
HAL Id: hal-04723989
https://hal.science/hal-04723989v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diversity of major histocompatibility complex of II B
gene and mate choice in a monogamous and long-lived

seabird, the Little Auk (Alle alle)
Katarzyna Wojczulanis-Jakubas, Brian Hoover, Dariusz Jakubas, Jérôme

Fort, David Grémillet, Maria Gavrilo, Sylwia Zielińska, Magdalena
Zagalska-Neubauer

To cite this version:
Katarzyna Wojczulanis-Jakubas, Brian Hoover, Dariusz Jakubas, Jérôme Fort, David Grémillet, et
al.. Diversity of major histocompatibility complex of II B gene and mate choice in a monogamous and
long-lived seabird, the Little Auk (Alle alle). PLoS ONE, 2024, 19 (6), pp.e0304275. �10.1371/jour-
nal.pone.0304275�. �hal-04723989�

https://hal.science/hal-04723989v1
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Diversity of major histocompatibility complex

of II B gene and mate choice in a

monogamous and long-lived seabird, the

Little Auk (Alle alle)

Katarzyna Wojczulanis-JakubasID
1*, Brian Hoover2, Dariusz JakubasID
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Abstract

The major histocompatibility complex (MHC) plays a key role in the adaptive immune sys-

tem of vertebrates, and is known to influence mate choice in many species. In birds, the

MHC has been extensively examined but mainly in galliforms and passerines while other

taxa that represent specific ecological and evolutionary life-histories, like seabirds, are

underexamined. Here, we characterized diversity of MHC Class II B exon 2 in a colonial

pelagic seabird, the Little Auk (or Dovekie Alle alle). We further examined whether MHC var-

iation could be maintained through balancing selection and disassortative mating. We found

high polymorphism at the genotyped MHC fragment, characterizing 99 distinct alleles

across 140 individuals from three populations. The alleles frequencies exhibited a similar

skewed distribution in both sexes, with the four most commonly occurring alleles represent-

ing approximately 35% of allelic variation. The results of a Bayesian site-by-site selection

analysis suggest evidence of balancing selection and no direct evidence for MHC-depen-

dent disassortative mating preferences in the Little Auk. The latter result might be attributed

to the high overall polymorphism of the examined fragment, which itself may be maintained

by the large population size of the species.

Introduction

Producing two major classes of cell surface receptors (class I and class II), the polymorphic

genes of the major histocompatibility complex (MHC) play an essential role in the adaptive
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immune function of vertebrates [1–3]. Since MHC receptors are encoded by individual alleles

that respond only to a fixed number of antigenic peptides, more diverse MHC genotype pro-

vide better protection from a broad range of pathogens and is advantageous for disease resis-

tance [4, 5]. Therefore, high levels of MHC polymorphism in a population often reflect

selection pressure from pathogens [6–10].

Several genetic mechanisms have been hypothesized to maintain MHC diversity, with three

most frequently evoked: heterozygote advantage [11], rare-allele advantage [12, 13] and fluctu-

ating selection [14–16]. These mechanisms represent forms of balancing selection that favour

the existence of multiple alleles within a population [17]. Since MHC genotypes may be pheno-

typically detectable [18–22], MHC polymorphism, especially MHC class II [23], may be beha-

viourally maintained through strategies, such as mate choice, wherein the genotypes of both

parents influence the immunocompetence of the offspring [24]. In this context, the genetic

compatibility hypothesis assumes that individuals may produce MHC-heterozygous offspring

if they mate disassortatively in respect to their own MHC profile (i.e. partner’s genes are sup-

posed to be sufficiently different or complementary to own genotype) [20, 25].

While the avian MHC complex has been extensively examined, the majority of these studies

has been performed on specific ecological/taxonomical groups such as galliforms or passerines.

In the context of mate choice and heterogenous distribution of pathogens in the environment,

however, other avian taxa that represent distinct ecological and evolutionary life-histories,

may experience different selection pressure on MHC polymorphism [26, 27]. Therefore, any

general interpretation of the mechanisms and phylogenetic origins of MHC diversity in wild

bird populations should ideally be based on a wide array of avian taxa [28]. Consequently,

there is a strong need to characterize MHC patterns across different avian species.

Due to habitat preferences and some specific life-history traits, seabirds represent an inter-

esting group to examine the functioning of the immune system, including MHC (e.g. [23, 29]).

Seabirds spend most of the year in the marine environment where they are exposed to an array

of specific pathogens and endo- and ectoparasites [30–32], and that may differentiate them

from other avian groups. In addition, many seabirds breed colonially in dense aggregations

that can promote elevated transmission rates of pathogens, and the strength of selection on

MHC diversity (especially in class II genes) has been shown to increase with increased coloni-

ality and migratory behavior in birds [33]. Recent outbreaks of avian influenza have had par-

ticularly strong effects on (colonial) seabirds [34, 35], highlighting the need for a deeper

understanding of the functioning immune system in this group. Finally, seabirds form long-

term pair bonds that are critical for the successful incubation and provisioning of the brood,

and thus represent a promising avenue for MHC-dependent mate-choice studies [36–39]. In

this study, we focus on the Little Auk, also knowns as the Dovekie (Alle alle), to characterize

their MHC diversity and to test whether MHC variation could be maintained in this species

through MHC-dependent mating preferences.

The Little Auk is a small (130–180 g) pelagic seabird that breeds exclusively in the High

Arctic [40], with wintering areas also located mainly in sub-Arctic and Arctic zones [41]. This

makes the species particularly intriguing in the context of MHC studies as polar marine eco-

systems are characterized by relatively low levels of pathogen abundance [42–46]. Such envi-

ronmental conditions could be expected to relax pathogenic selection on the MHC diversity in

Little Auks. However, Little Auks also breed colonially in high densities that may facilitate

pathogen transmission [27] (for example, via direct contact during sexual or aggressive inter-

actions [47]), which in turn could increase selection pressure on MHC alleles, therefore

increasing MHC diversity. These contrasting scenarios predict opposing patterns of MHC

diversity in the Little Auk and raise the need to understand the role of MHC in mating prefer-

ences and population biology of this species. In this study, we therefore analyzed MHC alleles
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across three main breeding locations (comprising two morphologically distinguishable subspe-

cies) to recognize MHC diversity of the species. Since selecting a mate is a critical decision

with long-term fitness consequences in Little Auks (long-term pair bonds, social and genetic

monogamy [48], preference of partners with particular phenotypic traits [49]), and MHC II

genotypes are known to mediate mate-choice decisions [24], we also tested the hypothesis that

Little Auks exhibit MHC-dependent mating preferences.

Materials and methods

Samples collection

To characterize MHC diversity in Little Auks, we collected small blood samples (ca. 20 μL of

whole blood collected from underwing vein and preserved in 90% ethanol) from 140 birds

originating from three breeding colonies: Hornsund, Spitsbergen (77˚ 00’N, 15˚ 33’E, n = 99

in 2014); Ukaleqarteq (Kap Höegh; in 2013), East Greenland (70˚ 43’N, 22˚ 38’W, n = 12 in

2013); and Tikhaya Bay, Hooker Island, Franz Josef Land (80˚20’N; 52˚49’E, n = 29) (Fig 1).

Spitsbergen and Greenland colonies are inhabited by the nominative subspecies Alle a. alle,
while Franz Josef Land is inhabited by the subspecies Alle a. polaris. The two subspecies are

distinguished based on body size differences (the nominative subspecies is smaller) but are

genetically very similar when assessed using neutral genetic markers [50]. The three colony

locations sampled represent the most important breeding aggregations of the species (after the

Thule area in Northwest Greenland, [51]). The birds sampled in Spitsbergen were breeding

birds (44 pairs plus single male–sexed molecularly), captured in the nest while incubating. The

birds from Greenland and Franz Josef Land were also breeding adults but represented random

individuals captured in mist-net or foot-loop traps during the chick rearing period (breeding

status was established based on the gular pouch containing food for the chick). The sex of the

birds sampled from Greenland and Franz Josef Land was not established but given the ran-

domized capture protocols and similar colony attendance pattern for males and females, the

sex ratio of these samples should be balanced. In summary, samples collected from all three

colonies were used to characterize the general pattern of MHC diversity in the species, and the

samples collected form the Spitsbergen colony were used to identify sex specific patterns of

Fig 1. The relative frequency (bars) of five the most frequent alleles (overall observed in>10 individuals) across

the three sampling locations representing three little auk breeding colonies. The map has been prepared in

ggOceanMaps [101] and scatterpie [102] in packages R software 3.6.3 (R Core Team 2020). Map source: Natural Earth

(public domain): http://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0304275.g001
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MHC diversity and potential MHC-dependent mating preferences within known breeding

pairs.

All birds were individually marked with ornithological metal rings to avoid double sam-

pling of the same individual. Eight birds from Greenland population were sampled post-mor-
tem as subjects of another project (ADACLIM no: 388 of JF and DG). From those individuals,

the spleen was collected immediately (<5 min) after euthanasia. The spleen was then preserved

in RNAlater solution (Qiagen) and stored at -20˚C until the laboratory analysis. We used the

spleen samples to amplify and sequence complementary DNA (cDNA), to control and validate

the expression status of MHC class II B sequences obtained from DNA samples (see the details

below).

Ethics statement

All the samples were collected following rules for the use of animals, as specified in the guide-

lines of the Association for the Study of Animal Behaviour. All blood sampling and bird eutha-

nasia was performed under permission issued by the Norwegian Animal Research Authority,

the Governor of Svalbard (the Spitsbergen population) and Government of Greenland (Minis-

try of Fisheries, Hunting and Agriculture, the Greenland population): 2007/00150–9, 2007/

00150–11, 17/00663–2, 17/00663–7; 2011–047447, and permits from Russian Ministry of

Higher Education (the Franz Josef Land population): 71 from 03.06.2013.

DNA and RNA extraction

DNA was extracted from the blood using the kit Blood Mini (A&A Biotechnology, Poland).

RNA was extracted from the spleen tissue with the use of MasterPure™ Complete DNA and

RNA Purification Kit (Epicentre), according to manufacturer’s protocol. For tissue homogeni-

zation PRO DPS-20 Multi-Sample Dual Processing Homogenizing System (mechanical

homogenization– 16000rpm for 60 sec—2 cycles, ultrasonic homogenization– 75% input

amplitude for 30 sec) was applied. Extracted RNA was portioned and stored at -80˚C for fur-

ther use.

Molecular sexing

For sexing (Spitsbergen population only), we performed PCR using the avian sexing primer

pair P2 and P8, following the PCR procedure described in [48]. To evaluate PCR products, we

applied standard electrophoresis procedure by dyeing the fragments with Midori Green (Nip-

pon, Europe) and examining bands under UV light using a 2.5% agarose gel.

Primer development

To characterize MHC diversity in the Little Auk, we identified and sequenced the second exon

of MHC class II B genes, which is the most polymorphic segment of the peptide-biding region

(PBR) [52]. First, we designed and tested a set of primers (Table 1 and Supplementary materi-

als: S1 Table), based on available sequences for closely related alcid species: the Razorbill (Alca
torda) (Accession Number: EU326270.1, EU326269.1, EU326268.1), the Common Guillemot

(Uria aalge) (Accession Number: EU326278.1, EU326276.1, EU326275.1EU326274.1) and the

Atlantic Puffin (Fratercula arctica) (Accession Number: EU326267.1, EU326267.1,

HQ822507.1, HQ822494.1). In the next step, the designed primers along with universal ones

(C20, B21, [53]) were used in vectorette PCR, to obtain longer exon sequences covering the

region, where we intended to locate the final primers for genotyping (Table 1 and Supplemen-

tary materials: S1 Table). In the vectorette PCR, we used total genomic DNA from the eight
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individuals digested with four restriction enzymes to generate vectorette-ligated DNA

templates.

For vectorette PCR, we adopted the modified vectorette PCR protocol from [53] as it

allowed us to obtain information on poorly known DNA fragments of interest, and has been

applied successfully in MHC research (e.g. [54–56]). In this technique, one primer (so called

“internal”) is designed based on the available sequence, and the second primer is universal

(C20 and B21 used as forward or reverse). This approach allows the ‘unknown’ part of the

sequence to be extended in one direction and amplified (contrary to standard PCR, which

requires two specific primers for amplification). Therefore, the technique provides an opportu-

nity to design more precise, final primers for focal fragments.

First, to construct vectorette libraries, we used ca. 5 μg portion of genomic DNA which was

digested with 10 U of enzymes: MunI, XapI, EcoRI, Bsu15i REs (Fermentas) at 37˚C for 5 min

(other steps, including ligation, were performed according [53]). Then, we have performed

vectorette PCRs, where 15 μl of reaction mixture contained 7.5 μl QIAGEN Multiplex PCR

Master Mix, 0.15 μM of the specific (AukLz1 or AukLz2/AukRz1, Table 1 and Supplementary

materials: S1 Table) and C20 vectorette [53] primers, and 0.5 μl of vectorette-ligated digested

DNA. The PCR touchdown was as follows: 95˚C/15 min, 5×(94˚C/30 s, 64˚C/30 s, 72˚C/60 s),

5×(94˚C/30 s, 60˚C/30 s, 72˚ C/60 s), 20× (94˚C/30 s, 58˚C/30 s, 72˚C/60 s), 72˚C/3min. In the

second nested vectorette we used PCR 0.5 μl of product of the first PCR as template. 30 μl of

PCR mixture contained 2 μL of 10× PCR buffer with (NH4)2SO4, 2 mM MgCl2, 1 μM of each

primer, 0.2 mM of each dNTP and 1 U of Taq polymerase (Fermentas). In this PCR we used

one specific primer (Alal1L/Alal2R/Alal3R, Supplementary materials: S1 Table) and B21 vec-

torette primer [53], PCR scheme was as follows: 94˚C/3 min, 30× (94˚C/30 s, 58˚C/30 s, 72˚C/

60 s), 72˚C/3 min. The second PCR products were run on a 1.5% agarose gel and visible frag-

ments (ca. 300 bp) were cut off from the gel and purified with MiniElute Gel Purification Kit

(Qiagen). These fragments were Sanger-sequenced with specific vectorette primers. The

obtained sequences were then compared to the NCBI nucleotide resources with nblast (Nucle-

otide BLAST, NCBI). Based on the sequencing results, we selected fragments that aligned to

MHC II B exon 2 and corresponded to sequences known from closely related auk species. Ulti-

mately, we were able to select final primers: AukLz1 and AukRz3 for MHC II B second exon

genotyping (Table 1). The PCR product of additional pairs of primers (AukR0709, AukL0709

and AukL0809, AukR0809; Supplementary materials: S1 Table) was also identified as a region

of interest, i.e. the second and partial third exon of the MHC class II gene. However, generated

fragments were too long to use freely with Ion Torrent technology.

Primers validation

The complementary DNA (cDNA) samples were used to generate sequences which were

regarded as a control of the reliability of functionality of MHC fragments amplified with

Table 1. Sequences of primers that identify exon 2 MHC in the Little Auk, used for final MHC genotyping.

Primer name Sequence 5’—3’

AukLz1 ATGTCTGCMCGAGCAGGGWA

AukRz3 CCRGGGCTTGGCTTGTGCCTG

AukL0709 GCCCTTGGGCACTGGTGCA

AukR0709 TCCGTTCTGCATCACCTCCGT

AukL0809 GCAGGAGGATGCTGTGCAGGGA

AukR0809 TCACCAGCACCTGGTAGGTCCAGTC

https://doi.org/10.1371/journal.pone.0304275.t001
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designed specific primers. Fragments obtained from cDNA samples represent putative, func-

tional alleles, not non-functional pseudogene. Therefore, in the following step we confronted

MHC sequences for DNA and cDNA samples generated with use of final primers: AukLz1 and

AukRz3 (Table 1). Finally, before performing the next-generation sequencing of all samples, to

confirm target sequence (MHC II, exon 2 fragment), we also checked the PCR product (of

DNA and cDNA samples) by Sanger sequencing in two directions with both final PCR prim-

ers. For validation, the sequenced fragments were aligned with use of the Basic Local Align-

ment Search Tool (BLAST).

To obtain cDNA we used RNA template (n = 8) and performed reverse transcription to

generate cDNA. In the first step (pre-processing) we added 2μl of RNA template (in total

around 50ng) with 0,5 μl of 10 mM primer AukRz1 (degenerate primer, Table 1) and 10,5 μl of

nuclease-free treated water and incubated in 65˚C for 5 min, according to manufacturer’s pro-

tocol. Then, we cooled the sample to room temperature. In the next step, we added 4 μl of 5x

Reaction Buffer (part of RevertAid™ M-MuLV) to the preprocessed sample with 2 μl of mixed

dNTP (10 mM, Thermo Scientific) and 1 μl of reverse transcriptase RevertAid™ M-MuLV,

Thermo Scientific. We incubated the mixture for 1h at 42˚C according to manufacturer’s pro-

tocol and the reverse transcriptase was inactivated for 10 min at 70˚C.

Subset of DNA samples and all cDNA samples were used as a matrices in an amplification

reaction in 21μl volume with the use of QIAGEN Multiplex PCR Kit (10 μl of 2x QIAGEN

Multiplex PCR Kit, 2 μl of each 10 mM final primer and 6 μl of water). For each reaction we

used a 1μl of template. We performed all reactions using a thermal cycler (Eppendorf) under

the following conditions settings: 94˚C for 15 min for initial denaturation followed by 34 cycles

of 94˚C for 30 sec, 71˚C for 90 sec and 72˚C for 90 sec, with additional 72˚C for 10 min at the

end. Obtained products were visualized by gel electrophoresis, Sanger sequenced and aligned.

Next generation sequencing

We genotyped 298-bp long amplicons of the Little Auk MHC class II B second exon with Ion

Torrent Personal Genome Machine (PGM, Life Technologies, Carlsbad, CA, USA) in the Lab-

oratory of Molecular Biology Technics at Adam Mickiewicz University in Poznań (Poland).

First, we performed PCR with so-called fusion primers comprised of Ion Torrent adaptors (A

adaptor and P1 adaptor), a 10-bp barcode, and our designed pair of specific final primer (for

PCR conditions see the section above). The unique barcodes were used to assign amplicons to

individuals (Supplementary materials: S2 Table). In total, a combination of 16 tagged forward

primers and 16 tagged reverse primers was used to amplify individual samples (with different

combinations of tags and primers). Two independent PCRs were performed on two sets of

samples: 140 (all) and 126 individuals (randomly selected of the 140). Following amplification

we prepared two sets of individuals pooled equimolarly and sequenced independently to esti-

mate genotyping error. To check the quality of both sequencing data sets we used Rqc Biocon-
ductor package [57].

Data filtering

The processing of raw data was conducted with AmpliSAT, which provides a wide range of

online tools for amplicon analysis, and is also appropriate for technology that generates single-

ended reads such as Ion Torrent ([58]; http://evobiolab.biol.amu.edu.pl/amplisat/index.php).

Following the pipeline AmpliSAT manual, we applied the AmpliCLEAN, AmpliCHECK,

AmpliSAS, AmpliCOMPARE, and AmpliCOMBINE tools. These tools provided a standard-

ised approach for identifying and filtering reads, variants and amplicons according to their

similarity, coverage and frequency. We removed reads with a lower average Phred quality
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score (< 30) and reads with anomalous length (either too short or too long, as identified by

AmpliCLEAN). To filter out the putative alleles from artifacts we used default Ion Torrent

parameters: 0.5% substitution error rate, 1% indel error rate and minimum per amplicon fre-

quency of 1%. We also removed sequencing errors [59] and chimeras (the most abundant

ones) [58, 60] setting 5% frequency threshold of substitution (AmpliCHECK). To compare

replicated genotyping results first, we combined multiple genotyping results (AmpliCOM-

BINE) and then checked for variants present in one or both compared files (AmpliCOM-

PARE). For identified alleles, variant depth and other statistics were summed together from

both runs of sequencing, and sequencing errors were removed based on their low frequency

and/or absence in one set of individuals [54, 60].

In total, we successfully sequenced 140 individuals (including those for which we obtained

cDNA samples). Of these, 126 individuals were sequenced twice. Individuals that were

sequenced only once were included in analyses if they provided at least 200 reads per allele. All

sequences exhibited the correct size (298 bp) with no stop codons and no frame-shift muta-

tions which allow exclude putative pseudogenes. They also correspond to sequences obtained

for cDNA samples. Therefore, obtained MHC class II exon 2 fragments were considered puta-

tive alleles and submitted to GenBank (Accession numbers: OR909382-OR909480).

Genetic analysis

We used the DNAsp software [61] to calculate basic polymorphism statistics, including the

overall number of segregating (variable) sites, nucleotide diversity (π), Watterson’s estimate of

the population mutation rate (θω), and the average number of nucleotide differences among

alleles (k). We used Tajima’s D test [62] within DNAsp to analyse the frequency distribution of

variable sites, based on a window size of 25 nucleotides and a step size of 5 nucleotides. Depar-

ture from neutral selection at MHC Class IIB in Little Auks was tested within putative PBS and

non-PBS regions, which were defined using [63] and previous seabird genetic studies, i.e. [29].

We tested for evidence of positive selection across the alignment of exon 2 sequences using the

HyPhy package [64] in the webserver www.datamonkey.org, and applied the Random Effects

Likelihood method to investigate site-by-site evidence of positive selection. As recombination

can overestimate the degree of positive selection [65], we ran the Genetic Algorithm for

Recombination Detection module within the HyPhy package to test for significant evidence of

recombination breakpoints. Finally, we used the software MEGA 4.0 [66] to test synonymous

vs. non-synonymous substitution rates within codons presumably representing the protein-

binding region within each amplicon (PBR) [67], using the Modified Nei-Gojorobi method

with Jukes-Cantor correction.

Mate-choice analysis

We used four distinct genetic metrics to test whether Little Auks select mates on the basis of

MHC compatibility: i) differences in heterozygosity; ii) MHC-band sharing coefficients [68];

iii) additive amino acid differences; iv) maximum amino acid difference. Heterozygosity dif-

ferences were calculated as the overall difference in MHC heterozygosity between each breed-

ing pair, and can only be used to test whether disassortative mating occurs within a population

(e.g. whether males or females are on average significantly more heterozygous at MHC II B

than their partners). Band-sharing represents the proportion of unique MHC alleles shared

within a breeding pair, and is calculated as twice the number of alleles shared within a pair,

divided by the sum of unique alleles occurring within both individuals [(2Fab/(Fa+Fb), as per

[67]]. Amino acid differences represent the number of amino acid substitutions occurring

between pairs of different MHC alleles, and were quantified here as either the sum of all the
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differences between a pair at both loci, or the maximum difference observed between loci. We

assessed these amino acid substitutions within two different contexts; i) using only the substi-

tutions occurring within PBR regions of the MHC II B sequence, and ii)) using substitutions

occurring throughout the entire fragment of the exon sequence. For each of the four criteria

listed above, we used Monte Carlo randomization tests [69] to determine whether average

observed mating patterns for each metric were significantly different from simulated expecta-

tions of random mating. To obtain random mating distributions, we resampled males and

females from the study population without replacement and formed new random pairs, per-

forming 10,000 iterations of this randomization procedure. We then compared the mean

observed values for each metric (i.e. the values we calculated for naturally occurring pairs)

with the distribution of randomly calculated means. We determined statistical significance by

comparing the observed mean of the breeding pairs with the 2.5% and 97.5% tail of the ran-

domized distribution of means, and Bonferroni-adjusting the alpha value by the number of

randomization tests (0.05/6 = 0.008). For each metric, we assessed the likelihood of error

within Monte Carlo randomization tests by iteratively decreasing the sample size and examin-

ing the effect of sample size on the consistency of obtaining a given result (for further explana-

tion, see [70]). We performed all statistical analyses in R 3.6.3 software [71].

Results

MHC diversity and selection

We characterized a high level of genetic diversity at MHC II B exon 2. We sequenced 298 bp

fragments that contained 99 distinct alleles across 140 individuals. Within this set of individu-

als, eight samples were also used for cDNA sequencing (spleen samples). We did not perform

any formal analysis but examining alleles from the eight individuals, we could confirm the

expression status of identified MHC fragments (putative alleles), generated by primers, thus

MHC diversity we quantified in the Little Auk is reliable.

A maximum of four alleles was documented within an individual, indicating at least two

loci, i.e. the presence of a duplicated MHC II gene fragment, which is consistent with findings

in other alcid species [72, 73]. On average two alleles per individual were recorded, both within

the total sample pool and separately for each population. Overall, four individuals had 4 alleles

(3%), 39 individuals had 3 alleles (28%), 56 individuals had two alleles (40%), and 41 individu-

als had one allele (29%).

Out of 99 alleles identified from nucleotide sequences 54 were present only in a single indi-

vidual, 19 other alleles were present in two individuals, and remaining 26 alleles were observed

in three or more individuals (see Supplementary materials: S3 Table). The number of alleles

identified per population was: in Spitsbergen—75 alleles (64% of these were unique to the pop-

ulation, of n = 99), in Greenland—20 alleles (35% unique, of n = 12) and in Franz Josef Land—

36 alleles (44% unique, of n = 29). The frequency of the five most frequent alleles, i.e. observed

in>10 individuals, in each of the sampled colonies is presented on Fig 1. Obtained alleles

translated into 89 amino acid sequences. Genotyped alleles exhibited a similar skewed distribu-

tion in both sexes, with the four most commonly occurring alleles representing approximately

35% of allelic variation (Fig 2). Basic polymorphism statistics are reported in Table 2. We

found a significant excess of non-synonymous over synonymous substitutions for those

codons presumably comprising the peptide binding site (PBS)-coding region (ω = 2.404; Z-

test, p = 0.004), but not for the non-PBS regions (ω = 1.257; Z-test, p = 0.132), suggesting evi-

dence of a positive selection. A Bayesian analysis of site-by-site selection across an alignment

of exon 2 sequences indicated three sites undergoing a positive selection and one site
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Fig 2. Distribution of allele frequencies at genotyped MHC IIB loci in the little auk in respect to sex (Spitsbergen colony only). Only alleles found at

frequencies> 2%, in either sex, are depicted.

https://doi.org/10.1371/journal.pone.0304275.g002

Table 2. Polymorphism statistics at genotyped MHC II B loci in Little auks. Diversity statistics: the overall number

of nucleotide sequences found (h), the overall number of segregating sites (S), the total number of mutations (Eta), the

nucleotide diversity estimator (π), the Watterson’s estimator of the population mutation rate (θW) and the average

number of nucleotide differences among alleles K).

Diversity statistic Value

h 99 (69)

S (Eta) 87 (89)

(π) 0.063

(θW) 0.069

K 16.67

https://doi.org/10.1371/journal.pone.0304275.t002
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undergoing a negative selection (Fig 3, Bayes Factor 100), while Tajimas D analysis revealed

sites with a significant excess of high- frequency segregating sites (S4 Table).

Disassortative mating

We found no evidence of non-random mating based on overall differences in MHC II hetero-

zygosity, average amino acid dissimilarity, or maximum amino acid dissimilarity using the

whole fragment region (Fig 4) or PBS regions (S1 Fig). We found a significant effect of MHC-

based assortative mating on shared alleles, suggesting that breeding pairs shared alleles in com-

mon more often than would be randomly expected (p = 0.016). However, this effect may be

biased by the inability to distinguish between duplicated loci. Overall, insufficient evidence is

available to conclude the presence of MHC-based mating effects.

Discussion

Our study revealed a high level of MHC class II B diversity within Little Auks, one of the high-

est described in non-passerine birds. In 140 screened individuals, we detected 99 different

alleles in MHC II B exon 2, with an average 16.2 nucleotide differences between alleles. Four

alleles were dominant in the allele distribution (Fig 1) but most genotypes represented rare

alleles. We are confident the high number of detected alleles is accurate as we performed PCR

in several independent sets, samples were sequenced independently twice, obtained sequences

did not resemble chimeras, and were regarded as reliable alleles if present in a high number of

reads (minimum 200, in two runs). Additionally, we have applied restricted criteria to sort out

sequences. We also used cDNA to exclude putative alleles from the analyses (i.e., a with no

stop codons, deletion or frameshift mutations).

The high number of MHC alleles could be generated by a number of different processes

such as point mutation, recombination and gene conversion [74–76]. Generated alleles might

be then preserved and maintained by adaptive forces such as balancing selection [74–76]. A

high genetic diversity is an inherent feature of MHC genes (including class II) that has been

reported in numerous avian species. Especially for passerines, the reported MHC loci and

alleles can reach very high numbers, e.g. Sedge Warbler (Acrocephalus schoenobaenus) [77],

Great Tit (Parus major) [78], Collared Flycatcher (Ficedula albicollis) [54]. In non-passerine

birds the highest allelic MHC diversity has been reported in the Eurasian Coot (Fulica atra; 3

loci, 265 alleles) [79], the Greater Flamingo (Phoenicopterus roseus; 2 loci, 109 alleles) [80], and

Fig 3. Bayesian analysis of site-by-site positive selection across an alignment of exon 2 sequences from two MHC

class II B gene duplicates in the little auk. Codons displaying decisive evidence of positive selection (Bayes factors

>100) are indicated by crosses. Sites showing decisive evidence of negative selection are indicated by asterisks.

https://doi.org/10.1371/journal.pone.0304275.g003
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the Lesser Kestrel (Falco naumanni; 1 locus, 103 alleles) [81]. With 2 loci per individual and a

total of 99 identified MHC alleles, the Little Auk polymorphism is lower than these examples,

however it remains one of the highest values reported among non-passerines and represents

the highest polymorphism value detected so far among seabirds.

This high MHC allele diversity in the Little Auk is quite surprising given the low pathogen-

abundance in the Arctic environment [42–46]. For example, no blood parasites have been

detected in the Little Auk [82]. However, many MHC loci class I (but not class II) have also

been detected in another polar (Antarctic) seabird, the Blue Petrel (Halobaena caerulea) [29].

It has been then suggested that the reason for this is that blue petrels are a colonial species that

reuse underground nests, which might favor the horizontal transmission of pathogens, even if

the pathogens are not that frequent in the polar environment [29]. The Little Auk is also a

colonial species, yet Little Auks nest above ground on cliffs or slops, and the horizontal trans-

mission of pathogens in this Arctic environment has not been investigated. Thus, the high

degree of MHC polymorphism that we identified in Little Auks may represent an ancestral

Fig 4. A-D. Results of randomization tests testing for MHC-based non-random mating. No significant effects of MHC genotype were found when assessing

differences in heterozygosity (4A) or dissimilarities in amino acid composition (4C–4D). Little Auks exhibited a significant assortative mating effect based on

shared alleles (4B), which may be attributed to the frequency of the most commonly genotyped allele in the population and the inability to discriminate between

locus-specific alleles. Dashed vertical lines denote 95% of random distribution, whereas the solid vertical lines indicate the observed mean value. An observed

value located within the 95% random distribution indicates a random mating pattern, whereas an observed mean located outside the 95% range on the right

side indicates assortative mating.

https://doi.org/10.1371/journal.pone.0304275.g004
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polymorphism that is enhanced by a large effective population size, both in the past [51] and at

present [83], and subsequently maintained by high gene flow among the breeding colonies

[50, 84].

MHC diversity in the Little Auk might be greater than we identified in our study, as we

sequenced samples from three breeding locations only. Although the sampled colonies repre-

sent a large portion of the breeding area for this species, they certainly do not cover the whole

range and some other colonies may be genetically distinct (due to their isolation and/or habi-

tat). High frequency of unique alleles in each population and inter-population differences in

the frequencies of the most common shared alleles (Fig 1) suggest there is some divergence

between breeding populations and/or adaptation to local conditions (pathogen pressure, pop-

ulation size, etc). Although we are not able to fully examine the inter-population differences in

MHC diversity (due to limited population coverage and the small number of sampled individ-

uals), our results suggest biogeographical patterns of MHC diversity within the Little Auk pop-

ulation that are worthy of further examination.

In some seabird populations, MHC polymorphism has also been suggested to result from

ancient gene duplication events that led to a functional genetic divergence between duplicated

loci [37]. Gene duplication at MHC II B appears to be a conserved trait within many seabird

clades, including Procellariformes [38, 85] and alcids [72, 73]. However, in most studies it

remains unclear whether such duplicates are functionally identical or could be duplicated loci

that have evolved and are expressed independently. While locus-specific MHC II B genotyping

was outside the focus of this study, gene duplicates that have diverged and function indepen-

dently can conceivably maintain high MHC polymorphism [86].

We also found some evidence of positive and balancing selection within Little Auk MHC.

As reported in a previous study [33], the strength of balancing selection on MHC class II genes

in birds is higher in colonially breeding and migratory species. It may be linked to elevated

transmission rates of pathogens in species breeding in dense aggregations, or/and exposure to

a more diverse array of pathogens and parasites in migratory species [33]. While we did not

investigate gene expression in this study, our evidence supports the idea that the identified

alleles are functional and expressed (e.g., [27, 87, 88]). It is further unlikely that the genotyped

region represents pseudogenes as those are rarely reported for non-passerines [89–91]. Thus,

although we did not examine fitness consequences (e.g. life-time reproductive success) associ-

ated with MHC II B polymorphism, in the absence of strong mate choice effects, the high

MHC II B diversity we found may be maintained by a combination of pathogen-mediated

selection heterozygote advantage, and gene flow, as reviewed in [10, 92, 93].

Selective evolutionary pressure from mate choice behaviours may be particularly strong in

species with long-term pair bonds [94, 95]. Indeed, previous studies have reported some evi-

dence of disassortative mating in regard to MHC II class in other seabirds with similar mate-

choice strategies [29, 38] but see [37]. For this reason, and given Little Auk life-history traits

(partners mate for multiple breeding attempts if not for life [40]), we expected to find evidence

of disassortative mating but failed to do so. There could be several reasons for the absence of

such a pattern. First, disassortative mating could be hindered by the overall high MHC diver-

sity existing in Little Auks (i.e. 99 alleles across two loci), meaning that most prospective mates

are already quite dissimilar at MHC II B. Second, mate choice could be operating on only one

of the two characterized loci, and our inability to distinguish loci is masking an existing disas-

sortative mating trend. Third, specific MHC genes may be only partially associated with a sep-

arate phenotypic trait valued by Little Auks, and thus mate choice may not operate on MHC

disassortative principles at all. Finally, random mating occurring on two separate yet function-

ally expressed MHC II B loci may be sufficient to maintain the high degree of MHC
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polymorphism that we find in the population, yet Little Auks may select mates on the basis of

other criteria that may only loosely be correlated with MHC, such as size or experience [49].

Interestingly, we found some evidence of assortative mating. Despite the high number of

MHC alleles, breeding pairs shared alleles in common more often than would be expected by

chance, yet this result may be biased by the inability to distinguish between duplicated loci.

However, there is a supporting rationale for non-random mating in the Little Auk that would

support this result, as phenotypic mate choice decisions in the Little Auk have previously been

reported to be non-random, with pairs mating assortatively in regard to some morphological

traits (wing length, the size of white spot on the eye-lid [49]). Exhibiting a mate choice prefer-

ence for similar MHC alleles could operate on a similar principle, or MHC alleles could covary

with morphological traits (i.e. MHC genotype correlates with waddle size in pheasants [96]),

which might be associated with assortative mating. While speculative, this perspective is sup-

ported in a broader ecological context: some studies suggest that assortative mating can miti-

gate sexual conflict over parental care [97]. If so, this could be particularly important dynamic

in the case of the Little Auk, which require an extensive parental effort with a high degree of

parental coordination during the incubation and provisioning periods, in order to successfully

fledge their chicks [98–100].

Conclusions

Our study found a high level of genetic diversity at the MHC II B gene in a colonial Arctic sea-

bird, the Little Auk, and the 99 alleles we identified is one of the highest examples of MHC

polymorphism described in non-passerine birds. The results agree with evolutionary theory

that suggest balancing selection helps to create and maintain the high levels of polymorphism

within the examined MHC region. Contrary to our expectations, we did not find evidence of

disassortative mating regarding the examined MHC region, and more studies are needed to

fully understand the mechanism of the mate choice in the Little Auk.
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