
HAL Id: hal-04723966
https://hal.science/hal-04723966v1

Submitted on 7 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Gaussian Process for Large Datasets
Hoang Van Do, Emmanuel Vazquez, Tran Quoc Long

To cite this version:
Hoang Van Do, Emmanuel Vazquez, Tran Quoc Long. Scalable Gaussian Process for Large Datasets.
International Workshop on ADVANCEs in ICT Infrastructures and Services, VNU, UEVE-PARIS-
SACLAY, Feb 2024, Hanoi, Vietnam. �hal-04723966�

https://hal.science/hal-04723966v1
https://hal.archives-ouvertes.fr


Scalable Gaussian Process for Large Datasets
Hoang Van Do

dodobk87@gmail.com

DAC, Viettel Telecom

Hanoi, Vietnam

Emmanuel Vazquez

emmanuel.vazquez@centralesupelec.fr

L2S, CNRS, CentraleSupélec,

Université Paris–Saclay

Gif-sur-Yvette, France

Tran Quoc Long

tqlong@vnu.edu.vn

IAI, VNU University of Engineering

and Technology

Hanoi, Vietnam

ABSTRACT
The domain of Gaussian Processes (GPs), a powerful Bayesian ap-

proach in machine learning, emphasizes its scalability for handling

large datasets. Traditional GPs, while offering flexibility and a proba-

bilistic interpretation, face computational challenges as dataset sizes

increase. This research primarily focuses on a novel method pro-

posed by Noack et al., which introduces "Exact Gaussian Processes

for Massive Datasets via Non-Stationary Sparsity-Discovering Ker-

nels"[4], addressing the scalability issues inherent in standard GPs.

KEYWORDS
Gaussian Processes, Scalability, Large Datasets, Non-Stationary,

Sparsity-Discovering Kernels, Massive Datasets.

1 INTRODUCTION
A Gaussian Process (GP) is a powerful and flexible probabilistic

model used in machine learning for regression and classification

tasks. It is particularly useful in scenarios where predictions about

the underlying function of your data are desired. In the context

of machine learning, GPs are employed for both regression (pre-

dicting continuous outputs) and classification (predicting discrete

labels). GPs are notably recognized for their ability to provide un-

certainty measurements on predictions, a valuable feature in many

applications. They find widespread application in fields such as

geostatistics, time series analysis, bioinformatics, pattern recogni-

tion, machine learning, and others where making predictions with

uncertainty estimates is crucial.

Scalable Gaussian Processes are an extension of traditional Gauss-

ian Process models, specifically designed to address the challenges

posed by large datasets. While Gaussian Processes offer a powerful

and flexible approach to regression and classification, their standard

implementation encounters significant computational hurdles as

the dataset size increases. In a standard GP, the computational com-

plexity for training is O(𝑛3), and for prediction, it is O(𝑛2), where 𝑛
represents the number of data points. This cubic complexity arises

from the necessity to invert the covariance matrix, rendering GPs

impractical for large datasets

Central to novel approach is the development of a new class of

kernels ultra-flexible, compactly-supported, and non-stationary[4].

These innovative kernels are meticulously engineered to learn and

encode a broad spectrum of covariances, including both non-zero

and zero covariances. This ability is a marked departure from tradi-

tional kernels and is instrumental in uncovering the latent sparse

structures within the data. The flexibility of these kernels is key to

adapting to the varied and often complex sparse patterns inherent

in large datasets, thereby enhancing the effectiveness and accuracy

of the Gaussian Process model.

Implementing this novel approach necessitates the use of ad-

vanced computational strategies. High-Performance Computing

(HPC) is identified as a crucial component to manage the computa-

tionally intensive tasks inherent in processing extensive datasets.

Additionally, the role of constrained optimization is underscored as

a vital mechanism in this framework. Constrained optimization will

be employed to optimize the kernel learning process, ensuring that

it efficiently captures and represents the sparse structures within

the data. This integration of HPC and constrained optimization is

expected to not only facilitate the handling of large-scale data but

also to refine the overall efficiency and effectiveness of the Gaussian

Process model in real-world applications.

2 BACKGROUND AND RELATEDWORKS
In the context of real-world applications, the use of standard Gauss-

ian Processes (GPs) can be impractical due to the high memory

and computational requirements [5], which grow quadratically and

cubically, respectively. This significant time complexity arises from

the need to compute matrix inversion, this process involves compu-

tational operations of the order 𝑂 (𝑛3) ) and storage requirements

of 𝑂 (𝑛2), with 𝑛 representing the count of training points. Given

these scaling factors, the model becomes impractical for handling

large datasets, as the extensive computations needed for matrix

inversion become excessively demanding.

However, this does not completely rule out the application of GPs

in big-data domains. To overcome this challenge, various methods

have been proposed and developed.

The main goal of these techniques is to bypass the cubic time

complexity associated with standard calculations and instead exe-

cute them with reduced computational demands, generally in the

order of 𝑂 (𝑛𝑚2) for time and 𝑂 (𝑛𝑚) for memory, where𝑚 is sig-

nificantly smaller than 𝑛. This approach aims not just to lessen the

computational burden, but also to preserve the predictive perfor-

mance of the standard Gaussian Process model.

The models that address these limitations and facilitate the prac-

tical application of standard GP in large-scale scenarios are com-

monly referred to as scalable GPs. These scalable GPs employ var-

ious techniques to manage the computational and memory con-

straints while striving to deliver accurate and efficient predictions.

The literature acknowledges that there are two primary ap-

proaches for managing the substantial computational complexity

associated with Gaussian Process models. These approaches can be

distinguished based on their focus when it comes to tackling the

complexity challenge[2]:

Global Approach: This strategy aims to mitigate the computa-

tional complexity on a global scale[3]. It involves techniques that

apply to the entire model or dataset. For instance, methods under

this category may include sparse approximations that use a subset



of the data to represent the entire dataset, or they might involve

mathematical techniques to simplify the overall computational

processes. This approach tries to balance the trade-off between

computational efficiency and the fidelity of the GP model.

Local Approach: In contrast, the local approach [1] focuses on

reducing computational demands at a more granular level. This

could involve dividing the dataset into smaller, manageable chunks

and applying the GP model to each of these segments individually.

Techniques like local kernel approximations or partitioning the

input space fall under this category. The local approach often aims

to maintain model accuracy while reducing computational burden

for each segment of the data.

The choice between these approaches, or a combination of both,

depends on the specific requirements and constraints of the appli-

cation. Some situations may benefit more from a global approach,

especially where a broad overview is sufficient, while others might

require the precision that a local approach offers.

The fact that some methods combine both global and local strate-

gies highlights the flexibility and adaptability of GP models to

various computational and data challenges. This hybrid approach

aims to leverage the strengths of both strategies to create a more

efficient and effective GP model.

The classification of these approximation types and strategies,

as elaborated upon in the cited literature, offers a thorough insight

into the means by which scalable Gaussian Process models can be

attained. This underscores the continuous dedication within the

field towards enhancing the feasibility of GP models for extensive

and intricate data analysis endeavors.

3 EXACT GAUSSIAN PROCESSES FOR
MASSIVE DATASETS

pproach focuses on defining kernels that are ultra- flexible and

capable of learning and representing both non-zero and zero co-

variances. This concept of exact yet sparse GP, supported by High-

Performance Computing (HPC) and constrained optimization, en-

ables scaling exact GP to datasets with over 5 million data points.

This paradigm shift offers a more efficient and accurate method for

handling large-scale data in Gaussian Process modeling

3.1 Ultra-flexible, compactly-supported, and
non-stationary kernel functions

To unearth the inherent sparsity within data, it’s crucial to de-

velop a kernel function, denoted as 𝑘 (𝑥1, 𝑥2), capable of encoding
correlations between data points, including scenarios where such

correlations are absent. This kernel must fulfill three key criteria[4]:

1. Compact Support: The kernel should be compactly supported

to effectively identify zero covariances. This attribute is essential

because our goal is to detect instances where covariance is nonex-

istent.

2. Non-Stationarity: While compactly-supported kernels have

been utilized previously, they have predominantly been in station-

ary contexts. However, in stationary scenarios, sparsity is exploited

only locally, meaning zero covariance is recognized only when a

point is significantly distant from others. These kernels fail to learn

more intricate, distance-independent patterns of sparsity.

3. Flexibility: The kernel needs the capability to discern varying

spatial relationships, recognizing when neighboring points might

be correlated or when distant points are uncorrelated, and vice

versa. The development of kernels that combine compact support,

non-stationarity, and flexibility is crucial for effectively learning

existing and non-existing covariances in data. Let’s examine the

given examples to understand these concepts better.

3.2 High-performance computing to take
advantage of sparse Kernel

In this novel approach for scalable Gaussian Processes (GPs), high-

performance computing plays a vital role, particularly in handling

flexible, non-stationary, and compactly-supported kernels. Initially,

the covariance matrix is computed in a dense format to fully uti-

lize multi-threading capabilities. However, for large datasets, this

approach could exceed available RAM, making it impractical. Con-

versely, directly computing the covariance matrix in a sparse format

would lead to significant inefficiencies. To circumvent these limita-

tions, we adopt a strategy of initially defining a "host" covariance

matrix on a single machine as sparse. We then distribute the com-

putation of dense sub-matrices across multiple nodes in a network,

subsequently converting these dense sub-matrices into a sparse

format. These sparse sub-matrices are then com- municated back

to the host machine and integrated into the original host covari-

ance matrix. This method effectively addresses memory constraints

by distributing the memory load of the covariance matrix across

numerous computational resources. Furthermore, it allows for the

utilization of out-of-core techniques, such as disk storage, when nec-

essary. In terms of computational speed, this approach benefits from

the combined power of heterogeneous computing architectures,

including GPUs, which are highly efficient in data-parallel opera-

tions, and CPUs, adept at threading and task-parallel operations.

By distributing memory load and harnessing parallel processing

capabilities across different hardware components, our algorithm

gains the ability to handle extremely large datasets. The scale of

datasets that can be managed is practically boundless, contingent

on the availability of sufficient distributed computing resources

and the inherent sparsity within the data. This distributed comput-

ing strategy not only mitigates the memory limitations but also

significantly accelerates the computation process. It allows for the

effective handling of the large-scale data typically encountered in

extreme-scale GP applications

3.3 Augmented and constrained optimization
The third component of our framework involves an enhanced op-

timization process, integrating both constrained and augmented

strategies. We utilize the kernel design Ultra-flexible, compactly-

supported, and non-stationary kernel functions , applying a con-

strained approach to manage the sparsity level 𝑠 below a predeter-

mined threshold. This constraint ensures the Gaussian Process (GP)

remains precise until the limit of available RAM is reached, at which

point the GP transitions to an approximate form autonomously,

without requiring user intervention for data point selection.



Scalable Gaussian Process for Large Datasets

4 EXPERIMENTS
Our experiments utilized four datasets: a 1-Dimensional generative

dataset with a bump function, and three multidimensional publicly

available datasets, namely The Weather Stations (reflecting US cli-

mate data), the 3D Road Network, and the Bike Sharing dataset.

Each of these public datasets features a single target variable and

comprises thousands of samples. We used these datasets in a man-

ner that ensures comparability with other studies that have also

employed them

The first dataset we experimented is Self-generated one
dimension dataset (1D dataset) that consists is 21,000 points

were generated from evenly spaced values in the range [0-1], with

the y represented by the bump function 𝑓 (𝑥) = 𝑠𝑖𝑛(5𝑥) +𝑐𝑜𝑠 (10𝑥) +
2(𝑥 −0.4)2𝑐𝑜𝑠 (100𝑥) adding with some noisy data. 𝑦 = 𝑓 (𝑥) +𝑛𝑜𝑖𝑠𝑒

The 3D Road Network dataset, obtained from the UCI reposi-

tory [https://archive.ics.uci.edu/dataset/246/

3d+road+network+north+jutland+denmark], is well-known and

frequently used in the machine learning community, is a widely

recognized collection in the machine learning field. This dataset en-

compasses 434,874 highly accurate height measurements above sea

level, specifically in the North Jutland area of Denmark. It’s noted

for its relevance in applications like eco-routing and designing bi-

cycle paths. Additionally, it’s well-suited for regression analyses. In

our usage, longitude and latitude serve as the independent variables,

while altitude is the dependent variable.

The Bike sharing dataset, also sourced from the UCI repository

[https://archive.ics.uci.edu/dataset/275/

bike+sharing+dataset] which contains the hourly count of rental

bikes between years 2011 and 2012 in Capital bikeshare systemwith

the corresponding weather and seasonal information. The dataset

consists of 17,379 rows and 17 fields, among which: 13 fields are

features, 1 field is an ID, 3 fields are labels

Last dataset we experimented is the weather stations across
the continental United States [4]. The dataset includes station data

and temperature datameasured at each station. The dataset contains

about 51 million records with values for latitude, longitude, and

temperature (in degrees Celsius). For temperature distribution by

station, a random sample of 4000 records is taken from the 51

million to represent on a chart according to latitude, longitude, and

temperature (in degrees Celsius), as shown in the image below:

Figure 1: The dataset consists of recordings of the highest
daily temperatures, expressed in degrees Celsius (◦𝐶), ob-
served at various locations throughout the United States (N
= 4000)

Evaluation Metrics

In assessing the performance of the regression model through-

out our experiments, we utilized metrics Root Mean Squared Error

(RMSE) and training time. RMSE served as the primary metric for

this evaluation, a standard in assessing regression models’ predic-

tive accuracy. The RMSE metric is given by the formula:

RMSE =

√√
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (1)

where 𝑦𝑖 represents the predicted value, 𝑦𝑖 denotes the actual value,

and 𝑛 is the count of predicted samples. In essence, the RMSE is the

mean of the squared differences between the predicted and actual

values. This part outlines the methods employed to achieve the

results, which are summarized in figures and tables, accompanied

by visual representations and potential interpretations. The top-

performing models underwent ten rounds of training and were

assessed on test data. The primary goal of these experiments was

to evaluate the accuracy of each model’s predictions and to identify

GPs that exhibited exceptional performance.

The best models’ performances and training durations for each

dataset are detailed in some figures below. Every columns in these

figures reflects the average value of the corresponding metric, de-

rived from aggregating results from multiple training and evalua-

tion cycles of the top model. To ensure clarity and consistency in

presentation, all tables and visualizations showcasing the models’

performance adhere to specific formatting guidelines. For format-

ting purposes, in every visualisation demonstrating the models’

performance, the Exploiting natural sparsity and advanced kernel

design method of Noack et al. will be referred to as fvGP which

will compare with five other methods: SGPR, SVGP, FITC, KISS_GP

and BBMM.

Figure 2: Comparative results of different scalable GPs meth-
ods on the seft-generated dataset



Figure 3: Comparative results of different scalable GPs meth-
ods on 3D Road Network dataset

Figure 4: Comparative results of different scalable GPs meth-
ods on Bike sharing dataset

Figure 5: Comparative results of different scalable GPs meth-
ods on the US’s climate dataset

We observe that 3 out of 4 datasets (1D self-generated, 3D road

network, and US climate) exhibit good accuracy, as indicated by the

lowest RMSE when using the fvGP method. However, the training

time for this method is the highest among the 4 datasets, with 2

out of 4 having the longest duration. This can be attributed to the

fvGP method being executed in parallel on two PCs with CPUs. In

contrast, other methods were run on GPUs using platforms like Kag-

gle or Google Colab, which may contribute to their comparatively

shorter training times

With the 1-D dataset, a clear trade-off between model accuracy

and training time is evident. The fvGP method, despite achieving

the lowest RMSE and thus indicating high accuracy, also demands

a relatively longer training time compared to other methods.

With the bike-sharing dataset, combining insights from both

charts, it is apparent that the fvGP method exhibits good training

time. However, its accuracy is only slightly smaller than FITC and

is not as favorable when compared to other methods. This discrep-

ancy can be attributed to the use of a random linear algebra (RLA)

optimizer, which is not well-suited for small datasets.

With the 3D Road Network dataset, it is evident that the fvGP

(Noack) method delivers the highest accuracy and moderate train-

ing time. This method seems to strike a favorable balance between

accuracy and training time efficiency.

With the Climate dataset, the fvGP method exhibits the lowest

RMSE, indicating the most accurate predictions among the com-

pared methods. However, it is noteworthy that the fvGP method

takes the longest time to train. Despite being the most accurate, it

is not the fastest in terms of training time.

5 CONCLUSION
In summary, this paper represents a significant advancement in the

field of Gaussian processes, particularly in the context of massive

datasets. We have introduced a comprehensive framework that

not only addresses the computational challenges associated with

exact GPs but also exploits the natural sparsity present in modern

datasets. This approach opens new avenues for applying exact GPs

to real-world problems at an unprecedented scale. As we conclude

this thesis, we emphasize the practicality and significance of our

contributions. Our methodology has the potential to revolutionize

the way GPs are employed in various fields, enabling researchers

and practitioners to extract valuable insights from massive datasets

efficiently. We look forward to further developments and applica-

tions of this approach in the future, as it promises to unlock new

possibilities in data-driven research and analysis.

REFERENCES
[1] Davit Gogolashvili, Bogdan Kozyrskiy, and Maurizio Filip-

pone. Locally Smoothed Gaussian Process Regression. 2022.
arXiv: 2210.09998 [stat.ML].

[2] Haitao Liu et al. When Gaussian Process Meets Big Data: A
Review of Scalable GPs. 2019. arXiv: 1807.01065v2 [stat.ME].

[3] Schweidtmann Artur M. et al. “Deterministic global optimiza-

tion with Gaussian processes embedded”. In: Mathematical
Programming Computation 13.3 (June 2021), pp. 553–581. issn:
1867-2957. doi: 10 . 1007 / s12532 - 021 - 00204 - y. url: http :

//dx.doi.org/10.1007/s12532-021-00204-y.

[4] Marcus M. Noack et al. “Exact Gaussian processes for massive

datasets via non-stationary sparsity-discovering kernels”. In:

Scientific Reports (2023).
[5] JieWang.An Intuitive Tutorial to Gaussian Processes Regression.

2022. arXiv: 2009.10862 [stat.ML].

https://arxiv.org/abs/2210.09998
https://arxiv.org/abs/1807.01065v2
https://doi.org/10.1007/s12532-021-00204-y
http://dx.doi.org/10.1007/s12532-021-00204-y
http://dx.doi.org/10.1007/s12532-021-00204-y
https://arxiv.org/abs/2009.10862

	Abstract
	1 Introduction
	2 Background and Related works
	3 Exact Gaussian Processes for Massive Datasets
	3.1 Ultra-flexible, compactly-supported, and non-stationary kernel functions
	3.2 High-performance computing to take advantage of sparse Kernel
	3.3 Augmented and constrained optimization

	4 Experiments
	5 Conclusion

