Via the morphism of Lemma we
consider g(p 1y 1= ﬁgT ® gr € G(Dy x Ds). This element does not depend on the choice of gr,
lies above (7', T'), and is of order 2 because

1 1,
(/\TgT ® 9T> = e r ®gr = 1.
Hence, Kg, = {1, ger,ry} is alift of Kg, to G(Ds * D3), and by Theorem there is a divisor
D 4 on the abelian variety A on which Ds % Dy descends with respect to ®g. This also means that
D4+ Dy descends to D4 with respect to G because ®§D 4 ~ Do Dy and F*(Dg % Dy) ~ Dy * Dy,
which implies G*D4 ~ D4 * D4. This produces a kernel K A-

Similarly, I?FO = {1, 9¢r, 1)} where g¢p 1) = %T/gT/ ® g1, g1 € G(D}) above T', is a lift
of K, that descends D} x D) to some divisor D', on the abelian variety A with respect to Fp.
Similarly, D4 * D4 descends to Df4 with respect to G, via a kernel K’ A

We need to show that KA = KA Set Ko KF Kq>, the subgroup of G(Dy4 * Dy) generated
by elements of Kp and Kg. It is a level subgroup because if A = g(p ) - g(P/Q,) € Kg nk*,
with g(pq) € Kp and g(pr o) € Ka, then (P — P',Q — Q') = (Op, Og), and (P,Q) = (P',Q') €
KrNKge ={(0Og,0g),(T,T)}. In both cases, gp,q) = 9(p',q), Proving that Konk*={1}. It
then corresponds to another descent of Dy x D4 with respect to G by Theorem

The elements of Kr commutes with the elements of Kg, hence KO C C’(KF) C(K.:p) and
via the 1son10rphrsrn C(KF)/KF ~ G(DQ * Dy) of Theorem KA must maps to K<p0 by
construction, but KO also maps to K<p0 This forces Ko K A- Srnnlarly, Kg =K' ‘4. Hence, Dy
and D', are linearly equivalent and corresponds to the same lift KG = KO

Using Theorem .5'3'3|7 [(Dy % D4)* ¢ ~T(D,) and using the previous results we have

T(Ds * Do)%0 ~ T(Dy + D4)5¢ ~ T(D} « D))"

This is the main ingredient to derive half differential addition formulas, since from our

commutative diagram, I'(Ds * Dg)K‘i’O are precisely the subspace of the differential addition
formulas, expressed in terms of coordinates P + @, P — @, that factorize through ®(P, Q). The

isomorphism with I'(Dy D4)KG allows us to write these formulas in terms of coordinates of P, Q,
invariant under the action of K. Since we know the action of K¢ and the other lifted kernel on
sections, basic linear algebra now gives us formulas to find a basis of invariants.

5.3.6. Even coordinates. Recall that over an abelian variety A, ¢ : x € A — —z is an involution,
giving an automorphism ¢* : k(A) — k(A). If D is a symmetric divisor, the restriction of * to
I'(D) (resp. G(D)) is an automorphism of vector spaces (resp. of groups). A section f € k(A) is
said to be even if .* f = f and is said to be odd if .* f = —f.



HALVING DIFFERENTIAL ADDITIONS ON KUMMER LINES 20

Over E, if I'(Dy) = (X, Z), a basis of I'(Dy) is (X?,Z% X Z,T) where T =Y Z; is a fourth
odd section. The isomorphism of Lemma then yields basis of T'(Ds * D3) and T'(Dy % Dy):

XpXg XpZ

X2X3  X3ZY  XiXoZq — X3ilg

2 y2 2 72 2 2
P(Dyx Dy = | ZPXG ZbZg 72702 73T \
XpZpX3 XpZpZ} XpZpXoZq XpZpTg
TpX3 TpZ3 TrX0Zg TpTo

The issue that arises when looking for differential addition formulas via I'(Dy * D4)KF ~

I'(Ds % Ds) is that, if we only know the Kummer line coordinates (X : Z) of P,Q, we have
no information about the section T. We have to restrict our study to even coordinates. We
will denote, for any symmetric divisor D, I'(D)" = I‘(D)L* the subspace of even sections.
We have I'(Dy)" = T'(Dy) and T'(Dy)" = (X2,22,XZ) and there is a canonical surjection
D(D2)" @ T(D2)" = T(Da)", f @ g fog.

The ¢ maps over ¥ and F x E are compatible: if 11 : F — F and 1o : E X E — E X E are
the maps on the corresponding varieties, then t5 = 1§ ® ¢ on k(E) ® k(E) C k(E x E). Via the
isomorphism of Lemma we get an injection F(D4)+ ® F(D4)+ — T(Dy * D4)+.

However, one can compute the following basis for I'(Dy * Dy)*:

X2X3  X3ZE  XiXqZq  Z3X3 Z}%Zé> '

+_
(D4 * Dy) <ZI%ZQZQ XpZpX3 XpZpZd XpZpXqZq TpTg

The last section is even as it is the product of two odd sections, but the image of the injection
is only of dimension 9 since I‘(D4)Jr is of dimension 3. We denote the image of the injection
D(Dyx D)TT CT(Dyx Dy
XI%XE? X%Zé X3XoZg
D(Dyx D)t = < 73 X3 737} VAN o >
XprX(z;) XprZZ2 XpZpXqZg

This is the set of sections we would like to work with. One can check immediately that
T'(Dy * D4)Jr+ is the set of sections above Dy * D, invariants by (* ® 1 and 1 ® +*. We will
use the following lemma;:

Lemma 5.10. Let D be a symmetric divisor over E, gr € G(D) a symmetric element above a
2-torsion point T € E[2]. Then for any f € T'(D), *(97 - ) = g7 - (¢*f).

Proof. Let P € E, f € T'(D), we have .*(gr- f)(P) = (97 f)(—P) = gr(—P) f(—P+T). Because
T is a 2-torsion point, —T = T and since gr is symmetric, gr(—P) = gr(P):
Vg - )(P) = gr(P)f(=P =T) = gr(P)." f(P+T) = gr- (" f)(P).
O
Since the kernels K F, I~{q>, K Fo) f?.:pg and IZ’G are all composed of symmetric elements above

2-torsion points, the action of t* ®1, 1®¢* and * ®* commutes with the one of the kernels by the
above lemma. Denote by G, = {¢* ® 1, 1 ®¢*, t* ® 1*}, such that T'(Dy = D) " = T(Dy % Dy)".

We start by studying the isomorphism I'(Dy * D4)KF ~ I'(Dy % D2). What is the action of
1*®1 on I'(Dg * D2) through the isomorphism? Let (R,S) € E x E and (P, Q) € E x E such that
F(P,Q)=(R,S)=(P+Q,P—Q), s €T (Da*D5). Then (:*®1)-F*s(P,Q) = F*s(—P,Q), and
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F(-P,Q)=(-P+Q,—-P—-Q) = (-5, —R) hence *®1)- F*s(P,Q) = s(—S,—R). Similarly,
(I1®*)- F*s(P,Q) = s(S,R) and (¢* ® t*) - F*s(P, Q) = s(—R, —S). Therefore, firstly we have

(F(D4 * D4)I~(F)Gb = (F(D4 * Dy) L>KF = (F(D4 * D4)++)%F

by Lemma [5.10} and secondly since all elements of I'(Ds * Ds) are even, if 7: (R, S) — (S, R), we
have

Kp Kr .
(F(D4 x D4)+) ~ T(Dy * Ds) and (F(D4 % D4)++) ~ (D + Dy)"

In particular, when looking for differential addition formulas with only X and Z coordinates, we
cannot choose whichever section of I'(Ds * Dy) we want, it must be invariant by permutation of
R and S.

The situation is easier regarding ® because it is a diagonal isogeny, hence one can check

e
(F(D4 « D4)++> "~ (DY« DY).

If we go down one more level however, the invariance by 7 is automatic:

- 7 -
[(Dy Do) %0 ~ (P(D4 * D4)++) © ~ (DY« D).

In summary, the full set of differential addition formulas T'(Dy * D4)KF is of dimension 4 and

is automatically given by even sections. However, if we want to remove the section TpTg which
cannot be computed from Xp,Zp, X, Zg, we need to work with the dimension 3 subspace

K
(F(D4 * D4)++) F. On the codomain of F, this corresponds to level 2 sections of (R = P+Q, S =
P — Q) that are also invariant by the permutation of R, S, for instance XpXs, ZrZs, XrZs +
ZrXg, but not XrZg. Finally, the half differential addition formulas correspond to sections

in I'(Dy * D4)KG ~ T'(Dq * DQ)K“I’O7 this is a space of dimension 2 which is automatically inside
D(Dyx Dy

5.3.7. Finding formulas. This is all we required to find our half differential addition formulas.
Assume E[2] = {Og, Ty, T, T3} with T} being rational, the method is then as follows:

(1) Set T = T; such that ker p = {Op, T}, we first compute the translation by T on the
Kummer line associated to F, denoted tr. If T' = p(Tz) = ¢(T3), we compute the
translation by 77 on the Kummer line associated to E’, denoted t7/. By considering the
affine lifts of these translations, we derive the types of T" and T’, denoted A\ and A\p-.

(2) Compute the invariant subspaces I'( Dy Dg)KI’U and I'(Dj * D; )KF0
(3) Find the coefficients relating the bases of I'(Da * Dy) ™ and I'(D), DQ)KF0

Remark 5.11. If T'(D; x DQ)K<I>0 = (u1,ug) and T'(D} * D’Q)KFO = (v1,v2), we then know there
are relations

uz(P+Q, P — Q) = Biv1(v(P), p(Q)) + B2v2(0(P), »(Q))-

For our purpose, we consider these relations projectively, so we can multiply uy and us by a same
factor.

In the first step, we compute tT P! — P! projectively, let tr : k* — k2 be an affine lift.
Then t3 = Arid. The map mp = (tT ® th) is an involution of k(E) ® k(E). Assume we

{ u1(P+Q, P — Q) = aqv1(p(P), p(Q)) + aava(p(P), 9(Q)),
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have @ € T'(Dg * Do) such that tp(u) = w. Then, for g1y € Ko, above (T,T), we have
gy U= g(_TlT))\TTT(ﬁ) = g(_TlT))\Tﬂ, and an element u invariant by g(r,r) is given by

= (1 —+ ATg(_:F{T))ﬂ.

This is how we deal with the second step, we compute two invariants by Tr, which projectively
will lead to the same result as invariants by g¢r,ry would have. The same holds for the point T".

In the next section we will finally look at an example.

5.4. Example. In this example, we will consider the theta model 6(a : b) associated to E given
by 2-torsion points

O=(a:b)", T, = (—a:b), T = (b:a), T5=(=b:a),

where ¢ € k. The 2-isogeny will be ¢ : (X : Z) — (X2 : Z?). Its kernel is given by T' = Ty. The
Kummer line on the image has ramification points

O =(®:v®)", Ti=0*:a?), Ty=(1:0), T4=(0:1),
this is the theta squared model 04(a? : b?), the interesting 2-torsion point on this model is
T' = ¢(Tz) = (T3) =T7.

As given in Example the translations by T and T” on their respective model are t : (X :
Z) = (=X : Z) and tr : (X : Z) = (Z : X). We consider the affine lifts t7 : (X, Z) — (=X, Z)
and t7/ : (X,Z) — (Z,X). The types are then A\p = Ay = 1, we set 7 = t5 @ t5 and
T =t @

We will work with the following basis on I'(Dsy * Ds), where (R,S) = (P + Q,P — Q) and
(P,Q)e ExE:

XrXs XgpZ
F(DQ*DQ)_<Z§X§ Z§Z§>.

T acts as follows on I'(Dg * Dy):

1 (XrXs) = XpirXsir = (—Xr)(—Xs) = XrXs,
m(XrZs) = XryrZsyr = —XrZs,

7(ZrXs) = Zrir X541 = —Zp X3,

r(ZrZs) = Zri1Zs+T = ZRrZsS.

XrXgs and ZrZg are invariant sections, and since I'(Dq * Dy)" *0 is of dimension 2, we get

F(DQ * DQ) IO = <XRXS, ZRZS>
Regarding T'(D} * D}), we will use the following basis instead:
<(X¢<P> + Zo)(Xp(@) + Zo@) Xy + Zop)) (Xp(q) — Z@(Q))>
(Xo(P) = ZoP))(Xp(@) + Zo@)  (Xop) = Zo(p))(Xp(@) — Zp(q))

The reason is that the computations with 77+ are easier. We get two invariants of I'(Dy * Dg)KF 0:

(Xop) + Zo())(Xp(@) + Zp(@)): (Xop(P) = Zo(P)) (Xop(@) = Zp(@)))-
We now set, for (P,Q) € E x E and (R,S)=(P+Q,P —Q):

o u1(P,Q) = XrXs,
o z(P, Q)= ZRZS,
e v (PQ)= )+ ZoP) (Xp@) + Zo(@)
e 0u(PQ)= = Zo(P))(Xp(@) = Zp(@))
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By the theory, there are constants oy, as, 81, 82 € k such that for any (P,Q) € F x E:
(u1(P, Q) s uz(P, Q) = (a1v1(P, Q) + a2v2(P, Q) : S1o1(P, Q) + P2v2(P, Q)).
We then evaluate at specific points to get relations on the coefficients. On the theta model
6(a : b), we denote by 71 = (1:0) and 71 = (0 : 1) the 4-torsion points above T7, and the usual
(A?: B%) = (a® + V% : a® — b?).
(1)If(P¥Q)::(C%CUathen( ,5) = (0,0) and (p(P),(Q)) = (0, 0):
(@®: b*) = (a1 A" + aB' : 1 A" + B, BY).
(2) If (P,Q) = (T1,0), then ( ,S) = (T1,T1) and (p(P), »(Q)
(1:0) = (1A% + a2 B? : $1 A% + B, B?).
(3) If (P, Q) = (11, 0), then (R, 5) = (T1, Ty) and (p(P), p(Q)) = (T3, 0"):
(0:1) = (yA? — ayB? : 1 A? — B, B?).

The second and third relations give 5142 = —fB% and a1 A% = a9 B?. When injected in the first
one, we get

) (T27 )

(a® : b?) = (aaB*(A% + B?) : =B, B*(A? — B?)) = (awa® : —f2b?).
Hence, as = —3> and we can derive the general formula from these relations:
(a1v1 + agvs @ frvr + Bava) = (a1 A%v1 + AP0 1 B1 Ay + BoAvs)
= (az(B?*vy + A%vy) : fo(—B%v; + A%v3)) = (B*vy + A%y : Bvy — A%0,).
Thus, the formulas HalfDiffAdd, (p(P), p(Q), S) associated to ¢ are:
(XRXS . ZRZS) =

(BE(X«:(P)  Z4() Xo@) + Zp(@) + A2 X (p) = Zo(p) X (@) = chz)))_

B (Xo(p) + Zo(p))(Xe(@) + Zo(@) = A" (Xo(p) = Zo(r) (Xip(@) — Zo(@)

Remark 5.12 (Montgomery differential addition). On a Montgomery Kummer line given by
(1:0)", (0:1), (a:b), (b:a)

where § may not be rational, the translation by T = (0:1) isty : (X : Z) — (Z : X). As we have

seen above, XpXs and ZrZs are not invariant by this translation if (R,S) = (P + Q,P — Q).

This means that we cannot factor the traditional differential addition formulas into half differential

addition formulas. We can still find new formulas like the ones given in Section[f.7 on Curve25519,
but they are not as efficient as the usual ones.
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APPENDIX A. HALF DIFFERENTIAL ADDITIONS FOR ABELIAN VARIETIES IN THE THETA MODEL

The arithmetic of theta function comes from the duplication formula, which can naturally be
expressed as HalfDiffAdd operations. In this section, we give half differential addition formulas
in any dimension, for level 2 theta coordinates. Then we look at the impact of half ladder on the
efficiency for abelian surfaces, compared to the standard ladder as introduced in |[CC86} |GLO09|.

Let (A,L£,04) be a principally polarized abelian variety with a symmetric level 2 theta
structure. We let 0;,1 € (Z/27Z)? be the basis of theta functions of level 2. We also let ¢ : A — A’
be the canonical isogeny induced from the theta structure, and a choice of compatible level 2
theta structure on A’, with dual theta functions ¢;.

Then we have the key formula, used in [Dar+24] to derive efficient 2"-isogeny formulas.

(4) (6:(P +Q)); x (0:(P — Q)); = H((0i(2(P))) * (05((Q))))

Here (6;(P)),; = (0;(P)), denotes the component wise product (6;(P)6;(Q))
Hadamard transform.

From the knowledge of the theta constant 6;(0) on A and the dual theta constants 6.(0) on A’,
it is possible to both compute the dual theta coordinates 0;(o(P)) from the theta coordinates of
P (by setting @ = 0 in Eq. )7 and to use Eq. as a half differential addition formula.

and H is the
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In this section, we will assume that these constants are rational; we leave to the reader the
adaptation of the higher dimensional half ladder to the theta twisted model, as in Algorithm

Assuming that the theta null points of A and A’ have been normalized and their inverse
computed (this is a pre-computation which does not depend on the choice of base point P for the
ladder), then an isogeny image costs 298 + (29 — 1)my, a half doubling costs 298 + (29 — 1)my,
and a half differential addition costs 29M + 291. In dimension 1, since we are working with
projective coordinates, these 2I could be easily replaced by 2M. This is not the case any more
in dimension > 1: the 291 can only be replaced by (2972 — 6)M. This means that in the half
ladder, it is quite expensive to use non-normalized pre-computed points P;, and so it will become
interesting only when doing a full normalized pre-computation.

In the standard ladder, at each step we compute two isogeny images, one half doubling
and one half differential addition. The differential addition is always done with the same base
point P has difference, so via a pre-computation at the start to normalize P these 291 become
(29 — 1)M. The total cost is then (2971 — 1)M + 3.29S + 3(29 — 1)mg by bit. Using twisted
theta coordinates, we have a (29 — 1)(M — S — my) trade-off, which gives a complexity of
(329 —2)M + (2971 +1)S +2(29 — 1)my by bit.

In the half ladder, we first compute iterated isogeny images P; = ¢;(P;—1) (one by bit), and
then at each step we do one half doubling and one half differential additions. Then we use
one half doubling 2U;_; = HalfDouble,, (¢;(U;—1)) or 2V;_; = HalfDouble,, (¢;(V;—1)) and one
half differential addition Ui—l + ‘/1'_1 = HalfDiffAdd@i (‘Pi(Ui—l)7 901'(‘/2'—1), Ui—l — ‘/1'_1), where
U;_1 —V;_1 = P;_1 has been pre-computed.

This time, the pre-computation to normalize each P; is much more expensive: one global
inversion and around 4(29 — 1) — 3 multiplications. However, we note that the P; only depend on P
(and the scalar bit length), not on the actual scalar, so this pre-computation can be reused whenever
we do several scalar multiplications with the same base point P. Taking into account the isogeny
images, the global cost is one global inversion and (4(29 —1) —3)M+29S+-(29 —1)my by bit for the
pre-computations, which only depends on the base point P, and then (2971 —1)M+29S+(29—1)m,
by bits for the scalar exponentiations m — mP.

We remark that in the right to left Montgomery ladder, we have the same normalization
problem, except that here the base points used in the differential addition formulas depend on the
scalar m, so it is not possible to share the pre-computation once and for all. Indeed, the right to
left ladder uses normal differential addition of the form U; + V; = DiffAdd(U;, Vi, U; — V;) where
this time it is U; = 2°P which has been pre-computed, rather than the difference U; — V.

In Table [5, we put a comparison of the cost between the ladder and half ladder for abelian
surfaces. We remark that the 3m in the standard Montgomery ladder assume that the base point
P is normalized and that the 1/6;(P) have been computed; otherwise these become 6M. If the
theta constants are small, we can replace the TM + 9S + 3m + 6mg cost by 4M + 12S + 3m + 9my.

As we see from this table, unlike the case of dimension 1 where the pre-computation was so
cheap the half ladder was still more efficient than the standard ladder even when including the
pre-computation cost, in dimension 2 using the half ladder is only interesting when the same base
point P will be reused several times. This will be the case for instance in signature schemes like
p-Kummer [Ren+16].

Algorithm Pre-computation = Normalization Step

Montgomery Ladder LtR — — ™™ + 9S + 3m + 6my

asy

Half ladder, our contribution 2S + 1my 3I+3M = 12M TM + 4S + 3m

TABLE 5. Ladder costs per bit for the half ladder in dimension 2
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APPENDIX B. COMPUTATIONS ON CURVE25519

In this section, we detail how we obtain half differential addition formulas over a Montgomery
Kummer line M (A : B) with ramification

(1:0°,  (0:1), (A:B), (B:A),
but where 4 may not be rational. We further assume there is a 8-torsion point (r : s) above
(1:1), itself above (0: 1). Curve25519 for instance verifies such hypotheses. We set the following
additional constants: (y:68) = (4rs: (r —s)?) and (a:b) = (y — & : v+ ). The 2-isogeny with
kernel T'= (0 : 1) we are interested in is
V(X :2Z) s (ab(X — 2)° —ad(X + Z)* : ab(X — Z)* + b6(X + 2)?).
Its dual is given by
V(X :2) v (aZ? —bX?+20X7 : aZ? — bX? — 26X Z).

The translation by T on M (A : B) is simply t7 : (X : Z) — (Z : X) as explained in Example [2.4.1]
with affine lift ¢tr : (X,Z) — (Z,X). The image is the theta twisted model 6;(a : b) with
ramification
(a:b)", (—a:b), (1:1), (—=1:1).
Recall these are derived from [RS24, Thm. 4.11, Prop. 4.12] and the composition with isomorphisms
from Example between theta twisted and Montgomery models.
We have:

e p(1:0)=¢(0:1)=(a:b),

e Y(A:B)=9(B:A)=(-1:1),

e p(1:1)=(—a:b),

e Y(—1:1)=(1:1).
The point of interest on 6 (a : b) is then 77 = (—1 : 1). We want to compute ¢7-. It is a
homography of P!, which must verify:

tr(a:b)=(=1:1), trr(=1:1)=(a:b), tr(—a:0)=(1:1), tr(1:1) = (—a:b).
This leads to t7+ : (X : Z) — (—aZ : bX), its affine lift is t7v : (X, Z) — (—aZ,bX).

We have 3 = id so A\p = 1 and t3, = —abid, so A\p» = —ab. We set 70 = t5 ® 5 and
Tr = %wt;’ ® t7.. This is part of the reason we wanted to illustrate this example where the

type has no reason to be a square, and we have to consider it in the computations. We work with
the usual bases of I'(Dy * Ds) and T'(D} * D)), where (R,S) = (P +Q,P — Q):
T'(Ds * Dy) = <XRXS XRZS>7 (D}« DY) = <Xw<P)Xw(Q> Xw(P)Zw(Q>>.
ZrXs ZrZs ZypyXp@)  ZypP)Zp(Q)

7 acts as follows on I'(Dg * Dy):

o 77(XrXs) = ZrZs,

o TT<XRZS) = ZRXs.
This gives two invariants XpXgs + ZrZs and XprZg + ZrXg. With some linear algebra, we can

derive the two invariants (Xg + Zg)(Xs + Zs) and (Xg — Zg)(Xs — Zs) (or by checking directly
that those are indeed invariant):

[(Dy * D3) % = (Xg + Zr)(Xs + Zs),(Xg — Zr)(Xs — Zs)).
In the same manner, we look at invariants for 7p:
a2 a
o T/ (Xy(p) Xy(@) = 25 Zu(P)Zu(@) = — 5 Zu(P) Zup(Q)

—ab

o 7/ (Xy(P)Zy(@) = T Zu(P) Xu(@) = Zy(P) Xy (Q)-
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By rescaling the first invariant, we get the following basis:

KFO

[(Dy * Dy) ™" = (aZyp)Zy(@) — bXyp(P) X)) Xu(P) Zp(@) + Zup) Xu(@))-
We then set, for (R,S) =(P+Q,P —Q):
(

e u1(P,Q)=(Xr+ Zr)(Xs + Zs),

o uy(P,Q) = (Xr—Zg)(Xs — Zs),

o v1(P,Q) = aZyp) Zypq) — bXy(r) Xy(@),
o 02(P,Q) = Xyp)Zy(Q) + Zy) Xu(Q)-

We are looking for the constants a1, as, 81, 82 € k such that:

(u (P, Q) t uz(P, Q) = (aqv1(P, Q) + av2(P, Q) : Brv1 (P, Q) + Pava2(P, Q)).
Consider T = (1:1) and T = (—1 : 1) the 4-torsion points above T' = (0 : 1), then:
o F(T,0)=(T,T), ¥(T) = (—a:b), »(O) = (a : b), giving the equation
(1:0)=(arab(b—a)+0: Brab(b—a)+0) = B =0.
F(T,0)=T,1T),vT)=(1:1),¥(O0) = (a:b), giving the equation
(0:1) =0+ az(a+b):B2la+b) = az=0.
o F(T,T) = (T,0), ¥(T) = (1:1), giving the equation
(1:=1)=(a1(a—=10b):2B3) = a1(b—a) =28y = B2 =0p1.
The half differential addition formulas HalfDiffAdd, (¢(P),¥(Q), P — Q) are then:

aZ Z —bXypX
((Xn+ Za)(Xs+ 28) s (X = Zn)(Xs - 26) = (f 07510 P tua))
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