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ABSTRACT
This paper aims to improve the Garonne River water height es-

timation by employing a method that utilizes the Multi-output

Gaussian Process with stationary kernels, in conjunction with a

Coregionalization model. This approach effectively addresses the

challenge by constructing a model based on the data related to

Garonne River water height, enabling highly accurate predictions

for multiple outputs simultaneously. This methodology proves to be

more convenient and superior compared to using a Single-Output

Gaussian Process (SOGP) and simplify the process of training, with

acceptable time.
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1 INTRODUCTION
Every year, floods disrupt the lives of millions of people, cause

significant financial losses. Flood forecasting improve preparedness

and response capabilities, reduce economic losses, protect lives and

property in the world. Methods used include hydrological models,

which simulate the water cycle and river flow, and meteorological

models, which predict weather patterns that lead to heavy rainfall

and flooding. Other methods using Single-output Gaussian process,

mix model, threshold or machine learning. The Garonne River is

located in southwest France, originating in the Spanish Pyrenees

and flowing into the Atlantic Ocean. EDF (Électricité de France)

operates numerous electric power plants situated in close proximity

to water sources, serving purposes such as cooling or as primary

energy sources, especially in the case of water dams [4]. Protection

against floods is one of the main concerns toward ensuring the

safety and reliability of its industrial park. The Saint-Vernant model

can be thought of as a mathematical formula for water height

estimation:

h = 𝑓 (𝑞,Ks) (1)

where h is the water heights throughout the mesh, over a certain

amount of time and depends on :

• controlled variable q : the water discharge at the entry of

the river segment.

• a vector Ks representing 5 uncertain parameters, quanti-

fying the smoothness coefficient of the river bed across 5

subdivisions, assuming homogeneity in terms of regularity

for each subdivision.

Figure 1: Garrone river area

In [4], Dr.Kaniav Kamary, Dr. Merlin Keller, et al, used mixtre model

to predict water heigh at 2 positionMarmande andMas Agenais.The

simulation also used Gaussian Process and runs independently of

the two outputs.

In both case, the Matern 3/2 covariance kernel has the best predic-

tion performance, with LOO (leave one out) prediction scores Q2

at Mas Agenais is 98.8% Q2
at Marmande is 99.9% .

There are 4 outputs at: Reole, Marmande, Mas Agenais, Tonneins.

This prompted us to study a solution for predicting multiple (4)

outputs simultaneously.
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2 BACKGROUND AND RELATEDWORKS
2.1 Gaussian Process
A Gaussian process (GP) is a collection of random variables, any

sub set of which have a joint Gaussian distribution. It is represented

as:

𝑓 (x) ∼ GP(𝑚(x),K(x, x′)) (2)

where𝑚(x) is the mean function that characterizes the expected

value of 𝑓 (x), 𝑘 (x, x′) is the covariance function that determines

the covariance between 𝑓 (x) and 𝑓 (x′). The mean function𝑚(x)
captures the prior knowledge or expectations about the underly-

ing function, it is often assumed to be 0. The covariance function

𝑘 (x, x′) or the kernel function present the correlation between

function values. Gaussian processes are widely used in machine

learning tasks as regression, classification, and optimization due to

their ability to capture uncertainty and make probabilistic predic-

tions.

2.2 Multi output Gaussian Process
The Multi-output Gaussian process (MOGP) is a probabilistic model

that extends the concept of a Gaussian process (GP) to predict

multiple output variables simultaneously. Let X ∈ R𝑛×𝑑 represent

the input matrix, 𝑛 denotes the number of sample and 𝑑 represents

the input dimensionality. The corresponding output matrix, Y ∈
R𝑛×𝑚 , consists of𝑚 output variables, f (x) = [𝑓1 (x), · · · , 𝑓𝐷 (x)]⊤ ∈
R𝐷 . 𝑓𝑑 (x) denotes the latent function of the 𝑑-th output evaluated

at x. Function f (·) is presented as:

f (x) ∼ GP
(
m(x),K

(
x, x′

) )
(3)

The covariance matrix K :

K =


𝑘1 (X,X′) · · · 𝑘1 (X,X′)

.

.

.
. . .

.

.

.

𝑘𝑚 (X,X′) · · · 𝑘𝑚 (X,X′)

 (4)

Here, m(·) = {𝑚𝑑 (·)}𝐷𝑑=1
is the mean function for the 𝑑-th

output. K (x, x′) ∈ R𝐷×𝐷
is a positive semi-definite matrix, and

(K (x, x′))𝑑,𝑑 ′ ∈ R is the covariance between 𝑓𝑑 (x) and 𝑓𝑑 ′ (x′)
where 𝑑,𝑑′ ∈ {1, · · · , 𝐷}.

2.3 Stationary kernel
Stationary kernels are defined asK (𝒙, 𝒙′) = K(𝒓), with 𝒓 = 𝒙 −𝒙′.
In other words, the output solely depend on the relative difference

between the input values.[6] Some examples of stationary kernels:

Squared exponential kernel (SE). also known as the radial basis

kernel (RBF):

K
(
𝒙, 𝒙′; ℓ

)
= exp

(
− ∥𝒙 − 𝒙′∥2

2ℓ2

)
(5)

where ℓ is the length-scale of the kernel.

Matérn kernels. [6] In numerous applications, the Matérn kernel is

often preferred over the Squared Exponential (SE) kernel. Matérn

kernel generates rougher functions that can effectively capture

local fluctuations without requiring an excessively small overall

length scale

K(𝑟 ;𝜈, ℓ) = 2
1−𝜈

Γ(𝜈)

(√
2𝜈𝑟

ℓ

)𝜈
𝐾𝜈

(√
2𝜈𝑟

ℓ

)
(6)

𝐾𝜈 represents a modified Bessel function, and ℓ denotes the length

scale.

2.4 Related works
[2] Zvika Ben-Haim, et al have developed a framework for address-

ing the inertial variant of the Saint-Venant equations, representing

the area of focus through a 2D grid where each cell spans approx-

imately 10 m. A trouble with hydraulic modeling is the complex

computation inmany days. They exploredML algorithm have better

in to traditional numerical models as hydraulic model. In [7], Inun-

dation modeling in Google flood forecasting system implemented in

Bangladesh 2021. Flood inundation was calculated using the Thresh-

old, Hydraulic and Manifold methods. Threshold approach models

the extent of inundation, Manifold models the extent and the height

of water. Their experiment showed that the Threshold model and

Manifold (a machine-learning method) have better performance

than the hydraulic model. [5] A. F. Lopez-Lopera, et al developed a

model that integrates inputs varying over time, providing insights

into spatially varied inland flood conditions using MOGP. Many

stationary kernels were tested: Squared Exponential (SE), Matern

5/2, Matern 3/2. Their experiments utilized datasets with 8 inputs

and 20 outputs.

3 METHODOLOGY
3.1 Coregionalization Models
3.1.1 Linear Model of Coregionalization. In LMC [1], the outputs

are represented as linear combinations of independent random

functions. Given a set of outputs {𝑓𝑑 (x)}𝐷𝑑=1
where x ∈ R𝑝 , each

component 𝑓𝑑 takes the form:

𝑓𝑑 (x) =
𝑄∑︁
𝑞=1

𝑎𝑑,𝑞𝑢𝑞 (x) (7)

where𝑢𝑞 (x) is assumed to have zeromean and cov

[
𝑢𝑞 (x), 𝑢𝑞′ (x′)

]
=

𝑘𝑞 (x, x′) if 𝑞 = 𝑞′, and 𝑎𝑑,𝑞 are scalar coefficients,

{
𝑢𝑞 (x)

}𝑄
𝑞=1

are

independent for every 𝑞 ≠ 𝑞′.
{𝑓𝑑 (x)}𝐷𝑑=1

can be represented as:

𝑓𝑑 (x) =
𝑄∑︁
𝑞=1

𝑅𝑞∑︁
𝑖=1

𝑎𝑖
𝑑,𝑞
𝑢𝑖𝑞 (x) (8)

where𝑢𝑖𝑞 (x), with 𝑞 = 1, . . . , 𝑄 and 𝑖 = 1, . . . , 𝑅𝑞 , have zero mean

and cov

[
𝑢𝑖𝑞 (x), 𝑢𝑖

′
𝑞′ (x

′)
]
= 𝑘𝑞 (x, x′) if 𝑖 = 𝑖′ and 𝑞 = 𝑞′.

cov

[
𝑓𝑑 (x), 𝑓𝑑 ′

(
x′
) ]

=

𝑄∑︁
𝑞=1

𝑄∑︁
𝑞′=1

𝑅𝑞∑︁
𝑖=1

𝑅𝑞∑︁
𝑖′=1

𝑎𝑖
𝑑,𝑞
𝑎𝑖

′

𝑑 ′,𝑞′ cov

[
𝑢𝑖𝑞 (x), 𝑢𝑖

′
𝑞′

(
x′
) ]

(9)

cov [𝑓𝑑 (x), 𝑓𝑑 ′ (x′)] is expressed by (K (x, x′))𝑑,𝑑 ′ . Because𝑢𝑖𝑞 (x)
are independent functions, the equation formulation can be repre-

sented as:
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(
K
(
x, x′

) )
𝑑,𝑑 ′ =

𝑄∑︁
𝑞=1

𝑅𝑞∑︁
𝑖=1

𝑎𝑖
𝑑,𝑞
𝑎𝑖
𝑑 ′,𝑞𝑘𝑞

(
x, x′

)
=

𝑄∑︁
𝑞=1

𝑏
𝑞

𝑑,𝑑 ′𝑘𝑞
(
x, x′

)
(10)

with 𝑏
𝑞

𝑑,𝑑 ′ =
∑𝑅𝑞
𝑖=1

𝑎𝑖
𝑑,𝑞
𝑎𝑖
𝑑 ′,𝑞

. K (x, x′) is represented as:

K
(
x, x′

)
=

𝑄∑︁
𝑞=1

B𝑞𝑘𝑞
(
x, x′

)
(11)

where each B𝑞 ∈ R𝐷×𝐷
is a coregionalization matrix. The rank

matrix B𝑞 is 𝑅𝑞 .

3.1.2 Intrinsic Coregionalization Model. Intrinsic coregionalization
model (ICM) is a specific case of the LMC [1], assumes that ele-

ment 𝑏
𝑞

𝑑,𝑑 ′ of the coregionalization matrix B𝑞 can be represented

as 𝑏
𝑞

𝑑,𝑑 ′ = 𝑣𝑑,𝑑 ′𝑏𝑞 .

cov

[
𝑓𝑑 (x), 𝑓𝑑 ′

(
x′
) ]

=

𝑄∑︁
𝑞=1

𝑣𝑑,𝑑 ′𝑏𝑞𝑘𝑞
(
x, x′

)
,= 𝑣𝑑,𝑑 ′

𝑄∑︁
𝑞=1

𝑏𝑞𝑘𝑞
(
x, x′

)
= 𝑣𝑑,𝑑 ′𝑘

(
x, x′

)
(12)

where 𝑘 (x, x′) = ∑𝑄

𝑞=1
𝑏𝑞𝑘𝑞 (x, x′). This kernel is LMC kernel

when 𝑄 = 1.

The coefficients 𝑣𝑑,𝑑 ′ =
∑𝑅1

𝑖=1
𝑎𝑖
𝑑,1
𝑎𝑖
𝑑 ′,1

= 𝑏1

𝑑,𝑑 ′ , the kernel matrix

K (x, x′) = 𝑘 (x, x′) B.
We have the formulation:

K(X,X) = B ⊗ 𝑘 (X,X) (13)

3.2 Performance indicator
we use Q-squared (Q2

):

Q2 = 1 −
∑𝑁test

𝑖=1
(𝑦𝑖 − 𝑦𝑖 )2∑𝑁test

𝑖=1
(𝑦𝑖 − 𝑦)2

(14)

where 𝑦1, . . . , 𝑦𝑁test
represent the predictions, and 𝑦 is the aver-

age of the test data 𝑦1, . . . , 𝑦𝑁test
. In the case of noise-free obser-

vations, Q2
equals one when predictions exactly match the test

data, zero when they match 𝑦, and it becomes negative when they

perform worse than 𝑦.

3.3 Data set
The DOE dataset provided by EDF R&D contains 767 records with

5 input fields: Q,KS1,KS2,KS3,KS4,KS5 and 6 output field are water

height at Reole, Marmande, Mas Agenais, Tonneis at stationary

state.

Figure 2: The Garrone river output positions

Preprocess. We sorted data by value in Q column, from smallest to

largest value, and using sorted data for the input of program.

the value range of Q is much larger than other input data fields,

so we regularize 𝑋1 = 𝑄/100 for a range from from 5.07 to 69.9.

• input X: (𝑋1 = Q/100,𝑋2 = 𝐾𝑆2,𝑋3=𝐾𝑆3,𝑋4=𝐾𝑆4,𝑋5=𝐾𝑆5)

• output Y: (𝑌1 = REOLE, 𝑌2 = MARMANDE, 𝑌3 = MAS

AGENAIS,𝑌4 = TONNEINS)

We add an extra column to our training dataset that contains an

index that specifies which output is observed.

X𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 =


𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 0

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 1

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 2

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 3


Y𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 =


𝑌1 0

𝑌2 1

𝑌3 2

𝑌4 3


X𝑖 is the column vector of input field ith, 𝑌𝑖 is the column vector of

output field number 𝑖 .

3.4 Build the Intrinsic Coregionalization Model
(ICM)

Because the ICM model is better than LMC in calculation resource

saving and time consuming. We prefer to try the IMC [3] [1] first

for Garonne river water height estimation at 4 positions: Reole,

Marmande, Mas Agenais, Tonneins.

4 EXPERIMENT
We use Google Colab Pro+ with a GPU A100.

Train set and test set are divided in 3 ways, corresponding to 3

experiments:

• Experiment 1: the first 750/767 records for train set, the last

17/767 records for test set

• Experiment 2: randomly split 750/767 records for train set,

17/767 records for test set.

• Experiment 3: randomly split 80% records for train set, 20%

record for test set.
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Kernels andModel training: We tried kernels:Martern 5/2,Martern3/2,

Martern1/2, Squared Exponential as base kernel and Coregionaliza-

tion Model (ICM) for modelling. The models was trained in 15000

iterations.

Experiment result: Experimental results show that using the In-

trinsic Coregionalization Model (ICM) is appropriate and gives

good results for Garonne river flood water height estimation. Train-

ing time is acceptable, and the trained model’s checkpoint can be

loaded and used conveniently for prediction. All of 3 experiments,

95% prediction interval of the data points intersects with diagonal

lines, so all of the predictive results in test data points is good. In

the experiment 3, 𝑄2
with the Coregionalization model based on

Matern 5/2 and the Coregionalization model based on Matern 5/2

are 99.9%Ẇith the Coregionalization model based on Matern 1/2

and the Coregionalization model based on Squared Exponential

are 99.89 %Ċoregionalization model (ICM) based on Matern 5/2 and

Matern 3/2 are quite better than the remaining 2 models.

No. Matern 5/2 (h) Matern 3/2 (h) Matern 1/2 (h) SE (h)

1 2.7 2.75 2.56 2.33

2 2.017 2.083 2.383 2.483

3 1.167 1.35 1.3 1.2

Table 1: Tranining time(h) for each base kernel in experi-
ments

No. Matern 5/2 Matern 3/2 Matern 1/2 SE

1 99.990053% 99.9911378% 99.950015% 99.92817%

2 99.88883% 99.89028% 99.89877% 99.86038%

3 99.9009% 99.9056% 99.89674% 99.88666%

Table 2: Q2 for each base kernel in experiments

5 CONCLUSION
This paper has applied Multi-output Gaussian process (MOGP)

for the flooding forecast problem in the Garonne river. It has ad-

dressed the challenge of estimating water heights in the Garonne

river, specifically at Reole, Marmande, Mas Agenais, and Tonneins

simultaneously. This was achieved through a novel approach us-

ing MOGP and a Coregionalization kernel model with stationary

base kernels, resulting in strong prediction performance for multi-

output simultaneously. In the experiments, our models performed

exceptionally well, achieving Q2 = 99.9% on the test set. These

experiments demonstrated that our method offers a comprehensive

solution and represents an improvement over the baseline solution

in [4]. It offers an efficient method for river water height estimation

and flood forecasting problem.
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