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ABSTRACT

Point clouds are widely used in various applications for human
visualization and machine vision tasks. However, most point cloud
coding methods are optimized for human visualization, resulting in
degraded performance or suboptimal transmitted information for
machine vision tasks. In this paper, we propose a point cloud ge-
ometry coding framework that supports reconstruction and classi-
fication tasks. Our framework is based on the PCGCv2 architecture
to generate a latent space representation of the point cloud. Subse-
quently, a residual method is applied to generate representations
for two tasks from the latent space. We evaluate our framework on
the ModelNet10 dataset and show that it achieves a 59.2% reduction
in BD bitrate for classification tasks compared to a non-specialized
coding framework while maintaining comparable performance with
the state-of-the-art point cloud codec for reconstruction. This study
is the preliminary study to design a point cloud coding framework
that is geared toward point cloud coding for humans and machines.
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1 INTRODUCTION

Point cloud is a popular visual content format used in various appli-
cations such as AR/VR, autonomous driving, and construction [1].
Their ability to represent spatial information makes them invaluable
for tasks ranging from immersive experiences to complex infras-
tructure development. However, the large volume of data in point
clouds poses challenges for storage, transmission, and processing.
Therefore, effective point cloud coding/compression methods are
essential to use point clouds in practical applications [2].

Visual content compression methods have primarily focused on
the reconstruction quality for human visualization. This results in
decreased machine vision performance or suboptimal information
transmission [3]. Therefore, research directions on coding for hu-
mans and machines have attracted recent attention in the research
community. Acknowledged the potential of deep learning-based
coding, several pioneering studies proposed for image coding have
shown high effectiveness for machine vision performance while
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still having comparable reconstruction performance with the ex-
isting coding framework [4, 5]. The main idea of these methods is
to explore the coding framework with additional loss functions for
machine vision tasks, making the framework generate the repre-
sentation for machine vision tasks. The scalable approach is widely
used in several image coding studies to generate representations
for multiple tasks [5]. The residual method is a simple scheme but
an effective way for scalable coding [6]. To our knowledge, there is
a lack of studies based on this approach for point cloud coding.

We proposed a point cloud coding framework for reconstruction
and classification tasks. The proposed method uses a state-of-the-
art point cloud geometry compression framework as the baseline
model, named PCGCv2 [7]. We recognize the potential to leverage
information from the latent space of PCGCv2 for point cloud classi-
fication. The latent space has information to reconstruct the point
clouds, a data-intensive task, making it contain sufficient informa-
tion for classification tasks. By applying the residual method to
the latent space of PCGCv2, our coding framework consists of two
branches that are able to generate two representations for point
cloud classification and reconstruction.

2 RELATED WORKS

Recently, several studies have been proposed for point cloud cod-
ing focused on optimizing machine vision performance. Liu et al.
(2023) introduced a point cloud coding framework for human and
machine vision [3]. The main idea of the method is to leverage
a well-known point cloud codec called VoxelContext-Net to com-
press point cloud data with different densities for each task. In
the application for point cloud classification, the method utilizes
a point cloud selection module to choose key points based on the
farthest point sample algorithm. The generated sparse point cloud
data is fed to a specialized classifier for sparse point clouds. On
the other hand, for human vision, the framework uses all point
cloud information as the input of VoxelContext-Net to achieve the
highest reconstruction quality. However, with this approach, there
will be a significant amount of redundant information when using
both tasks simultaneously. Ma et al. (2023) proposed a balanced
human-machine scheme in point cloud geometry coding [8]. The
method mainly uses a learned semantic mining module to aggregate
multitask features. This allows the method to retain the geometry



and semantic properties in point cloud coding. Although there is
an improvement in compression efficiency, there is a significant
amount of redundant bits for machine vision tasks, as only a single
bitstream is used for both human and machine vision tasks. Fol-
lowing the concept of coding for machines, Ulhaq and Bajic (2023)
proposed a point cloud compression codec designed for a single
machine vision task [9]. The main idea is based on the Information
Bottleneck concept to derive the loss function and network archi-
tecture. However, this work has a limitation because it explores
compression for classification only.

3 PROPOSED METHOD

The diagram in Figure 1 illustrates the scheme of the proposed
method. In this scheme, leveraging the efficiency of PCGCv2 for
the point cloud geometry compression task, we use the encoder of
PCGCv2 to generate the latent space representation. Subsequently,
we applied the residual method to generate representations for
point cloud classification (base branch) and point cloud geometry
compression (both base branch and enhancement branch). We will
provide a detailed description of the proposed method in the next
paragraphs.

Base brach: The classification backbone is designed based on the
PointNet architecture using sparse convolution, and the last layer of
the classification backbone is a global max pooling block to generate
the feature vector. Subsequently, the feature vector is element-wise
multiplication with a trainable gain vector o € R1924X1 similar to
the approach employed in the work by Ulhaq and Bajic [9]. The
feature vector is multiplied by a constant scalar value of 10 for
enhanced stability and convergence. On the decoder side, a set of
pointwise convolutional layers with kernel size 1 is used to create
a block equivalent to "share MLP," which is used in the PoitnNet
[10].

Synthesis transform (h;(.) ): Because the information transmitted
by the base branch is a feature vector Zj, with a size of 1024 x 1.
On the other hand, we utilize the residual method for the scalable
scheme. Therefore, we need to adjust the size of the feature vector
Zp, to match the size of the features from the latent space Y for
the subtraction/addition operation. We will employ the repeated
technique to restore the size of the feature vector as the size of the
feature after the max pooling layer. Then, we use a set of sparse
convolution layers similar to the classification backbone to generate
the latent space representation of the base branch (Yp). Figure 2
displays the process of adjusting the size of feature vector Zy, for
the residual method.

Enhancement branch: For a latent space Y, a compression method
is applied to create the base representation Z;, = f,(Y) to minimize
distortion Dy, = Ey[d}(gp(Zp), T)] for a specific machine vision
task (T), where dj, (-, -) is a function to measure the distortion of the
machine vision task, and g (.) is the learnable decoding function
for the machine vision task. In the residual scheme, a compression
method is applied to create the enhancement representation Z, =
fe (Y)Y =Y =YY, = hy (Zp) to minimize distortion D, =
Eylde(ge(Zr) + Yy, Y)], where de (-, -) is a function to measure the
distortion of the human visualization and g (.) is learnable decoder
for latent space reconstruction. Based on the work of Andrade et al.
(2023) [6], we use the residual bottleneck block (RBB) as the basic
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unit of the enhancement branch. Figure 3 illustrates the detailed
architecture of RBB.

4 EXPERIMENTS

This research was conducted on a workstation running the Ubuntu
20.04 operating system, equipped with an Intel Core i9-10900K
CPU, 64GB of RAM, and an RTX 3090 GPU with 24GB of VRAM.
The point cloud compression frameworks were implemented in a
Python 3.8 environment, utilizing the PyTorch 1.8.1 deep learning
framework with CUDA 11.1.

We use the ModelNet10 dataset for training and evaluating,
which comprises 4,899 object models, divided into a training set
with 3,991 objects and a testing set with 908 objects [11]. The raw
data format of the ModelNet10 dataset is in the form of mesh ob-
jects. We applied the preprocessing step for the raw mesh data to
generate the point cloud data with a number of sampled points of
5 x 10° and used a resolution of 128 for the voxelization process.
For the human visualization benchmark, we randomly select 50
mesh objects (5 object models for each class) for evaluation.

In the training phase, we train PCGCv2 with the ModelNet10
dataset and keep the training parameters the same as those pro-
vided in the PCGCv2 paper [7]. We choose the highest rate model
of PCGCv2 for the next phase. Then, we freeze the encoder, entropy
bottleneck, and decoder of PCGCv2. Next, we train the base branch
for the point cloud classification task for the accuracy-rate under
different values of A5, where A, is the hyperparameter used to con-
trol the rate in the base branch. We vary the A;, value between 160
and 20000. We add a minor reconstruction penalty on a transformed
Zy, in the final loss function for training the base branch with the
hyperparameter = 0.1. The loss function for training the base
branch is defined as follows:

Lb = Db + ﬂbH (Zb) + ﬁE [de (hr (Zb) s Y)] s (1)
where Dy, is the cross-entropy loss for the classification task, the
function H(-) is used for entropy calculation, and d.(-) is mean
square error (MSE) loss.

Based on the results of the base branch, we will select a model
with the best accuracy-rate performance to continue using for
training the enhancement branch. To train the enhancement branch,
we freeze the layers used in the base branch. We use A, as the
hyperparameter to control the rate in the enhancement branch. We
vary the A, value between 0 and 0.25. The loss function for training
the enhancement branch is defined as follows:

Lo=Dy+AH (Y}) , @)

where Dy, is the mean square error (MSE) loss.

During the training process, we use Adam optimizer with an
initial learning rate set to 0.005 and halve it every epoch until it
reaches 1e — 5. We use 50 epochs for training, and if the validation
loss does not decrease for 5 consecutive epochs, the training process
is stopped.

For comparison of classification performance, we implement
several methods for point cloud classification, including PointNet,
PointNet++, and MinkPointNet. For PointNet and PointNet++. For
point cloud compression for classification, we implemented the
study by Ulhaq and Bajic (2023) using the framework they provided



Scalable Point Cloud Coding for Reconstruction and Classification

Cony 32x3°
Conv 8x3°
Latentspace

Reconstructed: X

I‘\ Synthesis transform ge(.) |

o
o]
”
®
>
=
. =3
Coordinates: Cy &)
Y ' Analysis transform fe(.)
Input: X N e
o
Q
]
2.
2
Z
2
fFZZZA | F
|
L) ) Ll e?ﬁ
|| =
IR <
T x| T a
S| S| 3 S
> = = n
2| 2| & >
S| 8| 8 £
Features: Fy Ol 0|0 3

Global Max
pooling

Yy

Synthesis

Transform «-----------

bathtub: 1%
bed: 1%
MLP B T chair: 95%

Features

table: 1%

Figure 1: The overall architecture of the proposed method in scalable point cloud coding for reconstruction and classification.

"Conv cXxn3"

represents the sparse convolution layer, where c is the output channels and n? is the kernel size. "Q", "AE", and "AD"

are quantization, arithmetic encoder, and arithmetic decoder, respectively. In the enhancement branch, the analysis transform
(fe(.)) and synthesis transform (g (.)) have the same architecture and use the Residual Bottleneck Block (RBB) as the basic unit.
The dashed line arrow indicates that the enhancement branch does not influence the base branch.
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Figure 2: The process of adjusting the size of feature vector
Zb. Py is the number of points of Cy.
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Figure 3: The architecture of the Residual Bottleneck Block.

in their GitHub repository [9]. Additionally, we implement a non-
specialized codec for point cloud classification using G-PCC as the
codec and PointNet++ as the classifier. To evaluate the performance
of human visualization, we implement two methods, G-PCC [2]
and GEO-CNNv2 [12].

5 RESULTS

Figure 4 shows the rate-accuracy curves of the proposed codec
compared to other input compression codecs and results of baseline
models, including PointNet, PointNet++, and MinkPointNet. The
results of the method proposed by Ulhaq and Bajic (2023) [9] show

ModelNet10 (r = 128)
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Figure 4: Rate-accuracy curves evaluated on the ModelNet10
dataset. P is the number of points in the input X. "*" denotes
a dense point cloud.

the best optimization in terms of accuracy-rate for point cloud
classification. We use Bjentegaard-Delta (BD) to calculate the im-
provement in rate and accuracy compared with the nonspecialized
codec for point cloud classification (G-PCC + PointNet++). The
results show that our proposed codec achieves a 59.2% reduction,
while the method proposed by Ulhaq and Bajic (2023) achieves a
98.9% reduction in BD bitrate. Our proposed codec has the optimal
model at 450 bits with 90.7% accuracy, which will be the selected
model for the next phase, the human visualization benchmark.

Table 1: BD-rate gains on ModelNet10 of the proposed codec
against other compression methods using D1 and D2 based
BD-rate measurement.

G-PCC
-6.4/38.2

Metrics
D1/D2

GEO-CNNv2
-15.2/-21.9

PCGCv2
40.5/42.1

Table 1 and Figure 5 show that the reconstruction performance of
the proposed method is degraded compared with PCGCv2. PCGCv2
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Figure 5: Rate-distortion curves of ModelNet10 dataset: (left) D1-based PSNR, (right) D2-based PSNR

Table 2: Average coding time of different methods on the
ModelNet10 dataset.

Time | G-PCC | GEO-CNNv2 | PCGCvz | TroPosed
codec

Enc(s) | 027 0.24 0.09 0.14

Dec(s) | 036 14.92 0.14 0.16

has averages larger than 40% BD-rate gains against our proposed
method. Compared to other compression methods, our proposed
codec achieved comparable performance with G-PCC and GEO-
CNNv2. Table 2 indicates that integrating an additional classifi-
cation task does not significantly increase the coding time of the
proposed codec.

6 CONCLUSION

In this study, we present a framework that utilizes the residual
method in scalable point cloud coding for reconstruction and clas-
sification. We provide detailed information about the method and
conduct objective performance evaluations on the ModelNet10
dataset. The proposed method demonstrates effectiveness in the
classification task by achieving high gains in rate-accuracy perfor-
mance compared to a nonspecialized codec. For the reconstruction
task, the proposed codec achieved performance comparable to that
of the existing methods. We hope our work will help future research
on designing a point cloud coding frame supporting multiple tasks.
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